The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/5.3/sys/i386/i386/machdep.c 134976 2004-09-09 10:03:21Z julian $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_compat.h"
   46 #include "opt_cpu.h"
   47 #include "opt_ddb.h"
   48 #include "opt_inet.h"
   49 #include "opt_ipx.h"
   50 #include "opt_isa.h"
   51 #include "opt_kstack_pages.h"
   52 #include "opt_maxmem.h"
   53 #include "opt_msgbuf.h"
   54 #include "opt_npx.h"
   55 #include "opt_perfmon.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/systm.h>
   59 #include <sys/sysproto.h>
   60 #include <sys/signalvar.h>
   61 #include <sys/imgact.h>
   62 #include <sys/kdb.h>
   63 #include <sys/kernel.h>
   64 #include <sys/ktr.h>
   65 #include <sys/linker.h>
   66 #include <sys/lock.h>
   67 #include <sys/malloc.h>
   68 #include <sys/memrange.h>
   69 #include <sys/mutex.h>
   70 #include <sys/pcpu.h>
   71 #include <sys/proc.h>
   72 #include <sys/bio.h>
   73 #include <sys/buf.h>
   74 #include <sys/reboot.h>
   75 #include <sys/callout.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/sched.h>
   78 #include <sys/sysent.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/ucontext.h>
   81 #include <sys/vmmeter.h>
   82 #include <sys/bus.h>
   83 #include <sys/eventhandler.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/vm_kern.h>
   88 #include <vm/vm_object.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_pager.h>
   92 #include <vm/vm_extern.h>
   93 
   94 #include <sys/user.h>
   95 #include <sys/exec.h>
   96 #include <sys/cons.h>
   97 
   98 #ifdef DDB
   99 #ifndef KDB
  100 #error KDB must be enabled in order for DDB to work!
  101 #endif
  102 #include <ddb/ddb.h>
  103 #include <ddb/db_sym.h>
  104 #endif
  105 
  106 #include <net/netisr.h>
  107 
  108 #include <machine/cpu.h>
  109 #include <machine/cputypes.h>
  110 #include <machine/reg.h>
  111 #include <machine/clock.h>
  112 #include <machine/specialreg.h>
  113 #include <machine/bootinfo.h>
  114 #include <machine/intr_machdep.h>
  115 #include <machine/md_var.h>
  116 #include <machine/pc/bios.h>
  117 #include <machine/pcb_ext.h>            /* pcb.h included via sys/user.h */
  118 #include <machine/proc.h>
  119 #ifdef PERFMON
  120 #include <machine/perfmon.h>
  121 #endif
  122 #ifdef SMP
  123 #include <machine/privatespace.h>
  124 #include <machine/smp.h>
  125 #endif
  126 
  127 #ifdef DEV_ISA
  128 #include <i386/isa/icu.h>
  129 #endif
  130 
  131 #include <isa/rtc.h>
  132 #include <machine/vm86.h>
  133 #include <sys/ptrace.h>
  134 #include <machine/sigframe.h>
  135 
  136 /* Sanity check for __curthread() */
  137 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  138 
  139 extern void init386(int first);
  140 extern void dblfault_handler(void);
  141 
  142 extern void printcpuinfo(void); /* XXX header file */
  143 extern void finishidentcpu(void);
  144 extern void panicifcpuunsupported(void);
  145 extern void initializecpu(void);
  146 
  147 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  148 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  149 
  150 #if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
  151 #define CPU_ENABLE_SSE
  152 #endif
  153 #if defined(CPU_DISABLE_SSE)
  154 #undef CPU_ENABLE_SSE
  155 #endif
  156 
  157 static void cpu_startup(void *);
  158 static void fpstate_drop(struct thread *td);
  159 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  160 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  161 #ifdef CPU_ENABLE_SSE
  162 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  163 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  164 #endif /* CPU_ENABLE_SSE */
  165 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
  166 
  167 #ifdef DDB
  168 extern vm_offset_t ksym_start, ksym_end;
  169 #endif
  170 
  171 int     _udatasel, _ucodesel;
  172 u_int   basemem;
  173 
  174 int cold = 1;
  175 
  176 #ifdef COMPAT_43
  177 static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);
  178 #endif
  179 #ifdef COMPAT_FREEBSD4
  180 static void freebsd4_sendsig(sig_t catcher, int sig, sigset_t *mask,
  181     u_long code);
  182 #endif
  183 
  184 long Maxmem = 0;
  185 
  186 vm_paddr_t phys_avail[10];
  187 
  188 /* must be 2 less so 0 0 can signal end of chunks */
  189 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
  190 
  191 struct kva_md_info kmi;
  192 
  193 static struct trapframe proc0_tf;
  194 #ifndef SMP
  195 static struct pcpu __pcpu;
  196 #endif
  197 
  198 struct mtx icu_lock;
  199 
  200 struct mem_range_softc mem_range_softc;
  201 
  202 static void
  203 cpu_startup(dummy)
  204         void *dummy;
  205 {
  206         /*
  207          * Good {morning,afternoon,evening,night}.
  208          */
  209         startrtclock();
  210         printcpuinfo();
  211         panicifcpuunsupported();
  212 #ifdef PERFMON
  213         perfmon_init();
  214 #endif
  215         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  216             ptoa((uintmax_t)Maxmem) / 1048576);
  217         /*
  218          * Display any holes after the first chunk of extended memory.
  219          */
  220         if (bootverbose) {
  221                 int indx;
  222 
  223                 printf("Physical memory chunk(s):\n");
  224                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  225                         vm_paddr_t size;
  226 
  227                         size = phys_avail[indx + 1] - phys_avail[indx];
  228                         printf(
  229                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  230                             (uintmax_t)phys_avail[indx],
  231                             (uintmax_t)phys_avail[indx + 1] - 1,
  232                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  233                 }
  234         }
  235 
  236         vm_ksubmap_init(&kmi);
  237 
  238         printf("avail memory = %ju (%ju MB)\n",
  239             ptoa((uintmax_t)cnt.v_free_count),
  240             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  241 
  242         /*
  243          * Set up buffers, so they can be used to read disk labels.
  244          */
  245         bufinit();
  246         vm_pager_bufferinit();
  247 
  248         cpu_setregs();
  249 }
  250 
  251 /*
  252  * Send an interrupt to process.
  253  *
  254  * Stack is set up to allow sigcode stored
  255  * at top to call routine, followed by kcall
  256  * to sigreturn routine below.  After sigreturn
  257  * resets the signal mask, the stack, and the
  258  * frame pointer, it returns to the user
  259  * specified pc, psl.
  260  */
  261 #ifdef COMPAT_43
  262 static void
  263 osendsig(catcher, sig, mask, code)
  264         sig_t catcher;
  265         int sig;
  266         sigset_t *mask;
  267         u_long code;
  268 {
  269         struct osigframe sf, *fp;
  270         struct proc *p;
  271         struct thread *td;
  272         struct sigacts *psp;
  273         struct trapframe *regs;
  274         int oonstack;
  275 
  276         td = curthread;
  277         p = td->td_proc;
  278         PROC_LOCK_ASSERT(p, MA_OWNED);
  279         psp = p->p_sigacts;
  280         mtx_assert(&psp->ps_mtx, MA_OWNED);
  281         regs = td->td_frame;
  282         oonstack = sigonstack(regs->tf_esp);
  283 
  284         /* Allocate space for the signal handler context. */
  285         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  286             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  287                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  288                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  289 #if defined(COMPAT_43)
  290                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  291 #endif
  292         } else
  293                 fp = (struct osigframe *)regs->tf_esp - 1;
  294 
  295         /* Translate the signal if appropriate. */
  296         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  297                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  298 
  299         /* Build the argument list for the signal handler. */
  300         sf.sf_signum = sig;
  301         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  302         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  303                 /* Signal handler installed with SA_SIGINFO. */
  304                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  305                 sf.sf_siginfo.si_signo = sig;
  306                 sf.sf_siginfo.si_code = code;
  307                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  308         } else {
  309                 /* Old FreeBSD-style arguments. */
  310                 sf.sf_arg2 = code;
  311                 sf.sf_addr = regs->tf_err;
  312                 sf.sf_ahu.sf_handler = catcher;
  313         }
  314         mtx_unlock(&psp->ps_mtx);
  315         PROC_UNLOCK(p);
  316 
  317         /* Save most if not all of trap frame. */
  318         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  319         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  320         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  321         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  322         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  323         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  324         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  325         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  326         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  327         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  328         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  329         sf.sf_siginfo.si_sc.sc_gs = rgs();
  330         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  331 
  332         /* Build the signal context to be used by osigreturn(). */
  333         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  334         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  335         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  336         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  337         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  338         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  339         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  340         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  341 
  342         /*
  343          * If we're a vm86 process, we want to save the segment registers.
  344          * We also change eflags to be our emulated eflags, not the actual
  345          * eflags.
  346          */
  347         if (regs->tf_eflags & PSL_VM) {
  348                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  349                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  350                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  351 
  352                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  353                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  354                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  355                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  356 
  357                 if (vm86->vm86_has_vme == 0)
  358                         sf.sf_siginfo.si_sc.sc_ps =
  359                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  360                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  361 
  362                 /* See sendsig() for comments. */
  363                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  364         }
  365 
  366         /*
  367          * Copy the sigframe out to the user's stack.
  368          */
  369         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  370 #ifdef DEBUG
  371                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  372 #endif
  373                 PROC_LOCK(p);
  374                 sigexit(td, SIGILL);
  375         }
  376 
  377         regs->tf_esp = (int)fp;
  378         regs->tf_eip = PS_STRINGS - szosigcode;
  379         regs->tf_eflags &= ~PSL_T;
  380         regs->tf_cs = _ucodesel;
  381         regs->tf_ds = _udatasel;
  382         regs->tf_es = _udatasel;
  383         regs->tf_fs = _udatasel;
  384         load_gs(_udatasel);
  385         regs->tf_ss = _udatasel;
  386         PROC_LOCK(p);
  387         mtx_lock(&psp->ps_mtx);
  388 }
  389 #endif /* COMPAT_43 */
  390 
  391 #ifdef COMPAT_FREEBSD4
  392 static void
  393 freebsd4_sendsig(catcher, sig, mask, code)
  394         sig_t catcher;
  395         int sig;
  396         sigset_t *mask;
  397         u_long code;
  398 {
  399         struct sigframe4 sf, *sfp;
  400         struct proc *p;
  401         struct thread *td;
  402         struct sigacts *psp;
  403         struct trapframe *regs;
  404         int oonstack;
  405 
  406         td = curthread;
  407         p = td->td_proc;
  408         PROC_LOCK_ASSERT(p, MA_OWNED);
  409         psp = p->p_sigacts;
  410         mtx_assert(&psp->ps_mtx, MA_OWNED);
  411         regs = td->td_frame;
  412         oonstack = sigonstack(regs->tf_esp);
  413 
  414         /* Save user context. */
  415         bzero(&sf, sizeof(sf));
  416         sf.sf_uc.uc_sigmask = *mask;
  417         sf.sf_uc.uc_stack = td->td_sigstk;
  418         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  419             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  420         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  421         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  422         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  423 
  424         /* Allocate space for the signal handler context. */
  425         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  426             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  427                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  428                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  429 #if defined(COMPAT_43)
  430                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  431 #endif
  432         } else
  433                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  434 
  435         /* Translate the signal if appropriate. */
  436         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  437                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  438 
  439         /* Build the argument list for the signal handler. */
  440         sf.sf_signum = sig;
  441         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  442         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  443                 /* Signal handler installed with SA_SIGINFO. */
  444                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  445                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  446 
  447                 /* Fill in POSIX parts */
  448                 sf.sf_si.si_signo = sig;
  449                 sf.sf_si.si_code = code;
  450                 sf.sf_si.si_addr = (void *)regs->tf_err;
  451         } else {
  452                 /* Old FreeBSD-style arguments. */
  453                 sf.sf_siginfo = code;
  454                 sf.sf_addr = regs->tf_err;
  455                 sf.sf_ahu.sf_handler = catcher;
  456         }
  457         mtx_unlock(&psp->ps_mtx);
  458         PROC_UNLOCK(p);
  459 
  460         /*
  461          * If we're a vm86 process, we want to save the segment registers.
  462          * We also change eflags to be our emulated eflags, not the actual
  463          * eflags.
  464          */
  465         if (regs->tf_eflags & PSL_VM) {
  466                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  467                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  468 
  469                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  470                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  471                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  472                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  473 
  474                 if (vm86->vm86_has_vme == 0)
  475                         sf.sf_uc.uc_mcontext.mc_eflags =
  476                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  477                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  478 
  479                 /*
  480                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  481                  * syscalls made by the signal handler.  This just avoids
  482                  * wasting time for our lazy fixup of such faults.  PSL_NT
  483                  * does nothing in vm86 mode, but vm86 programs can set it
  484                  * almost legitimately in probes for old cpu types.
  485                  */
  486                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  487         }
  488 
  489         /*
  490          * Copy the sigframe out to the user's stack.
  491          */
  492         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  493 #ifdef DEBUG
  494                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  495 #endif
  496                 PROC_LOCK(p);
  497                 sigexit(td, SIGILL);
  498         }
  499 
  500         regs->tf_esp = (int)sfp;
  501         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  502         regs->tf_eflags &= ~PSL_T;
  503         regs->tf_cs = _ucodesel;
  504         regs->tf_ds = _udatasel;
  505         regs->tf_es = _udatasel;
  506         regs->tf_fs = _udatasel;
  507         regs->tf_ss = _udatasel;
  508         PROC_LOCK(p);
  509         mtx_lock(&psp->ps_mtx);
  510 }
  511 #endif  /* COMPAT_FREEBSD4 */
  512 
  513 void
  514 sendsig(catcher, sig, mask, code)
  515         sig_t catcher;
  516         int sig;
  517         sigset_t *mask;
  518         u_long code;
  519 {
  520         struct sigframe sf, *sfp;
  521         struct proc *p;
  522         struct thread *td;
  523         struct sigacts *psp;
  524         char *sp;
  525         struct trapframe *regs;
  526         int oonstack;
  527 
  528         td = curthread;
  529         p = td->td_proc;
  530         PROC_LOCK_ASSERT(p, MA_OWNED);
  531         psp = p->p_sigacts;
  532         mtx_assert(&psp->ps_mtx, MA_OWNED);
  533 #ifdef COMPAT_FREEBSD4
  534         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  535                 freebsd4_sendsig(catcher, sig, mask, code);
  536                 return;
  537         }
  538 #endif
  539 #ifdef COMPAT_43
  540         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  541                 osendsig(catcher, sig, mask, code);
  542                 return;
  543         }
  544 #endif
  545         regs = td->td_frame;
  546         oonstack = sigonstack(regs->tf_esp);
  547 
  548         /* Save user context. */
  549         bzero(&sf, sizeof(sf));
  550         sf.sf_uc.uc_sigmask = *mask;
  551         sf.sf_uc.uc_stack = td->td_sigstk;
  552         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  553             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  554         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  555         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  556         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  557         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  558         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  559         fpstate_drop(td);
  560 
  561         /* Allocate space for the signal handler context. */
  562         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  563             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  564                 sp = td->td_sigstk.ss_sp +
  565                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  566 #if defined(COMPAT_43)
  567                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  568 #endif
  569         } else
  570                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  571         /* Align to 16 bytes. */
  572         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  573 
  574         /* Translate the signal if appropriate. */
  575         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  576                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  577 
  578         /* Build the argument list for the signal handler. */
  579         sf.sf_signum = sig;
  580         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  581         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  582                 /* Signal handler installed with SA_SIGINFO. */
  583                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  584                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  585 
  586                 /* Fill in POSIX parts */
  587                 sf.sf_si.si_signo = sig;
  588                 sf.sf_si.si_code = code;
  589                 sf.sf_si.si_addr = (void *)regs->tf_err;
  590         } else {
  591                 /* Old FreeBSD-style arguments. */
  592                 sf.sf_siginfo = code;
  593                 sf.sf_addr = regs->tf_err;
  594                 sf.sf_ahu.sf_handler = catcher;
  595         }
  596         mtx_unlock(&psp->ps_mtx);
  597         PROC_UNLOCK(p);
  598 
  599         /*
  600          * If we're a vm86 process, we want to save the segment registers.
  601          * We also change eflags to be our emulated eflags, not the actual
  602          * eflags.
  603          */
  604         if (regs->tf_eflags & PSL_VM) {
  605                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  606                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  607 
  608                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  609                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  610                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  611                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  612 
  613                 if (vm86->vm86_has_vme == 0)
  614                         sf.sf_uc.uc_mcontext.mc_eflags =
  615                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  616                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  617 
  618                 /*
  619                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  620                  * syscalls made by the signal handler.  This just avoids
  621                  * wasting time for our lazy fixup of such faults.  PSL_NT
  622                  * does nothing in vm86 mode, but vm86 programs can set it
  623                  * almost legitimately in probes for old cpu types.
  624                  */
  625                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  626         }
  627 
  628         /*
  629          * Copy the sigframe out to the user's stack.
  630          */
  631         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  632 #ifdef DEBUG
  633                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  634 #endif
  635                 PROC_LOCK(p);
  636                 sigexit(td, SIGILL);
  637         }
  638 
  639         regs->tf_esp = (int)sfp;
  640         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  641         regs->tf_eflags &= ~PSL_T;
  642         regs->tf_cs = _ucodesel;
  643         regs->tf_ds = _udatasel;
  644         regs->tf_es = _udatasel;
  645         regs->tf_fs = _udatasel;
  646         regs->tf_ss = _udatasel;
  647         PROC_LOCK(p);
  648         mtx_lock(&psp->ps_mtx);
  649 }
  650 
  651 /*
  652  * Build siginfo_t for SA thread
  653  */
  654 void
  655 cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
  656 {
  657         struct proc *p;
  658         struct thread *td;
  659 
  660         td = curthread;
  661         p = td->td_proc;
  662         PROC_LOCK_ASSERT(p, MA_OWNED);
  663 
  664         bzero(si, sizeof(*si));
  665         si->si_signo = sig;
  666         si->si_code = code;
  667         si->si_addr = (void *)td->td_frame->tf_err;
  668         /* XXXKSE fill other fields */
  669 }
  670 
  671 /*
  672  * System call to cleanup state after a signal
  673  * has been taken.  Reset signal mask and
  674  * stack state from context left by sendsig (above).
  675  * Return to previous pc and psl as specified by
  676  * context left by sendsig. Check carefully to
  677  * make sure that the user has not modified the
  678  * state to gain improper privileges.
  679  *
  680  * MPSAFE
  681  */
  682 #ifdef COMPAT_43
  683 int
  684 osigreturn(td, uap)
  685         struct thread *td;
  686         struct osigreturn_args /* {
  687                 struct osigcontext *sigcntxp;
  688         } */ *uap;
  689 {
  690         struct osigcontext sc;
  691         struct trapframe *regs;
  692         struct osigcontext *scp;
  693         struct proc *p = td->td_proc;
  694         int eflags, error;
  695 
  696         regs = td->td_frame;
  697         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  698         if (error != 0)
  699                 return (error);
  700         scp = &sc;
  701         eflags = scp->sc_ps;
  702         if (eflags & PSL_VM) {
  703                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  704                 struct vm86_kernel *vm86;
  705 
  706                 /*
  707                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  708                  * set up the vm86 area, and we can't enter vm86 mode.
  709                  */
  710                 if (td->td_pcb->pcb_ext == 0)
  711                         return (EINVAL);
  712                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  713                 if (vm86->vm86_inited == 0)
  714                         return (EINVAL);
  715 
  716                 /* Go back to user mode if both flags are set. */
  717                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
  718                         trapsignal(td, SIGBUS, 0);
  719 
  720                 if (vm86->vm86_has_vme) {
  721                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  722                             (eflags & VME_USERCHANGE) | PSL_VM;
  723                 } else {
  724                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  725                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  726                             (eflags & VM_USERCHANGE) | PSL_VM;
  727                 }
  728                 tf->tf_vm86_ds = scp->sc_ds;
  729                 tf->tf_vm86_es = scp->sc_es;
  730                 tf->tf_vm86_fs = scp->sc_fs;
  731                 tf->tf_vm86_gs = scp->sc_gs;
  732                 tf->tf_ds = _udatasel;
  733                 tf->tf_es = _udatasel;
  734                 tf->tf_fs = _udatasel;
  735         } else {
  736                 /*
  737                  * Don't allow users to change privileged or reserved flags.
  738                  */
  739                 /*
  740                  * XXX do allow users to change the privileged flag PSL_RF.
  741                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  742                  * should sometimes set it there too.  tf_eflags is kept in
  743                  * the signal context during signal handling and there is no
  744                  * other place to remember it, so the PSL_RF bit may be
  745                  * corrupted by the signal handler without us knowing.
  746                  * Corruption of the PSL_RF bit at worst causes one more or
  747                  * one less debugger trap, so allowing it is fairly harmless.
  748                  */
  749                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  750                         return (EINVAL);
  751                 }
  752 
  753                 /*
  754                  * Don't allow users to load a valid privileged %cs.  Let the
  755                  * hardware check for invalid selectors, excess privilege in
  756                  * other selectors, invalid %eip's and invalid %esp's.
  757                  */
  758                 if (!CS_SECURE(scp->sc_cs)) {
  759                         trapsignal(td, SIGBUS, T_PROTFLT);
  760                         return (EINVAL);
  761                 }
  762                 regs->tf_ds = scp->sc_ds;
  763                 regs->tf_es = scp->sc_es;
  764                 regs->tf_fs = scp->sc_fs;
  765         }
  766 
  767         /* Restore remaining registers. */
  768         regs->tf_eax = scp->sc_eax;
  769         regs->tf_ebx = scp->sc_ebx;
  770         regs->tf_ecx = scp->sc_ecx;
  771         regs->tf_edx = scp->sc_edx;
  772         regs->tf_esi = scp->sc_esi;
  773         regs->tf_edi = scp->sc_edi;
  774         regs->tf_cs = scp->sc_cs;
  775         regs->tf_ss = scp->sc_ss;
  776         regs->tf_isp = scp->sc_isp;
  777         regs->tf_ebp = scp->sc_fp;
  778         regs->tf_esp = scp->sc_sp;
  779         regs->tf_eip = scp->sc_pc;
  780         regs->tf_eflags = eflags;
  781 
  782         PROC_LOCK(p);
  783 #if defined(COMPAT_43)
  784         if (scp->sc_onstack & 1)
  785                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  786         else
  787                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  788 #endif
  789         SIGSETOLD(td->td_sigmask, scp->sc_mask);
  790         SIG_CANTMASK(td->td_sigmask);
  791         signotify(td);
  792         PROC_UNLOCK(p);
  793         return (EJUSTRETURN);
  794 }
  795 #endif /* COMPAT_43 */
  796 
  797 #ifdef COMPAT_FREEBSD4
  798 /*
  799  * MPSAFE
  800  */
  801 int
  802 freebsd4_sigreturn(td, uap)
  803         struct thread *td;
  804         struct freebsd4_sigreturn_args /* {
  805                 const ucontext4 *sigcntxp;
  806         } */ *uap;
  807 {
  808         struct ucontext4 uc;
  809         struct proc *p = td->td_proc;
  810         struct trapframe *regs;
  811         const struct ucontext4 *ucp;
  812         int cs, eflags, error;
  813 
  814         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  815         if (error != 0)
  816                 return (error);
  817         ucp = &uc;
  818         regs = td->td_frame;
  819         eflags = ucp->uc_mcontext.mc_eflags;
  820         if (eflags & PSL_VM) {
  821                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  822                 struct vm86_kernel *vm86;
  823 
  824                 /*
  825                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  826                  * set up the vm86 area, and we can't enter vm86 mode.
  827                  */
  828                 if (td->td_pcb->pcb_ext == 0)
  829                         return (EINVAL);
  830                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  831                 if (vm86->vm86_inited == 0)
  832                         return (EINVAL);
  833 
  834                 /* Go back to user mode if both flags are set. */
  835                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
  836                         trapsignal(td, SIGBUS, 0);
  837 
  838                 if (vm86->vm86_has_vme) {
  839                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  840                             (eflags & VME_USERCHANGE) | PSL_VM;
  841                 } else {
  842                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  843                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  844                             (eflags & VM_USERCHANGE) | PSL_VM;
  845                 }
  846                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  847                 tf->tf_eflags = eflags;
  848                 tf->tf_vm86_ds = tf->tf_ds;
  849                 tf->tf_vm86_es = tf->tf_es;
  850                 tf->tf_vm86_fs = tf->tf_fs;
  851                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  852                 tf->tf_ds = _udatasel;
  853                 tf->tf_es = _udatasel;
  854                 tf->tf_fs = _udatasel;
  855         } else {
  856                 /*
  857                  * Don't allow users to change privileged or reserved flags.
  858                  */
  859                 /*
  860                  * XXX do allow users to change the privileged flag PSL_RF.
  861                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  862                  * should sometimes set it there too.  tf_eflags is kept in
  863                  * the signal context during signal handling and there is no
  864                  * other place to remember it, so the PSL_RF bit may be
  865                  * corrupted by the signal handler without us knowing.
  866                  * Corruption of the PSL_RF bit at worst causes one more or
  867                  * one less debugger trap, so allowing it is fairly harmless.
  868                  */
  869                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  870                         printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
  871                         return (EINVAL);
  872                 }
  873 
  874                 /*
  875                  * Don't allow users to load a valid privileged %cs.  Let the
  876                  * hardware check for invalid selectors, excess privilege in
  877                  * other selectors, invalid %eip's and invalid %esp's.
  878                  */
  879                 cs = ucp->uc_mcontext.mc_cs;
  880                 if (!CS_SECURE(cs)) {
  881                         printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
  882                         trapsignal(td, SIGBUS, T_PROTFLT);
  883                         return (EINVAL);
  884                 }
  885 
  886                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  887         }
  888 
  889         PROC_LOCK(p);
  890 #if defined(COMPAT_43)
  891         if (ucp->uc_mcontext.mc_onstack & 1)
  892                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  893         else
  894                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  895 #endif
  896 
  897         td->td_sigmask = ucp->uc_sigmask;
  898         SIG_CANTMASK(td->td_sigmask);
  899         signotify(td);
  900         PROC_UNLOCK(p);
  901         return (EJUSTRETURN);
  902 }
  903 #endif  /* COMPAT_FREEBSD4 */
  904 
  905 /*
  906  * MPSAFE
  907  */
  908 int
  909 sigreturn(td, uap)
  910         struct thread *td;
  911         struct sigreturn_args /* {
  912                 const __ucontext *sigcntxp;
  913         } */ *uap;
  914 {
  915         ucontext_t uc;
  916         struct proc *p = td->td_proc;
  917         struct trapframe *regs;
  918         const ucontext_t *ucp;
  919         int cs, eflags, error, ret;
  920 
  921         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  922         if (error != 0)
  923                 return (error);
  924         ucp = &uc;
  925         regs = td->td_frame;
  926         eflags = ucp->uc_mcontext.mc_eflags;
  927         if (eflags & PSL_VM) {
  928                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  929                 struct vm86_kernel *vm86;
  930 
  931                 /*
  932                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  933                  * set up the vm86 area, and we can't enter vm86 mode.
  934                  */
  935                 if (td->td_pcb->pcb_ext == 0)
  936                         return (EINVAL);
  937                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  938                 if (vm86->vm86_inited == 0)
  939                         return (EINVAL);
  940 
  941                 /* Go back to user mode if both flags are set. */
  942                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
  943                         trapsignal(td, SIGBUS, 0);
  944 
  945                 if (vm86->vm86_has_vme) {
  946                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  947                             (eflags & VME_USERCHANGE) | PSL_VM;
  948                 } else {
  949                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  950                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  951                             (eflags & VM_USERCHANGE) | PSL_VM;
  952                 }
  953                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  954                 tf->tf_eflags = eflags;
  955                 tf->tf_vm86_ds = tf->tf_ds;
  956                 tf->tf_vm86_es = tf->tf_es;
  957                 tf->tf_vm86_fs = tf->tf_fs;
  958                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  959                 tf->tf_ds = _udatasel;
  960                 tf->tf_es = _udatasel;
  961                 tf->tf_fs = _udatasel;
  962         } else {
  963                 /*
  964                  * Don't allow users to change privileged or reserved flags.
  965                  */
  966                 /*
  967                  * XXX do allow users to change the privileged flag PSL_RF.
  968                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  969                  * should sometimes set it there too.  tf_eflags is kept in
  970                  * the signal context during signal handling and there is no
  971                  * other place to remember it, so the PSL_RF bit may be
  972                  * corrupted by the signal handler without us knowing.
  973                  * Corruption of the PSL_RF bit at worst causes one more or
  974                  * one less debugger trap, so allowing it is fairly harmless.
  975                  */
  976                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  977                         printf("sigreturn: eflags = 0x%x\n", eflags);
  978                         return (EINVAL);
  979                 }
  980 
  981                 /*
  982                  * Don't allow users to load a valid privileged %cs.  Let the
  983                  * hardware check for invalid selectors, excess privilege in
  984                  * other selectors, invalid %eip's and invalid %esp's.
  985                  */
  986                 cs = ucp->uc_mcontext.mc_cs;
  987                 if (!CS_SECURE(cs)) {
  988                         printf("sigreturn: cs = 0x%x\n", cs);
  989                         trapsignal(td, SIGBUS, T_PROTFLT);
  990                         return (EINVAL);
  991                 }
  992 
  993                 ret = set_fpcontext(td, &ucp->uc_mcontext);
  994                 if (ret != 0)
  995                         return (ret);
  996                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  997         }
  998 
  999         PROC_LOCK(p);
 1000 #if defined(COMPAT_43)
 1001         if (ucp->uc_mcontext.mc_onstack & 1)
 1002                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1003         else
 1004                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1005 #endif
 1006 
 1007         td->td_sigmask = ucp->uc_sigmask;
 1008         SIG_CANTMASK(td->td_sigmask);
 1009         signotify(td);
 1010         PROC_UNLOCK(p);
 1011         return (EJUSTRETURN);
 1012 }
 1013 
 1014 /*
 1015  * Machine dependent boot() routine
 1016  *
 1017  * I haven't seen anything to put here yet
 1018  * Possibly some stuff might be grafted back here from boot()
 1019  */
 1020 void
 1021 cpu_boot(int howto)
 1022 {
 1023 }
 1024 
 1025 /*
 1026  * Shutdown the CPU as much as possible
 1027  */
 1028 void
 1029 cpu_halt(void)
 1030 {
 1031         for (;;)
 1032                 __asm__ ("hlt");
 1033 }
 1034 
 1035 /*
 1036  * Hook to idle the CPU when possible.  In the SMP case we default to
 1037  * off because a halted cpu will not currently pick up a new thread in the
 1038  * run queue until the next timer tick.  If turned on this will result in
 1039  * approximately a 4.2% loss in real time performance in buildworld tests
 1040  * (but improves user and sys times oddly enough), and saves approximately
 1041  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
 1042  *
 1043  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
 1044  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
 1045  * Then we can have our cake and eat it too.
 1046  *
 1047  * XXX I'm turning it on for SMP as well by default for now.  It seems to
 1048  * help lock contention somewhat, and this is critical for HTT. -Peter
 1049  */
 1050 static int      cpu_idle_hlt = 1;
 1051 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
 1052     &cpu_idle_hlt, 0, "Idle loop HLT enable");
 1053 
 1054 static void
 1055 cpu_idle_default(void)
 1056 {
 1057         /*
 1058          * we must absolutely guarentee that hlt is the
 1059          * absolute next instruction after sti or we
 1060          * introduce a timing window.
 1061          */
 1062         __asm __volatile("sti; hlt");
 1063 }
 1064 
 1065 /*
 1066  * Note that we have to be careful here to avoid a race between checking
 1067  * sched_runnable() and actually halting.  If we don't do this, we may waste
 1068  * the time between calling hlt and the next interrupt even though there
 1069  * is a runnable process.
 1070  */
 1071 void
 1072 cpu_idle(void)
 1073 {
 1074 
 1075 #ifdef SMP
 1076         if (mp_grab_cpu_hlt())
 1077                 return;
 1078 #endif
 1079 
 1080         if (cpu_idle_hlt) {
 1081                 disable_intr();
 1082                 if (sched_runnable())
 1083                         enable_intr();
 1084                 else
 1085                         (*cpu_idle_hook)();
 1086         }
 1087 }
 1088 
 1089 /* Other subsystems (e.g., ACPI) can hook this later. */
 1090 void (*cpu_idle_hook)(void) = cpu_idle_default;
 1091 
 1092 /*
 1093  * Clear registers on exec
 1094  */
 1095 void
 1096 exec_setregs(td, entry, stack, ps_strings)
 1097         struct thread *td;
 1098         u_long entry;
 1099         u_long stack;
 1100         u_long ps_strings;
 1101 {
 1102         struct trapframe *regs = td->td_frame;
 1103         struct pcb *pcb = td->td_pcb;
 1104 
 1105         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1106         pcb->pcb_gs = _udatasel;
 1107         load_gs(_udatasel);
 1108 
 1109         if (td->td_proc->p_md.md_ldt)
 1110                 user_ldt_free(td);
 1111   
 1112         bzero((char *)regs, sizeof(struct trapframe));
 1113         regs->tf_eip = entry;
 1114         regs->tf_esp = stack;
 1115         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1116         regs->tf_ss = _udatasel;
 1117         regs->tf_ds = _udatasel;
 1118         regs->tf_es = _udatasel;
 1119         regs->tf_fs = _udatasel;
 1120         regs->tf_cs = _ucodesel;
 1121 
 1122         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1123         regs->tf_ebx = ps_strings;
 1124 
 1125         /*
 1126          * Reset the hardware debug registers if they were in use.
 1127          * They won't have any meaning for the newly exec'd process.  
 1128          */
 1129         if (pcb->pcb_flags & PCB_DBREGS) {
 1130                 pcb->pcb_dr0 = 0;
 1131                 pcb->pcb_dr1 = 0;
 1132                 pcb->pcb_dr2 = 0;
 1133                 pcb->pcb_dr3 = 0;
 1134                 pcb->pcb_dr6 = 0;
 1135                 pcb->pcb_dr7 = 0;
 1136                 if (pcb == PCPU_GET(curpcb)) {
 1137                         /*
 1138                          * Clear the debug registers on the running
 1139                          * CPU, otherwise they will end up affecting
 1140                          * the next process we switch to.
 1141                          */
 1142                         reset_dbregs();
 1143                 }
 1144                 pcb->pcb_flags &= ~PCB_DBREGS;
 1145         }
 1146 
 1147         /*
 1148          * Initialize the math emulator (if any) for the current process.
 1149          * Actually, just clear the bit that says that the emulator has
 1150          * been initialized.  Initialization is delayed until the process
 1151          * traps to the emulator (if it is done at all) mainly because
 1152          * emulators don't provide an entry point for initialization.
 1153          */
 1154         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1155 
 1156         /*
 1157          * Drop the FP state if we hold it, so that the process gets a
 1158          * clean FP state if it uses the FPU again.
 1159          */
 1160         fpstate_drop(td);
 1161 
 1162         /*
 1163          * XXX - Linux emulator
 1164          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1165          * on it.
 1166          */
 1167         td->td_retval[1] = 0;
 1168 }
 1169 
 1170 void
 1171 cpu_setregs(void)
 1172 {
 1173         unsigned int cr0;
 1174 
 1175         cr0 = rcr0();
 1176         /*
 1177          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
 1178          * BSP.  See the comments there about why we set them.
 1179          */
 1180         cr0 |= CR0_MP | CR0_NE | CR0_TS;
 1181 #ifndef I386_CPU
 1182         cr0 |= CR0_WP | CR0_AM;
 1183 #endif
 1184         load_cr0(cr0);
 1185         load_gs(_udatasel);
 1186 }
 1187 
 1188 static int
 1189 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
 1190 {
 1191         int error;
 1192         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
 1193                 req);
 1194         if (!error && req->newptr)
 1195                 resettodr();
 1196         return (error);
 1197 }
 1198 
 1199 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
 1200         &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
 1201 
 1202 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
 1203         CTLFLAG_RW, &disable_rtc_set, 0, "");
 1204 
 1205 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo, 
 1206         CTLFLAG_RD, &bootinfo, bootinfo, "");
 1207 
 1208 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
 1209         CTLFLAG_RW, &wall_cmos_clock, 0, "");
 1210 
 1211 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1212 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1213         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1214 
 1215 /*
 1216  * Initialize 386 and configure to run kernel
 1217  */
 1218 
 1219 /*
 1220  * Initialize segments & interrupt table
 1221  */
 1222 
 1223 int _default_ldt;
 1224 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1225 static struct gate_descriptor idt0[NIDT];
 1226 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1227 union descriptor ldt[NLDT];             /* local descriptor table */
 1228 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1229 
 1230 int private_tss;                        /* flag indicating private tss */
 1231 
 1232 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1233 extern int has_f00f_bug;
 1234 #endif
 1235 
 1236 static struct i386tss dblfault_tss;
 1237 static char dblfault_stack[PAGE_SIZE];
 1238 
 1239 extern  struct user     *proc0uarea;
 1240 extern  vm_offset_t     proc0kstack;
 1241 
 1242 
 1243 /* software prototypes -- in more palatable form */
 1244 struct soft_segment_descriptor gdt_segs[] = {
 1245 /* GNULL_SEL    0 Null Descriptor */
 1246 {       0x0,                    /* segment base address  */
 1247         0x0,                    /* length */
 1248         0,                      /* segment type */
 1249         0,                      /* segment descriptor priority level */
 1250         0,                      /* segment descriptor present */
 1251         0, 0,
 1252         0,                      /* default 32 vs 16 bit size */
 1253         0                       /* limit granularity (byte/page units)*/ },
 1254 /* GCODE_SEL    1 Code Descriptor for kernel */
 1255 {       0x0,                    /* segment base address  */
 1256         0xfffff,                /* length - all address space */
 1257         SDT_MEMERA,             /* segment type */
 1258         0,                      /* segment descriptor priority level */
 1259         1,                      /* segment descriptor present */
 1260         0, 0,
 1261         1,                      /* default 32 vs 16 bit size */
 1262         1                       /* limit granularity (byte/page units)*/ },
 1263 /* GDATA_SEL    2 Data Descriptor for kernel */
 1264 {       0x0,                    /* segment base address  */
 1265         0xfffff,                /* length - all address space */
 1266         SDT_MEMRWA,             /* segment type */
 1267         0,                      /* segment descriptor priority level */
 1268         1,                      /* segment descriptor present */
 1269         0, 0,
 1270         1,                      /* default 32 vs 16 bit size */
 1271         1                       /* limit granularity (byte/page units)*/ },
 1272 /* GPRIV_SEL    3 SMP Per-Processor Private Data Descriptor */
 1273 {       0x0,                    /* segment base address  */
 1274         0xfffff,                /* length - all address space */
 1275         SDT_MEMRWA,             /* segment type */
 1276         0,                      /* segment descriptor priority level */
 1277         1,                      /* segment descriptor present */
 1278         0, 0,
 1279         1,                      /* default 32 vs 16 bit size */
 1280         1                       /* limit granularity (byte/page units)*/ },
 1281 /* GPROC0_SEL   4 Proc 0 Tss Descriptor */
 1282 {
 1283         0x0,                    /* segment base address */
 1284         sizeof(struct i386tss)-1,/* length  */
 1285         SDT_SYS386TSS,          /* segment type */
 1286         0,                      /* segment descriptor priority level */
 1287         1,                      /* segment descriptor present */
 1288         0, 0,
 1289         0,                      /* unused - default 32 vs 16 bit size */
 1290         0                       /* limit granularity (byte/page units)*/ },
 1291 /* GLDT_SEL     5 LDT Descriptor */
 1292 {       (int) ldt,              /* segment base address  */
 1293         sizeof(ldt)-1,          /* length - all address space */
 1294         SDT_SYSLDT,             /* segment type */
 1295         SEL_UPL,                /* segment descriptor priority level */
 1296         1,                      /* segment descriptor present */
 1297         0, 0,
 1298         0,                      /* unused - default 32 vs 16 bit size */
 1299         0                       /* limit granularity (byte/page units)*/ },
 1300 /* GUSERLDT_SEL 6 User LDT Descriptor per process */
 1301 {       (int) ldt,              /* segment base address  */
 1302         (512 * sizeof(union descriptor)-1),             /* length */
 1303         SDT_SYSLDT,             /* segment type */
 1304         0,                      /* segment descriptor priority level */
 1305         1,                      /* segment descriptor present */
 1306         0, 0,
 1307         0,                      /* unused - default 32 vs 16 bit size */
 1308         0                       /* limit granularity (byte/page units)*/ },
 1309 /* GTGATE_SEL   7 Null Descriptor - Placeholder */
 1310 {       0x0,                    /* segment base address  */
 1311         0x0,                    /* length - all address space */
 1312         0,                      /* segment type */
 1313         0,                      /* segment descriptor priority level */
 1314         0,                      /* segment descriptor present */
 1315         0, 0,
 1316         0,                      /* default 32 vs 16 bit size */
 1317         0                       /* limit granularity (byte/page units)*/ },
 1318 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1319 {       0x400,                  /* segment base address */
 1320         0xfffff,                /* length */
 1321         SDT_MEMRWA,             /* segment type */
 1322         0,                      /* segment descriptor priority level */
 1323         1,                      /* segment descriptor present */
 1324         0, 0,
 1325         1,                      /* default 32 vs 16 bit size */
 1326         1                       /* limit granularity (byte/page units)*/ },
 1327 /* GPANIC_SEL   9 Panic Tss Descriptor */
 1328 {       (int) &dblfault_tss,    /* segment base address  */
 1329         sizeof(struct i386tss)-1,/* length - all address space */
 1330         SDT_SYS386TSS,          /* segment type */
 1331         0,                      /* segment descriptor priority level */
 1332         1,                      /* segment descriptor present */
 1333         0, 0,
 1334         0,                      /* unused - default 32 vs 16 bit size */
 1335         0                       /* limit granularity (byte/page units)*/ },
 1336 /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
 1337 {       0,                      /* segment base address (overwritten)  */
 1338         0xfffff,                /* length */
 1339         SDT_MEMERA,             /* segment type */
 1340         0,                      /* segment descriptor priority level */
 1341         1,                      /* segment descriptor present */
 1342         0, 0,
 1343         0,                      /* default 32 vs 16 bit size */
 1344         1                       /* limit granularity (byte/page units)*/ },
 1345 /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
 1346 {       0,                      /* segment base address (overwritten)  */
 1347         0xfffff,                /* length */
 1348         SDT_MEMERA,             /* segment type */
 1349         0,                      /* segment descriptor priority level */
 1350         1,                      /* segment descriptor present */
 1351         0, 0,
 1352         0,                      /* default 32 vs 16 bit size */
 1353         1                       /* limit granularity (byte/page units)*/ },
 1354 /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
 1355 {       0,                      /* segment base address (overwritten) */
 1356         0xfffff,                /* length */
 1357         SDT_MEMRWA,             /* segment type */
 1358         0,                      /* segment descriptor priority level */
 1359         1,                      /* segment descriptor present */
 1360         0, 0,
 1361         1,                      /* default 32 vs 16 bit size */
 1362         1                       /* limit granularity (byte/page units)*/ },
 1363 /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
 1364 {       0,                      /* segment base address (overwritten) */
 1365         0xfffff,                /* length */
 1366         SDT_MEMRWA,             /* segment type */
 1367         0,                      /* segment descriptor priority level */
 1368         1,                      /* segment descriptor present */
 1369         0, 0,
 1370         0,                      /* default 32 vs 16 bit size */
 1371         1                       /* limit granularity (byte/page units)*/ },
 1372 /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
 1373 {       0,                      /* segment base address (overwritten) */
 1374         0xfffff,                /* length */
 1375         SDT_MEMRWA,             /* segment type */
 1376         0,                      /* segment descriptor priority level */
 1377         1,                      /* segment descriptor present */
 1378         0, 0,
 1379         0,                      /* default 32 vs 16 bit size */
 1380         1                       /* limit granularity (byte/page units)*/ },
 1381 };
 1382 
 1383 static struct soft_segment_descriptor ldt_segs[] = {
 1384         /* Null Descriptor - overwritten by call gate */
 1385 {       0x0,                    /* segment base address  */
 1386         0x0,                    /* length - all address space */
 1387         0,                      /* segment type */
 1388         0,                      /* segment descriptor priority level */
 1389         0,                      /* segment descriptor present */
 1390         0, 0,
 1391         0,                      /* default 32 vs 16 bit size */
 1392         0                       /* limit granularity (byte/page units)*/ },
 1393         /* Null Descriptor - overwritten by call gate */
 1394 {       0x0,                    /* segment base address  */
 1395         0x0,                    /* length - all address space */
 1396         0,                      /* segment type */
 1397         0,                      /* segment descriptor priority level */
 1398         0,                      /* segment descriptor present */
 1399         0, 0,
 1400         0,                      /* default 32 vs 16 bit size */
 1401         0                       /* limit granularity (byte/page units)*/ },
 1402         /* Null Descriptor - overwritten by call gate */
 1403 {       0x0,                    /* segment base address  */
 1404         0x0,                    /* length - all address space */
 1405         0,                      /* segment type */
 1406         0,                      /* segment descriptor priority level */
 1407         0,                      /* segment descriptor present */
 1408         0, 0,
 1409         0,                      /* default 32 vs 16 bit size */
 1410         0                       /* limit granularity (byte/page units)*/ },
 1411         /* Code Descriptor for user */
 1412 {       0x0,                    /* segment base address  */
 1413         0xfffff,                /* length - all address space */
 1414         SDT_MEMERA,             /* segment type */
 1415         SEL_UPL,                /* segment descriptor priority level */
 1416         1,                      /* segment descriptor present */
 1417         0, 0,
 1418         1,                      /* default 32 vs 16 bit size */
 1419         1                       /* limit granularity (byte/page units)*/ },
 1420         /* Null Descriptor - overwritten by call gate */
 1421 {       0x0,                    /* segment base address  */
 1422         0x0,                    /* length - all address space */
 1423         0,                      /* segment type */
 1424         0,                      /* segment descriptor priority level */
 1425         0,                      /* segment descriptor present */
 1426         0, 0,
 1427         0,                      /* default 32 vs 16 bit size */
 1428         0                       /* limit granularity (byte/page units)*/ },
 1429         /* Data Descriptor for user */
 1430 {       0x0,                    /* segment base address  */
 1431         0xfffff,                /* length - all address space */
 1432         SDT_MEMRWA,             /* segment type */
 1433         SEL_UPL,                /* segment descriptor priority level */
 1434         1,                      /* segment descriptor present */
 1435         0, 0,
 1436         1,                      /* default 32 vs 16 bit size */
 1437         1                       /* limit granularity (byte/page units)*/ },
 1438 };
 1439 
 1440 void
 1441 setidt(idx, func, typ, dpl, selec)
 1442         int idx;
 1443         inthand_t *func;
 1444         int typ;
 1445         int dpl;
 1446         int selec;
 1447 {
 1448         struct gate_descriptor *ip;
 1449 
 1450         ip = idt + idx;
 1451         ip->gd_looffset = (int)func;
 1452         ip->gd_selector = selec;
 1453         ip->gd_stkcpy = 0;
 1454         ip->gd_xx = 0;
 1455         ip->gd_type = typ;
 1456         ip->gd_dpl = dpl;
 1457         ip->gd_p = 1;
 1458         ip->gd_hioffset = ((int)func)>>16 ;
 1459 }
 1460 
 1461 #define IDTVEC(name)    __CONCAT(X,name)
 1462 
 1463 extern inthand_t
 1464         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1465         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1466         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1467         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1468         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1469 
 1470 #ifdef DDB
 1471 /*
 1472  * Display the index and function name of any IDT entries that don't use
 1473  * the default 'rsvd' entry point.
 1474  */
 1475 DB_SHOW_COMMAND(idt, db_show_idt)
 1476 {
 1477         struct gate_descriptor *ip;
 1478         int idx, quit;
 1479         uintptr_t func;
 1480 
 1481         ip = idt;
 1482         db_setup_paging(db_simple_pager, &quit, DB_LINES_PER_PAGE);
 1483         for (idx = 0, quit = 0; idx < NIDT; idx++) {
 1484                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1485                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1486                         db_printf("%3d\t", idx);
 1487                         db_printsym(func, DB_STGY_PROC);
 1488                         db_printf("\n");
 1489                 }
 1490                 ip++;
 1491         }
 1492 }
 1493 #endif
 1494 
 1495 void
 1496 sdtossd(sd, ssd)
 1497         struct segment_descriptor *sd;
 1498         struct soft_segment_descriptor *ssd;
 1499 {
 1500         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1501         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1502         ssd->ssd_type  = sd->sd_type;
 1503         ssd->ssd_dpl   = sd->sd_dpl;
 1504         ssd->ssd_p     = sd->sd_p;
 1505         ssd->ssd_def32 = sd->sd_def32;
 1506         ssd->ssd_gran  = sd->sd_gran;
 1507 }
 1508 
 1509 #define PHYSMAP_SIZE    (2 * 8)
 1510 
 1511 /*
 1512  * Populate the (physmap) array with base/bound pairs describing the
 1513  * available physical memory in the system, then test this memory and
 1514  * build the phys_avail array describing the actually-available memory.
 1515  *
 1516  * If we cannot accurately determine the physical memory map, then use
 1517  * value from the 0xE801 call, and failing that, the RTC.
 1518  *
 1519  * Total memory size may be set by the kernel environment variable
 1520  * hw.physmem or the compile-time define MAXMEM.
 1521  *
 1522  * XXX first should be vm_paddr_t.
 1523  */
 1524 static void
 1525 getmemsize(int first)
 1526 {
 1527         int i, physmap_idx, pa_indx;
 1528         int hasbrokenint12;
 1529         u_int extmem;
 1530         struct vm86frame vmf;
 1531         struct vm86context vmc;
 1532         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1533         pt_entry_t *pte;
 1534         char *cp;
 1535         struct bios_smap *smap;
 1536 
 1537         hasbrokenint12 = 0;
 1538         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 1539         bzero(&vmf, sizeof(vmf));
 1540         bzero(physmap, sizeof(physmap));
 1541         basemem = 0;
 1542 
 1543         /*
 1544          * Some newer BIOSes has broken INT 12H implementation which cause
 1545          * kernel panic immediately. In this case, we need to scan SMAP
 1546          * with INT 15:E820 first, then determine base memory size.
 1547          */
 1548         if (hasbrokenint12) {
 1549                 goto int15e820;
 1550         }
 1551 
 1552         /*
 1553          * Perform "base memory" related probes & setup
 1554          */
 1555         vm86_intcall(0x12, &vmf);
 1556         basemem = vmf.vmf_ax;
 1557         if (basemem > 640) {
 1558                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1559                         basemem);
 1560                 basemem = 640;
 1561         }
 1562 
 1563         /*
 1564          * XXX if biosbasemem is now < 640, there is a `hole'
 1565          * between the end of base memory and the start of
 1566          * ISA memory.  The hole may be empty or it may
 1567          * contain BIOS code or data.  Map it read/write so
 1568          * that the BIOS can write to it.  (Memory from 0 to
 1569          * the physical end of the kernel is mapped read-only
 1570          * to begin with and then parts of it are remapped.
 1571          * The parts that aren't remapped form holes that
 1572          * remain read-only and are unused by the kernel.
 1573          * The base memory area is below the physical end of
 1574          * the kernel and right now forms a read-only hole.
 1575          * The part of it from PAGE_SIZE to
 1576          * (trunc_page(biosbasemem * 1024) - 1) will be
 1577          * remapped and used by the kernel later.)
 1578          *
 1579          * This code is similar to the code used in
 1580          * pmap_mapdev, but since no memory needs to be
 1581          * allocated we simply change the mapping.
 1582          */
 1583         for (pa = trunc_page(basemem * 1024);
 1584              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1585                 pmap_kenter(KERNBASE + pa, pa);
 1586 
 1587         /*
 1588          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 1589          * the vm86 page table so that vm86 can scribble on them using
 1590          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 1591          * page 0, at least as initialized here?
 1592          */
 1593         pte = (pt_entry_t *)vm86paddr;
 1594         for (i = basemem / 4; i < 160; i++)
 1595                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1596 
 1597 int15e820:
 1598         /*
 1599          * map page 1 R/W into the kernel page table so we can use it
 1600          * as a buffer.  The kernel will unmap this page later.
 1601          */
 1602         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 1603 
 1604         /*
 1605          * get memory map with INT 15:E820
 1606          */
 1607         vmc.npages = 0;
 1608         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 1609         vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 1610 
 1611         physmap_idx = 0;
 1612         vmf.vmf_ebx = 0;
 1613         do {
 1614                 vmf.vmf_eax = 0xE820;
 1615                 vmf.vmf_edx = SMAP_SIG;
 1616                 vmf.vmf_ecx = sizeof(struct bios_smap);
 1617                 i = vm86_datacall(0x15, &vmf, &vmc);
 1618                 if (i || vmf.vmf_eax != SMAP_SIG)
 1619                         break;
 1620                 if (boothowto & RB_VERBOSE)
 1621                         printf("SMAP type=%02x base=%016llx len=%016llx\n",
 1622                             smap->type, smap->base, smap->length);
 1623 
 1624                 if (smap->type != 0x01)
 1625                         goto next_run;
 1626 
 1627                 if (smap->length == 0)
 1628                         goto next_run;
 1629 
 1630 #ifndef PAE
 1631                 if (smap->base >= 0xffffffff) {
 1632                         printf("%uK of memory above 4GB ignored\n",
 1633                             (u_int)(smap->length / 1024));
 1634                         goto next_run;
 1635                 }
 1636 #endif
 1637 
 1638                 for (i = 0; i <= physmap_idx; i += 2) {
 1639                         if (smap->base < physmap[i + 1]) {
 1640                                 if (boothowto & RB_VERBOSE)
 1641                                         printf(
 1642         "Overlapping or non-montonic memory region, ignoring second region\n");
 1643                                 goto next_run;
 1644                         }
 1645                 }
 1646 
 1647                 if (smap->base == physmap[physmap_idx + 1]) {
 1648                         physmap[physmap_idx + 1] += smap->length;
 1649                         goto next_run;
 1650                 }
 1651 
 1652                 physmap_idx += 2;
 1653                 if (physmap_idx == PHYSMAP_SIZE) {
 1654                         printf(
 1655                 "Too many segments in the physical address map, giving up\n");
 1656                         break;
 1657                 }
 1658                 physmap[physmap_idx] = smap->base;
 1659                 physmap[physmap_idx + 1] = smap->base + smap->length;
 1660 next_run: ;
 1661         } while (vmf.vmf_ebx != 0);
 1662 
 1663         /*
 1664          * Perform "base memory" related probes & setup based on SMAP
 1665          */
 1666         if (basemem == 0) {
 1667                 for (i = 0; i <= physmap_idx; i += 2) {
 1668                         if (physmap[i] == 0x00000000) {
 1669                                 basemem = physmap[i + 1] / 1024;
 1670                                 break;
 1671                         }
 1672                 }
 1673 
 1674                 /*
 1675                  * XXX this function is horribly organized and has to the same
 1676                  * things that it does above here.
 1677                  */
 1678                 if (basemem == 0)
 1679                         basemem = 640;
 1680                 if (basemem > 640) {
 1681                         printf(
 1682                     "Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1683                             basemem);
 1684                         basemem = 640;
 1685                 }
 1686 
 1687                 /*
 1688                  * Let vm86 scribble on pages between basemem and
 1689                  * ISA_HOLE_START, as above.
 1690                  */
 1691                 for (pa = trunc_page(basemem * 1024);
 1692                      pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1693                         pmap_kenter(KERNBASE + pa, pa);
 1694                 pte = (pt_entry_t *)vm86paddr;
 1695                 for (i = basemem / 4; i < 160; i++)
 1696                         pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1697         }
 1698 
 1699         if (physmap[1] != 0)
 1700                 goto physmap_done;
 1701 
 1702         /*
 1703          * If we failed above, try memory map with INT 15:E801
 1704          */
 1705         vmf.vmf_ax = 0xE801;
 1706         if (vm86_intcall(0x15, &vmf) == 0) {
 1707                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 1708         } else {
 1709 #if 0
 1710                 vmf.vmf_ah = 0x88;
 1711                 vm86_intcall(0x15, &vmf);
 1712                 extmem = vmf.vmf_ax;
 1713 #else
 1714                 /*
 1715                  * Prefer the RTC value for extended memory.
 1716                  */
 1717                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 1718 #endif
 1719         }
 1720 
 1721         /*
 1722          * Special hack for chipsets that still remap the 384k hole when
 1723          * there's 16MB of memory - this really confuses people that
 1724          * are trying to use bus mastering ISA controllers with the
 1725          * "16MB limit"; they only have 16MB, but the remapping puts
 1726          * them beyond the limit.
 1727          *
 1728          * If extended memory is between 15-16MB (16-17MB phys address range),
 1729          *      chop it to 15MB.
 1730          */
 1731         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 1732                 extmem = 15 * 1024;
 1733 
 1734         physmap[0] = 0;
 1735         physmap[1] = basemem * 1024;
 1736         physmap_idx = 2;
 1737         physmap[physmap_idx] = 0x100000;
 1738         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1739 
 1740 physmap_done:
 1741         /*
 1742          * Now, physmap contains a map of physical memory.
 1743          */
 1744 
 1745 #ifdef SMP
 1746         /* make hole for AP bootstrap code */
 1747         physmap[1] = mp_bootaddress(physmap[1]);
 1748 #endif
 1749 
 1750         /*
 1751          * Maxmem isn't the "maximum memory", it's one larger than the
 1752          * highest page of the physical address space.  It should be
 1753          * called something like "Maxphyspage".  We may adjust this 
 1754          * based on ``hw.physmem'' and the results of the memory test.
 1755          */
 1756         Maxmem = atop(physmap[physmap_idx + 1]);
 1757 
 1758 #ifdef MAXMEM
 1759         Maxmem = MAXMEM / 4;
 1760 #endif
 1761 
 1762         /*
 1763          * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
 1764          * for the appropriate modifiers.  This overrides MAXMEM.
 1765          */
 1766         if ((cp = getenv("hw.physmem")) != NULL) {
 1767                 u_int64_t AllowMem, sanity;
 1768                 char *ep;
 1769 
 1770                 sanity = AllowMem = strtouq(cp, &ep, 0);
 1771                 if ((ep != cp) && (*ep != 0)) {
 1772                         switch(*ep) {
 1773                         case 'g':
 1774                         case 'G':
 1775                                 AllowMem <<= 10;
 1776                         case 'm':
 1777                         case 'M':
 1778                                 AllowMem <<= 10;
 1779                         case 'k':
 1780                         case 'K':
 1781                                 AllowMem <<= 10;
 1782                                 break;
 1783                         default:
 1784                                 AllowMem = sanity = 0;
 1785                         }
 1786                         if (AllowMem < sanity)
 1787                                 AllowMem = 0;
 1788                 }
 1789                 if (AllowMem == 0)
 1790                         printf("Ignoring invalid memory size of '%s'\n", cp);
 1791                 else
 1792                         Maxmem = atop(AllowMem);
 1793                 freeenv(cp);
 1794         }
 1795 
 1796         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1797             (boothowto & RB_VERBOSE))
 1798                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1799 
 1800         /*
 1801          * If Maxmem has been increased beyond what the system has detected,
 1802          * extend the last memory segment to the new limit.
 1803          */ 
 1804         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1805                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1806 
 1807         /* call pmap initialization to make new kernel address space */
 1808         pmap_bootstrap(first, 0);
 1809 
 1810         /*
 1811          * Size up each available chunk of physical memory.
 1812          */
 1813         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1814         pa_indx = 0;
 1815         phys_avail[pa_indx++] = physmap[0];
 1816         phys_avail[pa_indx] = physmap[0];
 1817         pte = CMAP1;
 1818 
 1819         /*
 1820          * physmap is in bytes, so when converting to page boundaries,
 1821          * round up the start address and round down the end address.
 1822          */
 1823         for (i = 0; i <= physmap_idx; i += 2) {
 1824                 vm_paddr_t end;
 1825 
 1826                 end = ptoa((vm_paddr_t)Maxmem);
 1827                 if (physmap[i + 1] < end)
 1828                         end = trunc_page(physmap[i + 1]);
 1829                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1830                         int tmp, page_bad;
 1831                         int *ptr = (int *)CADDR1;
 1832 
 1833                         /*
 1834                          * block out kernel memory as not available.
 1835                          */
 1836                         if (pa >= KERNLOAD && pa < first)
 1837                                 continue;
 1838         
 1839                         page_bad = FALSE;
 1840 
 1841                         /*
 1842                          * map page into kernel: valid, read/write,non-cacheable
 1843                          */
 1844                         *pte = pa | PG_V | PG_RW | PG_N;
 1845                         invltlb();
 1846 
 1847                         tmp = *(int *)ptr;
 1848                         /*
 1849                          * Test for alternating 1's and 0's
 1850                          */
 1851                         *(volatile int *)ptr = 0xaaaaaaaa;
 1852                         if (*(volatile int *)ptr != 0xaaaaaaaa) {
 1853                                 page_bad = TRUE;
 1854                         }
 1855                         /*
 1856                          * Test for alternating 0's and 1's
 1857                          */
 1858                         *(volatile int *)ptr = 0x55555555;
 1859                         if (*(volatile int *)ptr != 0x55555555) {
 1860                         page_bad = TRUE;
 1861                         }
 1862                         /*
 1863                          * Test for all 1's
 1864                          */
 1865                         *(volatile int *)ptr = 0xffffffff;
 1866                         if (*(volatile int *)ptr != 0xffffffff) {
 1867                                 page_bad = TRUE;
 1868                         }
 1869                         /*
 1870                          * Test for all 0's
 1871                          */
 1872                         *(volatile int *)ptr = 0x0;
 1873                         if (*(volatile int *)ptr != 0x0) {
 1874                                 page_bad = TRUE;
 1875                         }
 1876                         /*
 1877                          * Restore original value.
 1878                          */
 1879                         *(int *)ptr = tmp;
 1880 
 1881                         /*
 1882                          * Adjust array of valid/good pages.
 1883                          */
 1884                         if (page_bad == TRUE) {
 1885                                 continue;
 1886                         }
 1887                         /*
 1888                          * If this good page is a continuation of the
 1889                          * previous set of good pages, then just increase
 1890                          * the end pointer. Otherwise start a new chunk.
 1891                          * Note that "end" points one higher than end,
 1892                          * making the range >= start and < end.
 1893                          * If we're also doing a speculative memory
 1894                          * test and we at or past the end, bump up Maxmem
 1895                          * so that we keep going. The first bad page
 1896                          * will terminate the loop.
 1897                          */
 1898                         if (phys_avail[pa_indx] == pa) {
 1899                                 phys_avail[pa_indx] += PAGE_SIZE;
 1900                         } else {
 1901                                 pa_indx++;
 1902                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1903                                         printf(
 1904                 "Too many holes in the physical address space, giving up\n");
 1905                                         pa_indx--;
 1906                                         break;
 1907                                 }
 1908                                 phys_avail[pa_indx++] = pa;     /* start */
 1909                                 phys_avail[pa_indx] = pa + PAGE_SIZE;   /* end */
 1910                         }
 1911                         physmem++;
 1912                 }
 1913         }
 1914         *pte = 0;
 1915         invltlb();
 1916 
 1917         /*
 1918          * XXX
 1919          * The last chunk must contain at least one page plus the message
 1920          * buffer to avoid complicating other code (message buffer address
 1921          * calculation, etc.).
 1922          */
 1923         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1924             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1925                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1926                 phys_avail[pa_indx--] = 0;
 1927                 phys_avail[pa_indx--] = 0;
 1928         }
 1929 
 1930         Maxmem = atop(phys_avail[pa_indx]);
 1931 
 1932         /* Trim off space for the message buffer. */
 1933         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1934 
 1935         avail_end = phys_avail[pa_indx];
 1936 }
 1937 
 1938 void
 1939 init386(first)
 1940         int first;
 1941 {
 1942         struct gate_descriptor *gdp;
 1943         int gsel_tss, metadata_missing, off, x;
 1944         struct pcpu *pc;
 1945 
 1946         proc0.p_uarea = proc0uarea;
 1947         thread0.td_kstack = proc0kstack;
 1948         thread0.td_pcb = (struct pcb *)
 1949            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1950 
 1951         /*
 1952          * This may be done better later if it gets more high level
 1953          * components in it. If so just link td->td_proc here.
 1954          */
 1955         proc_linkup(&proc0, &ksegrp0, &thread0);
 1956 
 1957         metadata_missing = 0;
 1958         if (bootinfo.bi_modulep) {
 1959                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 1960                 preload_bootstrap_relocate(KERNBASE);
 1961         } else {
 1962                 metadata_missing = 1;
 1963         }
 1964         if (envmode == 1)
 1965                 kern_envp = static_env;
 1966         else if (bootinfo.bi_envp)
 1967                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 1968 
 1969         /* Init basic tunables, hz etc */
 1970         init_param1();
 1971 
 1972         /*
 1973          * make gdt memory segments, the code segment goes up to end of the
 1974          * page with etext in it, the data segment goes to the end of
 1975          * the address space
 1976          */
 1977         /*
 1978          * XXX text protection is temporarily (?) disabled.  The limit was
 1979          * i386_btop(round_page(etext)) - 1.
 1980          */
 1981         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 1982         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 1983 #ifdef SMP
 1984         pc = &SMP_prvspace[0].pcpu;
 1985         gdt_segs[GPRIV_SEL].ssd_limit =
 1986                 atop(sizeof(struct privatespace) - 1);
 1987 #else
 1988         pc = &__pcpu;
 1989         gdt_segs[GPRIV_SEL].ssd_limit =
 1990                 atop(sizeof(struct pcpu) - 1);
 1991 #endif
 1992         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 1993         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 1994 
 1995         for (x = 0; x < NGDT; x++)
 1996                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 1997 
 1998         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1999         r_gdt.rd_base =  (int) gdt;
 2000         lgdt(&r_gdt);
 2001 
 2002         pcpu_init(pc, 0, sizeof(struct pcpu));
 2003         PCPU_SET(prvspace, pc);
 2004         PCPU_SET(curthread, &thread0);
 2005         PCPU_SET(curpcb, thread0.td_pcb);
 2006 
 2007         /*
 2008          * Initialize mutexes.
 2009          *
 2010          * icu_lock: in order to allow an interrupt to occur in a critical
 2011          *           section, to set pcpu->ipending (etc...) properly, we
 2012          *           must be able to get the icu lock, so it can't be
 2013          *           under witness.
 2014          */
 2015         mutex_init();
 2016         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
 2017         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 2018 
 2019         /* make ldt memory segments */
 2020         /*
 2021          * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
 2022          * should be spelled ...MAX_USER...
 2023          */
 2024         ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
 2025         ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
 2026         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2027                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2028 
 2029         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2030         lldt(_default_ldt);
 2031         PCPU_SET(currentldt, _default_ldt);
 2032 
 2033         /* exceptions */
 2034         for (x = 0; x < NIDT; x++)
 2035                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2036                     GSEL(GCODE_SEL, SEL_KPL));
 2037         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2038             GSEL(GCODE_SEL, SEL_KPL));
 2039         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2040             GSEL(GCODE_SEL, SEL_KPL));
 2041         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
 2042             GSEL(GCODE_SEL, SEL_KPL));
 2043         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2044             GSEL(GCODE_SEL, SEL_KPL));
 2045         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2046             GSEL(GCODE_SEL, SEL_KPL));
 2047         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2048             GSEL(GCODE_SEL, SEL_KPL));
 2049         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2050             GSEL(GCODE_SEL, SEL_KPL));
 2051         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2052             , GSEL(GCODE_SEL, SEL_KPL));
 2053         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2054         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2055             GSEL(GCODE_SEL, SEL_KPL));
 2056         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2057             GSEL(GCODE_SEL, SEL_KPL));
 2058         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2059             GSEL(GCODE_SEL, SEL_KPL));
 2060         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2061             GSEL(GCODE_SEL, SEL_KPL));
 2062         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2063             GSEL(GCODE_SEL, SEL_KPL));
 2064         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2065             GSEL(GCODE_SEL, SEL_KPL));
 2066         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2067             GSEL(GCODE_SEL, SEL_KPL));
 2068         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2069             GSEL(GCODE_SEL, SEL_KPL));
 2070         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2071             GSEL(GCODE_SEL, SEL_KPL));
 2072         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2073             GSEL(GCODE_SEL, SEL_KPL));
 2074         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2075             GSEL(GCODE_SEL, SEL_KPL));
 2076 
 2077         r_idt.rd_limit = sizeof(idt0) - 1;
 2078         r_idt.rd_base = (int) idt;
 2079         lidt(&r_idt);
 2080 
 2081         /*
 2082          * Initialize the console before we print anything out.
 2083          */
 2084         cninit();
 2085 
 2086         if (metadata_missing)
 2087                 printf("WARNING: loader(8) metadata is missing!\n");
 2088 
 2089 #ifdef DEV_ISA
 2090         atpic_startup();
 2091 #endif
 2092 
 2093 #ifdef DDB
 2094         ksym_start = bootinfo.bi_symtab;
 2095         ksym_end = bootinfo.bi_esymtab;
 2096 #endif
 2097 
 2098         kdb_init();
 2099 
 2100 #ifdef KDB
 2101         if (boothowto & RB_KDB)
 2102                 kdb_enter("Boot flags requested debugger");
 2103 #endif
 2104 
 2105         finishidentcpu();       /* Final stage of CPU initialization */
 2106         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2107             GSEL(GCODE_SEL, SEL_KPL));
 2108         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2109             GSEL(GCODE_SEL, SEL_KPL));
 2110         initializecpu();        /* Initialize CPU registers */
 2111 
 2112         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2113         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2114         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2115             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2116         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2117         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2118         private_tss = 0;
 2119         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2120         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2121         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2122         ltr(gsel_tss);
 2123 
 2124         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2125             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2126         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2127             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2128 #ifdef PAE
 2129         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2130 #else
 2131         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2132 #endif
 2133         dblfault_tss.tss_eip = (int)dblfault_handler;
 2134         dblfault_tss.tss_eflags = PSL_KERNEL;
 2135         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2136             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2137         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2138         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2139         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2140 
 2141         vm86_initialize();
 2142         getmemsize(first);
 2143         init_param2(physmem);
 2144 
 2145         /* now running on new page tables, configured,and u/iom is accessible */
 2146 
 2147         /* Map the message buffer. */
 2148         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 2149                 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
 2150 
 2151         msgbufinit(msgbufp, MSGBUF_SIZE);
 2152 
 2153         /* make a call gate to reenter kernel with */
 2154         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2155 
 2156         x = (int) &IDTVEC(lcall_syscall);
 2157         gdp->gd_looffset = x;
 2158         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2159         gdp->gd_stkcpy = 1;
 2160         gdp->gd_type = SDT_SYS386CGT;
 2161         gdp->gd_dpl = SEL_UPL;
 2162         gdp->gd_p = 1;
 2163         gdp->gd_hioffset = x >> 16;
 2164 
 2165         /* XXX does this work? */
 2166         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2167         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2168 
 2169         /* transfer to user mode */
 2170 
 2171         _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
 2172         _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
 2173 
 2174         /* setup proc 0's pcb */
 2175         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 2176 #ifdef PAE
 2177         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2178 #else
 2179         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2180 #endif
 2181         thread0.td_pcb->pcb_ext = 0;
 2182         thread0.td_frame = &proc0_tf;
 2183 }
 2184 
 2185 void
 2186 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2187 {
 2188 
 2189         pcpu->pc_acpi_id = 0xffffffff;
 2190 }
 2191 
 2192 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2193 static void f00f_hack(void *unused);
 2194 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL)
 2195 
 2196 static void
 2197 f00f_hack(void *unused)
 2198 {
 2199         struct gate_descriptor *new_idt;
 2200         vm_offset_t tmp;
 2201 
 2202         if (!has_f00f_bug)
 2203                 return;
 2204 
 2205         GIANT_REQUIRED;
 2206 
 2207         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2208 
 2209         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 2210         if (tmp == 0)
 2211                 panic("kmem_alloc returned 0");
 2212 
 2213         /* Put the problematic entry (#6) at the end of the lower page. */
 2214         new_idt = (struct gate_descriptor*)
 2215             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2216         bcopy(idt, new_idt, sizeof(idt0));
 2217         r_idt.rd_base = (u_int)new_idt;
 2218         lidt(&r_idt);
 2219         idt = new_idt;
 2220         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 2221                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 2222                 panic("vm_map_protect failed");
 2223 }
 2224 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2225 
 2226 /*
 2227  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2228  * we want to start a backtrace from the function that caused us to enter
 2229  * the debugger. We have the context in the trapframe, but base the trace
 2230  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2231  * enough for a backtrace.
 2232  */
 2233 void
 2234 makectx(struct trapframe *tf, struct pcb *pcb)
 2235 {
 2236 
 2237         pcb->pcb_edi = tf->tf_edi;
 2238         pcb->pcb_esi = tf->tf_esi;
 2239         pcb->pcb_ebp = tf->tf_ebp;
 2240         pcb->pcb_ebx = tf->tf_ebx;
 2241         pcb->pcb_eip = tf->tf_eip;
 2242         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2243 }
 2244 
 2245 int
 2246 ptrace_set_pc(struct thread *td, u_long addr)
 2247 {
 2248 
 2249         td->td_frame->tf_eip = addr;
 2250         return (0);
 2251 }
 2252 
 2253 int
 2254 ptrace_single_step(struct thread *td)
 2255 {
 2256         td->td_frame->tf_eflags |= PSL_T;
 2257         return (0);
 2258 }
 2259 
 2260 int
 2261 ptrace_clear_single_step(struct thread *td)
 2262 {
 2263         td->td_frame->tf_eflags &= ~PSL_T;
 2264         return (0);
 2265 }
 2266 
 2267 int
 2268 fill_regs(struct thread *td, struct reg *regs)
 2269 {
 2270         struct pcb *pcb;
 2271         struct trapframe *tp;
 2272 
 2273         tp = td->td_frame;
 2274         regs->r_fs = tp->tf_fs;
 2275         regs->r_es = tp->tf_es;
 2276         regs->r_ds = tp->tf_ds;
 2277         regs->r_edi = tp->tf_edi;
 2278         regs->r_esi = tp->tf_esi;
 2279         regs->r_ebp = tp->tf_ebp;
 2280         regs->r_ebx = tp->tf_ebx;
 2281         regs->r_edx = tp->tf_edx;
 2282         regs->r_ecx = tp->tf_ecx;
 2283         regs->r_eax = tp->tf_eax;
 2284         regs->r_eip = tp->tf_eip;
 2285         regs->r_cs = tp->tf_cs;
 2286         regs->r_eflags = tp->tf_eflags;
 2287         regs->r_esp = tp->tf_esp;
 2288         regs->r_ss = tp->tf_ss;
 2289         pcb = td->td_pcb;
 2290         regs->r_gs = pcb->pcb_gs;
 2291         return (0);
 2292 }
 2293 
 2294 int
 2295 set_regs(struct thread *td, struct reg *regs)
 2296 {
 2297         struct pcb *pcb;
 2298         struct trapframe *tp;
 2299 
 2300         tp = td->td_frame;
 2301         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2302             !CS_SECURE(regs->r_cs))
 2303                 return (EINVAL);
 2304         tp->tf_fs = regs->r_fs;
 2305         tp->tf_es = regs->r_es;
 2306         tp->tf_ds = regs->r_ds;
 2307         tp->tf_edi = regs->r_edi;
 2308         tp->tf_esi = regs->r_esi;
 2309         tp->tf_ebp = regs->r_ebp;
 2310         tp->tf_ebx = regs->r_ebx;
 2311         tp->tf_edx = regs->r_edx;
 2312         tp->tf_ecx = regs->r_ecx;
 2313         tp->tf_eax = regs->r_eax;
 2314         tp->tf_eip = regs->r_eip;
 2315         tp->tf_cs = regs->r_cs;
 2316         tp->tf_eflags = regs->r_eflags;
 2317         tp->tf_esp = regs->r_esp;
 2318         tp->tf_ss = regs->r_ss;
 2319         pcb = td->td_pcb;
 2320         pcb->pcb_gs = regs->r_gs;
 2321         return (0);
 2322 }
 2323 
 2324 #ifdef CPU_ENABLE_SSE
 2325 static void
 2326 fill_fpregs_xmm(sv_xmm, sv_87)
 2327         struct savexmm *sv_xmm;
 2328         struct save87 *sv_87;
 2329 {
 2330         register struct env87 *penv_87 = &sv_87->sv_env;
 2331         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2332         int i;
 2333 
 2334         bzero(sv_87, sizeof(*sv_87));
 2335 
 2336         /* FPU control/status */
 2337         penv_87->en_cw = penv_xmm->en_cw;
 2338         penv_87->en_sw = penv_xmm->en_sw;
 2339         penv_87->en_tw = penv_xmm->en_tw;
 2340         penv_87->en_fip = penv_xmm->en_fip;
 2341         penv_87->en_fcs = penv_xmm->en_fcs;
 2342         penv_87->en_opcode = penv_xmm->en_opcode;
 2343         penv_87->en_foo = penv_xmm->en_foo;
 2344         penv_87->en_fos = penv_xmm->en_fos;
 2345 
 2346         /* FPU registers */
 2347         for (i = 0; i < 8; ++i)
 2348                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 2349 }
 2350 
 2351 static void
 2352 set_fpregs_xmm(sv_87, sv_xmm)
 2353         struct save87 *sv_87;
 2354         struct savexmm *sv_xmm;
 2355 {
 2356         register struct env87 *penv_87 = &sv_87->sv_env;
 2357         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2358         int i;
 2359 
 2360         /* FPU control/status */
 2361         penv_xmm->en_cw = penv_87->en_cw;
 2362         penv_xmm->en_sw = penv_87->en_sw;
 2363         penv_xmm->en_tw = penv_87->en_tw;
 2364         penv_xmm->en_fip = penv_87->en_fip;
 2365         penv_xmm->en_fcs = penv_87->en_fcs;
 2366         penv_xmm->en_opcode = penv_87->en_opcode;
 2367         penv_xmm->en_foo = penv_87->en_foo;
 2368         penv_xmm->en_fos = penv_87->en_fos;
 2369 
 2370         /* FPU registers */
 2371         for (i = 0; i < 8; ++i)
 2372                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 2373 }
 2374 #endif /* CPU_ENABLE_SSE */
 2375 
 2376 int
 2377 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2378 {
 2379 #ifdef CPU_ENABLE_SSE
 2380         if (cpu_fxsr) {
 2381                 fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
 2382                                                 (struct save87 *)fpregs);
 2383                 return (0);
 2384         }
 2385 #endif /* CPU_ENABLE_SSE */
 2386         bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
 2387         return (0);
 2388 }
 2389 
 2390 int
 2391 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2392 {
 2393 #ifdef CPU_ENABLE_SSE
 2394         if (cpu_fxsr) {
 2395                 set_fpregs_xmm((struct save87 *)fpregs,
 2396                                            &td->td_pcb->pcb_save.sv_xmm);
 2397                 return (0);
 2398         }
 2399 #endif /* CPU_ENABLE_SSE */
 2400         bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
 2401         return (0);
 2402 }
 2403 
 2404 /*
 2405  * Get machine context.
 2406  */
 2407 int
 2408 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2409 {
 2410         struct trapframe *tp;
 2411 
 2412         tp = td->td_frame;
 2413 
 2414         PROC_LOCK(curthread->td_proc);
 2415         mcp->mc_onstack = sigonstack(tp->tf_esp);
 2416         PROC_UNLOCK(curthread->td_proc);
 2417         mcp->mc_gs = td->td_pcb->pcb_gs;
 2418         mcp->mc_fs = tp->tf_fs;
 2419         mcp->mc_es = tp->tf_es;
 2420         mcp->mc_ds = tp->tf_ds;
 2421         mcp->mc_edi = tp->tf_edi;
 2422         mcp->mc_esi = tp->tf_esi;
 2423         mcp->mc_ebp = tp->tf_ebp;
 2424         mcp->mc_isp = tp->tf_isp;
 2425         if (flags & GET_MC_CLEAR_RET) {
 2426                 mcp->mc_eax = 0;
 2427                 mcp->mc_edx = 0;
 2428         } else {
 2429                 mcp->mc_eax = tp->tf_eax;
 2430                 mcp->mc_edx = tp->tf_edx;
 2431         }
 2432         mcp->mc_ebx = tp->tf_ebx;
 2433         mcp->mc_ecx = tp->tf_ecx;
 2434         mcp->mc_eip = tp->tf_eip;
 2435         mcp->mc_cs = tp->tf_cs;
 2436         mcp->mc_eflags = tp->tf_eflags;
 2437         mcp->mc_esp = tp->tf_esp;
 2438         mcp->mc_ss = tp->tf_ss;
 2439         mcp->mc_len = sizeof(*mcp);
 2440         get_fpcontext(td, mcp);
 2441         return (0);
 2442 }
 2443 
 2444 /*
 2445  * Set machine context.
 2446  *
 2447  * However, we don't set any but the user modifiable flags, and we won't
 2448  * touch the cs selector.
 2449  */
 2450 int
 2451 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2452 {
 2453         struct trapframe *tp;
 2454         int eflags, ret;
 2455 
 2456         tp = td->td_frame;
 2457         if (mcp->mc_len != sizeof(*mcp))
 2458                 return (EINVAL);
 2459         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 2460             (tp->tf_eflags & ~PSL_USERCHANGE);
 2461         if ((ret = set_fpcontext(td, mcp)) == 0) {
 2462                 tp->tf_fs = mcp->mc_fs;
 2463                 tp->tf_es = mcp->mc_es;
 2464                 tp->tf_ds = mcp->mc_ds;
 2465                 tp->tf_edi = mcp->mc_edi;
 2466                 tp->tf_esi = mcp->mc_esi;
 2467                 tp->tf_ebp = mcp->mc_ebp;
 2468                 tp->tf_ebx = mcp->mc_ebx;
 2469                 tp->tf_edx = mcp->mc_edx;
 2470                 tp->tf_ecx = mcp->mc_ecx;
 2471                 tp->tf_eax = mcp->mc_eax;
 2472                 tp->tf_eip = mcp->mc_eip;
 2473                 tp->tf_eflags = eflags;
 2474                 tp->tf_esp = mcp->mc_esp;
 2475                 tp->tf_ss = mcp->mc_ss;
 2476                 td->td_pcb->pcb_gs = mcp->mc_gs;
 2477                 ret = 0;
 2478         }
 2479         return (ret);
 2480 }
 2481 
 2482 static void
 2483 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2484 {
 2485 #ifndef DEV_NPX
 2486         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 2487         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 2488 #else
 2489         union savefpu *addr;
 2490 
 2491         /*
 2492          * XXX mc_fpstate might be misaligned, since its declaration is not
 2493          * unportabilized using __attribute__((aligned(16))) like the
 2494          * declaration of struct savemm, and anyway, alignment doesn't work
 2495          * for auto variables since we don't use gcc's pessimal stack
 2496          * alignment.  Work around this by abusing the spare fields after
 2497          * mcp->mc_fpstate.
 2498          *
 2499          * XXX unpessimize most cases by only aligning when fxsave might be
 2500          * called, although this requires knowing too much about
 2501          * npxgetregs()'s internals.
 2502          */
 2503         addr = (union savefpu *)&mcp->mc_fpstate;
 2504         if (td == PCPU_GET(fpcurthread) &&
 2505 #ifdef CPU_ENABLE_SSE
 2506             cpu_fxsr &&
 2507 #endif
 2508             ((uintptr_t)(void *)addr & 0xF)) {
 2509                 do
 2510                         addr = (void *)((char *)addr + 4);
 2511                 while ((uintptr_t)(void *)addr & 0xF);
 2512         }
 2513         mcp->mc_ownedfp = npxgetregs(td, addr);
 2514         if (addr != (union savefpu *)&mcp->mc_fpstate) {
 2515                 bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 2516                 bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
 2517         }
 2518         mcp->mc_fpformat = npxformat();
 2519 #endif
 2520 }
 2521 
 2522 static int
 2523 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2524 {
 2525         union savefpu *addr;
 2526 
 2527         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2528                 return (0);
 2529         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 2530             mcp->mc_fpformat != _MC_FPFMT_XMM)
 2531                 return (EINVAL);
 2532         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2533                 /* We don't care what state is left in the FPU or PCB. */
 2534                 fpstate_drop(td);
 2535         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2536             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2537                 /* XXX align as above. */
 2538                 addr = (union savefpu *)&mcp->mc_fpstate;
 2539                 if (td == PCPU_GET(fpcurthread) &&
 2540 #ifdef CPU_ENABLE_SSE
 2541                     cpu_fxsr &&
 2542 #endif
 2543                     ((uintptr_t)(void *)addr & 0xF)) {
 2544                         do
 2545                                 addr = (void *)((char *)addr + 4);
 2546                         while ((uintptr_t)(void *)addr & 0xF);
 2547                         bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
 2548                 }
 2549 #ifdef DEV_NPX
 2550                 /*
 2551                  * XXX we violate the dubious requirement that npxsetregs()
 2552                  * be called with interrupts disabled.
 2553                  */
 2554                 npxsetregs(td, addr);
 2555 #endif
 2556                 /*
 2557                  * Don't bother putting things back where they were in the
 2558                  * misaligned case, since we know that the caller won't use
 2559                  * them again.
 2560                  */
 2561         } else
 2562                 return (EINVAL);
 2563         return (0);
 2564 }
 2565 
 2566 static void
 2567 fpstate_drop(struct thread *td)
 2568 {
 2569         register_t s;
 2570 
 2571         s = intr_disable();
 2572 #ifdef DEV_NPX
 2573         if (PCPU_GET(fpcurthread) == td)
 2574                 npxdrop();
 2575 #endif
 2576         /*
 2577          * XXX force a full drop of the npx.  The above only drops it if we
 2578          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 2579          *
 2580          * XXX I don't much like npxgetregs()'s semantics of doing a full
 2581          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2582          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2583          * sendsig() is the only caller of npxgetregs()... perhaps we just
 2584          * have too many layers.
 2585          */
 2586         curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 2587         intr_restore(s);
 2588 }
 2589 
 2590 int
 2591 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2592 {
 2593         struct pcb *pcb;
 2594 
 2595         if (td == NULL) {
 2596                 dbregs->dr[0] = rdr0();
 2597                 dbregs->dr[1] = rdr1();
 2598                 dbregs->dr[2] = rdr2();
 2599                 dbregs->dr[3] = rdr3();
 2600                 dbregs->dr[4] = rdr4();
 2601                 dbregs->dr[5] = rdr5();
 2602                 dbregs->dr[6] = rdr6();
 2603                 dbregs->dr[7] = rdr7();
 2604         } else {
 2605                 pcb = td->td_pcb;
 2606                 dbregs->dr[0] = pcb->pcb_dr0;
 2607                 dbregs->dr[1] = pcb->pcb_dr1;
 2608                 dbregs->dr[2] = pcb->pcb_dr2;
 2609                 dbregs->dr[3] = pcb->pcb_dr3;
 2610                 dbregs->dr[4] = 0;
 2611                 dbregs->dr[5] = 0;
 2612                 dbregs->dr[6] = pcb->pcb_dr6;
 2613                 dbregs->dr[7] = pcb->pcb_dr7;
 2614         }
 2615         return (0);
 2616 }
 2617 
 2618 int
 2619 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2620 {
 2621         struct pcb *pcb;
 2622         int i;
 2623         u_int32_t mask1, mask2;
 2624 
 2625         if (td == NULL) {
 2626                 load_dr0(dbregs->dr[0]);
 2627                 load_dr1(dbregs->dr[1]);
 2628                 load_dr2(dbregs->dr[2]);
 2629                 load_dr3(dbregs->dr[3]);
 2630                 load_dr4(dbregs->dr[4]);
 2631                 load_dr5(dbregs->dr[5]);
 2632                 load_dr6(dbregs->dr[6]);
 2633                 load_dr7(dbregs->dr[7]);
 2634         } else {
 2635                 /*
 2636                  * Don't let an illegal value for dr7 get set.  Specifically,
 2637                  * check for undefined settings.  Setting these bit patterns
 2638                  * result in undefined behaviour and can lead to an unexpected
 2639                  * TRCTRAP.
 2640                  */
 2641                 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8; 
 2642                      i++, mask1 <<= 2, mask2 <<= 2)
 2643                         if ((dbregs->dr[7] & mask1) == mask2)
 2644                                 return (EINVAL);
 2645                 
 2646                 pcb = td->td_pcb;
 2647                 
 2648                 /*
 2649                  * Don't let a process set a breakpoint that is not within the
 2650                  * process's address space.  If a process could do this, it
 2651                  * could halt the system by setting a breakpoint in the kernel
 2652                  * (if ddb was enabled).  Thus, we need to check to make sure
 2653                  * that no breakpoints are being enabled for addresses outside
 2654                  * process's address space, unless, perhaps, we were called by
 2655                  * uid 0.
 2656                  *
 2657                  * XXX - what about when the watched area of the user's
 2658                  * address space is written into from within the kernel
 2659                  * ... wouldn't that still cause a breakpoint to be generated
 2660                  * from within kernel mode?
 2661                  */
 2662 
 2663                 if (suser(td) != 0) {
 2664                         if (dbregs->dr[7] & 0x3) {
 2665                                 /* dr0 is enabled */
 2666                                 if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2667                                         return (EINVAL);
 2668                         }
 2669                         
 2670                         if (dbregs->dr[7] & (0x3<<2)) {
 2671                                 /* dr1 is enabled */
 2672                                 if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2673                                         return (EINVAL);
 2674                         }
 2675                         
 2676                         if (dbregs->dr[7] & (0x3<<4)) {
 2677                                 /* dr2 is enabled */
 2678                                 if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2679                                         return (EINVAL);
 2680                         }
 2681                         
 2682                         if (dbregs->dr[7] & (0x3<<6)) {
 2683                                 /* dr3 is enabled */
 2684                                 if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2685                                         return (EINVAL);
 2686                         }
 2687                 }
 2688 
 2689                 pcb->pcb_dr0 = dbregs->dr[0];
 2690                 pcb->pcb_dr1 = dbregs->dr[1];
 2691                 pcb->pcb_dr2 = dbregs->dr[2];
 2692                 pcb->pcb_dr3 = dbregs->dr[3];
 2693                 pcb->pcb_dr6 = dbregs->dr[6];
 2694                 pcb->pcb_dr7 = dbregs->dr[7];
 2695 
 2696                 pcb->pcb_flags |= PCB_DBREGS;
 2697         }
 2698 
 2699         return (0);
 2700 }
 2701 
 2702 /*
 2703  * Return > 0 if a hardware breakpoint has been hit, and the
 2704  * breakpoint was in user space.  Return 0, otherwise.
 2705  */
 2706 int
 2707 user_dbreg_trap(void)
 2708 {
 2709         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 2710         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 2711         int nbp;            /* number of breakpoints that triggered */
 2712         caddr_t addr[4];    /* breakpoint addresses */
 2713         int i;
 2714         
 2715         dr7 = rdr7();
 2716         if ((dr7 & 0x000000ff) == 0) {
 2717                 /*
 2718                  * all GE and LE bits in the dr7 register are zero,
 2719                  * thus the trap couldn't have been caused by the
 2720                  * hardware debug registers
 2721                  */
 2722                 return 0;
 2723         }
 2724 
 2725         nbp = 0;
 2726         dr6 = rdr6();
 2727         bp = dr6 & 0x0000000f;
 2728 
 2729         if (!bp) {
 2730                 /*
 2731                  * None of the breakpoint bits are set meaning this
 2732                  * trap was not caused by any of the debug registers
 2733                  */
 2734                 return 0;
 2735         }
 2736 
 2737         /*
 2738          * at least one of the breakpoints were hit, check to see
 2739          * which ones and if any of them are user space addresses
 2740          */
 2741 
 2742         if (bp & 0x01) {
 2743                 addr[nbp++] = (caddr_t)rdr0();
 2744         }
 2745         if (bp & 0x02) {
 2746                 addr[nbp++] = (caddr_t)rdr1();
 2747         }
 2748         if (bp & 0x04) {
 2749                 addr[nbp++] = (caddr_t)rdr2();
 2750         }
 2751         if (bp & 0x08) {
 2752                 addr[nbp++] = (caddr_t)rdr3();
 2753         }
 2754 
 2755         for (i=0; i<nbp; i++) {
 2756                 if (addr[i] <
 2757                     (caddr_t)VM_MAXUSER_ADDRESS) {
 2758                         /*
 2759                          * addr[i] is in user space
 2760                          */
 2761                         return nbp;
 2762                 }
 2763         }
 2764 
 2765         /*
 2766          * None of the breakpoints are in user space.
 2767          */
 2768         return 0;
 2769 }
 2770 
 2771 #ifndef DEV_APIC
 2772 #include <machine/apicvar.h>
 2773 
 2774 /*
 2775  * Provide stub functions so that the MADT APIC enumerator in the acpi
 2776  * kernel module will link against a kernel without 'device apic'.
 2777  *
 2778  * XXX - This is a gross hack.
 2779  */
 2780 void
 2781 apic_register_enumerator(struct apic_enumerator *enumerator)
 2782 {
 2783 }
 2784 
 2785 void *
 2786 ioapic_create(uintptr_t addr, int32_t id, int intbase)
 2787 {
 2788         return (NULL);
 2789 }
 2790 
 2791 int
 2792 ioapic_disable_pin(void *cookie, u_int pin)
 2793 {
 2794         return (ENXIO);
 2795 }
 2796 
 2797 void
 2798 ioapic_enable_mixed_mode(void)
 2799 {
 2800 }
 2801 
 2802 int
 2803 ioapic_get_vector(void *cookie, u_int pin)
 2804 {
 2805         return (-1);
 2806 }
 2807 
 2808 void
 2809 ioapic_register(void *cookie)
 2810 {
 2811 }
 2812 
 2813 int
 2814 ioapic_remap_vector(void *cookie, u_int pin, int vector)
 2815 {
 2816         return (ENXIO);
 2817 }
 2818 
 2819 int
 2820 ioapic_set_extint(void *cookie, u_int pin)
 2821 {
 2822         return (ENXIO);
 2823 }
 2824 
 2825 int
 2826 ioapic_set_nmi(void *cookie, u_int pin)
 2827 {
 2828         return (ENXIO);
 2829 }
 2830 
 2831 int
 2832 ioapic_set_polarity(void *cookie, u_int pin, enum intr_polarity pol)
 2833 {
 2834         return (ENXIO);
 2835 }
 2836 
 2837 int
 2838 ioapic_set_triggermode(void *cookie, u_int pin, enum intr_trigger trigger)
 2839 {
 2840         return (ENXIO);
 2841 }
 2842 
 2843 void
 2844 lapic_create(u_int apic_id, int boot_cpu)
 2845 {
 2846 }
 2847 
 2848 void
 2849 lapic_init(uintptr_t addr)
 2850 {
 2851 }
 2852 
 2853 int
 2854 lapic_set_lvt_mode(u_int apic_id, u_int lvt, u_int32_t mode)
 2855 {
 2856         return (ENXIO);
 2857 }
 2858 
 2859 int
 2860 lapic_set_lvt_polarity(u_int apic_id, u_int lvt, enum intr_polarity pol)
 2861 {
 2862         return (ENXIO);
 2863 }
 2864 
 2865 int
 2866 lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, enum intr_trigger trigger)
 2867 {
 2868         return (ENXIO);
 2869 }
 2870 #endif
 2871 
 2872 #ifdef KDB
 2873 
 2874 /*
 2875  * Provide inb() and outb() as functions.  They are normally only
 2876  * available as macros calling inlined functions, thus cannot be
 2877  * called from the debugger.
 2878  *
 2879  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 2880  */
 2881 
 2882 #undef inb
 2883 #undef outb
 2884 
 2885 /* silence compiler warnings */
 2886 u_char inb(u_int);
 2887 void outb(u_int, u_char);
 2888 
 2889 u_char
 2890 inb(u_int port)
 2891 {
 2892         u_char  data;
 2893         /*
 2894          * We use %%dx and not %1 here because i/o is done at %dx and not at
 2895          * %edx, while gcc generates inferior code (movw instead of movl)
 2896          * if we tell it to load (u_short) port.
 2897          */
 2898         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 2899         return (data);
 2900 }
 2901 
 2902 void
 2903 outb(u_int port, u_char data)
 2904 {
 2905         u_char  al;
 2906         /*
 2907          * Use an unnecessary assignment to help gcc's register allocator.
 2908          * This make a large difference for gcc-1.40 and a tiny difference
 2909          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 2910          * best results.  gcc-2.6.0 can't handle this.
 2911          */
 2912         al = data;
 2913         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 2914 }
 2915 
 2916 #endif /* KDB */

Cache object: 1999b93ad2e7e487b98c538dfcef18e3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.