The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/8.1/sys/i386/i386/machdep.c 206890 2010-04-20 08:19:43Z kib $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_compat.h"
   46 #include "opt_cpu.h"
   47 #include "opt_ddb.h"
   48 #include "opt_inet.h"
   49 #include "opt_ipx.h"
   50 #include "opt_isa.h"
   51 #include "opt_kstack_pages.h"
   52 #include "opt_maxmem.h"
   53 #include "opt_msgbuf.h"
   54 #include "opt_npx.h"
   55 #include "opt_perfmon.h"
   56 #include "opt_xbox.h"
   57 
   58 #include <sys/param.h>
   59 #include <sys/proc.h>
   60 #include <sys/systm.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/bus.h>
   64 #include <sys/callout.h>
   65 #include <sys/cons.h>
   66 #include <sys/cpu.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/sysent.h>
   86 #include <sys/sysproto.h>
   87 #include <sys/ucontext.h>
   88 #include <sys/vmmeter.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_extern.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vm_param.h>
   98 
   99 #ifdef DDB
  100 #ifndef KDB
  101 #error KDB must be enabled in order for DDB to work!
  102 #endif
  103 #include <ddb/ddb.h>
  104 #include <ddb/db_sym.h>
  105 #endif
  106 
  107 #include <isa/rtc.h>
  108 
  109 #include <net/netisr.h>
  110 
  111 #include <machine/bootinfo.h>
  112 #include <machine/clock.h>
  113 #include <machine/cpu.h>
  114 #include <machine/cputypes.h>
  115 #include <machine/intr_machdep.h>
  116 #include <machine/mca.h>
  117 #include <machine/md_var.h>
  118 #include <machine/metadata.h>
  119 #include <machine/pc/bios.h>
  120 #include <machine/pcb.h>
  121 #include <machine/pcb_ext.h>
  122 #include <machine/proc.h>
  123 #include <machine/reg.h>
  124 #include <machine/sigframe.h>
  125 #include <machine/specialreg.h>
  126 #include <machine/vm86.h>
  127 #ifdef PERFMON
  128 #include <machine/perfmon.h>
  129 #endif
  130 #ifdef SMP
  131 #include <machine/smp.h>
  132 #endif
  133 
  134 #ifdef DEV_ISA
  135 #include <i386/isa/icu.h>
  136 #endif
  137 
  138 #ifdef XBOX
  139 #include <machine/xbox.h>
  140 
  141 int arch_i386_is_xbox = 0;
  142 uint32_t arch_i386_xbox_memsize = 0;
  143 #endif
  144 
  145 #ifdef XEN
  146 /* XEN includes */
  147 #include <machine/xen/xen-os.h>
  148 #include <xen/hypervisor.h>
  149 #include <machine/xen/xen-os.h>
  150 #include <machine/xen/xenvar.h>
  151 #include <machine/xen/xenfunc.h>
  152 #include <xen/xen_intr.h>
  153 
  154 void Xhypervisor_callback(void);
  155 void failsafe_callback(void);
  156 
  157 extern trap_info_t trap_table[];
  158 struct proc_ldt default_proc_ldt;
  159 extern int init_first;
  160 int running_xen = 1;
  161 extern unsigned long physfree;
  162 #endif /* XEN */
  163 
  164 /* Sanity check for __curthread() */
  165 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  166 
  167 extern void init386(int first);
  168 extern void dblfault_handler(void);
  169 
  170 extern void printcpuinfo(void); /* XXX header file */
  171 extern void finishidentcpu(void);
  172 extern void panicifcpuunsupported(void);
  173 extern void initializecpu(void);
  174 
  175 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  176 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  177 
  178 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  179 #define CPU_ENABLE_SSE
  180 #endif
  181 
  182 static void cpu_startup(void *);
  183 static void fpstate_drop(struct thread *td);
  184 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  185 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  186 #ifdef CPU_ENABLE_SSE
  187 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  188 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  189 #endif /* CPU_ENABLE_SSE */
  190 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  191 
  192 #ifdef DDB
  193 extern vm_offset_t ksym_start, ksym_end;
  194 #endif
  195 
  196 /* Intel ICH registers */
  197 #define ICH_PMBASE      0x400
  198 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  199 
  200 int     _udatasel, _ucodesel;
  201 u_int   basemem;
  202 
  203 int cold = 1;
  204 
  205 #ifdef COMPAT_43
  206 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  207 #endif
  208 #ifdef COMPAT_FREEBSD4
  209 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  210 #endif
  211 
  212 long Maxmem = 0;
  213 long realmem = 0;
  214 
  215 #ifdef PAE
  216 FEATURE(pae, "Physical Address Extensions");
  217 #endif
  218 
  219 /*
  220  * The number of PHYSMAP entries must be one less than the number of
  221  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  222  * physical address that is accessible by ISA DMA is split into two
  223  * PHYSSEG entries.
  224  */
  225 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  226 
  227 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  228 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  229 
  230 /* must be 2 less so 0 0 can signal end of chunks */
  231 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  232 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  233 
  234 struct kva_md_info kmi;
  235 
  236 static struct trapframe proc0_tf;
  237 struct pcpu __pcpu[MAXCPU];
  238 
  239 struct mtx icu_lock;
  240 
  241 struct mem_range_softc mem_range_softc;
  242 
  243 static void
  244 cpu_startup(dummy)
  245         void *dummy;
  246 {
  247         uintmax_t memsize;
  248         char *sysenv;
  249         
  250         /*
  251          * On MacBooks, we need to disallow the legacy USB circuit to
  252          * generate an SMI# because this can cause several problems,
  253          * namely: incorrect CPU frequency detection and failure to
  254          * start the APs.
  255          * We do this by disabling a bit in the SMI_EN (SMI Control and
  256          * Enable register) of the Intel ICH LPC Interface Bridge.
  257          */
  258         sysenv = getenv("smbios.system.product");
  259         if (sysenv != NULL) {
  260                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  261                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  262                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  263                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  264                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  265                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  266                         if (bootverbose)
  267                                 printf("Disabling LEGACY_USB_EN bit on "
  268                                     "Intel ICH.\n");
  269                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  270                 }
  271                 freeenv(sysenv);
  272         }
  273 
  274         /*
  275          * Good {morning,afternoon,evening,night}.
  276          */
  277         startrtclock();
  278         printcpuinfo();
  279         panicifcpuunsupported();
  280 #ifdef PERFMON
  281         perfmon_init();
  282 #endif
  283         realmem = Maxmem;
  284 
  285         /*
  286          * Display physical memory if SMBIOS reports reasonable amount.
  287          */
  288         memsize = 0;
  289         sysenv = getenv("smbios.memory.enabled");
  290         if (sysenv != NULL) {
  291                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  292                 freeenv(sysenv);
  293         }
  294         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  295                 memsize = ptoa((uintmax_t)Maxmem);
  296         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  297 
  298         /*
  299          * Display any holes after the first chunk of extended memory.
  300          */
  301         if (bootverbose) {
  302                 int indx;
  303 
  304                 printf("Physical memory chunk(s):\n");
  305                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  306                         vm_paddr_t size;
  307 
  308                         size = phys_avail[indx + 1] - phys_avail[indx];
  309                         printf(
  310                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  311                             (uintmax_t)phys_avail[indx],
  312                             (uintmax_t)phys_avail[indx + 1] - 1,
  313                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  314                 }
  315         }
  316 
  317         vm_ksubmap_init(&kmi);
  318 
  319         printf("avail memory = %ju (%ju MB)\n",
  320             ptoa((uintmax_t)cnt.v_free_count),
  321             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  322 
  323         /*
  324          * Set up buffers, so they can be used to read disk labels.
  325          */
  326         bufinit();
  327         vm_pager_bufferinit();
  328 #ifndef XEN
  329         cpu_setregs();
  330 #endif
  331         mca_init();
  332 }
  333 
  334 /*
  335  * Send an interrupt to process.
  336  *
  337  * Stack is set up to allow sigcode stored
  338  * at top to call routine, followed by kcall
  339  * to sigreturn routine below.  After sigreturn
  340  * resets the signal mask, the stack, and the
  341  * frame pointer, it returns to the user
  342  * specified pc, psl.
  343  */
  344 #ifdef COMPAT_43
  345 static void
  346 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  347 {
  348         struct osigframe sf, *fp;
  349         struct proc *p;
  350         struct thread *td;
  351         struct sigacts *psp;
  352         struct trapframe *regs;
  353         int sig;
  354         int oonstack;
  355 
  356         td = curthread;
  357         p = td->td_proc;
  358         PROC_LOCK_ASSERT(p, MA_OWNED);
  359         sig = ksi->ksi_signo;
  360         psp = p->p_sigacts;
  361         mtx_assert(&psp->ps_mtx, MA_OWNED);
  362         regs = td->td_frame;
  363         oonstack = sigonstack(regs->tf_esp);
  364 
  365         /* Allocate space for the signal handler context. */
  366         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  367             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  368                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  369                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  370 #if defined(COMPAT_43)
  371                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  372 #endif
  373         } else
  374                 fp = (struct osigframe *)regs->tf_esp - 1;
  375 
  376         /* Translate the signal if appropriate. */
  377         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  378                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  379 
  380         /* Build the argument list for the signal handler. */
  381         sf.sf_signum = sig;
  382         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  383         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  384                 /* Signal handler installed with SA_SIGINFO. */
  385                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  386                 sf.sf_siginfo.si_signo = sig;
  387                 sf.sf_siginfo.si_code = ksi->ksi_code;
  388                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  389         } else {
  390                 /* Old FreeBSD-style arguments. */
  391                 sf.sf_arg2 = ksi->ksi_code;
  392                 sf.sf_addr = (register_t)ksi->ksi_addr;
  393                 sf.sf_ahu.sf_handler = catcher;
  394         }
  395         mtx_unlock(&psp->ps_mtx);
  396         PROC_UNLOCK(p);
  397 
  398         /* Save most if not all of trap frame. */
  399         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  400         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  401         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  402         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  403         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  404         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  405         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  406         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  407         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  408         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  409         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  410         sf.sf_siginfo.si_sc.sc_gs = rgs();
  411         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  412 
  413         /* Build the signal context to be used by osigreturn(). */
  414         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  415         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  416         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  417         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  418         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  419         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  420         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  421         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  422 
  423         /*
  424          * If we're a vm86 process, we want to save the segment registers.
  425          * We also change eflags to be our emulated eflags, not the actual
  426          * eflags.
  427          */
  428         if (regs->tf_eflags & PSL_VM) {
  429                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  430                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  431                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  432 
  433                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  434                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  435                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  436                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  437 
  438                 if (vm86->vm86_has_vme == 0)
  439                         sf.sf_siginfo.si_sc.sc_ps =
  440                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  441                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  442 
  443                 /* See sendsig() for comments. */
  444                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  445         }
  446 
  447         /*
  448          * Copy the sigframe out to the user's stack.
  449          */
  450         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  451 #ifdef DEBUG
  452                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  453 #endif
  454                 PROC_LOCK(p);
  455                 sigexit(td, SIGILL);
  456         }
  457 
  458         regs->tf_esp = (int)fp;
  459         regs->tf_eip = PS_STRINGS - szosigcode;
  460         regs->tf_eflags &= ~(PSL_T | PSL_D);
  461         regs->tf_cs = _ucodesel;
  462         regs->tf_ds = _udatasel;
  463         regs->tf_es = _udatasel;
  464         regs->tf_fs = _udatasel;
  465         load_gs(_udatasel);
  466         regs->tf_ss = _udatasel;
  467         PROC_LOCK(p);
  468         mtx_lock(&psp->ps_mtx);
  469 }
  470 #endif /* COMPAT_43 */
  471 
  472 #ifdef COMPAT_FREEBSD4
  473 static void
  474 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  475 {
  476         struct sigframe4 sf, *sfp;
  477         struct proc *p;
  478         struct thread *td;
  479         struct sigacts *psp;
  480         struct trapframe *regs;
  481         int sig;
  482         int oonstack;
  483 
  484         td = curthread;
  485         p = td->td_proc;
  486         PROC_LOCK_ASSERT(p, MA_OWNED);
  487         sig = ksi->ksi_signo;
  488         psp = p->p_sigacts;
  489         mtx_assert(&psp->ps_mtx, MA_OWNED);
  490         regs = td->td_frame;
  491         oonstack = sigonstack(regs->tf_esp);
  492 
  493         /* Save user context. */
  494         bzero(&sf, sizeof(sf));
  495         sf.sf_uc.uc_sigmask = *mask;
  496         sf.sf_uc.uc_stack = td->td_sigstk;
  497         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  498             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  499         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  500         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  501         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  502 
  503         /* Allocate space for the signal handler context. */
  504         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  505             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  506                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  507                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  508 #if defined(COMPAT_43)
  509                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  510 #endif
  511         } else
  512                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  513 
  514         /* Translate the signal if appropriate. */
  515         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  516                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  517 
  518         /* Build the argument list for the signal handler. */
  519         sf.sf_signum = sig;
  520         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  521         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  522                 /* Signal handler installed with SA_SIGINFO. */
  523                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  524                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  525 
  526                 /* Fill in POSIX parts */
  527                 sf.sf_si.si_signo = sig;
  528                 sf.sf_si.si_code = ksi->ksi_code;
  529                 sf.sf_si.si_addr = ksi->ksi_addr;
  530         } else {
  531                 /* Old FreeBSD-style arguments. */
  532                 sf.sf_siginfo = ksi->ksi_code;
  533                 sf.sf_addr = (register_t)ksi->ksi_addr;
  534                 sf.sf_ahu.sf_handler = catcher;
  535         }
  536         mtx_unlock(&psp->ps_mtx);
  537         PROC_UNLOCK(p);
  538 
  539         /*
  540          * If we're a vm86 process, we want to save the segment registers.
  541          * We also change eflags to be our emulated eflags, not the actual
  542          * eflags.
  543          */
  544         if (regs->tf_eflags & PSL_VM) {
  545                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  546                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  547 
  548                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  549                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  550                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  551                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  552 
  553                 if (vm86->vm86_has_vme == 0)
  554                         sf.sf_uc.uc_mcontext.mc_eflags =
  555                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  556                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  557 
  558                 /*
  559                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  560                  * syscalls made by the signal handler.  This just avoids
  561                  * wasting time for our lazy fixup of such faults.  PSL_NT
  562                  * does nothing in vm86 mode, but vm86 programs can set it
  563                  * almost legitimately in probes for old cpu types.
  564                  */
  565                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  566         }
  567 
  568         /*
  569          * Copy the sigframe out to the user's stack.
  570          */
  571         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  572 #ifdef DEBUG
  573                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  574 #endif
  575                 PROC_LOCK(p);
  576                 sigexit(td, SIGILL);
  577         }
  578 
  579         regs->tf_esp = (int)sfp;
  580         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  581         regs->tf_eflags &= ~(PSL_T | PSL_D);
  582         regs->tf_cs = _ucodesel;
  583         regs->tf_ds = _udatasel;
  584         regs->tf_es = _udatasel;
  585         regs->tf_fs = _udatasel;
  586         regs->tf_ss = _udatasel;
  587         PROC_LOCK(p);
  588         mtx_lock(&psp->ps_mtx);
  589 }
  590 #endif  /* COMPAT_FREEBSD4 */
  591 
  592 void
  593 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  594 {
  595         struct sigframe sf, *sfp;
  596         struct proc *p;
  597         struct thread *td;
  598         struct sigacts *psp;
  599         char *sp;
  600         struct trapframe *regs;
  601         struct segment_descriptor *sdp;
  602         int sig;
  603         int oonstack;
  604 
  605         td = curthread;
  606         p = td->td_proc;
  607         PROC_LOCK_ASSERT(p, MA_OWNED);
  608         sig = ksi->ksi_signo;
  609         psp = p->p_sigacts;
  610         mtx_assert(&psp->ps_mtx, MA_OWNED);
  611 #ifdef COMPAT_FREEBSD4
  612         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  613                 freebsd4_sendsig(catcher, ksi, mask);
  614                 return;
  615         }
  616 #endif
  617 #ifdef COMPAT_43
  618         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  619                 osendsig(catcher, ksi, mask);
  620                 return;
  621         }
  622 #endif
  623         regs = td->td_frame;
  624         oonstack = sigonstack(regs->tf_esp);
  625 
  626         /* Save user context. */
  627         bzero(&sf, sizeof(sf));
  628         sf.sf_uc.uc_sigmask = *mask;
  629         sf.sf_uc.uc_stack = td->td_sigstk;
  630         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  631             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  632         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  633         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  634         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  635         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  636         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  637         fpstate_drop(td);
  638         /*
  639          * Unconditionally fill the fsbase and gsbase into the mcontext.
  640          */
  641         sdp = &td->td_pcb->pcb_gsd;
  642         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  643             sdp->sd_lobase;
  644         sdp = &td->td_pcb->pcb_fsd;
  645         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  646             sdp->sd_lobase;
  647 
  648         /* Allocate space for the signal handler context. */
  649         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  650             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  651                 sp = td->td_sigstk.ss_sp +
  652                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  653 #if defined(COMPAT_43)
  654                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  655 #endif
  656         } else
  657                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  658         /* Align to 16 bytes. */
  659         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  660 
  661         /* Translate the signal if appropriate. */
  662         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  663                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  664 
  665         /* Build the argument list for the signal handler. */
  666         sf.sf_signum = sig;
  667         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  668         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  669                 /* Signal handler installed with SA_SIGINFO. */
  670                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  671                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  672 
  673                 /* Fill in POSIX parts */
  674                 sf.sf_si = ksi->ksi_info;
  675                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  676         } else {
  677                 /* Old FreeBSD-style arguments. */
  678                 sf.sf_siginfo = ksi->ksi_code;
  679                 sf.sf_addr = (register_t)ksi->ksi_addr;
  680                 sf.sf_ahu.sf_handler = catcher;
  681         }
  682         mtx_unlock(&psp->ps_mtx);
  683         PROC_UNLOCK(p);
  684 
  685         /*
  686          * If we're a vm86 process, we want to save the segment registers.
  687          * We also change eflags to be our emulated eflags, not the actual
  688          * eflags.
  689          */
  690         if (regs->tf_eflags & PSL_VM) {
  691                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  692                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  693 
  694                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  695                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  696                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  697                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  698 
  699                 if (vm86->vm86_has_vme == 0)
  700                         sf.sf_uc.uc_mcontext.mc_eflags =
  701                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  702                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  703 
  704                 /*
  705                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  706                  * syscalls made by the signal handler.  This just avoids
  707                  * wasting time for our lazy fixup of such faults.  PSL_NT
  708                  * does nothing in vm86 mode, but vm86 programs can set it
  709                  * almost legitimately in probes for old cpu types.
  710                  */
  711                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  712         }
  713 
  714         /*
  715          * Copy the sigframe out to the user's stack.
  716          */
  717         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  718 #ifdef DEBUG
  719                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  720 #endif
  721                 PROC_LOCK(p);
  722                 sigexit(td, SIGILL);
  723         }
  724 
  725         regs->tf_esp = (int)sfp;
  726         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  727         regs->tf_eflags &= ~(PSL_T | PSL_D);
  728         regs->tf_cs = _ucodesel;
  729         regs->tf_ds = _udatasel;
  730         regs->tf_es = _udatasel;
  731         regs->tf_fs = _udatasel;
  732         regs->tf_ss = _udatasel;
  733         PROC_LOCK(p);
  734         mtx_lock(&psp->ps_mtx);
  735 }
  736 
  737 /*
  738  * System call to cleanup state after a signal
  739  * has been taken.  Reset signal mask and
  740  * stack state from context left by sendsig (above).
  741  * Return to previous pc and psl as specified by
  742  * context left by sendsig. Check carefully to
  743  * make sure that the user has not modified the
  744  * state to gain improper privileges.
  745  *
  746  * MPSAFE
  747  */
  748 #ifdef COMPAT_43
  749 int
  750 osigreturn(td, uap)
  751         struct thread *td;
  752         struct osigreturn_args /* {
  753                 struct osigcontext *sigcntxp;
  754         } */ *uap;
  755 {
  756         struct osigcontext sc;
  757         struct trapframe *regs;
  758         struct osigcontext *scp;
  759         int eflags, error;
  760         ksiginfo_t ksi;
  761 
  762         regs = td->td_frame;
  763         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  764         if (error != 0)
  765                 return (error);
  766         scp = &sc;
  767         eflags = scp->sc_ps;
  768         if (eflags & PSL_VM) {
  769                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  770                 struct vm86_kernel *vm86;
  771 
  772                 /*
  773                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  774                  * set up the vm86 area, and we can't enter vm86 mode.
  775                  */
  776                 if (td->td_pcb->pcb_ext == 0)
  777                         return (EINVAL);
  778                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  779                 if (vm86->vm86_inited == 0)
  780                         return (EINVAL);
  781 
  782                 /* Go back to user mode if both flags are set. */
  783                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  784                         ksiginfo_init_trap(&ksi);
  785                         ksi.ksi_signo = SIGBUS;
  786                         ksi.ksi_code = BUS_OBJERR;
  787                         ksi.ksi_addr = (void *)regs->tf_eip;
  788                         trapsignal(td, &ksi);
  789                 }
  790 
  791                 if (vm86->vm86_has_vme) {
  792                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  793                             (eflags & VME_USERCHANGE) | PSL_VM;
  794                 } else {
  795                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  796                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  797                             (eflags & VM_USERCHANGE) | PSL_VM;
  798                 }
  799                 tf->tf_vm86_ds = scp->sc_ds;
  800                 tf->tf_vm86_es = scp->sc_es;
  801                 tf->tf_vm86_fs = scp->sc_fs;
  802                 tf->tf_vm86_gs = scp->sc_gs;
  803                 tf->tf_ds = _udatasel;
  804                 tf->tf_es = _udatasel;
  805                 tf->tf_fs = _udatasel;
  806         } else {
  807                 /*
  808                  * Don't allow users to change privileged or reserved flags.
  809                  */
  810                 /*
  811                  * XXX do allow users to change the privileged flag PSL_RF.
  812                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  813                  * should sometimes set it there too.  tf_eflags is kept in
  814                  * the signal context during signal handling and there is no
  815                  * other place to remember it, so the PSL_RF bit may be
  816                  * corrupted by the signal handler without us knowing.
  817                  * Corruption of the PSL_RF bit at worst causes one more or
  818                  * one less debugger trap, so allowing it is fairly harmless.
  819                  */
  820                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  821                         return (EINVAL);
  822                 }
  823 
  824                 /*
  825                  * Don't allow users to load a valid privileged %cs.  Let the
  826                  * hardware check for invalid selectors, excess privilege in
  827                  * other selectors, invalid %eip's and invalid %esp's.
  828                  */
  829                 if (!CS_SECURE(scp->sc_cs)) {
  830                         ksiginfo_init_trap(&ksi);
  831                         ksi.ksi_signo = SIGBUS;
  832                         ksi.ksi_code = BUS_OBJERR;
  833                         ksi.ksi_trapno = T_PROTFLT;
  834                         ksi.ksi_addr = (void *)regs->tf_eip;
  835                         trapsignal(td, &ksi);
  836                         return (EINVAL);
  837                 }
  838                 regs->tf_ds = scp->sc_ds;
  839                 regs->tf_es = scp->sc_es;
  840                 regs->tf_fs = scp->sc_fs;
  841         }
  842 
  843         /* Restore remaining registers. */
  844         regs->tf_eax = scp->sc_eax;
  845         regs->tf_ebx = scp->sc_ebx;
  846         regs->tf_ecx = scp->sc_ecx;
  847         regs->tf_edx = scp->sc_edx;
  848         regs->tf_esi = scp->sc_esi;
  849         regs->tf_edi = scp->sc_edi;
  850         regs->tf_cs = scp->sc_cs;
  851         regs->tf_ss = scp->sc_ss;
  852         regs->tf_isp = scp->sc_isp;
  853         regs->tf_ebp = scp->sc_fp;
  854         regs->tf_esp = scp->sc_sp;
  855         regs->tf_eip = scp->sc_pc;
  856         regs->tf_eflags = eflags;
  857 
  858 #if defined(COMPAT_43)
  859         if (scp->sc_onstack & 1)
  860                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  861         else
  862                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  863 #endif
  864         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  865             SIGPROCMASK_OLD);
  866         return (EJUSTRETURN);
  867 }
  868 #endif /* COMPAT_43 */
  869 
  870 #ifdef COMPAT_FREEBSD4
  871 /*
  872  * MPSAFE
  873  */
  874 int
  875 freebsd4_sigreturn(td, uap)
  876         struct thread *td;
  877         struct freebsd4_sigreturn_args /* {
  878                 const ucontext4 *sigcntxp;
  879         } */ *uap;
  880 {
  881         struct ucontext4 uc;
  882         struct trapframe *regs;
  883         struct ucontext4 *ucp;
  884         int cs, eflags, error;
  885         ksiginfo_t ksi;
  886 
  887         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  888         if (error != 0)
  889                 return (error);
  890         ucp = &uc;
  891         regs = td->td_frame;
  892         eflags = ucp->uc_mcontext.mc_eflags;
  893         if (eflags & PSL_VM) {
  894                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  895                 struct vm86_kernel *vm86;
  896 
  897                 /*
  898                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  899                  * set up the vm86 area, and we can't enter vm86 mode.
  900                  */
  901                 if (td->td_pcb->pcb_ext == 0)
  902                         return (EINVAL);
  903                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  904                 if (vm86->vm86_inited == 0)
  905                         return (EINVAL);
  906 
  907                 /* Go back to user mode if both flags are set. */
  908                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  909                         ksiginfo_init_trap(&ksi);
  910                         ksi.ksi_signo = SIGBUS;
  911                         ksi.ksi_code = BUS_OBJERR;
  912                         ksi.ksi_addr = (void *)regs->tf_eip;
  913                         trapsignal(td, &ksi);
  914                 }
  915                 if (vm86->vm86_has_vme) {
  916                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  917                             (eflags & VME_USERCHANGE) | PSL_VM;
  918                 } else {
  919                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  920                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  921                             (eflags & VM_USERCHANGE) | PSL_VM;
  922                 }
  923                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  924                 tf->tf_eflags = eflags;
  925                 tf->tf_vm86_ds = tf->tf_ds;
  926                 tf->tf_vm86_es = tf->tf_es;
  927                 tf->tf_vm86_fs = tf->tf_fs;
  928                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  929                 tf->tf_ds = _udatasel;
  930                 tf->tf_es = _udatasel;
  931                 tf->tf_fs = _udatasel;
  932         } else {
  933                 /*
  934                  * Don't allow users to change privileged or reserved flags.
  935                  */
  936                 /*
  937                  * XXX do allow users to change the privileged flag PSL_RF.
  938                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  939                  * should sometimes set it there too.  tf_eflags is kept in
  940                  * the signal context during signal handling and there is no
  941                  * other place to remember it, so the PSL_RF bit may be
  942                  * corrupted by the signal handler without us knowing.
  943                  * Corruption of the PSL_RF bit at worst causes one more or
  944                  * one less debugger trap, so allowing it is fairly harmless.
  945                  */
  946                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  947                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  948                             td->td_proc->p_pid, td->td_name, eflags);
  949                         return (EINVAL);
  950                 }
  951 
  952                 /*
  953                  * Don't allow users to load a valid privileged %cs.  Let the
  954                  * hardware check for invalid selectors, excess privilege in
  955                  * other selectors, invalid %eip's and invalid %esp's.
  956                  */
  957                 cs = ucp->uc_mcontext.mc_cs;
  958                 if (!CS_SECURE(cs)) {
  959                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  960                             td->td_proc->p_pid, td->td_name, cs);
  961                         ksiginfo_init_trap(&ksi);
  962                         ksi.ksi_signo = SIGBUS;
  963                         ksi.ksi_code = BUS_OBJERR;
  964                         ksi.ksi_trapno = T_PROTFLT;
  965                         ksi.ksi_addr = (void *)regs->tf_eip;
  966                         trapsignal(td, &ksi);
  967                         return (EINVAL);
  968                 }
  969 
  970                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  971         }
  972 
  973 #if defined(COMPAT_43)
  974         if (ucp->uc_mcontext.mc_onstack & 1)
  975                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  976         else
  977                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  978 #endif
  979         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  980         return (EJUSTRETURN);
  981 }
  982 #endif  /* COMPAT_FREEBSD4 */
  983 
  984 /*
  985  * MPSAFE
  986  */
  987 int
  988 sigreturn(td, uap)
  989         struct thread *td;
  990         struct sigreturn_args /* {
  991                 const struct __ucontext *sigcntxp;
  992         } */ *uap;
  993 {
  994         ucontext_t uc;
  995         struct trapframe *regs;
  996         ucontext_t *ucp;
  997         int cs, eflags, error, ret;
  998         ksiginfo_t ksi;
  999 
 1000         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1001         if (error != 0)
 1002                 return (error);
 1003         ucp = &uc;
 1004         regs = td->td_frame;
 1005         eflags = ucp->uc_mcontext.mc_eflags;
 1006         if (eflags & PSL_VM) {
 1007                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1008                 struct vm86_kernel *vm86;
 1009 
 1010                 /*
 1011                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1012                  * set up the vm86 area, and we can't enter vm86 mode.
 1013                  */
 1014                 if (td->td_pcb->pcb_ext == 0)
 1015                         return (EINVAL);
 1016                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1017                 if (vm86->vm86_inited == 0)
 1018                         return (EINVAL);
 1019 
 1020                 /* Go back to user mode if both flags are set. */
 1021                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1022                         ksiginfo_init_trap(&ksi);
 1023                         ksi.ksi_signo = SIGBUS;
 1024                         ksi.ksi_code = BUS_OBJERR;
 1025                         ksi.ksi_addr = (void *)regs->tf_eip;
 1026                         trapsignal(td, &ksi);
 1027                 }
 1028 
 1029                 if (vm86->vm86_has_vme) {
 1030                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1031                             (eflags & VME_USERCHANGE) | PSL_VM;
 1032                 } else {
 1033                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1034                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1035                             (eflags & VM_USERCHANGE) | PSL_VM;
 1036                 }
 1037                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1038                 tf->tf_eflags = eflags;
 1039                 tf->tf_vm86_ds = tf->tf_ds;
 1040                 tf->tf_vm86_es = tf->tf_es;
 1041                 tf->tf_vm86_fs = tf->tf_fs;
 1042                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1043                 tf->tf_ds = _udatasel;
 1044                 tf->tf_es = _udatasel;
 1045                 tf->tf_fs = _udatasel;
 1046         } else {
 1047                 /*
 1048                  * Don't allow users to change privileged or reserved flags.
 1049                  */
 1050                 /*
 1051                  * XXX do allow users to change the privileged flag PSL_RF.
 1052                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
 1053                  * should sometimes set it there too.  tf_eflags is kept in
 1054                  * the signal context during signal handling and there is no
 1055                  * other place to remember it, so the PSL_RF bit may be
 1056                  * corrupted by the signal handler without us knowing.
 1057                  * Corruption of the PSL_RF bit at worst causes one more or
 1058                  * one less debugger trap, so allowing it is fairly harmless.
 1059                  */
 1060                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
 1061                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1062                             td->td_proc->p_pid, td->td_name, eflags);
 1063                         return (EINVAL);
 1064                 }
 1065 
 1066                 /*
 1067                  * Don't allow users to load a valid privileged %cs.  Let the
 1068                  * hardware check for invalid selectors, excess privilege in
 1069                  * other selectors, invalid %eip's and invalid %esp's.
 1070                  */
 1071                 cs = ucp->uc_mcontext.mc_cs;
 1072                 if (!CS_SECURE(cs)) {
 1073                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1074                             td->td_proc->p_pid, td->td_name, cs);
 1075                         ksiginfo_init_trap(&ksi);
 1076                         ksi.ksi_signo = SIGBUS;
 1077                         ksi.ksi_code = BUS_OBJERR;
 1078                         ksi.ksi_trapno = T_PROTFLT;
 1079                         ksi.ksi_addr = (void *)regs->tf_eip;
 1080                         trapsignal(td, &ksi);
 1081                         return (EINVAL);
 1082                 }
 1083 
 1084                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1085                 if (ret != 0)
 1086                         return (ret);
 1087                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1088         }
 1089 
 1090 #if defined(COMPAT_43)
 1091         if (ucp->uc_mcontext.mc_onstack & 1)
 1092                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1093         else
 1094                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1095 #endif
 1096 
 1097         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1098         return (EJUSTRETURN);
 1099 }
 1100 
 1101 /*
 1102  * Machine dependent boot() routine
 1103  *
 1104  * I haven't seen anything to put here yet
 1105  * Possibly some stuff might be grafted back here from boot()
 1106  */
 1107 void
 1108 cpu_boot(int howto)
 1109 {
 1110 }
 1111 
 1112 /*
 1113  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1114  * be made coherent later.
 1115  */
 1116 void
 1117 cpu_flush_dcache(void *ptr, size_t len)
 1118 {
 1119         /* Not applicable */
 1120 }
 1121 
 1122 /* Get current clock frequency for the given cpu id. */
 1123 int
 1124 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1125 {
 1126         register_t reg;
 1127         uint64_t tsc1, tsc2;
 1128 
 1129         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1130                 return (EINVAL);
 1131         if (!tsc_present)
 1132                 return (EOPNOTSUPP);
 1133 
 1134         /* If we're booting, trust the rate calibrated moments ago. */
 1135         if (cold) {
 1136                 *rate = tsc_freq;
 1137                 return (0);
 1138         }
 1139 
 1140 #ifdef SMP
 1141         /* Schedule ourselves on the indicated cpu. */
 1142         thread_lock(curthread);
 1143         sched_bind(curthread, cpu_id);
 1144         thread_unlock(curthread);
 1145 #endif
 1146 
 1147         /* Calibrate by measuring a short delay. */
 1148         reg = intr_disable();
 1149         tsc1 = rdtsc();
 1150         DELAY(1000);
 1151         tsc2 = rdtsc();
 1152         intr_restore(reg);
 1153 
 1154 #ifdef SMP
 1155         thread_lock(curthread);
 1156         sched_unbind(curthread);
 1157         thread_unlock(curthread);
 1158 #endif
 1159 
 1160         /*
 1161          * Calculate the difference in readings, convert to Mhz, and
 1162          * subtract 0.5% of the total.  Empirical testing has shown that
 1163          * overhead in DELAY() works out to approximately this value.
 1164          */
 1165         tsc2 -= tsc1;
 1166         *rate = tsc2 * 1000 - tsc2 * 5;
 1167         return (0);
 1168 }
 1169 
 1170 
 1171 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
 1172 
 1173 #ifdef XEN
 1174 
 1175 void
 1176 cpu_halt(void)
 1177 {
 1178         HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 1179 }
 1180 
 1181 int scheduler_running;
 1182 
 1183 static void
 1184 cpu_idle_hlt(int busy)
 1185 {
 1186 
 1187         scheduler_running = 1;
 1188         enable_intr();
 1189         idle_block();
 1190 }
 1191 
 1192 #else
 1193 /*
 1194  * Shutdown the CPU as much as possible
 1195  */
 1196 void
 1197 cpu_halt(void)
 1198 {
 1199         for (;;)
 1200                 __asm__ ("hlt");
 1201 }
 1202 
 1203 static void
 1204 cpu_idle_hlt(int busy)
 1205 {
 1206         /*
 1207          * we must absolutely guarentee that hlt is the next instruction
 1208          * after sti or we introduce a timing window.
 1209          */
 1210         disable_intr();
 1211         if (sched_runnable())
 1212                 enable_intr();
 1213         else
 1214                 __asm __volatile("sti; hlt");
 1215 }
 1216 #endif
 1217 
 1218 static void
 1219 cpu_idle_acpi(int busy)
 1220 {
 1221         disable_intr();
 1222         if (sched_runnable())
 1223                 enable_intr();
 1224         else if (cpu_idle_hook)
 1225                 cpu_idle_hook();
 1226         else
 1227                 __asm __volatile("sti; hlt");
 1228 }
 1229 
 1230 static int cpu_ident_amdc1e = 0;
 1231 
 1232 static int
 1233 cpu_probe_amdc1e(void)
 1234 { 
 1235 #ifdef DEV_APIC
 1236         int i;
 1237 
 1238         /*
 1239          * Forget it, if we're not using local APIC timer.
 1240          */
 1241         if (resource_disabled("apic", 0) ||
 1242             (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
 1243                 return (0);
 1244 
 1245         /*
 1246          * Detect the presence of C1E capability mostly on latest
 1247          * dual-cores (or future) k8 family.
 1248          */
 1249         if (cpu_vendor_id == CPU_VENDOR_AMD &&
 1250             (cpu_id & 0x00000f00) == 0x00000f00 &&
 1251             (cpu_id & 0x0fff0000) >=  0x00040000) {
 1252                 cpu_ident_amdc1e = 1;
 1253                 return (1);
 1254         }
 1255 #endif
 1256         return (0);
 1257 }
 1258 
 1259 /*
 1260  * C1E renders the local APIC timer dead, so we disable it by
 1261  * reading the Interrupt Pending Message register and clearing
 1262  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
 1263  * 
 1264  * Reference:
 1265  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
 1266  *   #32559 revision 3.00+
 1267  */
 1268 #define MSR_AMDK8_IPM           0xc0010055
 1269 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
 1270 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
 1271 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
 1272 
 1273 static void
 1274 cpu_idle_amdc1e(int busy)
 1275 {
 1276 
 1277         disable_intr();
 1278         if (sched_runnable())
 1279                 enable_intr();
 1280         else {
 1281                 uint64_t msr;
 1282 
 1283                 msr = rdmsr(MSR_AMDK8_IPM);
 1284                 if (msr & AMDK8_CMPHALT)
 1285                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
 1286 
 1287                 if (cpu_idle_hook)
 1288                         cpu_idle_hook();
 1289                 else
 1290                         __asm __volatile("sti; hlt");
 1291         }
 1292 }
 1293 
 1294 static void
 1295 cpu_idle_spin(int busy)
 1296 {
 1297         return;
 1298 }
 1299 
 1300 #ifdef XEN
 1301 void (*cpu_idle_fn)(int) = cpu_idle_hlt;
 1302 #else
 1303 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
 1304 #endif
 1305 
 1306 void
 1307 cpu_idle(int busy)
 1308 {
 1309 #if defined(SMP) && !defined(XEN)
 1310         if (mp_grab_cpu_hlt())
 1311                 return;
 1312 #endif
 1313         cpu_idle_fn(busy);
 1314 }
 1315 
 1316 /*
 1317  * mwait cpu power states.  Lower 4 bits are sub-states.
 1318  */
 1319 #define MWAIT_C0        0xf0
 1320 #define MWAIT_C1        0x00
 1321 #define MWAIT_C2        0x10
 1322 #define MWAIT_C3        0x20
 1323 #define MWAIT_C4        0x30
 1324 
 1325 #define MWAIT_DISABLED  0x0
 1326 #define MWAIT_WOKEN     0x1
 1327 #define MWAIT_WAITING   0x2
 1328 
 1329 static void
 1330 cpu_idle_mwait(int busy)
 1331 {
 1332         int *mwait;
 1333 
 1334         mwait = (int *)PCPU_PTR(monitorbuf);
 1335         *mwait = MWAIT_WAITING;
 1336         if (sched_runnable())
 1337                 return;
 1338         cpu_monitor(mwait, 0, 0);
 1339         if (*mwait == MWAIT_WAITING)
 1340                 cpu_mwait(0, MWAIT_C1);
 1341 }
 1342 
 1343 static void
 1344 cpu_idle_mwait_hlt(int busy)
 1345 {
 1346         int *mwait;
 1347 
 1348         mwait = (int *)PCPU_PTR(monitorbuf);
 1349         if (busy == 0) {
 1350                 *mwait = MWAIT_DISABLED;
 1351                 cpu_idle_hlt(busy);
 1352                 return;
 1353         }
 1354         *mwait = MWAIT_WAITING;
 1355         if (sched_runnable())
 1356                 return;
 1357         cpu_monitor(mwait, 0, 0);
 1358         if (*mwait == MWAIT_WAITING)
 1359                 cpu_mwait(0, MWAIT_C1);
 1360 }
 1361 
 1362 int
 1363 cpu_idle_wakeup(int cpu)
 1364 {
 1365         struct pcpu *pcpu;
 1366         int *mwait;
 1367 
 1368         if (cpu_idle_fn == cpu_idle_spin)
 1369                 return (1);
 1370         if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
 1371                 return (0);
 1372         pcpu = pcpu_find(cpu);
 1373         mwait = (int *)pcpu->pc_monitorbuf;
 1374         /*
 1375          * This doesn't need to be atomic since missing the race will
 1376          * simply result in unnecessary IPIs.
 1377          */
 1378         if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
 1379                 return (0);
 1380         *mwait = MWAIT_WOKEN;
 1381 
 1382         return (1);
 1383 }
 1384 
 1385 /*
 1386  * Ordered by speed/power consumption.
 1387  */
 1388 struct {
 1389         void    *id_fn;
 1390         char    *id_name;
 1391 } idle_tbl[] = {
 1392         { cpu_idle_spin, "spin" },
 1393         { cpu_idle_mwait, "mwait" },
 1394         { cpu_idle_mwait_hlt, "mwait_hlt" },
 1395         { cpu_idle_amdc1e, "amdc1e" },
 1396         { cpu_idle_hlt, "hlt" },
 1397         { cpu_idle_acpi, "acpi" },
 1398         { NULL, NULL }
 1399 };
 1400 
 1401 static int
 1402 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1403 {
 1404         char *avail, *p;
 1405         int error;
 1406         int i;
 1407 
 1408         avail = malloc(256, M_TEMP, M_WAITOK);
 1409         p = avail;
 1410         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1411                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1412                     (cpu_feature2 & CPUID2_MON) == 0)
 1413                         continue;
 1414                 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
 1415                     cpu_ident_amdc1e == 0)
 1416                         continue;
 1417                 p += sprintf(p, "%s, ", idle_tbl[i].id_name);
 1418         }
 1419         error = sysctl_handle_string(oidp, avail, 0, req);
 1420         free(avail, M_TEMP);
 1421         return (error);
 1422 }
 1423 
 1424 static int
 1425 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1426 {
 1427         char buf[16];
 1428         int error;
 1429         char *p;
 1430         int i;
 1431 
 1432         p = "unknown";
 1433         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1434                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1435                         p = idle_tbl[i].id_name;
 1436                         break;
 1437                 }
 1438         }
 1439         strncpy(buf, p, sizeof(buf));
 1440         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1441         if (error != 0 || req->newptr == NULL)
 1442                 return (error);
 1443         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1444                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1445                     (cpu_feature2 & CPUID2_MON) == 0)
 1446                         continue;
 1447                 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
 1448                     cpu_ident_amdc1e == 0)
 1449                         continue;
 1450                 if (strcmp(idle_tbl[i].id_name, buf))
 1451                         continue;
 1452                 cpu_idle_fn = idle_tbl[i].id_fn;
 1453                 return (0);
 1454         }
 1455         return (EINVAL);
 1456 }
 1457 
 1458 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1459     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1460 
 1461 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1462     idle_sysctl, "A", "currently selected idle function");
 1463 
 1464 /*
 1465  * Reset registers to default values on exec.
 1466  */
 1467 void
 1468 exec_setregs(td, entry, stack, ps_strings)
 1469         struct thread *td;
 1470         u_long entry;
 1471         u_long stack;
 1472         u_long ps_strings;
 1473 {
 1474         struct trapframe *regs = td->td_frame;
 1475         struct pcb *pcb = td->td_pcb;
 1476 
 1477         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1478         pcb->pcb_gs = _udatasel;
 1479         load_gs(_udatasel);
 1480 
 1481         mtx_lock_spin(&dt_lock);
 1482         if (td->td_proc->p_md.md_ldt)
 1483                 user_ldt_free(td);
 1484         else
 1485                 mtx_unlock_spin(&dt_lock);
 1486   
 1487         bzero((char *)regs, sizeof(struct trapframe));
 1488         regs->tf_eip = entry;
 1489         regs->tf_esp = stack;
 1490         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1491         regs->tf_ss = _udatasel;
 1492         regs->tf_ds = _udatasel;
 1493         regs->tf_es = _udatasel;
 1494         regs->tf_fs = _udatasel;
 1495         regs->tf_cs = _ucodesel;
 1496 
 1497         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1498         regs->tf_ebx = ps_strings;
 1499 
 1500         /*
 1501          * Reset the hardware debug registers if they were in use.
 1502          * They won't have any meaning for the newly exec'd process.  
 1503          */
 1504         if (pcb->pcb_flags & PCB_DBREGS) {
 1505                 pcb->pcb_dr0 = 0;
 1506                 pcb->pcb_dr1 = 0;
 1507                 pcb->pcb_dr2 = 0;
 1508                 pcb->pcb_dr3 = 0;
 1509                 pcb->pcb_dr6 = 0;
 1510                 pcb->pcb_dr7 = 0;
 1511                 if (pcb == PCPU_GET(curpcb)) {
 1512                         /*
 1513                          * Clear the debug registers on the running
 1514                          * CPU, otherwise they will end up affecting
 1515                          * the next process we switch to.
 1516                          */
 1517                         reset_dbregs();
 1518                 }
 1519                 pcb->pcb_flags &= ~PCB_DBREGS;
 1520         }
 1521 
 1522         /*
 1523          * Initialize the math emulator (if any) for the current process.
 1524          * Actually, just clear the bit that says that the emulator has
 1525          * been initialized.  Initialization is delayed until the process
 1526          * traps to the emulator (if it is done at all) mainly because
 1527          * emulators don't provide an entry point for initialization.
 1528          */
 1529         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1530         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1531 
 1532         /*
 1533          * Drop the FP state if we hold it, so that the process gets a
 1534          * clean FP state if it uses the FPU again.
 1535          */
 1536         fpstate_drop(td);
 1537 
 1538         /*
 1539          * XXX - Linux emulator
 1540          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1541          * on it.
 1542          */
 1543         td->td_retval[1] = 0;
 1544 }
 1545 
 1546 void
 1547 cpu_setregs(void)
 1548 {
 1549         unsigned int cr0;
 1550 
 1551         cr0 = rcr0();
 1552 
 1553         /*
 1554          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1555          *
 1556          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1557          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1558          * bit to control the trap, because setting the CR0_EM bit does
 1559          * not cause WAIT instructions to trap.  It's important to trap
 1560          * WAIT instructions - otherwise the "wait" variants of no-wait
 1561          * control instructions would degenerate to the "no-wait" variants
 1562          * after FP context switches but work correctly otherwise.  It's
 1563          * particularly important to trap WAITs when there is no NPX -
 1564          * otherwise the "wait" variants would always degenerate.
 1565          *
 1566          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1567          * Setting it should fail or do nothing on lesser processors.
 1568          */
 1569         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1570         load_cr0(cr0);
 1571         load_gs(_udatasel);
 1572 }
 1573 
 1574 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1575 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1576         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1577 
 1578 /*
 1579  * Initialize 386 and configure to run kernel
 1580  */
 1581 
 1582 /*
 1583  * Initialize segments & interrupt table
 1584  */
 1585 
 1586 int _default_ldt;
 1587 
 1588 #ifdef XEN
 1589 union descriptor *gdt;
 1590 union descriptor *ldt;
 1591 #else
 1592 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1593 union descriptor ldt[NLDT];             /* local descriptor table */
 1594 #endif
 1595 static struct gate_descriptor idt0[NIDT];
 1596 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1597 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1598 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1599 
 1600 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1601 extern int has_f00f_bug;
 1602 #endif
 1603 
 1604 static struct i386tss dblfault_tss;
 1605 static char dblfault_stack[PAGE_SIZE];
 1606 
 1607 extern  vm_offset_t     proc0kstack;
 1608 
 1609 
 1610 /*
 1611  * software prototypes -- in more palatable form.
 1612  *
 1613  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1614  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1615  */
 1616 struct soft_segment_descriptor gdt_segs[] = {
 1617 /* GNULL_SEL    0 Null Descriptor */
 1618 {       .ssd_base = 0x0,
 1619         .ssd_limit = 0x0,
 1620         .ssd_type = 0,
 1621         .ssd_dpl = SEL_KPL,
 1622         .ssd_p = 0,
 1623         .ssd_xx = 0, .ssd_xx1 = 0,
 1624         .ssd_def32 = 0,
 1625         .ssd_gran = 0           },
 1626 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1627 {       .ssd_base = 0x0,
 1628         .ssd_limit = 0xfffff,
 1629         .ssd_type = SDT_MEMRWA,
 1630         .ssd_dpl = SEL_KPL,
 1631         .ssd_p = 1,
 1632         .ssd_xx = 0, .ssd_xx1 = 0,
 1633         .ssd_def32 = 1,
 1634         .ssd_gran = 1           },
 1635 /* GUFS_SEL     2 %fs Descriptor for user */
 1636 {       .ssd_base = 0x0,
 1637         .ssd_limit = 0xfffff,
 1638         .ssd_type = SDT_MEMRWA,
 1639         .ssd_dpl = SEL_UPL,
 1640         .ssd_p = 1,
 1641         .ssd_xx = 0, .ssd_xx1 = 0,
 1642         .ssd_def32 = 1,
 1643         .ssd_gran = 1           },
 1644 /* GUGS_SEL     3 %gs Descriptor for user */
 1645 {       .ssd_base = 0x0,
 1646         .ssd_limit = 0xfffff,
 1647         .ssd_type = SDT_MEMRWA,
 1648         .ssd_dpl = SEL_UPL,
 1649         .ssd_p = 1,
 1650         .ssd_xx = 0, .ssd_xx1 = 0,
 1651         .ssd_def32 = 1,
 1652         .ssd_gran = 1           },
 1653 /* GCODE_SEL    4 Code Descriptor for kernel */
 1654 {       .ssd_base = 0x0,
 1655         .ssd_limit = 0xfffff,
 1656         .ssd_type = SDT_MEMERA,
 1657         .ssd_dpl = SEL_KPL,
 1658         .ssd_p = 1,
 1659         .ssd_xx = 0, .ssd_xx1 = 0,
 1660         .ssd_def32 = 1,
 1661         .ssd_gran = 1           },
 1662 /* GDATA_SEL    5 Data Descriptor for kernel */
 1663 {       .ssd_base = 0x0,
 1664         .ssd_limit = 0xfffff,
 1665         .ssd_type = SDT_MEMRWA,
 1666         .ssd_dpl = SEL_KPL,
 1667         .ssd_p = 1,
 1668         .ssd_xx = 0, .ssd_xx1 = 0,
 1669         .ssd_def32 = 1,
 1670         .ssd_gran = 1           },
 1671 /* GUCODE_SEL   6 Code Descriptor for user */
 1672 {       .ssd_base = 0x0,
 1673         .ssd_limit = 0xfffff,
 1674         .ssd_type = SDT_MEMERA,
 1675         .ssd_dpl = SEL_UPL,
 1676         .ssd_p = 1,
 1677         .ssd_xx = 0, .ssd_xx1 = 0,
 1678         .ssd_def32 = 1,
 1679         .ssd_gran = 1           },
 1680 /* GUDATA_SEL   7 Data Descriptor for user */
 1681 {       .ssd_base = 0x0,
 1682         .ssd_limit = 0xfffff,
 1683         .ssd_type = SDT_MEMRWA,
 1684         .ssd_dpl = SEL_UPL,
 1685         .ssd_p = 1,
 1686         .ssd_xx = 0, .ssd_xx1 = 0,
 1687         .ssd_def32 = 1,
 1688         .ssd_gran = 1           },
 1689 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1690 {       .ssd_base = 0x400,
 1691         .ssd_limit = 0xfffff,
 1692         .ssd_type = SDT_MEMRWA,
 1693         .ssd_dpl = SEL_KPL,
 1694         .ssd_p = 1,
 1695         .ssd_xx = 0, .ssd_xx1 = 0,
 1696         .ssd_def32 = 1,
 1697         .ssd_gran = 1           },
 1698 #ifndef XEN
 1699 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1700 {
 1701         .ssd_base = 0x0,
 1702         .ssd_limit = sizeof(struct i386tss)-1,
 1703         .ssd_type = SDT_SYS386TSS,
 1704         .ssd_dpl = 0,
 1705         .ssd_p = 1,
 1706         .ssd_xx = 0, .ssd_xx1 = 0,
 1707         .ssd_def32 = 0,
 1708         .ssd_gran = 0           },
 1709 /* GLDT_SEL     10 LDT Descriptor */
 1710 {       .ssd_base = (int) ldt,
 1711         .ssd_limit = sizeof(ldt)-1,
 1712         .ssd_type = SDT_SYSLDT,
 1713         .ssd_dpl = SEL_UPL,
 1714         .ssd_p = 1,
 1715         .ssd_xx = 0, .ssd_xx1 = 0,
 1716         .ssd_def32 = 0,
 1717         .ssd_gran = 0           },
 1718 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1719 {       .ssd_base = (int) ldt,
 1720         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1721         .ssd_type = SDT_SYSLDT,
 1722         .ssd_dpl = 0,
 1723         .ssd_p = 1,
 1724         .ssd_xx = 0, .ssd_xx1 = 0,
 1725         .ssd_def32 = 0,
 1726         .ssd_gran = 0           },
 1727 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1728 {       .ssd_base = (int) &dblfault_tss,
 1729         .ssd_limit = sizeof(struct i386tss)-1,
 1730         .ssd_type = SDT_SYS386TSS,
 1731         .ssd_dpl = 0,
 1732         .ssd_p = 1,
 1733         .ssd_xx = 0, .ssd_xx1 = 0,
 1734         .ssd_def32 = 0,
 1735         .ssd_gran = 0           },
 1736 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1737 {       .ssd_base = 0,
 1738         .ssd_limit = 0xfffff,
 1739         .ssd_type = SDT_MEMERA,
 1740         .ssd_dpl = 0,
 1741         .ssd_p = 1,
 1742         .ssd_xx = 0, .ssd_xx1 = 0,
 1743         .ssd_def32 = 0,
 1744         .ssd_gran = 1           },
 1745 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1746 {       .ssd_base = 0,
 1747         .ssd_limit = 0xfffff,
 1748         .ssd_type = SDT_MEMERA,
 1749         .ssd_dpl = 0,
 1750         .ssd_p = 1,
 1751         .ssd_xx = 0, .ssd_xx1 = 0,
 1752         .ssd_def32 = 0,
 1753         .ssd_gran = 1           },
 1754 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1755 {       .ssd_base = 0,
 1756         .ssd_limit = 0xfffff,
 1757         .ssd_type = SDT_MEMRWA,
 1758         .ssd_dpl = 0,
 1759         .ssd_p = 1,
 1760         .ssd_xx = 0, .ssd_xx1 = 0,
 1761         .ssd_def32 = 1,
 1762         .ssd_gran = 1           },
 1763 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1764 {       .ssd_base = 0,
 1765         .ssd_limit = 0xfffff,
 1766         .ssd_type = SDT_MEMRWA,
 1767         .ssd_dpl = 0,
 1768         .ssd_p = 1,
 1769         .ssd_xx = 0, .ssd_xx1 = 0,
 1770         .ssd_def32 = 0,
 1771         .ssd_gran = 1           },
 1772 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1773 {       .ssd_base = 0,
 1774         .ssd_limit = 0xfffff,
 1775         .ssd_type = SDT_MEMRWA,
 1776         .ssd_dpl = 0,
 1777         .ssd_p = 1,
 1778         .ssd_xx = 0, .ssd_xx1 = 0,
 1779         .ssd_def32 = 0,
 1780         .ssd_gran = 1           },
 1781 /* GNDIS_SEL    18 NDIS Descriptor */
 1782 {       .ssd_base = 0x0,
 1783         .ssd_limit = 0x0,
 1784         .ssd_type = 0,
 1785         .ssd_dpl = 0,
 1786         .ssd_p = 0,
 1787         .ssd_xx = 0, .ssd_xx1 = 0,
 1788         .ssd_def32 = 0,
 1789         .ssd_gran = 0           },
 1790 #endif /* !XEN */
 1791 };
 1792 
 1793 static struct soft_segment_descriptor ldt_segs[] = {
 1794         /* Null Descriptor - overwritten by call gate */
 1795 {       .ssd_base = 0x0,
 1796         .ssd_limit = 0x0,
 1797         .ssd_type = 0,
 1798         .ssd_dpl = 0,
 1799         .ssd_p = 0,
 1800         .ssd_xx = 0, .ssd_xx1 = 0,
 1801         .ssd_def32 = 0,
 1802         .ssd_gran = 0           },
 1803         /* Null Descriptor - overwritten by call gate */
 1804 {       .ssd_base = 0x0,
 1805         .ssd_limit = 0x0,
 1806         .ssd_type = 0,
 1807         .ssd_dpl = 0,
 1808         .ssd_p = 0,
 1809         .ssd_xx = 0, .ssd_xx1 = 0,
 1810         .ssd_def32 = 0,
 1811         .ssd_gran = 0           },
 1812         /* Null Descriptor - overwritten by call gate */
 1813 {       .ssd_base = 0x0,
 1814         .ssd_limit = 0x0,
 1815         .ssd_type = 0,
 1816         .ssd_dpl = 0,
 1817         .ssd_p = 0,
 1818         .ssd_xx = 0, .ssd_xx1 = 0,
 1819         .ssd_def32 = 0,
 1820         .ssd_gran = 0           },
 1821         /* Code Descriptor for user */
 1822 {       .ssd_base = 0x0,
 1823         .ssd_limit = 0xfffff,
 1824         .ssd_type = SDT_MEMERA,
 1825         .ssd_dpl = SEL_UPL,
 1826         .ssd_p = 1,
 1827         .ssd_xx = 0, .ssd_xx1 = 0,
 1828         .ssd_def32 = 1,
 1829         .ssd_gran = 1           },
 1830         /* Null Descriptor - overwritten by call gate */
 1831 {       .ssd_base = 0x0,
 1832         .ssd_limit = 0x0,
 1833         .ssd_type = 0,
 1834         .ssd_dpl = 0,
 1835         .ssd_p = 0,
 1836         .ssd_xx = 0, .ssd_xx1 = 0,
 1837         .ssd_def32 = 0,
 1838         .ssd_gran = 0           },
 1839         /* Data Descriptor for user */
 1840 {       .ssd_base = 0x0,
 1841         .ssd_limit = 0xfffff,
 1842         .ssd_type = SDT_MEMRWA,
 1843         .ssd_dpl = SEL_UPL,
 1844         .ssd_p = 1,
 1845         .ssd_xx = 0, .ssd_xx1 = 0,
 1846         .ssd_def32 = 1,
 1847         .ssd_gran = 1           },
 1848 };
 1849 
 1850 void
 1851 setidt(idx, func, typ, dpl, selec)
 1852         int idx;
 1853         inthand_t *func;
 1854         int typ;
 1855         int dpl;
 1856         int selec;
 1857 {
 1858         struct gate_descriptor *ip;
 1859 
 1860         ip = idt + idx;
 1861         ip->gd_looffset = (int)func;
 1862         ip->gd_selector = selec;
 1863         ip->gd_stkcpy = 0;
 1864         ip->gd_xx = 0;
 1865         ip->gd_type = typ;
 1866         ip->gd_dpl = dpl;
 1867         ip->gd_p = 1;
 1868         ip->gd_hioffset = ((int)func)>>16 ;
 1869 }
 1870 
 1871 extern inthand_t
 1872         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1873         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1874         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1875         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1876         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1877 
 1878 #ifdef DDB
 1879 /*
 1880  * Display the index and function name of any IDT entries that don't use
 1881  * the default 'rsvd' entry point.
 1882  */
 1883 DB_SHOW_COMMAND(idt, db_show_idt)
 1884 {
 1885         struct gate_descriptor *ip;
 1886         int idx;
 1887         uintptr_t func;
 1888 
 1889         ip = idt;
 1890         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1891                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1892                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1893                         db_printf("%3d\t", idx);
 1894                         db_printsym(func, DB_STGY_PROC);
 1895                         db_printf("\n");
 1896                 }
 1897                 ip++;
 1898         }
 1899 }
 1900 
 1901 /* Show privileged registers. */
 1902 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1903 {
 1904         uint64_t idtr, gdtr;
 1905 
 1906         idtr = ridt();
 1907         db_printf("idtr\t0x%08x/%04x\n",
 1908             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1909         gdtr = rgdt();
 1910         db_printf("gdtr\t0x%08x/%04x\n",
 1911             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1912         db_printf("ldtr\t0x%04x\n", rldt());
 1913         db_printf("tr\t0x%04x\n", rtr());
 1914         db_printf("cr0\t0x%08x\n", rcr0());
 1915         db_printf("cr2\t0x%08x\n", rcr2());
 1916         db_printf("cr3\t0x%08x\n", rcr3());
 1917         db_printf("cr4\t0x%08x\n", rcr4());
 1918 }
 1919 #endif
 1920 
 1921 void
 1922 sdtossd(sd, ssd)
 1923         struct segment_descriptor *sd;
 1924         struct soft_segment_descriptor *ssd;
 1925 {
 1926         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1927         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1928         ssd->ssd_type  = sd->sd_type;
 1929         ssd->ssd_dpl   = sd->sd_dpl;
 1930         ssd->ssd_p     = sd->sd_p;
 1931         ssd->ssd_def32 = sd->sd_def32;
 1932         ssd->ssd_gran  = sd->sd_gran;
 1933 }
 1934 
 1935 static int
 1936 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1937 {
 1938         int i, insert_idx, physmap_idx;
 1939 
 1940         physmap_idx = *physmap_idxp;
 1941         
 1942         if (boothowto & RB_VERBOSE)
 1943                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 1944                     smap->type, smap->base, smap->length);
 1945 
 1946         if (smap->type != SMAP_TYPE_MEMORY)
 1947                 return (1);
 1948 
 1949         if (smap->length == 0)
 1950                 return (1);
 1951 
 1952 #ifndef PAE
 1953         if (smap->base >= 0xffffffff) {
 1954                 printf("%uK of memory above 4GB ignored\n",
 1955                     (u_int)(smap->length / 1024));
 1956                 return (1);
 1957         }
 1958 #endif
 1959 
 1960         /*
 1961          * Find insertion point while checking for overlap.  Start off by
 1962          * assuming the new entry will be added to the end.
 1963          */
 1964         insert_idx = physmap_idx + 2;
 1965         for (i = 0; i <= physmap_idx; i += 2) {
 1966                 if (smap->base < physmap[i + 1]) {
 1967                         if (smap->base + smap->length <= physmap[i]) {
 1968                                 insert_idx = i;
 1969                                 break;
 1970                         }
 1971                         if (boothowto & RB_VERBOSE)
 1972                                 printf(
 1973                     "Overlapping memory regions, ignoring second region\n");
 1974                         return (1);
 1975                 }
 1976         }
 1977 
 1978         /* See if we can prepend to the next entry. */
 1979         if (insert_idx <= physmap_idx &&
 1980             smap->base + smap->length == physmap[insert_idx]) {
 1981                 physmap[insert_idx] = smap->base;
 1982                 return (1);
 1983         }
 1984 
 1985         /* See if we can append to the previous entry. */
 1986         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 1987                 physmap[insert_idx - 1] += smap->length;
 1988                 return (1);
 1989         }
 1990 
 1991         physmap_idx += 2;
 1992         *physmap_idxp = physmap_idx;
 1993         if (physmap_idx == PHYSMAP_SIZE) {
 1994                 printf(
 1995                 "Too many segments in the physical address map, giving up\n");
 1996                 return (0);
 1997         }
 1998 
 1999         /*
 2000          * Move the last 'N' entries down to make room for the new
 2001          * entry if needed.
 2002          */
 2003         for (i = physmap_idx; i > insert_idx; i -= 2) {
 2004                 physmap[i] = physmap[i - 2];
 2005                 physmap[i + 1] = physmap[i - 1];
 2006         }
 2007 
 2008         /* Insert the new entry. */
 2009         physmap[insert_idx] = smap->base;
 2010         physmap[insert_idx + 1] = smap->base + smap->length;
 2011         return (1);
 2012 }
 2013 
 2014 /*
 2015  * Populate the (physmap) array with base/bound pairs describing the
 2016  * available physical memory in the system, then test this memory and
 2017  * build the phys_avail array describing the actually-available memory.
 2018  *
 2019  * If we cannot accurately determine the physical memory map, then use
 2020  * value from the 0xE801 call, and failing that, the RTC.
 2021  *
 2022  * Total memory size may be set by the kernel environment variable
 2023  * hw.physmem or the compile-time define MAXMEM.
 2024  *
 2025  * XXX first should be vm_paddr_t.
 2026  */
 2027 static void
 2028 getmemsize(int first)
 2029 {
 2030         int i, off, physmap_idx, pa_indx, da_indx;
 2031         int hasbrokenint12, has_smap;
 2032         u_long physmem_tunable;
 2033         u_int extmem;
 2034         struct vm86frame vmf;
 2035         struct vm86context vmc;
 2036         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 2037         pt_entry_t *pte;
 2038         struct bios_smap *smap, *smapbase, *smapend;
 2039         u_int32_t smapsize;
 2040         quad_t dcons_addr, dcons_size;
 2041         caddr_t kmdp;
 2042 
 2043         has_smap = 0;
 2044 #ifdef XBOX
 2045         if (arch_i386_is_xbox) {
 2046                 /*
 2047                  * We queried the memory size before, so chop off 4MB for
 2048                  * the framebuffer and inform the OS of this.
 2049                  */
 2050                 physmap[0] = 0;
 2051                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2052                 physmap_idx = 0;
 2053                 goto physmap_done;
 2054         }
 2055 #endif
 2056 #if defined(XEN)
 2057         has_smap = 0;
 2058         Maxmem = xen_start_info->nr_pages - init_first;
 2059         physmem = Maxmem;
 2060         basemem = 0;
 2061         physmap[0] = init_first << PAGE_SHIFT;
 2062         physmap[1] = ptoa(Maxmem) - round_page(MSGBUF_SIZE);
 2063         physmap_idx = 0;
 2064         goto physmap_done;
 2065 #endif  
 2066         hasbrokenint12 = 0;
 2067         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2068         bzero(&vmf, sizeof(vmf));
 2069         bzero(physmap, sizeof(physmap));
 2070         basemem = 0;
 2071 
 2072         /*
 2073          * Some newer BIOSes has broken INT 12H implementation which cause
 2074          * kernel panic immediately. In this case, we need to scan SMAP
 2075          * with INT 15:E820 first, then determine base memory size.
 2076          */
 2077         if (hasbrokenint12) {
 2078                 goto int15e820;
 2079         }
 2080 
 2081         /*
 2082          * Perform "base memory" related probes & setup
 2083          */
 2084         vm86_intcall(0x12, &vmf);
 2085         basemem = vmf.vmf_ax;
 2086         if (basemem > 640) {
 2087                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2088                         basemem);
 2089                 basemem = 640;
 2090         }
 2091 
 2092         /*
 2093          * XXX if biosbasemem is now < 640, there is a `hole'
 2094          * between the end of base memory and the start of
 2095          * ISA memory.  The hole may be empty or it may
 2096          * contain BIOS code or data.  Map it read/write so
 2097          * that the BIOS can write to it.  (Memory from 0 to
 2098          * the physical end of the kernel is mapped read-only
 2099          * to begin with and then parts of it are remapped.
 2100          * The parts that aren't remapped form holes that
 2101          * remain read-only and are unused by the kernel.
 2102          * The base memory area is below the physical end of
 2103          * the kernel and right now forms a read-only hole.
 2104          * The part of it from PAGE_SIZE to
 2105          * (trunc_page(biosbasemem * 1024) - 1) will be
 2106          * remapped and used by the kernel later.)
 2107          *
 2108          * This code is similar to the code used in
 2109          * pmap_mapdev, but since no memory needs to be
 2110          * allocated we simply change the mapping.
 2111          */
 2112         for (pa = trunc_page(basemem * 1024);
 2113              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2114                 pmap_kenter(KERNBASE + pa, pa);
 2115 
 2116         /*
 2117          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 2118          * the vm86 page table so that vm86 can scribble on them using
 2119          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 2120          * page 0, at least as initialized here?
 2121          */
 2122         pte = (pt_entry_t *)vm86paddr;
 2123         for (i = basemem / 4; i < 160; i++)
 2124                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2125 
 2126 int15e820:
 2127         /*
 2128          * Fetch the memory map with INT 15:E820.  First, check to see
 2129          * if the loader supplied it and use that if so.  Otherwise,
 2130          * use vm86 to invoke the BIOS call directly.
 2131          */
 2132         physmap_idx = 0;
 2133         smapbase = NULL;
 2134         kmdp = preload_search_by_type("elf kernel");
 2135         if (kmdp == NULL)
 2136                 kmdp = preload_search_by_type("elf32 kernel");
 2137         if (kmdp != NULL)
 2138                 smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2139                     MODINFO_METADATA | MODINFOMD_SMAP);
 2140         if (smapbase != NULL) {
 2141                 /* subr_module.c says:
 2142                  * "Consumer may safely assume that size value precedes data."
 2143                  * ie: an int32_t immediately precedes smap.
 2144                  */
 2145                 smapsize = *((u_int32_t *)smapbase - 1);
 2146                 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 2147                 has_smap = 1;
 2148 
 2149                 for (smap = smapbase; smap < smapend; smap++)
 2150                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2151                                 break;
 2152         } else {
 2153                 /*
 2154                  * map page 1 R/W into the kernel page table so we can use it
 2155                  * as a buffer.  The kernel will unmap this page later.
 2156                  */
 2157                 pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2158                 vmc.npages = 0;
 2159                 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE +
 2160                     (1 << PAGE_SHIFT));
 2161                 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2162 
 2163                 vmf.vmf_ebx = 0;
 2164                 do {
 2165                         vmf.vmf_eax = 0xE820;
 2166                         vmf.vmf_edx = SMAP_SIG;
 2167                         vmf.vmf_ecx = sizeof(struct bios_smap);
 2168                         i = vm86_datacall(0x15, &vmf, &vmc);
 2169                         if (i || vmf.vmf_eax != SMAP_SIG)
 2170                                 break;
 2171                         has_smap = 1;
 2172                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2173                                 break;
 2174                 } while (vmf.vmf_ebx != 0);
 2175         }
 2176 
 2177         /*
 2178          * Perform "base memory" related probes & setup based on SMAP
 2179          */
 2180         if (basemem == 0) {
 2181                 for (i = 0; i <= physmap_idx; i += 2) {
 2182                         if (physmap[i] == 0x00000000) {
 2183                                 basemem = physmap[i + 1] / 1024;
 2184                                 break;
 2185                         }
 2186                 }
 2187 
 2188                 /*
 2189                  * XXX this function is horribly organized and has to the same
 2190                  * things that it does above here.
 2191                  */
 2192                 if (basemem == 0)
 2193                         basemem = 640;
 2194                 if (basemem > 640) {
 2195                         printf(
 2196                     "Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2197                             basemem);
 2198                         basemem = 640;
 2199                 }
 2200 
 2201                 /*
 2202                  * Let vm86 scribble on pages between basemem and
 2203                  * ISA_HOLE_START, as above.
 2204                  */
 2205                 for (pa = trunc_page(basemem * 1024);
 2206                      pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2207                         pmap_kenter(KERNBASE + pa, pa);
 2208                 pte = (pt_entry_t *)vm86paddr;
 2209                 for (i = basemem / 4; i < 160; i++)
 2210                         pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2211         }
 2212 
 2213         if (physmap[1] != 0)
 2214                 goto physmap_done;
 2215 
 2216         /*
 2217          * If we failed above, try memory map with INT 15:E801
 2218          */
 2219         vmf.vmf_ax = 0xE801;
 2220         if (vm86_intcall(0x15, &vmf) == 0) {
 2221                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2222         } else {
 2223 #if 0
 2224                 vmf.vmf_ah = 0x88;
 2225                 vm86_intcall(0x15, &vmf);
 2226                 extmem = vmf.vmf_ax;
 2227 #elif !defined(XEN)
 2228                 /*
 2229                  * Prefer the RTC value for extended memory.
 2230                  */
 2231                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2232 #endif
 2233         }
 2234 
 2235         /*
 2236          * Special hack for chipsets that still remap the 384k hole when
 2237          * there's 16MB of memory - this really confuses people that
 2238          * are trying to use bus mastering ISA controllers with the
 2239          * "16MB limit"; they only have 16MB, but the remapping puts
 2240          * them beyond the limit.
 2241          *
 2242          * If extended memory is between 15-16MB (16-17MB phys address range),
 2243          *      chop it to 15MB.
 2244          */
 2245         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2246                 extmem = 15 * 1024;
 2247 
 2248         physmap[0] = 0;
 2249         physmap[1] = basemem * 1024;
 2250         physmap_idx = 2;
 2251         physmap[physmap_idx] = 0x100000;
 2252         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2253 
 2254 physmap_done:
 2255         /*
 2256          * Now, physmap contains a map of physical memory.
 2257          */
 2258 
 2259 #ifdef SMP
 2260         /* make hole for AP bootstrap code */
 2261         physmap[1] = mp_bootaddress(physmap[1]);
 2262 #endif
 2263 
 2264         /*
 2265          * Maxmem isn't the "maximum memory", it's one larger than the
 2266          * highest page of the physical address space.  It should be
 2267          * called something like "Maxphyspage".  We may adjust this 
 2268          * based on ``hw.physmem'' and the results of the memory test.
 2269          */
 2270         Maxmem = atop(physmap[physmap_idx + 1]);
 2271 
 2272 #ifdef MAXMEM
 2273         Maxmem = MAXMEM / 4;
 2274 #endif
 2275 
 2276         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2277                 Maxmem = atop(physmem_tunable);
 2278 
 2279         /*
 2280          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2281          * the amount of memory in the system.
 2282          */
 2283         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2284                 Maxmem = atop(physmap[physmap_idx + 1]);
 2285 
 2286         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2287             (boothowto & RB_VERBOSE))
 2288                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2289 
 2290         /*
 2291          * If Maxmem has been increased beyond what the system has detected,
 2292          * extend the last memory segment to the new limit.
 2293          */ 
 2294         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2295                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2296 
 2297         /* call pmap initialization to make new kernel address space */
 2298         pmap_bootstrap(first);
 2299 
 2300         /*
 2301          * Size up each available chunk of physical memory.
 2302          */
 2303         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2304         pa_indx = 0;
 2305         da_indx = 1;
 2306         phys_avail[pa_indx++] = physmap[0];
 2307         phys_avail[pa_indx] = physmap[0];
 2308         dump_avail[da_indx] = physmap[0];
 2309         pte = CMAP1;
 2310 
 2311         /*
 2312          * Get dcons buffer address
 2313          */
 2314         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2315             getenv_quad("dcons.size", &dcons_size) == 0)
 2316                 dcons_addr = 0;
 2317 
 2318 #ifndef XEN
 2319         /*
 2320          * physmap is in bytes, so when converting to page boundaries,
 2321          * round up the start address and round down the end address.
 2322          */
 2323         for (i = 0; i <= physmap_idx; i += 2) {
 2324                 vm_paddr_t end;
 2325 
 2326                 end = ptoa((vm_paddr_t)Maxmem);
 2327                 if (physmap[i + 1] < end)
 2328                         end = trunc_page(physmap[i + 1]);
 2329                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2330                         int tmp, page_bad, full;
 2331                         int *ptr = (int *)CADDR1;
 2332 
 2333                         full = FALSE;
 2334                         /*
 2335                          * block out kernel memory as not available.
 2336                          */
 2337                         if (pa >= KERNLOAD && pa < first)
 2338                                 goto do_dump_avail;
 2339 
 2340                         /*
 2341                          * block out dcons buffer
 2342                          */
 2343                         if (dcons_addr > 0
 2344                             && pa >= trunc_page(dcons_addr)
 2345                             && pa < dcons_addr + dcons_size)
 2346                                 goto do_dump_avail;
 2347 
 2348                         page_bad = FALSE;
 2349 
 2350                         /*
 2351                          * map page into kernel: valid, read/write,non-cacheable
 2352                          */
 2353                         *pte = pa | PG_V | PG_RW | PG_N;
 2354                         invltlb();
 2355 
 2356                         tmp = *(int *)ptr;
 2357                         /*
 2358                          * Test for alternating 1's and 0's
 2359                          */
 2360                         *(volatile int *)ptr = 0xaaaaaaaa;
 2361                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2362                                 page_bad = TRUE;
 2363                         /*
 2364                          * Test for alternating 0's and 1's
 2365                          */
 2366                         *(volatile int *)ptr = 0x55555555;
 2367                         if (*(volatile int *)ptr != 0x55555555)
 2368                                 page_bad = TRUE;
 2369                         /*
 2370                          * Test for all 1's
 2371                          */
 2372                         *(volatile int *)ptr = 0xffffffff;
 2373                         if (*(volatile int *)ptr != 0xffffffff)
 2374                                 page_bad = TRUE;
 2375                         /*
 2376                          * Test for all 0's
 2377                          */
 2378                         *(volatile int *)ptr = 0x0;
 2379                         if (*(volatile int *)ptr != 0x0)
 2380                                 page_bad = TRUE;
 2381                         /*
 2382                          * Restore original value.
 2383                          */
 2384                         *(int *)ptr = tmp;
 2385 
 2386                         /*
 2387                          * Adjust array of valid/good pages.
 2388                          */
 2389                         if (page_bad == TRUE)
 2390                                 continue;
 2391                         /*
 2392                          * If this good page is a continuation of the
 2393                          * previous set of good pages, then just increase
 2394                          * the end pointer. Otherwise start a new chunk.
 2395                          * Note that "end" points one higher than end,
 2396                          * making the range >= start and < end.
 2397                          * If we're also doing a speculative memory
 2398                          * test and we at or past the end, bump up Maxmem
 2399                          * so that we keep going. The first bad page
 2400                          * will terminate the loop.
 2401                          */
 2402                         if (phys_avail[pa_indx] == pa) {
 2403                                 phys_avail[pa_indx] += PAGE_SIZE;
 2404                         } else {
 2405                                 pa_indx++;
 2406                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2407                                         printf(
 2408                 "Too many holes in the physical address space, giving up\n");
 2409                                         pa_indx--;
 2410                                         full = TRUE;
 2411                                         goto do_dump_avail;
 2412                                 }
 2413                                 phys_avail[pa_indx++] = pa;     /* start */
 2414                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2415                         }
 2416                         physmem++;
 2417 do_dump_avail:
 2418                         if (dump_avail[da_indx] == pa) {
 2419                                 dump_avail[da_indx] += PAGE_SIZE;
 2420                         } else {
 2421                                 da_indx++;
 2422                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2423                                         da_indx--;
 2424                                         goto do_next;
 2425                                 }
 2426                                 dump_avail[da_indx++] = pa;     /* start */
 2427                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2428                         }
 2429 do_next:
 2430                         if (full)
 2431                                 break;
 2432                 }
 2433         }
 2434         *pte = 0;
 2435         invltlb();
 2436 #else
 2437         phys_avail[0] = physfree;
 2438         phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2439 #endif
 2440         
 2441         /*
 2442          * XXX
 2443          * The last chunk must contain at least one page plus the message
 2444          * buffer to avoid complicating other code (message buffer address
 2445          * calculation, etc.).
 2446          */
 2447         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2448             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 2449                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2450                 phys_avail[pa_indx--] = 0;
 2451                 phys_avail[pa_indx--] = 0;
 2452         }
 2453 
 2454         Maxmem = atop(phys_avail[pa_indx]);
 2455 
 2456         /* Trim off space for the message buffer. */
 2457         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 2458 
 2459         /* Map the message buffer. */
 2460         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 2461                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2462                     off);
 2463 
 2464         PT_UPDATES_FLUSH();
 2465 }
 2466 
 2467 #ifdef XEN
 2468 #define MTOPSIZE (1<<(14 + PAGE_SHIFT))
 2469 
 2470 void
 2471 init386(first)
 2472         int first;
 2473 {
 2474         unsigned long gdtmachpfn;
 2475         int error, gsel_tss, metadata_missing, x, pa;
 2476         struct pcpu *pc;
 2477         struct callback_register event = {
 2478                 .type = CALLBACKTYPE_event,
 2479                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
 2480         };
 2481         struct callback_register failsafe = {
 2482                 .type = CALLBACKTYPE_failsafe,
 2483                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
 2484         };
 2485 
 2486         thread0.td_kstack = proc0kstack;
 2487         thread0.td_pcb = (struct pcb *)
 2488            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 2489 
 2490         /*
 2491          * This may be done better later if it gets more high level
 2492          * components in it. If so just link td->td_proc here.
 2493          */
 2494         proc_linkup0(&proc0, &thread0);
 2495 
 2496         metadata_missing = 0;
 2497         if (xen_start_info->mod_start) {
 2498                 preload_metadata = (caddr_t)xen_start_info->mod_start;
 2499                 preload_bootstrap_relocate(KERNBASE);
 2500         } else {
 2501                 metadata_missing = 1;
 2502         }
 2503         if (envmode == 1)
 2504                 kern_envp = static_env;
 2505         else if ((caddr_t)xen_start_info->cmd_line)
 2506                 kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
 2507 
 2508         boothowto |= xen_boothowto(kern_envp);
 2509         
 2510         /* Init basic tunables, hz etc */
 2511         init_param1();
 2512 
 2513         /*
 2514          * XEN occupies a portion of the upper virtual address space 
 2515          * At its base it manages an array mapping machine page frames 
 2516          * to physical page frames - hence we need to be able to 
 2517          * access 4GB - (64MB  - 4MB + 64k) 
 2518          */
 2519         gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2520         gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2521         gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2522         gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2523         gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2524         gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2525         gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2526         gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2527 
 2528         pc = &__pcpu[0];
 2529         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2530         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2531 
 2532         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
 2533         bzero(gdt, PAGE_SIZE);
 2534         for (x = 0; x < NGDT; x++)
 2535                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2536 
 2537         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2538 
 2539         gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
 2540         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
 2541         PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);    
 2542         lgdt(&r_gdt);
 2543         gdtset = 1;
 2544 
 2545         if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
 2546                 panic("set_trap_table failed - error %d\n", error);
 2547         }
 2548         
 2549         error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
 2550         if (error == 0)
 2551                 error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
 2552 #if     CONFIG_XEN_COMPAT <= 0x030002
 2553         if (error == -ENOXENSYS)
 2554                 HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
 2555                     (unsigned long)Xhypervisor_callback,
 2556                     GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
 2557 #endif
 2558         pcpu_init(pc, 0, sizeof(struct pcpu));
 2559         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2560                 pmap_kenter(pa + KERNBASE, pa);
 2561         dpcpu_init((void *)(first + KERNBASE), 0);
 2562         first += DPCPU_SIZE;
 2563 
 2564         PCPU_SET(prvspace, pc);
 2565         PCPU_SET(curthread, &thread0);
 2566         PCPU_SET(curpcb, thread0.td_pcb);
 2567 
 2568         /*
 2569          * Initialize mutexes.
 2570          *
 2571          * icu_lock: in order to allow an interrupt to occur in a critical
 2572          *           section, to set pcpu->ipending (etc...) properly, we
 2573          *           must be able to get the icu lock, so it can't be
 2574          *           under witness.
 2575          */
 2576         mutex_init();
 2577         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2578 
 2579         /* make ldt memory segments */
 2580         PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
 2581         bzero(ldt, PAGE_SIZE);
 2582         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2583         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2584         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2585                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2586 
 2587         default_proc_ldt.ldt_base = (caddr_t)ldt;
 2588         default_proc_ldt.ldt_len = 6;
 2589         _default_ldt = (int)&default_proc_ldt;
 2590         PCPU_SET(currentldt, _default_ldt)
 2591         PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
 2592         xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
 2593         
 2594 #if defined(XEN_PRIVILEGED)
 2595         /*
 2596          * Initialize the i8254 before the console so that console
 2597          * initialization can use DELAY().
 2598          */
 2599         i8254_init();
 2600 #endif
 2601         
 2602         /*
 2603          * Initialize the console before we print anything out.
 2604          */
 2605         cninit();
 2606 
 2607         if (metadata_missing)
 2608                 printf("WARNING: loader(8) metadata is missing!\n");
 2609 
 2610 #ifdef DEV_ISA
 2611         elcr_probe();
 2612         atpic_startup();
 2613 #endif
 2614 
 2615 #ifdef DDB
 2616         ksym_start = bootinfo.bi_symtab;
 2617         ksym_end = bootinfo.bi_esymtab;
 2618 #endif
 2619 
 2620         kdb_init();
 2621 
 2622 #ifdef KDB
 2623         if (boothowto & RB_KDB)
 2624                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2625 #endif
 2626 
 2627         finishidentcpu();       /* Final stage of CPU initialization */
 2628         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2629             GSEL(GCODE_SEL, SEL_KPL));
 2630         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2631             GSEL(GCODE_SEL, SEL_KPL));
 2632         initializecpu();        /* Initialize CPU registers */
 2633 
 2634         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2635         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2636         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2637             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2638         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2639         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2640         HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
 2641             PCPU_GET(common_tss.tss_esp0));
 2642         
 2643         /* pointer to selector slot for %fs/%gs */
 2644         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2645 
 2646         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2647             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2648         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2649             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2650 #ifdef PAE
 2651         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2652 #else
 2653         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2654 #endif
 2655         dblfault_tss.tss_eip = (int)dblfault_handler;
 2656         dblfault_tss.tss_eflags = PSL_KERNEL;
 2657         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2658             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2659         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2660         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2661         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2662 
 2663         vm86_initialize();
 2664         getmemsize(first);
 2665         init_param2(physmem);
 2666 
 2667         /* now running on new page tables, configured,and u/iom is accessible */
 2668 
 2669         msgbufinit(msgbufp, MSGBUF_SIZE);
 2670         /* transfer to user mode */
 2671 
 2672         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2673         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2674 
 2675         /* setup proc 0's pcb */
 2676         thread0.td_pcb->pcb_flags = 0;
 2677 #ifdef PAE
 2678         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2679 #else
 2680         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2681 #endif
 2682         thread0.td_pcb->pcb_ext = 0;
 2683         thread0.td_frame = &proc0_tf;
 2684         thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
 2685         thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
 2686 
 2687         if (cpu_probe_amdc1e())
 2688                 cpu_idle_fn = cpu_idle_amdc1e;
 2689 }
 2690 
 2691 #else
 2692 void
 2693 init386(first)
 2694         int first;
 2695 {
 2696         struct gate_descriptor *gdp;
 2697         int gsel_tss, metadata_missing, x, pa;
 2698         struct pcpu *pc;
 2699 
 2700         thread0.td_kstack = proc0kstack;
 2701         thread0.td_pcb = (struct pcb *)
 2702            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 2703 
 2704         /*
 2705          * This may be done better later if it gets more high level
 2706          * components in it. If so just link td->td_proc here.
 2707          */
 2708         proc_linkup0(&proc0, &thread0);
 2709 
 2710         metadata_missing = 0;
 2711         if (bootinfo.bi_modulep) {
 2712                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2713                 preload_bootstrap_relocate(KERNBASE);
 2714         } else {
 2715                 metadata_missing = 1;
 2716         }
 2717         if (envmode == 1)
 2718                 kern_envp = static_env;
 2719         else if (bootinfo.bi_envp)
 2720                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2721 
 2722         /* Init basic tunables, hz etc */
 2723         init_param1();
 2724 
 2725         /*
 2726          * Make gdt memory segments.  All segments cover the full 4GB
 2727          * of address space and permissions are enforced at page level.
 2728          */
 2729         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2730         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2731         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2732         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2733         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2734         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2735 
 2736         pc = &__pcpu[0];
 2737         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2738         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2739         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2740 
 2741         for (x = 0; x < NGDT; x++)
 2742                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2743 
 2744         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2745         r_gdt.rd_base =  (int) gdt;
 2746         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2747         lgdt(&r_gdt);
 2748 
 2749         pcpu_init(pc, 0, sizeof(struct pcpu));
 2750         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2751                 pmap_kenter(pa + KERNBASE, pa);
 2752         dpcpu_init((void *)(first + KERNBASE), 0);
 2753         first += DPCPU_SIZE;
 2754         PCPU_SET(prvspace, pc);
 2755         PCPU_SET(curthread, &thread0);
 2756         PCPU_SET(curpcb, thread0.td_pcb);
 2757 
 2758         /*
 2759          * Initialize mutexes.
 2760          *
 2761          * icu_lock: in order to allow an interrupt to occur in a critical
 2762          *           section, to set pcpu->ipending (etc...) properly, we
 2763          *           must be able to get the icu lock, so it can't be
 2764          *           under witness.
 2765          */
 2766         mutex_init();
 2767         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2768 
 2769         /* make ldt memory segments */
 2770         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2771         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2772         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2773                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2774 
 2775         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2776         lldt(_default_ldt);
 2777         PCPU_SET(currentldt, _default_ldt);
 2778 
 2779         /* exceptions */
 2780         for (x = 0; x < NIDT; x++)
 2781                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2782                     GSEL(GCODE_SEL, SEL_KPL));
 2783         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2784             GSEL(GCODE_SEL, SEL_KPL));
 2785         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2786             GSEL(GCODE_SEL, SEL_KPL));
 2787         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2788             GSEL(GCODE_SEL, SEL_KPL));
 2789         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2790             GSEL(GCODE_SEL, SEL_KPL));
 2791         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2792             GSEL(GCODE_SEL, SEL_KPL));
 2793         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2794             GSEL(GCODE_SEL, SEL_KPL));
 2795         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2796             GSEL(GCODE_SEL, SEL_KPL));
 2797         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2798             , GSEL(GCODE_SEL, SEL_KPL));
 2799         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2800         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2801             GSEL(GCODE_SEL, SEL_KPL));
 2802         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2803             GSEL(GCODE_SEL, SEL_KPL));
 2804         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2805             GSEL(GCODE_SEL, SEL_KPL));
 2806         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2807             GSEL(GCODE_SEL, SEL_KPL));
 2808         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2809             GSEL(GCODE_SEL, SEL_KPL));
 2810         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2811             GSEL(GCODE_SEL, SEL_KPL));
 2812         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2813             GSEL(GCODE_SEL, SEL_KPL));
 2814         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2815             GSEL(GCODE_SEL, SEL_KPL));
 2816         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2817             GSEL(GCODE_SEL, SEL_KPL));
 2818         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2819             GSEL(GCODE_SEL, SEL_KPL));
 2820         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2821             GSEL(GCODE_SEL, SEL_KPL));
 2822 
 2823         r_idt.rd_limit = sizeof(idt0) - 1;
 2824         r_idt.rd_base = (int) idt;
 2825         lidt(&r_idt);
 2826 
 2827 #ifdef XBOX
 2828         /*
 2829          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 2830          * This should be 0x10de / 0x02a5.
 2831          *
 2832          * This is exactly what Linux does.
 2833          */
 2834         outl(0xcf8, 0x80000000);
 2835         if (inl(0xcfc) == 0x02a510de) {
 2836                 arch_i386_is_xbox = 1;
 2837                 pic16l_setled(XBOX_LED_GREEN);
 2838 
 2839                 /*
 2840                  * We are an XBOX, but we may have either 64MB or 128MB of
 2841                  * memory. The PCI host bridge should be programmed for this,
 2842                  * so we just query it. 
 2843                  */
 2844                 outl(0xcf8, 0x80000084);
 2845                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 2846         }
 2847 #endif /* XBOX */
 2848 
 2849         /*
 2850          * Initialize the i8254 before the console so that console
 2851          * initialization can use DELAY().
 2852          */
 2853         i8254_init();
 2854 
 2855         /*
 2856          * Initialize the console before we print anything out.
 2857          */
 2858         cninit();
 2859 
 2860         if (metadata_missing)
 2861                 printf("WARNING: loader(8) metadata is missing!\n");
 2862 
 2863 #ifdef DEV_ISA
 2864         elcr_probe();
 2865         atpic_startup();
 2866 #endif
 2867 
 2868 #ifdef DDB
 2869         ksym_start = bootinfo.bi_symtab;
 2870         ksym_end = bootinfo.bi_esymtab;
 2871 #endif
 2872 
 2873         kdb_init();
 2874 
 2875 #ifdef KDB
 2876         if (boothowto & RB_KDB)
 2877                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2878 #endif
 2879 
 2880         finishidentcpu();       /* Final stage of CPU initialization */
 2881         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2882             GSEL(GCODE_SEL, SEL_KPL));
 2883         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2884             GSEL(GCODE_SEL, SEL_KPL));
 2885         initializecpu();        /* Initialize CPU registers */
 2886 
 2887         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2888         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2889         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2890             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2891         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2892         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2893         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2894         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2895         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2896         ltr(gsel_tss);
 2897 
 2898         /* pointer to selector slot for %fs/%gs */
 2899         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2900 
 2901         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2902             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2903         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2904             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2905 #ifdef PAE
 2906         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2907 #else
 2908         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2909 #endif
 2910         dblfault_tss.tss_eip = (int)dblfault_handler;
 2911         dblfault_tss.tss_eflags = PSL_KERNEL;
 2912         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2913             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2914         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2915         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2916         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2917 
 2918         vm86_initialize();
 2919         getmemsize(first);
 2920         init_param2(physmem);
 2921 
 2922         /* now running on new page tables, configured,and u/iom is accessible */
 2923 
 2924         msgbufinit(msgbufp, MSGBUF_SIZE);
 2925 
 2926         /* make a call gate to reenter kernel with */
 2927         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2928 
 2929         x = (int) &IDTVEC(lcall_syscall);
 2930         gdp->gd_looffset = x;
 2931         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2932         gdp->gd_stkcpy = 1;
 2933         gdp->gd_type = SDT_SYS386CGT;
 2934         gdp->gd_dpl = SEL_UPL;
 2935         gdp->gd_p = 1;
 2936         gdp->gd_hioffset = x >> 16;
 2937 
 2938         /* XXX does this work? */
 2939         /* XXX yes! */
 2940         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2941         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2942 
 2943         /* transfer to user mode */
 2944 
 2945         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2946         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2947 
 2948         /* setup proc 0's pcb */
 2949         thread0.td_pcb->pcb_flags = 0;
 2950 #ifdef PAE
 2951         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2952 #else
 2953         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2954 #endif
 2955         thread0.td_pcb->pcb_ext = 0;
 2956         thread0.td_frame = &proc0_tf;
 2957 
 2958         if (cpu_probe_amdc1e())
 2959                 cpu_idle_fn = cpu_idle_amdc1e;
 2960 }
 2961 #endif
 2962 
 2963 void
 2964 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2965 {
 2966 
 2967         pcpu->pc_acpi_id = 0xffffffff;
 2968 }
 2969 
 2970 void
 2971 spinlock_enter(void)
 2972 {
 2973         struct thread *td;
 2974 
 2975         td = curthread;
 2976         if (td->td_md.md_spinlock_count == 0)
 2977                 td->td_md.md_saved_flags = intr_disable();
 2978         td->td_md.md_spinlock_count++;
 2979         critical_enter();
 2980 }
 2981 
 2982 void
 2983 spinlock_exit(void)
 2984 {
 2985         struct thread *td;
 2986 
 2987         td = curthread;
 2988         critical_exit();
 2989         td->td_md.md_spinlock_count--;
 2990         if (td->td_md.md_spinlock_count == 0)
 2991                 intr_restore(td->td_md.md_saved_flags);
 2992 }
 2993 
 2994 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2995 static void f00f_hack(void *unused);
 2996 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 2997 
 2998 static void
 2999 f00f_hack(void *unused)
 3000 {
 3001         struct gate_descriptor *new_idt;
 3002         vm_offset_t tmp;
 3003 
 3004         if (!has_f00f_bug)
 3005                 return;
 3006 
 3007         GIANT_REQUIRED;
 3008 
 3009         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 3010 
 3011         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 3012         if (tmp == 0)
 3013                 panic("kmem_alloc returned 0");
 3014 
 3015         /* Put the problematic entry (#6) at the end of the lower page. */
 3016         new_idt = (struct gate_descriptor*)
 3017             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 3018         bcopy(idt, new_idt, sizeof(idt0));
 3019         r_idt.rd_base = (u_int)new_idt;
 3020         lidt(&r_idt);
 3021         idt = new_idt;
 3022         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 3023                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 3024                 panic("vm_map_protect failed");
 3025 }
 3026 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 3027 
 3028 /*
 3029  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 3030  * we want to start a backtrace from the function that caused us to enter
 3031  * the debugger. We have the context in the trapframe, but base the trace
 3032  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 3033  * enough for a backtrace.
 3034  */
 3035 void
 3036 makectx(struct trapframe *tf, struct pcb *pcb)
 3037 {
 3038 
 3039         pcb->pcb_edi = tf->tf_edi;
 3040         pcb->pcb_esi = tf->tf_esi;
 3041         pcb->pcb_ebp = tf->tf_ebp;
 3042         pcb->pcb_ebx = tf->tf_ebx;
 3043         pcb->pcb_eip = tf->tf_eip;
 3044         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 3045 }
 3046 
 3047 int
 3048 ptrace_set_pc(struct thread *td, u_long addr)
 3049 {
 3050 
 3051         td->td_frame->tf_eip = addr;
 3052         return (0);
 3053 }
 3054 
 3055 int
 3056 ptrace_single_step(struct thread *td)
 3057 {
 3058         td->td_frame->tf_eflags |= PSL_T;
 3059         return (0);
 3060 }
 3061 
 3062 int
 3063 ptrace_clear_single_step(struct thread *td)
 3064 {
 3065         td->td_frame->tf_eflags &= ~PSL_T;
 3066         return (0);
 3067 }
 3068 
 3069 int
 3070 fill_regs(struct thread *td, struct reg *regs)
 3071 {
 3072         struct pcb *pcb;
 3073         struct trapframe *tp;
 3074 
 3075         tp = td->td_frame;
 3076         pcb = td->td_pcb;
 3077         regs->r_fs = tp->tf_fs;
 3078         regs->r_es = tp->tf_es;
 3079         regs->r_ds = tp->tf_ds;
 3080         regs->r_edi = tp->tf_edi;
 3081         regs->r_esi = tp->tf_esi;
 3082         regs->r_ebp = tp->tf_ebp;
 3083         regs->r_ebx = tp->tf_ebx;
 3084         regs->r_edx = tp->tf_edx;
 3085         regs->r_ecx = tp->tf_ecx;
 3086         regs->r_eax = tp->tf_eax;
 3087         regs->r_eip = tp->tf_eip;
 3088         regs->r_cs = tp->tf_cs;
 3089         regs->r_eflags = tp->tf_eflags;
 3090         regs->r_esp = tp->tf_esp;
 3091         regs->r_ss = tp->tf_ss;
 3092         regs->r_gs = pcb->pcb_gs;
 3093         return (0);
 3094 }
 3095 
 3096 int
 3097 set_regs(struct thread *td, struct reg *regs)
 3098 {
 3099         struct pcb *pcb;
 3100         struct trapframe *tp;
 3101 
 3102         tp = td->td_frame;
 3103         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 3104             !CS_SECURE(regs->r_cs))
 3105                 return (EINVAL);
 3106         pcb = td->td_pcb;
 3107         tp->tf_fs = regs->r_fs;
 3108         tp->tf_es = regs->r_es;
 3109         tp->tf_ds = regs->r_ds;
 3110         tp->tf_edi = regs->r_edi;
 3111         tp->tf_esi = regs->r_esi;
 3112         tp->tf_ebp = regs->r_ebp;
 3113         tp->tf_ebx = regs->r_ebx;
 3114         tp->tf_edx = regs->r_edx;
 3115         tp->tf_ecx = regs->r_ecx;
 3116         tp->tf_eax = regs->r_eax;
 3117         tp->tf_eip = regs->r_eip;
 3118         tp->tf_cs = regs->r_cs;
 3119         tp->tf_eflags = regs->r_eflags;
 3120         tp->tf_esp = regs->r_esp;
 3121         tp->tf_ss = regs->r_ss;
 3122         pcb->pcb_gs = regs->r_gs;
 3123         return (0);
 3124 }
 3125 
 3126 #ifdef CPU_ENABLE_SSE
 3127 static void
 3128 fill_fpregs_xmm(sv_xmm, sv_87)
 3129         struct savexmm *sv_xmm;
 3130         struct save87 *sv_87;
 3131 {
 3132         register struct env87 *penv_87 = &sv_87->sv_env;
 3133         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3134         int i;
 3135 
 3136         bzero(sv_87, sizeof(*sv_87));
 3137 
 3138         /* FPU control/status */
 3139         penv_87->en_cw = penv_xmm->en_cw;
 3140         penv_87->en_sw = penv_xmm->en_sw;
 3141         penv_87->en_tw = penv_xmm->en_tw;
 3142         penv_87->en_fip = penv_xmm->en_fip;
 3143         penv_87->en_fcs = penv_xmm->en_fcs;
 3144         penv_87->en_opcode = penv_xmm->en_opcode;
 3145         penv_87->en_foo = penv_xmm->en_foo;
 3146         penv_87->en_fos = penv_xmm->en_fos;
 3147 
 3148         /* FPU registers */
 3149         for (i = 0; i < 8; ++i)
 3150                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 3151 }
 3152 
 3153 static void
 3154 set_fpregs_xmm(sv_87, sv_xmm)
 3155         struct save87 *sv_87;
 3156         struct savexmm *sv_xmm;
 3157 {
 3158         register struct env87 *penv_87 = &sv_87->sv_env;
 3159         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3160         int i;
 3161 
 3162         /* FPU control/status */
 3163         penv_xmm->en_cw = penv_87->en_cw;
 3164         penv_xmm->en_sw = penv_87->en_sw;
 3165         penv_xmm->en_tw = penv_87->en_tw;
 3166         penv_xmm->en_fip = penv_87->en_fip;
 3167         penv_xmm->en_fcs = penv_87->en_fcs;
 3168         penv_xmm->en_opcode = penv_87->en_opcode;
 3169         penv_xmm->en_foo = penv_87->en_foo;
 3170         penv_xmm->en_fos = penv_87->en_fos;
 3171 
 3172         /* FPU registers */
 3173         for (i = 0; i < 8; ++i)
 3174                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 3175 }
 3176 #endif /* CPU_ENABLE_SSE */
 3177 
 3178 int
 3179 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3180 {
 3181 #ifdef CPU_ENABLE_SSE
 3182         if (cpu_fxsr) {
 3183                 fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
 3184                                                 (struct save87 *)fpregs);
 3185                 return (0);
 3186         }
 3187 #endif /* CPU_ENABLE_SSE */
 3188         bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
 3189         return (0);
 3190 }
 3191 
 3192 int
 3193 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3194 {
 3195 #ifdef CPU_ENABLE_SSE
 3196         if (cpu_fxsr) {
 3197                 set_fpregs_xmm((struct save87 *)fpregs,
 3198                                            &td->td_pcb->pcb_save.sv_xmm);
 3199                 return (0);
 3200         }
 3201 #endif /* CPU_ENABLE_SSE */
 3202         bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
 3203         return (0);
 3204 }
 3205 
 3206 /*
 3207  * Get machine context.
 3208  */
 3209 int
 3210 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3211 {
 3212         struct trapframe *tp;
 3213         struct segment_descriptor *sdp;
 3214 
 3215         tp = td->td_frame;
 3216 
 3217         PROC_LOCK(curthread->td_proc);
 3218         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3219         PROC_UNLOCK(curthread->td_proc);
 3220         mcp->mc_gs = td->td_pcb->pcb_gs;
 3221         mcp->mc_fs = tp->tf_fs;
 3222         mcp->mc_es = tp->tf_es;
 3223         mcp->mc_ds = tp->tf_ds;
 3224         mcp->mc_edi = tp->tf_edi;
 3225         mcp->mc_esi = tp->tf_esi;
 3226         mcp->mc_ebp = tp->tf_ebp;
 3227         mcp->mc_isp = tp->tf_isp;
 3228         mcp->mc_eflags = tp->tf_eflags;
 3229         if (flags & GET_MC_CLEAR_RET) {
 3230                 mcp->mc_eax = 0;
 3231                 mcp->mc_edx = 0;
 3232                 mcp->mc_eflags &= ~PSL_C;
 3233         } else {
 3234                 mcp->mc_eax = tp->tf_eax;
 3235                 mcp->mc_edx = tp->tf_edx;
 3236         }
 3237         mcp->mc_ebx = tp->tf_ebx;
 3238         mcp->mc_ecx = tp->tf_ecx;
 3239         mcp->mc_eip = tp->tf_eip;
 3240         mcp->mc_cs = tp->tf_cs;
 3241         mcp->mc_esp = tp->tf_esp;
 3242         mcp->mc_ss = tp->tf_ss;
 3243         mcp->mc_len = sizeof(*mcp);
 3244         get_fpcontext(td, mcp);
 3245         sdp = &td->td_pcb->pcb_gsd;
 3246         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3247         sdp = &td->td_pcb->pcb_fsd;
 3248         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3249 
 3250         return (0);
 3251 }
 3252 
 3253 /*
 3254  * Set machine context.
 3255  *
 3256  * However, we don't set any but the user modifiable flags, and we won't
 3257  * touch the cs selector.
 3258  */
 3259 int
 3260 set_mcontext(struct thread *td, const mcontext_t *mcp)
 3261 {
 3262         struct trapframe *tp;
 3263         int eflags, ret;
 3264 
 3265         tp = td->td_frame;
 3266         if (mcp->mc_len != sizeof(*mcp))
 3267                 return (EINVAL);
 3268         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3269             (tp->tf_eflags & ~PSL_USERCHANGE);
 3270         if ((ret = set_fpcontext(td, mcp)) == 0) {
 3271                 tp->tf_fs = mcp->mc_fs;
 3272                 tp->tf_es = mcp->mc_es;
 3273                 tp->tf_ds = mcp->mc_ds;
 3274                 tp->tf_edi = mcp->mc_edi;
 3275                 tp->tf_esi = mcp->mc_esi;
 3276                 tp->tf_ebp = mcp->mc_ebp;
 3277                 tp->tf_ebx = mcp->mc_ebx;
 3278                 tp->tf_edx = mcp->mc_edx;
 3279                 tp->tf_ecx = mcp->mc_ecx;
 3280                 tp->tf_eax = mcp->mc_eax;
 3281                 tp->tf_eip = mcp->mc_eip;
 3282                 tp->tf_eflags = eflags;
 3283                 tp->tf_esp = mcp->mc_esp;
 3284                 tp->tf_ss = mcp->mc_ss;
 3285                 td->td_pcb->pcb_gs = mcp->mc_gs;
 3286                 ret = 0;
 3287         }
 3288         return (ret);
 3289 }
 3290 
 3291 static void
 3292 get_fpcontext(struct thread *td, mcontext_t *mcp)
 3293 {
 3294 #ifndef DEV_NPX
 3295         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 3296         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 3297 #else
 3298         union savefpu *addr;
 3299 
 3300         /*
 3301          * XXX mc_fpstate might be misaligned, since its declaration is not
 3302          * unportabilized using __attribute__((aligned(16))) like the
 3303          * declaration of struct savemm, and anyway, alignment doesn't work
 3304          * for auto variables since we don't use gcc's pessimal stack
 3305          * alignment.  Work around this by abusing the spare fields after
 3306          * mcp->mc_fpstate.
 3307          *
 3308          * XXX unpessimize most cases by only aligning when fxsave might be
 3309          * called, although this requires knowing too much about
 3310          * npxgetregs()'s internals.
 3311          */
 3312         addr = (union savefpu *)&mcp->mc_fpstate;
 3313         if (td == PCPU_GET(fpcurthread) &&
 3314 #ifdef CPU_ENABLE_SSE
 3315             cpu_fxsr &&
 3316 #endif
 3317             ((uintptr_t)(void *)addr & 0xF)) {
 3318                 do
 3319                         addr = (void *)((char *)addr + 4);
 3320                 while ((uintptr_t)(void *)addr & 0xF);
 3321         }
 3322         mcp->mc_ownedfp = npxgetregs(td, addr);
 3323         if (addr != (union savefpu *)&mcp->mc_fpstate) {
 3324                 bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 3325                 bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
 3326         }
 3327         mcp->mc_fpformat = npxformat();
 3328 #endif
 3329 }
 3330 
 3331 static int
 3332 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 3333 {
 3334         union savefpu *addr;
 3335 
 3336         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3337                 return (0);
 3338         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3339             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3340                 return (EINVAL);
 3341         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 3342                 /* We don't care what state is left in the FPU or PCB. */
 3343                 fpstate_drop(td);
 3344         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3345             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3346                 /* XXX align as above. */
 3347                 addr = (union savefpu *)&mcp->mc_fpstate;
 3348                 if (td == PCPU_GET(fpcurthread) &&
 3349 #ifdef CPU_ENABLE_SSE
 3350                     cpu_fxsr &&
 3351 #endif
 3352                     ((uintptr_t)(void *)addr & 0xF)) {
 3353                         do
 3354                                 addr = (void *)((char *)addr + 4);
 3355                         while ((uintptr_t)(void *)addr & 0xF);
 3356                         bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
 3357                 }
 3358 #ifdef DEV_NPX
 3359 #ifdef CPU_ENABLE_SSE
 3360                 if (cpu_fxsr)
 3361                         addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 3362 #endif
 3363                 /*
 3364                  * XXX we violate the dubious requirement that npxsetregs()
 3365                  * be called with interrupts disabled.
 3366                  */
 3367                 npxsetregs(td, addr);
 3368 #endif
 3369                 /*
 3370                  * Don't bother putting things back where they were in the
 3371                  * misaligned case, since we know that the caller won't use
 3372                  * them again.
 3373                  */
 3374         } else
 3375                 return (EINVAL);
 3376         return (0);
 3377 }
 3378 
 3379 static void
 3380 fpstate_drop(struct thread *td)
 3381 {
 3382         register_t s;
 3383 
 3384         s = intr_disable();
 3385 #ifdef DEV_NPX
 3386         if (PCPU_GET(fpcurthread) == td)
 3387                 npxdrop();
 3388 #endif
 3389         /*
 3390          * XXX force a full drop of the npx.  The above only drops it if we
 3391          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3392          *
 3393          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3394          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3395          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3396          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3397          * have too many layers.
 3398          */
 3399         curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 3400         intr_restore(s);
 3401 }
 3402 
 3403 int
 3404 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3405 {
 3406         struct pcb *pcb;
 3407 
 3408         if (td == NULL) {
 3409                 dbregs->dr[0] = rdr0();
 3410                 dbregs->dr[1] = rdr1();
 3411                 dbregs->dr[2] = rdr2();
 3412                 dbregs->dr[3] = rdr3();
 3413                 dbregs->dr[4] = rdr4();
 3414                 dbregs->dr[5] = rdr5();
 3415                 dbregs->dr[6] = rdr6();
 3416                 dbregs->dr[7] = rdr7();
 3417         } else {
 3418                 pcb = td->td_pcb;
 3419                 dbregs->dr[0] = pcb->pcb_dr0;
 3420                 dbregs->dr[1] = pcb->pcb_dr1;
 3421                 dbregs->dr[2] = pcb->pcb_dr2;
 3422                 dbregs->dr[3] = pcb->pcb_dr3;
 3423                 dbregs->dr[4] = 0;
 3424                 dbregs->dr[5] = 0;
 3425                 dbregs->dr[6] = pcb->pcb_dr6;
 3426                 dbregs->dr[7] = pcb->pcb_dr7;
 3427         }
 3428         return (0);
 3429 }
 3430 
 3431 int
 3432 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3433 {
 3434         struct pcb *pcb;
 3435         int i;
 3436 
 3437         if (td == NULL) {
 3438                 load_dr0(dbregs->dr[0]);
 3439                 load_dr1(dbregs->dr[1]);
 3440                 load_dr2(dbregs->dr[2]);
 3441                 load_dr3(dbregs->dr[3]);
 3442                 load_dr4(dbregs->dr[4]);
 3443                 load_dr5(dbregs->dr[5]);
 3444                 load_dr6(dbregs->dr[6]);
 3445                 load_dr7(dbregs->dr[7]);
 3446         } else {
 3447                 /*
 3448                  * Don't let an illegal value for dr7 get set.  Specifically,
 3449                  * check for undefined settings.  Setting these bit patterns
 3450                  * result in undefined behaviour and can lead to an unexpected
 3451                  * TRCTRAP.
 3452                  */
 3453                 for (i = 0; i < 4; i++) {
 3454                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 3455                                 return (EINVAL);
 3456                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 3457                                 return (EINVAL);
 3458                 }
 3459                 
 3460                 pcb = td->td_pcb;
 3461                 
 3462                 /*
 3463                  * Don't let a process set a breakpoint that is not within the
 3464                  * process's address space.  If a process could do this, it
 3465                  * could halt the system by setting a breakpoint in the kernel
 3466                  * (if ddb was enabled).  Thus, we need to check to make sure
 3467                  * that no breakpoints are being enabled for addresses outside
 3468                  * process's address space.
 3469                  *
 3470                  * XXX - what about when the watched area of the user's
 3471                  * address space is written into from within the kernel
 3472                  * ... wouldn't that still cause a breakpoint to be generated
 3473                  * from within kernel mode?
 3474                  */
 3475 
 3476                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 3477                         /* dr0 is enabled */
 3478                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 3479                                 return (EINVAL);
 3480                 }
 3481                         
 3482                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 3483                         /* dr1 is enabled */
 3484                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 3485                                 return (EINVAL);
 3486                 }
 3487                         
 3488                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 3489                         /* dr2 is enabled */
 3490                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 3491                                 return (EINVAL);
 3492                 }
 3493                         
 3494                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 3495                         /* dr3 is enabled */
 3496                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 3497                                 return (EINVAL);
 3498                 }
 3499 
 3500                 pcb->pcb_dr0 = dbregs->dr[0];
 3501                 pcb->pcb_dr1 = dbregs->dr[1];
 3502                 pcb->pcb_dr2 = dbregs->dr[2];
 3503                 pcb->pcb_dr3 = dbregs->dr[3];
 3504                 pcb->pcb_dr6 = dbregs->dr[6];
 3505                 pcb->pcb_dr7 = dbregs->dr[7];
 3506 
 3507                 pcb->pcb_flags |= PCB_DBREGS;
 3508         }
 3509 
 3510         return (0);
 3511 }
 3512 
 3513 /*
 3514  * Return > 0 if a hardware breakpoint has been hit, and the
 3515  * breakpoint was in user space.  Return 0, otherwise.
 3516  */
 3517 int
 3518 user_dbreg_trap(void)
 3519 {
 3520         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 3521         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 3522         int nbp;            /* number of breakpoints that triggered */
 3523         caddr_t addr[4];    /* breakpoint addresses */
 3524         int i;
 3525         
 3526         dr7 = rdr7();
 3527         if ((dr7 & 0x000000ff) == 0) {
 3528                 /*
 3529                  * all GE and LE bits in the dr7 register are zero,
 3530                  * thus the trap couldn't have been caused by the
 3531                  * hardware debug registers
 3532                  */
 3533                 return 0;
 3534         }
 3535 
 3536         nbp = 0;
 3537         dr6 = rdr6();
 3538         bp = dr6 & 0x0000000f;
 3539 
 3540         if (!bp) {
 3541                 /*
 3542                  * None of the breakpoint bits are set meaning this
 3543                  * trap was not caused by any of the debug registers
 3544                  */
 3545                 return 0;
 3546         }
 3547 
 3548         /*
 3549          * at least one of the breakpoints were hit, check to see
 3550          * which ones and if any of them are user space addresses
 3551          */
 3552 
 3553         if (bp & 0x01) {
 3554                 addr[nbp++] = (caddr_t)rdr0();
 3555         }
 3556         if (bp & 0x02) {
 3557                 addr[nbp++] = (caddr_t)rdr1();
 3558         }
 3559         if (bp & 0x04) {
 3560                 addr[nbp++] = (caddr_t)rdr2();
 3561         }
 3562         if (bp & 0x08) {
 3563                 addr[nbp++] = (caddr_t)rdr3();
 3564         }
 3565 
 3566         for (i = 0; i < nbp; i++) {
 3567                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 3568                         /*
 3569                          * addr[i] is in user space
 3570                          */
 3571                         return nbp;
 3572                 }
 3573         }
 3574 
 3575         /*
 3576          * None of the breakpoints are in user space.
 3577          */
 3578         return 0;
 3579 }
 3580 
 3581 #ifndef DEV_APIC
 3582 #include <machine/apicvar.h>
 3583 
 3584 /*
 3585  * Provide stub functions so that the MADT APIC enumerator in the acpi
 3586  * kernel module will link against a kernel without 'device apic'.
 3587  *
 3588  * XXX - This is a gross hack.
 3589  */
 3590 void
 3591 apic_register_enumerator(struct apic_enumerator *enumerator)
 3592 {
 3593 }
 3594 
 3595 void *
 3596 ioapic_create(vm_paddr_t addr, int32_t apic_id, int intbase)
 3597 {
 3598         return (NULL);
 3599 }
 3600 
 3601 int
 3602 ioapic_disable_pin(void *cookie, u_int pin)
 3603 {
 3604         return (ENXIO);
 3605 }
 3606 
 3607 int
 3608 ioapic_get_vector(void *cookie, u_int pin)
 3609 {
 3610         return (-1);
 3611 }
 3612 
 3613 void
 3614 ioapic_register(void *cookie)
 3615 {
 3616 }
 3617 
 3618 int
 3619 ioapic_remap_vector(void *cookie, u_int pin, int vector)
 3620 {
 3621         return (ENXIO);
 3622 }
 3623 
 3624 int
 3625 ioapic_set_extint(void *cookie, u_int pin)
 3626 {
 3627         return (ENXIO);
 3628 }
 3629 
 3630 int
 3631 ioapic_set_nmi(void *cookie, u_int pin)
 3632 {
 3633         return (ENXIO);
 3634 }
 3635 
 3636 int
 3637 ioapic_set_polarity(void *cookie, u_int pin, enum intr_polarity pol)
 3638 {
 3639         return (ENXIO);
 3640 }
 3641 
 3642 int
 3643 ioapic_set_triggermode(void *cookie, u_int pin, enum intr_trigger trigger)
 3644 {
 3645         return (ENXIO);
 3646 }
 3647 
 3648 void
 3649 lapic_create(u_int apic_id, int boot_cpu)
 3650 {
 3651 }
 3652 
 3653 void
 3654 lapic_init(vm_paddr_t addr)
 3655 {
 3656 }
 3657 
 3658 int
 3659 lapic_set_lvt_mode(u_int apic_id, u_int lvt, u_int32_t mode)
 3660 {
 3661         return (ENXIO);
 3662 }
 3663 
 3664 int
 3665 lapic_set_lvt_polarity(u_int apic_id, u_int lvt, enum intr_polarity pol)
 3666 {
 3667         return (ENXIO);
 3668 }
 3669 
 3670 int
 3671 lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, enum intr_trigger trigger)
 3672 {
 3673         return (ENXIO);
 3674 }
 3675 #endif
 3676 
 3677 #ifdef KDB
 3678 
 3679 /*
 3680  * Provide inb() and outb() as functions.  They are normally only available as
 3681  * inline functions, thus cannot be called from the debugger.
 3682  */
 3683 
 3684 /* silence compiler warnings */
 3685 u_char inb_(u_short);
 3686 void outb_(u_short, u_char);
 3687 
 3688 u_char
 3689 inb_(u_short port)
 3690 {
 3691         return inb(port);
 3692 }
 3693 
 3694 void
 3695 outb_(u_short port, u_char data)
 3696 {
 3697         outb(port, data);
 3698 }
 3699 
 3700 #endif /* KDB */

Cache object: aea700c5978d448e72568d50d60f77da


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.