The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/8.2/sys/i386/i386/machdep.c 217598 2011-01-19 21:03:22Z cperciva $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_compat.h"
   46 #include "opt_cpu.h"
   47 #include "opt_ddb.h"
   48 #include "opt_inet.h"
   49 #include "opt_ipx.h"
   50 #include "opt_isa.h"
   51 #include "opt_kstack_pages.h"
   52 #include "opt_maxmem.h"
   53 #include "opt_msgbuf.h"
   54 #include "opt_npx.h"
   55 #include "opt_perfmon.h"
   56 #include "opt_xbox.h"
   57 
   58 #include <sys/param.h>
   59 #include <sys/proc.h>
   60 #include <sys/systm.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/bus.h>
   64 #include <sys/callout.h>
   65 #include <sys/cons.h>
   66 #include <sys/cpu.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/sysent.h>
   86 #include <sys/sysproto.h>
   87 #include <sys/ucontext.h>
   88 #include <sys/vmmeter.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_extern.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vm_param.h>
   98 
   99 #ifdef DDB
  100 #ifndef KDB
  101 #error KDB must be enabled in order for DDB to work!
  102 #endif
  103 #include <ddb/ddb.h>
  104 #include <ddb/db_sym.h>
  105 #endif
  106 
  107 #include <isa/rtc.h>
  108 
  109 #include <net/netisr.h>
  110 
  111 #include <machine/bootinfo.h>
  112 #include <machine/clock.h>
  113 #include <machine/cpu.h>
  114 #include <machine/cputypes.h>
  115 #include <machine/intr_machdep.h>
  116 #include <machine/mca.h>
  117 #include <machine/md_var.h>
  118 #include <machine/metadata.h>
  119 #include <machine/pc/bios.h>
  120 #include <machine/pcb.h>
  121 #include <machine/pcb_ext.h>
  122 #include <machine/proc.h>
  123 #include <machine/reg.h>
  124 #include <machine/sigframe.h>
  125 #include <machine/specialreg.h>
  126 #include <machine/vm86.h>
  127 #ifdef PERFMON
  128 #include <machine/perfmon.h>
  129 #endif
  130 #ifdef SMP
  131 #include <machine/smp.h>
  132 #endif
  133 
  134 #ifdef DEV_ISA
  135 #include <i386/isa/icu.h>
  136 #endif
  137 
  138 #ifdef XBOX
  139 #include <machine/xbox.h>
  140 
  141 int arch_i386_is_xbox = 0;
  142 uint32_t arch_i386_xbox_memsize = 0;
  143 #endif
  144 
  145 #ifdef XEN
  146 /* XEN includes */
  147 #include <machine/xen/xen-os.h>
  148 #include <xen/hypervisor.h>
  149 #include <machine/xen/xen-os.h>
  150 #include <machine/xen/xenvar.h>
  151 #include <machine/xen/xenfunc.h>
  152 #include <xen/xen_intr.h>
  153 
  154 void Xhypervisor_callback(void);
  155 void failsafe_callback(void);
  156 
  157 extern trap_info_t trap_table[];
  158 struct proc_ldt default_proc_ldt;
  159 extern int init_first;
  160 int running_xen = 1;
  161 extern unsigned long physfree;
  162 #endif /* XEN */
  163 
  164 /* Sanity check for __curthread() */
  165 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  166 
  167 extern void init386(int first);
  168 extern void dblfault_handler(void);
  169 
  170 extern void printcpuinfo(void); /* XXX header file */
  171 extern void finishidentcpu(void);
  172 extern void panicifcpuunsupported(void);
  173 extern void initializecpu(void);
  174 
  175 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  176 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  177 
  178 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  179 #define CPU_ENABLE_SSE
  180 #endif
  181 
  182 static void cpu_startup(void *);
  183 static void fpstate_drop(struct thread *td);
  184 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  185 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  186 #ifdef CPU_ENABLE_SSE
  187 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  188 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  189 #endif /* CPU_ENABLE_SSE */
  190 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  191 
  192 #ifdef DDB
  193 extern vm_offset_t ksym_start, ksym_end;
  194 #endif
  195 
  196 /* Intel ICH registers */
  197 #define ICH_PMBASE      0x400
  198 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  199 
  200 int     _udatasel, _ucodesel;
  201 u_int   basemem;
  202 
  203 int cold = 1;
  204 
  205 #ifdef COMPAT_43
  206 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  207 #endif
  208 #ifdef COMPAT_FREEBSD4
  209 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  210 #endif
  211 
  212 long Maxmem = 0;
  213 long realmem = 0;
  214 
  215 #ifdef PAE
  216 FEATURE(pae, "Physical Address Extensions");
  217 #endif
  218 
  219 /*
  220  * The number of PHYSMAP entries must be one less than the number of
  221  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  222  * physical address that is accessible by ISA DMA is split into two
  223  * PHYSSEG entries.
  224  */
  225 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  226 
  227 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  228 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  229 
  230 /* must be 2 less so 0 0 can signal end of chunks */
  231 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  232 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  233 
  234 struct kva_md_info kmi;
  235 
  236 static struct trapframe proc0_tf;
  237 struct pcpu __pcpu[MAXCPU];
  238 
  239 struct mtx icu_lock;
  240 
  241 struct mem_range_softc mem_range_softc;
  242 
  243 static void
  244 cpu_startup(dummy)
  245         void *dummy;
  246 {
  247         uintmax_t memsize;
  248         char *sysenv;
  249         
  250         /*
  251          * On MacBooks, we need to disallow the legacy USB circuit to
  252          * generate an SMI# because this can cause several problems,
  253          * namely: incorrect CPU frequency detection and failure to
  254          * start the APs.
  255          * We do this by disabling a bit in the SMI_EN (SMI Control and
  256          * Enable register) of the Intel ICH LPC Interface Bridge.
  257          */
  258         sysenv = getenv("smbios.system.product");
  259         if (sysenv != NULL) {
  260                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  261                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  262                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  263                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  264                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  265                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  266                         if (bootverbose)
  267                                 printf("Disabling LEGACY_USB_EN bit on "
  268                                     "Intel ICH.\n");
  269                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  270                 }
  271                 freeenv(sysenv);
  272         }
  273 
  274         /*
  275          * Good {morning,afternoon,evening,night}.
  276          */
  277         startrtclock();
  278         printcpuinfo();
  279         panicifcpuunsupported();
  280 #ifdef PERFMON
  281         perfmon_init();
  282 #endif
  283         realmem = Maxmem;
  284 
  285         /*
  286          * Display physical memory if SMBIOS reports reasonable amount.
  287          */
  288         memsize = 0;
  289         sysenv = getenv("smbios.memory.enabled");
  290         if (sysenv != NULL) {
  291                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  292                 freeenv(sysenv);
  293         }
  294         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  295                 memsize = ptoa((uintmax_t)Maxmem);
  296         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  297 
  298         /*
  299          * Display any holes after the first chunk of extended memory.
  300          */
  301         if (bootverbose) {
  302                 int indx;
  303 
  304                 printf("Physical memory chunk(s):\n");
  305                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  306                         vm_paddr_t size;
  307 
  308                         size = phys_avail[indx + 1] - phys_avail[indx];
  309                         printf(
  310                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  311                             (uintmax_t)phys_avail[indx],
  312                             (uintmax_t)phys_avail[indx + 1] - 1,
  313                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  314                 }
  315         }
  316 
  317         vm_ksubmap_init(&kmi);
  318 
  319         printf("avail memory = %ju (%ju MB)\n",
  320             ptoa((uintmax_t)cnt.v_free_count),
  321             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  322 
  323         /*
  324          * Set up buffers, so they can be used to read disk labels.
  325          */
  326         bufinit();
  327         vm_pager_bufferinit();
  328 #ifndef XEN
  329         cpu_setregs();
  330 #endif
  331 }
  332 
  333 /*
  334  * Send an interrupt to process.
  335  *
  336  * Stack is set up to allow sigcode stored
  337  * at top to call routine, followed by kcall
  338  * to sigreturn routine below.  After sigreturn
  339  * resets the signal mask, the stack, and the
  340  * frame pointer, it returns to the user
  341  * specified pc, psl.
  342  */
  343 #ifdef COMPAT_43
  344 static void
  345 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  346 {
  347         struct osigframe sf, *fp;
  348         struct proc *p;
  349         struct thread *td;
  350         struct sigacts *psp;
  351         struct trapframe *regs;
  352         int sig;
  353         int oonstack;
  354 
  355         td = curthread;
  356         p = td->td_proc;
  357         PROC_LOCK_ASSERT(p, MA_OWNED);
  358         sig = ksi->ksi_signo;
  359         psp = p->p_sigacts;
  360         mtx_assert(&psp->ps_mtx, MA_OWNED);
  361         regs = td->td_frame;
  362         oonstack = sigonstack(regs->tf_esp);
  363 
  364         /* Allocate space for the signal handler context. */
  365         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  366             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  367                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  368                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  369 #if defined(COMPAT_43)
  370                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  371 #endif
  372         } else
  373                 fp = (struct osigframe *)regs->tf_esp - 1;
  374 
  375         /* Translate the signal if appropriate. */
  376         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  377                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  378 
  379         /* Build the argument list for the signal handler. */
  380         sf.sf_signum = sig;
  381         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  382         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  383                 /* Signal handler installed with SA_SIGINFO. */
  384                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  385                 sf.sf_siginfo.si_signo = sig;
  386                 sf.sf_siginfo.si_code = ksi->ksi_code;
  387                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  388         } else {
  389                 /* Old FreeBSD-style arguments. */
  390                 sf.sf_arg2 = ksi->ksi_code;
  391                 sf.sf_addr = (register_t)ksi->ksi_addr;
  392                 sf.sf_ahu.sf_handler = catcher;
  393         }
  394         mtx_unlock(&psp->ps_mtx);
  395         PROC_UNLOCK(p);
  396 
  397         /* Save most if not all of trap frame. */
  398         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  399         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  400         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  401         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  402         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  403         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  404         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  405         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  406         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  407         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  408         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  409         sf.sf_siginfo.si_sc.sc_gs = rgs();
  410         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  411 
  412         /* Build the signal context to be used by osigreturn(). */
  413         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  414         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  415         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  416         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  417         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  418         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  419         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  420         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  421 
  422         /*
  423          * If we're a vm86 process, we want to save the segment registers.
  424          * We also change eflags to be our emulated eflags, not the actual
  425          * eflags.
  426          */
  427         if (regs->tf_eflags & PSL_VM) {
  428                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  429                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  430                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  431 
  432                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  433                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  434                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  435                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  436 
  437                 if (vm86->vm86_has_vme == 0)
  438                         sf.sf_siginfo.si_sc.sc_ps =
  439                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  440                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  441 
  442                 /* See sendsig() for comments. */
  443                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  444         }
  445 
  446         /*
  447          * Copy the sigframe out to the user's stack.
  448          */
  449         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  450 #ifdef DEBUG
  451                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  452 #endif
  453                 PROC_LOCK(p);
  454                 sigexit(td, SIGILL);
  455         }
  456 
  457         regs->tf_esp = (int)fp;
  458         regs->tf_eip = PS_STRINGS - szosigcode;
  459         regs->tf_eflags &= ~(PSL_T | PSL_D);
  460         regs->tf_cs = _ucodesel;
  461         regs->tf_ds = _udatasel;
  462         regs->tf_es = _udatasel;
  463         regs->tf_fs = _udatasel;
  464         load_gs(_udatasel);
  465         regs->tf_ss = _udatasel;
  466         PROC_LOCK(p);
  467         mtx_lock(&psp->ps_mtx);
  468 }
  469 #endif /* COMPAT_43 */
  470 
  471 #ifdef COMPAT_FREEBSD4
  472 static void
  473 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  474 {
  475         struct sigframe4 sf, *sfp;
  476         struct proc *p;
  477         struct thread *td;
  478         struct sigacts *psp;
  479         struct trapframe *regs;
  480         int sig;
  481         int oonstack;
  482 
  483         td = curthread;
  484         p = td->td_proc;
  485         PROC_LOCK_ASSERT(p, MA_OWNED);
  486         sig = ksi->ksi_signo;
  487         psp = p->p_sigacts;
  488         mtx_assert(&psp->ps_mtx, MA_OWNED);
  489         regs = td->td_frame;
  490         oonstack = sigonstack(regs->tf_esp);
  491 
  492         /* Save user context. */
  493         bzero(&sf, sizeof(sf));
  494         sf.sf_uc.uc_sigmask = *mask;
  495         sf.sf_uc.uc_stack = td->td_sigstk;
  496         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  497             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  498         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  499         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  500         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  501 
  502         /* Allocate space for the signal handler context. */
  503         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  504             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  505                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  506                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  507 #if defined(COMPAT_43)
  508                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  509 #endif
  510         } else
  511                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  512 
  513         /* Translate the signal if appropriate. */
  514         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  515                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  516 
  517         /* Build the argument list for the signal handler. */
  518         sf.sf_signum = sig;
  519         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  520         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  521                 /* Signal handler installed with SA_SIGINFO. */
  522                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  523                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  524 
  525                 /* Fill in POSIX parts */
  526                 sf.sf_si.si_signo = sig;
  527                 sf.sf_si.si_code = ksi->ksi_code;
  528                 sf.sf_si.si_addr = ksi->ksi_addr;
  529         } else {
  530                 /* Old FreeBSD-style arguments. */
  531                 sf.sf_siginfo = ksi->ksi_code;
  532                 sf.sf_addr = (register_t)ksi->ksi_addr;
  533                 sf.sf_ahu.sf_handler = catcher;
  534         }
  535         mtx_unlock(&psp->ps_mtx);
  536         PROC_UNLOCK(p);
  537 
  538         /*
  539          * If we're a vm86 process, we want to save the segment registers.
  540          * We also change eflags to be our emulated eflags, not the actual
  541          * eflags.
  542          */
  543         if (regs->tf_eflags & PSL_VM) {
  544                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  545                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  546 
  547                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  548                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  549                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  550                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  551 
  552                 if (vm86->vm86_has_vme == 0)
  553                         sf.sf_uc.uc_mcontext.mc_eflags =
  554                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  555                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  556 
  557                 /*
  558                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  559                  * syscalls made by the signal handler.  This just avoids
  560                  * wasting time for our lazy fixup of such faults.  PSL_NT
  561                  * does nothing in vm86 mode, but vm86 programs can set it
  562                  * almost legitimately in probes for old cpu types.
  563                  */
  564                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  565         }
  566 
  567         /*
  568          * Copy the sigframe out to the user's stack.
  569          */
  570         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  571 #ifdef DEBUG
  572                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  573 #endif
  574                 PROC_LOCK(p);
  575                 sigexit(td, SIGILL);
  576         }
  577 
  578         regs->tf_esp = (int)sfp;
  579         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  580         regs->tf_eflags &= ~(PSL_T | PSL_D);
  581         regs->tf_cs = _ucodesel;
  582         regs->tf_ds = _udatasel;
  583         regs->tf_es = _udatasel;
  584         regs->tf_fs = _udatasel;
  585         regs->tf_ss = _udatasel;
  586         PROC_LOCK(p);
  587         mtx_lock(&psp->ps_mtx);
  588 }
  589 #endif  /* COMPAT_FREEBSD4 */
  590 
  591 void
  592 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  593 {
  594         struct sigframe sf, *sfp;
  595         struct proc *p;
  596         struct thread *td;
  597         struct sigacts *psp;
  598         char *sp;
  599         struct trapframe *regs;
  600         struct segment_descriptor *sdp;
  601         int sig;
  602         int oonstack;
  603 
  604         td = curthread;
  605         p = td->td_proc;
  606         PROC_LOCK_ASSERT(p, MA_OWNED);
  607         sig = ksi->ksi_signo;
  608         psp = p->p_sigacts;
  609         mtx_assert(&psp->ps_mtx, MA_OWNED);
  610 #ifdef COMPAT_FREEBSD4
  611         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  612                 freebsd4_sendsig(catcher, ksi, mask);
  613                 return;
  614         }
  615 #endif
  616 #ifdef COMPAT_43
  617         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  618                 osendsig(catcher, ksi, mask);
  619                 return;
  620         }
  621 #endif
  622         regs = td->td_frame;
  623         oonstack = sigonstack(regs->tf_esp);
  624 
  625         /* Save user context. */
  626         bzero(&sf, sizeof(sf));
  627         sf.sf_uc.uc_sigmask = *mask;
  628         sf.sf_uc.uc_stack = td->td_sigstk;
  629         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  630             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  631         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  632         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  633         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  634         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  635         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  636         fpstate_drop(td);
  637         /*
  638          * Unconditionally fill the fsbase and gsbase into the mcontext.
  639          */
  640         sdp = &td->td_pcb->pcb_fsd;
  641         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  642             sdp->sd_lobase;
  643         sdp = &td->td_pcb->pcb_gsd;
  644         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  645             sdp->sd_lobase;
  646 
  647         /* Allocate space for the signal handler context. */
  648         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  649             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  650                 sp = td->td_sigstk.ss_sp +
  651                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  652 #if defined(COMPAT_43)
  653                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  654 #endif
  655         } else
  656                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  657         /* Align to 16 bytes. */
  658         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  659 
  660         /* Translate the signal if appropriate. */
  661         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  662                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  663 
  664         /* Build the argument list for the signal handler. */
  665         sf.sf_signum = sig;
  666         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  667         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  668                 /* Signal handler installed with SA_SIGINFO. */
  669                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  670                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  671 
  672                 /* Fill in POSIX parts */
  673                 sf.sf_si = ksi->ksi_info;
  674                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  675         } else {
  676                 /* Old FreeBSD-style arguments. */
  677                 sf.sf_siginfo = ksi->ksi_code;
  678                 sf.sf_addr = (register_t)ksi->ksi_addr;
  679                 sf.sf_ahu.sf_handler = catcher;
  680         }
  681         mtx_unlock(&psp->ps_mtx);
  682         PROC_UNLOCK(p);
  683 
  684         /*
  685          * If we're a vm86 process, we want to save the segment registers.
  686          * We also change eflags to be our emulated eflags, not the actual
  687          * eflags.
  688          */
  689         if (regs->tf_eflags & PSL_VM) {
  690                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  691                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  692 
  693                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  694                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  695                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  696                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  697 
  698                 if (vm86->vm86_has_vme == 0)
  699                         sf.sf_uc.uc_mcontext.mc_eflags =
  700                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  701                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  702 
  703                 /*
  704                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  705                  * syscalls made by the signal handler.  This just avoids
  706                  * wasting time for our lazy fixup of such faults.  PSL_NT
  707                  * does nothing in vm86 mode, but vm86 programs can set it
  708                  * almost legitimately in probes for old cpu types.
  709                  */
  710                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  711         }
  712 
  713         /*
  714          * Copy the sigframe out to the user's stack.
  715          */
  716         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  717 #ifdef DEBUG
  718                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  719 #endif
  720                 PROC_LOCK(p);
  721                 sigexit(td, SIGILL);
  722         }
  723 
  724         regs->tf_esp = (int)sfp;
  725         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  726         regs->tf_eflags &= ~(PSL_T | PSL_D);
  727         regs->tf_cs = _ucodesel;
  728         regs->tf_ds = _udatasel;
  729         regs->tf_es = _udatasel;
  730         regs->tf_fs = _udatasel;
  731         regs->tf_ss = _udatasel;
  732         PROC_LOCK(p);
  733         mtx_lock(&psp->ps_mtx);
  734 }
  735 
  736 /*
  737  * System call to cleanup state after a signal
  738  * has been taken.  Reset signal mask and
  739  * stack state from context left by sendsig (above).
  740  * Return to previous pc and psl as specified by
  741  * context left by sendsig. Check carefully to
  742  * make sure that the user has not modified the
  743  * state to gain improper privileges.
  744  *
  745  * MPSAFE
  746  */
  747 #ifdef COMPAT_43
  748 int
  749 osigreturn(td, uap)
  750         struct thread *td;
  751         struct osigreturn_args /* {
  752                 struct osigcontext *sigcntxp;
  753         } */ *uap;
  754 {
  755         struct osigcontext sc;
  756         struct trapframe *regs;
  757         struct osigcontext *scp;
  758         int eflags, error;
  759         ksiginfo_t ksi;
  760 
  761         regs = td->td_frame;
  762         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  763         if (error != 0)
  764                 return (error);
  765         scp = &sc;
  766         eflags = scp->sc_ps;
  767         if (eflags & PSL_VM) {
  768                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  769                 struct vm86_kernel *vm86;
  770 
  771                 /*
  772                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  773                  * set up the vm86 area, and we can't enter vm86 mode.
  774                  */
  775                 if (td->td_pcb->pcb_ext == 0)
  776                         return (EINVAL);
  777                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  778                 if (vm86->vm86_inited == 0)
  779                         return (EINVAL);
  780 
  781                 /* Go back to user mode if both flags are set. */
  782                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  783                         ksiginfo_init_trap(&ksi);
  784                         ksi.ksi_signo = SIGBUS;
  785                         ksi.ksi_code = BUS_OBJERR;
  786                         ksi.ksi_addr = (void *)regs->tf_eip;
  787                         trapsignal(td, &ksi);
  788                 }
  789 
  790                 if (vm86->vm86_has_vme) {
  791                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  792                             (eflags & VME_USERCHANGE) | PSL_VM;
  793                 } else {
  794                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  795                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  796                             (eflags & VM_USERCHANGE) | PSL_VM;
  797                 }
  798                 tf->tf_vm86_ds = scp->sc_ds;
  799                 tf->tf_vm86_es = scp->sc_es;
  800                 tf->tf_vm86_fs = scp->sc_fs;
  801                 tf->tf_vm86_gs = scp->sc_gs;
  802                 tf->tf_ds = _udatasel;
  803                 tf->tf_es = _udatasel;
  804                 tf->tf_fs = _udatasel;
  805         } else {
  806                 /*
  807                  * Don't allow users to change privileged or reserved flags.
  808                  */
  809                 /*
  810                  * XXX do allow users to change the privileged flag PSL_RF.
  811                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  812                  * should sometimes set it there too.  tf_eflags is kept in
  813                  * the signal context during signal handling and there is no
  814                  * other place to remember it, so the PSL_RF bit may be
  815                  * corrupted by the signal handler without us knowing.
  816                  * Corruption of the PSL_RF bit at worst causes one more or
  817                  * one less debugger trap, so allowing it is fairly harmless.
  818                  */
  819                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  820                         return (EINVAL);
  821                 }
  822 
  823                 /*
  824                  * Don't allow users to load a valid privileged %cs.  Let the
  825                  * hardware check for invalid selectors, excess privilege in
  826                  * other selectors, invalid %eip's and invalid %esp's.
  827                  */
  828                 if (!CS_SECURE(scp->sc_cs)) {
  829                         ksiginfo_init_trap(&ksi);
  830                         ksi.ksi_signo = SIGBUS;
  831                         ksi.ksi_code = BUS_OBJERR;
  832                         ksi.ksi_trapno = T_PROTFLT;
  833                         ksi.ksi_addr = (void *)regs->tf_eip;
  834                         trapsignal(td, &ksi);
  835                         return (EINVAL);
  836                 }
  837                 regs->tf_ds = scp->sc_ds;
  838                 regs->tf_es = scp->sc_es;
  839                 regs->tf_fs = scp->sc_fs;
  840         }
  841 
  842         /* Restore remaining registers. */
  843         regs->tf_eax = scp->sc_eax;
  844         regs->tf_ebx = scp->sc_ebx;
  845         regs->tf_ecx = scp->sc_ecx;
  846         regs->tf_edx = scp->sc_edx;
  847         regs->tf_esi = scp->sc_esi;
  848         regs->tf_edi = scp->sc_edi;
  849         regs->tf_cs = scp->sc_cs;
  850         regs->tf_ss = scp->sc_ss;
  851         regs->tf_isp = scp->sc_isp;
  852         regs->tf_ebp = scp->sc_fp;
  853         regs->tf_esp = scp->sc_sp;
  854         regs->tf_eip = scp->sc_pc;
  855         regs->tf_eflags = eflags;
  856 
  857 #if defined(COMPAT_43)
  858         if (scp->sc_onstack & 1)
  859                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  860         else
  861                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  862 #endif
  863         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  864             SIGPROCMASK_OLD);
  865         return (EJUSTRETURN);
  866 }
  867 #endif /* COMPAT_43 */
  868 
  869 #ifdef COMPAT_FREEBSD4
  870 /*
  871  * MPSAFE
  872  */
  873 int
  874 freebsd4_sigreturn(td, uap)
  875         struct thread *td;
  876         struct freebsd4_sigreturn_args /* {
  877                 const ucontext4 *sigcntxp;
  878         } */ *uap;
  879 {
  880         struct ucontext4 uc;
  881         struct trapframe *regs;
  882         struct ucontext4 *ucp;
  883         int cs, eflags, error;
  884         ksiginfo_t ksi;
  885 
  886         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  887         if (error != 0)
  888                 return (error);
  889         ucp = &uc;
  890         regs = td->td_frame;
  891         eflags = ucp->uc_mcontext.mc_eflags;
  892         if (eflags & PSL_VM) {
  893                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  894                 struct vm86_kernel *vm86;
  895 
  896                 /*
  897                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  898                  * set up the vm86 area, and we can't enter vm86 mode.
  899                  */
  900                 if (td->td_pcb->pcb_ext == 0)
  901                         return (EINVAL);
  902                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  903                 if (vm86->vm86_inited == 0)
  904                         return (EINVAL);
  905 
  906                 /* Go back to user mode if both flags are set. */
  907                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  908                         ksiginfo_init_trap(&ksi);
  909                         ksi.ksi_signo = SIGBUS;
  910                         ksi.ksi_code = BUS_OBJERR;
  911                         ksi.ksi_addr = (void *)regs->tf_eip;
  912                         trapsignal(td, &ksi);
  913                 }
  914                 if (vm86->vm86_has_vme) {
  915                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  916                             (eflags & VME_USERCHANGE) | PSL_VM;
  917                 } else {
  918                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  919                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  920                             (eflags & VM_USERCHANGE) | PSL_VM;
  921                 }
  922                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  923                 tf->tf_eflags = eflags;
  924                 tf->tf_vm86_ds = tf->tf_ds;
  925                 tf->tf_vm86_es = tf->tf_es;
  926                 tf->tf_vm86_fs = tf->tf_fs;
  927                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  928                 tf->tf_ds = _udatasel;
  929                 tf->tf_es = _udatasel;
  930                 tf->tf_fs = _udatasel;
  931         } else {
  932                 /*
  933                  * Don't allow users to change privileged or reserved flags.
  934                  */
  935                 /*
  936                  * XXX do allow users to change the privileged flag PSL_RF.
  937                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  938                  * should sometimes set it there too.  tf_eflags is kept in
  939                  * the signal context during signal handling and there is no
  940                  * other place to remember it, so the PSL_RF bit may be
  941                  * corrupted by the signal handler without us knowing.
  942                  * Corruption of the PSL_RF bit at worst causes one more or
  943                  * one less debugger trap, so allowing it is fairly harmless.
  944                  */
  945                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  946                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  947                             td->td_proc->p_pid, td->td_name, eflags);
  948                         return (EINVAL);
  949                 }
  950 
  951                 /*
  952                  * Don't allow users to load a valid privileged %cs.  Let the
  953                  * hardware check for invalid selectors, excess privilege in
  954                  * other selectors, invalid %eip's and invalid %esp's.
  955                  */
  956                 cs = ucp->uc_mcontext.mc_cs;
  957                 if (!CS_SECURE(cs)) {
  958                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  959                             td->td_proc->p_pid, td->td_name, cs);
  960                         ksiginfo_init_trap(&ksi);
  961                         ksi.ksi_signo = SIGBUS;
  962                         ksi.ksi_code = BUS_OBJERR;
  963                         ksi.ksi_trapno = T_PROTFLT;
  964                         ksi.ksi_addr = (void *)regs->tf_eip;
  965                         trapsignal(td, &ksi);
  966                         return (EINVAL);
  967                 }
  968 
  969                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  970         }
  971 
  972 #if defined(COMPAT_43)
  973         if (ucp->uc_mcontext.mc_onstack & 1)
  974                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  975         else
  976                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  977 #endif
  978         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  979         return (EJUSTRETURN);
  980 }
  981 #endif  /* COMPAT_FREEBSD4 */
  982 
  983 /*
  984  * MPSAFE
  985  */
  986 int
  987 sigreturn(td, uap)
  988         struct thread *td;
  989         struct sigreturn_args /* {
  990                 const struct __ucontext *sigcntxp;
  991         } */ *uap;
  992 {
  993         ucontext_t uc;
  994         struct trapframe *regs;
  995         ucontext_t *ucp;
  996         int cs, eflags, error, ret;
  997         ksiginfo_t ksi;
  998 
  999         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1000         if (error != 0)
 1001                 return (error);
 1002         ucp = &uc;
 1003         regs = td->td_frame;
 1004         eflags = ucp->uc_mcontext.mc_eflags;
 1005         if (eflags & PSL_VM) {
 1006                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1007                 struct vm86_kernel *vm86;
 1008 
 1009                 /*
 1010                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1011                  * set up the vm86 area, and we can't enter vm86 mode.
 1012                  */
 1013                 if (td->td_pcb->pcb_ext == 0)
 1014                         return (EINVAL);
 1015                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1016                 if (vm86->vm86_inited == 0)
 1017                         return (EINVAL);
 1018 
 1019                 /* Go back to user mode if both flags are set. */
 1020                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1021                         ksiginfo_init_trap(&ksi);
 1022                         ksi.ksi_signo = SIGBUS;
 1023                         ksi.ksi_code = BUS_OBJERR;
 1024                         ksi.ksi_addr = (void *)regs->tf_eip;
 1025                         trapsignal(td, &ksi);
 1026                 }
 1027 
 1028                 if (vm86->vm86_has_vme) {
 1029                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1030                             (eflags & VME_USERCHANGE) | PSL_VM;
 1031                 } else {
 1032                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1033                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1034                             (eflags & VM_USERCHANGE) | PSL_VM;
 1035                 }
 1036                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1037                 tf->tf_eflags = eflags;
 1038                 tf->tf_vm86_ds = tf->tf_ds;
 1039                 tf->tf_vm86_es = tf->tf_es;
 1040                 tf->tf_vm86_fs = tf->tf_fs;
 1041                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1042                 tf->tf_ds = _udatasel;
 1043                 tf->tf_es = _udatasel;
 1044                 tf->tf_fs = _udatasel;
 1045         } else {
 1046                 /*
 1047                  * Don't allow users to change privileged or reserved flags.
 1048                  */
 1049                 /*
 1050                  * XXX do allow users to change the privileged flag PSL_RF.
 1051                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
 1052                  * should sometimes set it there too.  tf_eflags is kept in
 1053                  * the signal context during signal handling and there is no
 1054                  * other place to remember it, so the PSL_RF bit may be
 1055                  * corrupted by the signal handler without us knowing.
 1056                  * Corruption of the PSL_RF bit at worst causes one more or
 1057                  * one less debugger trap, so allowing it is fairly harmless.
 1058                  */
 1059                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
 1060                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1061                             td->td_proc->p_pid, td->td_name, eflags);
 1062                         return (EINVAL);
 1063                 }
 1064 
 1065                 /*
 1066                  * Don't allow users to load a valid privileged %cs.  Let the
 1067                  * hardware check for invalid selectors, excess privilege in
 1068                  * other selectors, invalid %eip's and invalid %esp's.
 1069                  */
 1070                 cs = ucp->uc_mcontext.mc_cs;
 1071                 if (!CS_SECURE(cs)) {
 1072                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1073                             td->td_proc->p_pid, td->td_name, cs);
 1074                         ksiginfo_init_trap(&ksi);
 1075                         ksi.ksi_signo = SIGBUS;
 1076                         ksi.ksi_code = BUS_OBJERR;
 1077                         ksi.ksi_trapno = T_PROTFLT;
 1078                         ksi.ksi_addr = (void *)regs->tf_eip;
 1079                         trapsignal(td, &ksi);
 1080                         return (EINVAL);
 1081                 }
 1082 
 1083                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1084                 if (ret != 0)
 1085                         return (ret);
 1086                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1087         }
 1088 
 1089 #if defined(COMPAT_43)
 1090         if (ucp->uc_mcontext.mc_onstack & 1)
 1091                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1092         else
 1093                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1094 #endif
 1095 
 1096         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1097         return (EJUSTRETURN);
 1098 }
 1099 
 1100 /*
 1101  * Machine dependent boot() routine
 1102  *
 1103  * I haven't seen anything to put here yet
 1104  * Possibly some stuff might be grafted back here from boot()
 1105  */
 1106 void
 1107 cpu_boot(int howto)
 1108 {
 1109 }
 1110 
 1111 /*
 1112  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1113  * be made coherent later.
 1114  */
 1115 void
 1116 cpu_flush_dcache(void *ptr, size_t len)
 1117 {
 1118         /* Not applicable */
 1119 }
 1120 
 1121 /* Get current clock frequency for the given cpu id. */
 1122 int
 1123 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1124 {
 1125         register_t reg;
 1126         uint64_t tsc1, tsc2;
 1127 
 1128         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1129                 return (EINVAL);
 1130         if (!tsc_present)
 1131                 return (EOPNOTSUPP);
 1132 
 1133         /* If we're booting, trust the rate calibrated moments ago. */
 1134         if (cold) {
 1135                 *rate = tsc_freq;
 1136                 return (0);
 1137         }
 1138 
 1139 #ifdef SMP
 1140         /* Schedule ourselves on the indicated cpu. */
 1141         thread_lock(curthread);
 1142         sched_bind(curthread, cpu_id);
 1143         thread_unlock(curthread);
 1144 #endif
 1145 
 1146         /* Calibrate by measuring a short delay. */
 1147         reg = intr_disable();
 1148         tsc1 = rdtsc();
 1149         DELAY(1000);
 1150         tsc2 = rdtsc();
 1151         intr_restore(reg);
 1152 
 1153 #ifdef SMP
 1154         thread_lock(curthread);
 1155         sched_unbind(curthread);
 1156         thread_unlock(curthread);
 1157 #endif
 1158 
 1159         /*
 1160          * Calculate the difference in readings, convert to Mhz, and
 1161          * subtract 0.5% of the total.  Empirical testing has shown that
 1162          * overhead in DELAY() works out to approximately this value.
 1163          */
 1164         tsc2 -= tsc1;
 1165         *rate = tsc2 * 1000 - tsc2 * 5;
 1166         return (0);
 1167 }
 1168 
 1169 
 1170 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
 1171 
 1172 #ifdef XEN
 1173 
 1174 void
 1175 cpu_halt(void)
 1176 {
 1177         HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 1178 }
 1179 
 1180 int scheduler_running;
 1181 
 1182 static void
 1183 cpu_idle_hlt(int busy)
 1184 {
 1185 
 1186         scheduler_running = 1;
 1187         enable_intr();
 1188         idle_block();
 1189 }
 1190 
 1191 #else
 1192 /*
 1193  * Shutdown the CPU as much as possible
 1194  */
 1195 void
 1196 cpu_halt(void)
 1197 {
 1198         for (;;)
 1199                 __asm__ ("hlt");
 1200 }
 1201 
 1202 static void
 1203 cpu_idle_hlt(int busy)
 1204 {
 1205         /*
 1206          * we must absolutely guarentee that hlt is the next instruction
 1207          * after sti or we introduce a timing window.
 1208          */
 1209         disable_intr();
 1210         if (sched_runnable())
 1211                 enable_intr();
 1212         else
 1213                 __asm __volatile("sti; hlt");
 1214 }
 1215 #endif
 1216 
 1217 static void
 1218 cpu_idle_acpi(int busy)
 1219 {
 1220         disable_intr();
 1221         if (sched_runnable())
 1222                 enable_intr();
 1223         else if (cpu_idle_hook)
 1224                 cpu_idle_hook();
 1225         else
 1226                 __asm __volatile("sti; hlt");
 1227 }
 1228 
 1229 static int cpu_ident_amdc1e = 0;
 1230 
 1231 #if !defined(XEN) || defined(XEN_PRIVILEGED)
 1232 static int
 1233 cpu_probe_amdc1e(void)
 1234 { 
 1235 #ifdef DEV_APIC
 1236         int i;
 1237 
 1238         /*
 1239          * Forget it, if we're not using local APIC timer.
 1240          */
 1241         if (resource_disabled("apic", 0) ||
 1242             (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
 1243                 return (0);
 1244 
 1245         /*
 1246          * Detect the presence of C1E capability mostly on latest
 1247          * dual-cores (or future) k8 family.
 1248          */
 1249         if (cpu_vendor_id == CPU_VENDOR_AMD &&
 1250             (cpu_id & 0x00000f00) == 0x00000f00 &&
 1251             (cpu_id & 0x0fff0000) >=  0x00040000) {
 1252                 cpu_ident_amdc1e = 1;
 1253                 return (1);
 1254         }
 1255 #endif
 1256         return (0);
 1257 }
 1258 #endif
 1259 
 1260 /*
 1261  * C1E renders the local APIC timer dead, so we disable it by
 1262  * reading the Interrupt Pending Message register and clearing
 1263  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
 1264  * 
 1265  * Reference:
 1266  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
 1267  *   #32559 revision 3.00+
 1268  */
 1269 #define MSR_AMDK8_IPM           0xc0010055
 1270 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
 1271 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
 1272 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
 1273 
 1274 static void
 1275 cpu_idle_amdc1e(int busy)
 1276 {
 1277 
 1278         disable_intr();
 1279         if (sched_runnable())
 1280                 enable_intr();
 1281         else {
 1282                 uint64_t msr;
 1283 
 1284                 msr = rdmsr(MSR_AMDK8_IPM);
 1285                 if (msr & AMDK8_CMPHALT)
 1286                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
 1287 
 1288                 if (cpu_idle_hook)
 1289                         cpu_idle_hook();
 1290                 else
 1291                         __asm __volatile("sti; hlt");
 1292         }
 1293 }
 1294 
 1295 static void
 1296 cpu_idle_spin(int busy)
 1297 {
 1298         return;
 1299 }
 1300 
 1301 #ifdef XEN
 1302 void (*cpu_idle_fn)(int) = cpu_idle_hlt;
 1303 #else
 1304 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
 1305 #endif
 1306 
 1307 void
 1308 cpu_idle(int busy)
 1309 {
 1310 #if defined(SMP) && !defined(XEN)
 1311         if (mp_grab_cpu_hlt())
 1312                 return;
 1313 #endif
 1314         cpu_idle_fn(busy);
 1315 }
 1316 
 1317 /*
 1318  * mwait cpu power states.  Lower 4 bits are sub-states.
 1319  */
 1320 #define MWAIT_C0        0xf0
 1321 #define MWAIT_C1        0x00
 1322 #define MWAIT_C2        0x10
 1323 #define MWAIT_C3        0x20
 1324 #define MWAIT_C4        0x30
 1325 
 1326 #define MWAIT_DISABLED  0x0
 1327 #define MWAIT_WOKEN     0x1
 1328 #define MWAIT_WAITING   0x2
 1329 
 1330 static void
 1331 cpu_idle_mwait(int busy)
 1332 {
 1333         int *mwait;
 1334 
 1335         mwait = (int *)PCPU_PTR(monitorbuf);
 1336         *mwait = MWAIT_WAITING;
 1337         if (sched_runnable())
 1338                 return;
 1339         cpu_monitor(mwait, 0, 0);
 1340         if (*mwait == MWAIT_WAITING)
 1341                 cpu_mwait(0, MWAIT_C1);
 1342 }
 1343 
 1344 static void
 1345 cpu_idle_mwait_hlt(int busy)
 1346 {
 1347         int *mwait;
 1348 
 1349         mwait = (int *)PCPU_PTR(monitorbuf);
 1350         if (busy == 0) {
 1351                 *mwait = MWAIT_DISABLED;
 1352                 cpu_idle_hlt(busy);
 1353                 return;
 1354         }
 1355         *mwait = MWAIT_WAITING;
 1356         if (sched_runnable())
 1357                 return;
 1358         cpu_monitor(mwait, 0, 0);
 1359         if (*mwait == MWAIT_WAITING)
 1360                 cpu_mwait(0, MWAIT_C1);
 1361 }
 1362 
 1363 int
 1364 cpu_idle_wakeup(int cpu)
 1365 {
 1366         struct pcpu *pcpu;
 1367         int *mwait;
 1368 
 1369         if (cpu_idle_fn == cpu_idle_spin)
 1370                 return (1);
 1371         if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
 1372                 return (0);
 1373         pcpu = pcpu_find(cpu);
 1374         mwait = (int *)pcpu->pc_monitorbuf;
 1375         /*
 1376          * This doesn't need to be atomic since missing the race will
 1377          * simply result in unnecessary IPIs.
 1378          */
 1379         if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
 1380                 return (0);
 1381         *mwait = MWAIT_WOKEN;
 1382 
 1383         return (1);
 1384 }
 1385 
 1386 /*
 1387  * Ordered by speed/power consumption.
 1388  */
 1389 struct {
 1390         void    *id_fn;
 1391         char    *id_name;
 1392 } idle_tbl[] = {
 1393         { cpu_idle_spin, "spin" },
 1394         { cpu_idle_mwait, "mwait" },
 1395         { cpu_idle_mwait_hlt, "mwait_hlt" },
 1396         { cpu_idle_amdc1e, "amdc1e" },
 1397         { cpu_idle_hlt, "hlt" },
 1398         { cpu_idle_acpi, "acpi" },
 1399         { NULL, NULL }
 1400 };
 1401 
 1402 static int
 1403 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1404 {
 1405         char *avail, *p;
 1406         int error;
 1407         int i;
 1408 
 1409         avail = malloc(256, M_TEMP, M_WAITOK);
 1410         p = avail;
 1411         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1412                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1413                     (cpu_feature2 & CPUID2_MON) == 0)
 1414                         continue;
 1415                 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
 1416                     cpu_ident_amdc1e == 0)
 1417                         continue;
 1418                 p += sprintf(p, "%s, ", idle_tbl[i].id_name);
 1419         }
 1420         error = sysctl_handle_string(oidp, avail, 0, req);
 1421         free(avail, M_TEMP);
 1422         return (error);
 1423 }
 1424 
 1425 static int
 1426 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1427 {
 1428         char buf[16];
 1429         int error;
 1430         char *p;
 1431         int i;
 1432 
 1433         p = "unknown";
 1434         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1435                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1436                         p = idle_tbl[i].id_name;
 1437                         break;
 1438                 }
 1439         }
 1440         strncpy(buf, p, sizeof(buf));
 1441         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1442         if (error != 0 || req->newptr == NULL)
 1443                 return (error);
 1444         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1445                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1446                     (cpu_feature2 & CPUID2_MON) == 0)
 1447                         continue;
 1448                 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
 1449                     cpu_ident_amdc1e == 0)
 1450                         continue;
 1451                 if (strcmp(idle_tbl[i].id_name, buf))
 1452                         continue;
 1453                 cpu_idle_fn = idle_tbl[i].id_fn;
 1454                 return (0);
 1455         }
 1456         return (EINVAL);
 1457 }
 1458 
 1459 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1460     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1461 
 1462 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1463     idle_sysctl, "A", "currently selected idle function");
 1464 
 1465 /*
 1466  * Reset registers to default values on exec.
 1467  */
 1468 void
 1469 exec_setregs(td, entry, stack, ps_strings)
 1470         struct thread *td;
 1471         u_long entry;
 1472         u_long stack;
 1473         u_long ps_strings;
 1474 {
 1475         struct trapframe *regs = td->td_frame;
 1476         struct pcb *pcb = td->td_pcb;
 1477 
 1478         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1479         pcb->pcb_gs = _udatasel;
 1480         load_gs(_udatasel);
 1481 
 1482         mtx_lock_spin(&dt_lock);
 1483         if (td->td_proc->p_md.md_ldt)
 1484                 user_ldt_free(td);
 1485         else
 1486                 mtx_unlock_spin(&dt_lock);
 1487   
 1488         bzero((char *)regs, sizeof(struct trapframe));
 1489         regs->tf_eip = entry;
 1490         regs->tf_esp = stack;
 1491         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1492         regs->tf_ss = _udatasel;
 1493         regs->tf_ds = _udatasel;
 1494         regs->tf_es = _udatasel;
 1495         regs->tf_fs = _udatasel;
 1496         regs->tf_cs = _ucodesel;
 1497 
 1498         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1499         regs->tf_ebx = ps_strings;
 1500 
 1501         /*
 1502          * Reset the hardware debug registers if they were in use.
 1503          * They won't have any meaning for the newly exec'd process.  
 1504          */
 1505         if (pcb->pcb_flags & PCB_DBREGS) {
 1506                 pcb->pcb_dr0 = 0;
 1507                 pcb->pcb_dr1 = 0;
 1508                 pcb->pcb_dr2 = 0;
 1509                 pcb->pcb_dr3 = 0;
 1510                 pcb->pcb_dr6 = 0;
 1511                 pcb->pcb_dr7 = 0;
 1512                 if (pcb == PCPU_GET(curpcb)) {
 1513                         /*
 1514                          * Clear the debug registers on the running
 1515                          * CPU, otherwise they will end up affecting
 1516                          * the next process we switch to.
 1517                          */
 1518                         reset_dbregs();
 1519                 }
 1520                 pcb->pcb_flags &= ~PCB_DBREGS;
 1521         }
 1522 
 1523         /*
 1524          * Initialize the math emulator (if any) for the current process.
 1525          * Actually, just clear the bit that says that the emulator has
 1526          * been initialized.  Initialization is delayed until the process
 1527          * traps to the emulator (if it is done at all) mainly because
 1528          * emulators don't provide an entry point for initialization.
 1529          */
 1530         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1531         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1532 
 1533         /*
 1534          * Drop the FP state if we hold it, so that the process gets a
 1535          * clean FP state if it uses the FPU again.
 1536          */
 1537         fpstate_drop(td);
 1538 
 1539         /*
 1540          * XXX - Linux emulator
 1541          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1542          * on it.
 1543          */
 1544         td->td_retval[1] = 0;
 1545 }
 1546 
 1547 void
 1548 cpu_setregs(void)
 1549 {
 1550         unsigned int cr0;
 1551 
 1552         cr0 = rcr0();
 1553 
 1554         /*
 1555          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1556          *
 1557          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1558          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1559          * bit to control the trap, because setting the CR0_EM bit does
 1560          * not cause WAIT instructions to trap.  It's important to trap
 1561          * WAIT instructions - otherwise the "wait" variants of no-wait
 1562          * control instructions would degenerate to the "no-wait" variants
 1563          * after FP context switches but work correctly otherwise.  It's
 1564          * particularly important to trap WAITs when there is no NPX -
 1565          * otherwise the "wait" variants would always degenerate.
 1566          *
 1567          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1568          * Setting it should fail or do nothing on lesser processors.
 1569          */
 1570         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1571         load_cr0(cr0);
 1572         load_gs(_udatasel);
 1573 }
 1574 
 1575 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1576 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1577         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1578 
 1579 /*
 1580  * Initialize 386 and configure to run kernel
 1581  */
 1582 
 1583 /*
 1584  * Initialize segments & interrupt table
 1585  */
 1586 
 1587 int _default_ldt;
 1588 
 1589 #ifdef XEN
 1590 union descriptor *gdt;
 1591 union descriptor *ldt;
 1592 #else
 1593 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1594 union descriptor ldt[NLDT];             /* local descriptor table */
 1595 #endif
 1596 static struct gate_descriptor idt0[NIDT];
 1597 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1598 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1599 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1600 
 1601 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1602 extern int has_f00f_bug;
 1603 #endif
 1604 
 1605 static struct i386tss dblfault_tss;
 1606 static char dblfault_stack[PAGE_SIZE];
 1607 
 1608 extern  vm_offset_t     proc0kstack;
 1609 
 1610 
 1611 /*
 1612  * software prototypes -- in more palatable form.
 1613  *
 1614  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1615  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1616  */
 1617 struct soft_segment_descriptor gdt_segs[] = {
 1618 /* GNULL_SEL    0 Null Descriptor */
 1619 {       .ssd_base = 0x0,
 1620         .ssd_limit = 0x0,
 1621         .ssd_type = 0,
 1622         .ssd_dpl = SEL_KPL,
 1623         .ssd_p = 0,
 1624         .ssd_xx = 0, .ssd_xx1 = 0,
 1625         .ssd_def32 = 0,
 1626         .ssd_gran = 0           },
 1627 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1628 {       .ssd_base = 0x0,
 1629         .ssd_limit = 0xfffff,
 1630         .ssd_type = SDT_MEMRWA,
 1631         .ssd_dpl = SEL_KPL,
 1632         .ssd_p = 1,
 1633         .ssd_xx = 0, .ssd_xx1 = 0,
 1634         .ssd_def32 = 1,
 1635         .ssd_gran = 1           },
 1636 /* GUFS_SEL     2 %fs Descriptor for user */
 1637 {       .ssd_base = 0x0,
 1638         .ssd_limit = 0xfffff,
 1639         .ssd_type = SDT_MEMRWA,
 1640         .ssd_dpl = SEL_UPL,
 1641         .ssd_p = 1,
 1642         .ssd_xx = 0, .ssd_xx1 = 0,
 1643         .ssd_def32 = 1,
 1644         .ssd_gran = 1           },
 1645 /* GUGS_SEL     3 %gs Descriptor for user */
 1646 {       .ssd_base = 0x0,
 1647         .ssd_limit = 0xfffff,
 1648         .ssd_type = SDT_MEMRWA,
 1649         .ssd_dpl = SEL_UPL,
 1650         .ssd_p = 1,
 1651         .ssd_xx = 0, .ssd_xx1 = 0,
 1652         .ssd_def32 = 1,
 1653         .ssd_gran = 1           },
 1654 /* GCODE_SEL    4 Code Descriptor for kernel */
 1655 {       .ssd_base = 0x0,
 1656         .ssd_limit = 0xfffff,
 1657         .ssd_type = SDT_MEMERA,
 1658         .ssd_dpl = SEL_KPL,
 1659         .ssd_p = 1,
 1660         .ssd_xx = 0, .ssd_xx1 = 0,
 1661         .ssd_def32 = 1,
 1662         .ssd_gran = 1           },
 1663 /* GDATA_SEL    5 Data Descriptor for kernel */
 1664 {       .ssd_base = 0x0,
 1665         .ssd_limit = 0xfffff,
 1666         .ssd_type = SDT_MEMRWA,
 1667         .ssd_dpl = SEL_KPL,
 1668         .ssd_p = 1,
 1669         .ssd_xx = 0, .ssd_xx1 = 0,
 1670         .ssd_def32 = 1,
 1671         .ssd_gran = 1           },
 1672 /* GUCODE_SEL   6 Code Descriptor for user */
 1673 {       .ssd_base = 0x0,
 1674         .ssd_limit = 0xfffff,
 1675         .ssd_type = SDT_MEMERA,
 1676         .ssd_dpl = SEL_UPL,
 1677         .ssd_p = 1,
 1678         .ssd_xx = 0, .ssd_xx1 = 0,
 1679         .ssd_def32 = 1,
 1680         .ssd_gran = 1           },
 1681 /* GUDATA_SEL   7 Data Descriptor for user */
 1682 {       .ssd_base = 0x0,
 1683         .ssd_limit = 0xfffff,
 1684         .ssd_type = SDT_MEMRWA,
 1685         .ssd_dpl = SEL_UPL,
 1686         .ssd_p = 1,
 1687         .ssd_xx = 0, .ssd_xx1 = 0,
 1688         .ssd_def32 = 1,
 1689         .ssd_gran = 1           },
 1690 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1691 {       .ssd_base = 0x400,
 1692         .ssd_limit = 0xfffff,
 1693         .ssd_type = SDT_MEMRWA,
 1694         .ssd_dpl = SEL_KPL,
 1695         .ssd_p = 1,
 1696         .ssd_xx = 0, .ssd_xx1 = 0,
 1697         .ssd_def32 = 1,
 1698         .ssd_gran = 1           },
 1699 #ifndef XEN
 1700 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1701 {
 1702         .ssd_base = 0x0,
 1703         .ssd_limit = sizeof(struct i386tss)-1,
 1704         .ssd_type = SDT_SYS386TSS,
 1705         .ssd_dpl = 0,
 1706         .ssd_p = 1,
 1707         .ssd_xx = 0, .ssd_xx1 = 0,
 1708         .ssd_def32 = 0,
 1709         .ssd_gran = 0           },
 1710 /* GLDT_SEL     10 LDT Descriptor */
 1711 {       .ssd_base = (int) ldt,
 1712         .ssd_limit = sizeof(ldt)-1,
 1713         .ssd_type = SDT_SYSLDT,
 1714         .ssd_dpl = SEL_UPL,
 1715         .ssd_p = 1,
 1716         .ssd_xx = 0, .ssd_xx1 = 0,
 1717         .ssd_def32 = 0,
 1718         .ssd_gran = 0           },
 1719 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1720 {       .ssd_base = (int) ldt,
 1721         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1722         .ssd_type = SDT_SYSLDT,
 1723         .ssd_dpl = 0,
 1724         .ssd_p = 1,
 1725         .ssd_xx = 0, .ssd_xx1 = 0,
 1726         .ssd_def32 = 0,
 1727         .ssd_gran = 0           },
 1728 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1729 {       .ssd_base = (int) &dblfault_tss,
 1730         .ssd_limit = sizeof(struct i386tss)-1,
 1731         .ssd_type = SDT_SYS386TSS,
 1732         .ssd_dpl = 0,
 1733         .ssd_p = 1,
 1734         .ssd_xx = 0, .ssd_xx1 = 0,
 1735         .ssd_def32 = 0,
 1736         .ssd_gran = 0           },
 1737 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1738 {       .ssd_base = 0,
 1739         .ssd_limit = 0xfffff,
 1740         .ssd_type = SDT_MEMERA,
 1741         .ssd_dpl = 0,
 1742         .ssd_p = 1,
 1743         .ssd_xx = 0, .ssd_xx1 = 0,
 1744         .ssd_def32 = 0,
 1745         .ssd_gran = 1           },
 1746 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1747 {       .ssd_base = 0,
 1748         .ssd_limit = 0xfffff,
 1749         .ssd_type = SDT_MEMERA,
 1750         .ssd_dpl = 0,
 1751         .ssd_p = 1,
 1752         .ssd_xx = 0, .ssd_xx1 = 0,
 1753         .ssd_def32 = 0,
 1754         .ssd_gran = 1           },
 1755 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1756 {       .ssd_base = 0,
 1757         .ssd_limit = 0xfffff,
 1758         .ssd_type = SDT_MEMRWA,
 1759         .ssd_dpl = 0,
 1760         .ssd_p = 1,
 1761         .ssd_xx = 0, .ssd_xx1 = 0,
 1762         .ssd_def32 = 1,
 1763         .ssd_gran = 1           },
 1764 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1765 {       .ssd_base = 0,
 1766         .ssd_limit = 0xfffff,
 1767         .ssd_type = SDT_MEMRWA,
 1768         .ssd_dpl = 0,
 1769         .ssd_p = 1,
 1770         .ssd_xx = 0, .ssd_xx1 = 0,
 1771         .ssd_def32 = 0,
 1772         .ssd_gran = 1           },
 1773 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1774 {       .ssd_base = 0,
 1775         .ssd_limit = 0xfffff,
 1776         .ssd_type = SDT_MEMRWA,
 1777         .ssd_dpl = 0,
 1778         .ssd_p = 1,
 1779         .ssd_xx = 0, .ssd_xx1 = 0,
 1780         .ssd_def32 = 0,
 1781         .ssd_gran = 1           },
 1782 /* GNDIS_SEL    18 NDIS Descriptor */
 1783 {       .ssd_base = 0x0,
 1784         .ssd_limit = 0x0,
 1785         .ssd_type = 0,
 1786         .ssd_dpl = 0,
 1787         .ssd_p = 0,
 1788         .ssd_xx = 0, .ssd_xx1 = 0,
 1789         .ssd_def32 = 0,
 1790         .ssd_gran = 0           },
 1791 #endif /* !XEN */
 1792 };
 1793 
 1794 static struct soft_segment_descriptor ldt_segs[] = {
 1795         /* Null Descriptor - overwritten by call gate */
 1796 {       .ssd_base = 0x0,
 1797         .ssd_limit = 0x0,
 1798         .ssd_type = 0,
 1799         .ssd_dpl = 0,
 1800         .ssd_p = 0,
 1801         .ssd_xx = 0, .ssd_xx1 = 0,
 1802         .ssd_def32 = 0,
 1803         .ssd_gran = 0           },
 1804         /* Null Descriptor - overwritten by call gate */
 1805 {       .ssd_base = 0x0,
 1806         .ssd_limit = 0x0,
 1807         .ssd_type = 0,
 1808         .ssd_dpl = 0,
 1809         .ssd_p = 0,
 1810         .ssd_xx = 0, .ssd_xx1 = 0,
 1811         .ssd_def32 = 0,
 1812         .ssd_gran = 0           },
 1813         /* Null Descriptor - overwritten by call gate */
 1814 {       .ssd_base = 0x0,
 1815         .ssd_limit = 0x0,
 1816         .ssd_type = 0,
 1817         .ssd_dpl = 0,
 1818         .ssd_p = 0,
 1819         .ssd_xx = 0, .ssd_xx1 = 0,
 1820         .ssd_def32 = 0,
 1821         .ssd_gran = 0           },
 1822         /* Code Descriptor for user */
 1823 {       .ssd_base = 0x0,
 1824         .ssd_limit = 0xfffff,
 1825         .ssd_type = SDT_MEMERA,
 1826         .ssd_dpl = SEL_UPL,
 1827         .ssd_p = 1,
 1828         .ssd_xx = 0, .ssd_xx1 = 0,
 1829         .ssd_def32 = 1,
 1830         .ssd_gran = 1           },
 1831         /* Null Descriptor - overwritten by call gate */
 1832 {       .ssd_base = 0x0,
 1833         .ssd_limit = 0x0,
 1834         .ssd_type = 0,
 1835         .ssd_dpl = 0,
 1836         .ssd_p = 0,
 1837         .ssd_xx = 0, .ssd_xx1 = 0,
 1838         .ssd_def32 = 0,
 1839         .ssd_gran = 0           },
 1840         /* Data Descriptor for user */
 1841 {       .ssd_base = 0x0,
 1842         .ssd_limit = 0xfffff,
 1843         .ssd_type = SDT_MEMRWA,
 1844         .ssd_dpl = SEL_UPL,
 1845         .ssd_p = 1,
 1846         .ssd_xx = 0, .ssd_xx1 = 0,
 1847         .ssd_def32 = 1,
 1848         .ssd_gran = 1           },
 1849 };
 1850 
 1851 void
 1852 setidt(idx, func, typ, dpl, selec)
 1853         int idx;
 1854         inthand_t *func;
 1855         int typ;
 1856         int dpl;
 1857         int selec;
 1858 {
 1859         struct gate_descriptor *ip;
 1860 
 1861         ip = idt + idx;
 1862         ip->gd_looffset = (int)func;
 1863         ip->gd_selector = selec;
 1864         ip->gd_stkcpy = 0;
 1865         ip->gd_xx = 0;
 1866         ip->gd_type = typ;
 1867         ip->gd_dpl = dpl;
 1868         ip->gd_p = 1;
 1869         ip->gd_hioffset = ((int)func)>>16 ;
 1870 }
 1871 
 1872 extern inthand_t
 1873         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1874         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1875         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1876         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1877         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1878 
 1879 #ifdef DDB
 1880 /*
 1881  * Display the index and function name of any IDT entries that don't use
 1882  * the default 'rsvd' entry point.
 1883  */
 1884 DB_SHOW_COMMAND(idt, db_show_idt)
 1885 {
 1886         struct gate_descriptor *ip;
 1887         int idx;
 1888         uintptr_t func;
 1889 
 1890         ip = idt;
 1891         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1892                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1893                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1894                         db_printf("%3d\t", idx);
 1895                         db_printsym(func, DB_STGY_PROC);
 1896                         db_printf("\n");
 1897                 }
 1898                 ip++;
 1899         }
 1900 }
 1901 
 1902 /* Show privileged registers. */
 1903 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1904 {
 1905         uint64_t idtr, gdtr;
 1906 
 1907         idtr = ridt();
 1908         db_printf("idtr\t0x%08x/%04x\n",
 1909             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1910         gdtr = rgdt();
 1911         db_printf("gdtr\t0x%08x/%04x\n",
 1912             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1913         db_printf("ldtr\t0x%04x\n", rldt());
 1914         db_printf("tr\t0x%04x\n", rtr());
 1915         db_printf("cr0\t0x%08x\n", rcr0());
 1916         db_printf("cr2\t0x%08x\n", rcr2());
 1917         db_printf("cr3\t0x%08x\n", rcr3());
 1918         db_printf("cr4\t0x%08x\n", rcr4());
 1919 }
 1920 #endif
 1921 
 1922 void
 1923 sdtossd(sd, ssd)
 1924         struct segment_descriptor *sd;
 1925         struct soft_segment_descriptor *ssd;
 1926 {
 1927         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1928         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1929         ssd->ssd_type  = sd->sd_type;
 1930         ssd->ssd_dpl   = sd->sd_dpl;
 1931         ssd->ssd_p     = sd->sd_p;
 1932         ssd->ssd_def32 = sd->sd_def32;
 1933         ssd->ssd_gran  = sd->sd_gran;
 1934 }
 1935 
 1936 #ifndef XEN
 1937 static int
 1938 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1939 {
 1940         int i, insert_idx, physmap_idx;
 1941 
 1942         physmap_idx = *physmap_idxp;
 1943         
 1944         if (boothowto & RB_VERBOSE)
 1945                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 1946                     smap->type, smap->base, smap->length);
 1947 
 1948         if (smap->type != SMAP_TYPE_MEMORY)
 1949                 return (1);
 1950 
 1951         if (smap->length == 0)
 1952                 return (1);
 1953 
 1954 #ifndef PAE
 1955         if (smap->base > 0xffffffff) {
 1956                 printf("%uK of memory above 4GB ignored\n",
 1957                     (u_int)(smap->length / 1024));
 1958                 return (1);
 1959         }
 1960 #endif
 1961 
 1962         /*
 1963          * Find insertion point while checking for overlap.  Start off by
 1964          * assuming the new entry will be added to the end.
 1965          */
 1966         insert_idx = physmap_idx + 2;
 1967         for (i = 0; i <= physmap_idx; i += 2) {
 1968                 if (smap->base < physmap[i + 1]) {
 1969                         if (smap->base + smap->length <= physmap[i]) {
 1970                                 insert_idx = i;
 1971                                 break;
 1972                         }
 1973                         if (boothowto & RB_VERBOSE)
 1974                                 printf(
 1975                     "Overlapping memory regions, ignoring second region\n");
 1976                         return (1);
 1977                 }
 1978         }
 1979 
 1980         /* See if we can prepend to the next entry. */
 1981         if (insert_idx <= physmap_idx &&
 1982             smap->base + smap->length == physmap[insert_idx]) {
 1983                 physmap[insert_idx] = smap->base;
 1984                 return (1);
 1985         }
 1986 
 1987         /* See if we can append to the previous entry. */
 1988         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 1989                 physmap[insert_idx - 1] += smap->length;
 1990                 return (1);
 1991         }
 1992 
 1993         physmap_idx += 2;
 1994         *physmap_idxp = physmap_idx;
 1995         if (physmap_idx == PHYSMAP_SIZE) {
 1996                 printf(
 1997                 "Too many segments in the physical address map, giving up\n");
 1998                 return (0);
 1999         }
 2000 
 2001         /*
 2002          * Move the last 'N' entries down to make room for the new
 2003          * entry if needed.
 2004          */
 2005         for (i = physmap_idx; i > insert_idx; i -= 2) {
 2006                 physmap[i] = physmap[i - 2];
 2007                 physmap[i + 1] = physmap[i - 1];
 2008         }
 2009 
 2010         /* Insert the new entry. */
 2011         physmap[insert_idx] = smap->base;
 2012         physmap[insert_idx + 1] = smap->base + smap->length;
 2013         return (1);
 2014 }
 2015 
 2016 static void
 2017 basemem_setup(void)
 2018 {
 2019         vm_paddr_t pa;
 2020         pt_entry_t *pte;
 2021         int i;
 2022 
 2023         if (basemem > 640) {
 2024                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2025                         basemem);
 2026                 basemem = 640;
 2027         }
 2028 
 2029         /*
 2030          * XXX if biosbasemem is now < 640, there is a `hole'
 2031          * between the end of base memory and the start of
 2032          * ISA memory.  The hole may be empty or it may
 2033          * contain BIOS code or data.  Map it read/write so
 2034          * that the BIOS can write to it.  (Memory from 0 to
 2035          * the physical end of the kernel is mapped read-only
 2036          * to begin with and then parts of it are remapped.
 2037          * The parts that aren't remapped form holes that
 2038          * remain read-only and are unused by the kernel.
 2039          * The base memory area is below the physical end of
 2040          * the kernel and right now forms a read-only hole.
 2041          * The part of it from PAGE_SIZE to
 2042          * (trunc_page(biosbasemem * 1024) - 1) will be
 2043          * remapped and used by the kernel later.)
 2044          *
 2045          * This code is similar to the code used in
 2046          * pmap_mapdev, but since no memory needs to be
 2047          * allocated we simply change the mapping.
 2048          */
 2049         for (pa = trunc_page(basemem * 1024);
 2050              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2051                 pmap_kenter(KERNBASE + pa, pa);
 2052 
 2053         /*
 2054          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 2055          * the vm86 page table so that vm86 can scribble on them using
 2056          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 2057          * page 0, at least as initialized here?
 2058          */
 2059         pte = (pt_entry_t *)vm86paddr;
 2060         for (i = basemem / 4; i < 160; i++)
 2061                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2062 }
 2063 #endif
 2064 
 2065 /*
 2066  * Populate the (physmap) array with base/bound pairs describing the
 2067  * available physical memory in the system, then test this memory and
 2068  * build the phys_avail array describing the actually-available memory.
 2069  *
 2070  * If we cannot accurately determine the physical memory map, then use
 2071  * value from the 0xE801 call, and failing that, the RTC.
 2072  *
 2073  * Total memory size may be set by the kernel environment variable
 2074  * hw.physmem or the compile-time define MAXMEM.
 2075  *
 2076  * XXX first should be vm_paddr_t.
 2077  */
 2078 static void
 2079 getmemsize(int first)
 2080 {
 2081         int has_smap, off, physmap_idx, pa_indx, da_indx;
 2082         u_long physmem_tunable;
 2083         vm_paddr_t physmap[PHYSMAP_SIZE];
 2084         pt_entry_t *pte;
 2085         quad_t dcons_addr, dcons_size;
 2086 #ifndef XEN
 2087         int hasbrokenint12, i;
 2088         u_int extmem;
 2089         struct vm86frame vmf;
 2090         struct vm86context vmc;
 2091         vm_paddr_t pa;
 2092         struct bios_smap *smap, *smapbase, *smapend;
 2093         u_int32_t smapsize;
 2094         caddr_t kmdp;
 2095 #endif
 2096 
 2097         has_smap = 0;
 2098 #if defined(XEN)
 2099         Maxmem = xen_start_info->nr_pages - init_first;
 2100         physmem = Maxmem;
 2101         basemem = 0;
 2102         physmap[0] = init_first << PAGE_SHIFT;
 2103         physmap[1] = ptoa(Maxmem) - round_page(MSGBUF_SIZE);
 2104         physmap_idx = 0;
 2105 #else
 2106 #ifdef XBOX
 2107         if (arch_i386_is_xbox) {
 2108                 /*
 2109                  * We queried the memory size before, so chop off 4MB for
 2110                  * the framebuffer and inform the OS of this.
 2111                  */
 2112                 physmap[0] = 0;
 2113                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2114                 physmap_idx = 0;
 2115                 goto physmap_done;
 2116         }
 2117 #endif
 2118         bzero(&vmf, sizeof(vmf));
 2119         bzero(physmap, sizeof(physmap));
 2120         basemem = 0;
 2121 
 2122         /*
 2123          * Check if the loader supplied an SMAP memory map.  If so,
 2124          * use that and do not make any VM86 calls.
 2125          */
 2126         physmap_idx = 0;
 2127         smapbase = NULL;
 2128         kmdp = preload_search_by_type("elf kernel");
 2129         if (kmdp == NULL)
 2130                 kmdp = preload_search_by_type("elf32 kernel");
 2131         if (kmdp != NULL)
 2132                 smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2133                     MODINFO_METADATA | MODINFOMD_SMAP);
 2134         if (smapbase != NULL) {
 2135                 /*
 2136                  * subr_module.c says:
 2137                  * "Consumer may safely assume that size value precedes data."
 2138                  * ie: an int32_t immediately precedes SMAP.
 2139                  */
 2140                 smapsize = *((u_int32_t *)smapbase - 1);
 2141                 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 2142                 has_smap = 1;
 2143 
 2144                 for (smap = smapbase; smap < smapend; smap++)
 2145                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2146                                 break;
 2147                 goto have_smap;
 2148         }
 2149 
 2150         /*
 2151          * Some newer BIOSes have a broken INT 12H implementation
 2152          * which causes a kernel panic immediately.  In this case, we
 2153          * need use the SMAP to determine the base memory size.
 2154          */
 2155         hasbrokenint12 = 0;
 2156         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2157         if (hasbrokenint12 == 0) {
 2158                 /* Use INT12 to determine base memory size. */
 2159                 vm86_intcall(0x12, &vmf);
 2160                 basemem = vmf.vmf_ax;
 2161                 basemem_setup();
 2162         }
 2163 
 2164         /*
 2165          * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
 2166          * the kernel page table so we can use it as a buffer.  The
 2167          * kernel will unmap this page later.
 2168          */
 2169         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2170         vmc.npages = 0;
 2171         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 2172         vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2173 
 2174         vmf.vmf_ebx = 0;
 2175         do {
 2176                 vmf.vmf_eax = 0xE820;
 2177                 vmf.vmf_edx = SMAP_SIG;
 2178                 vmf.vmf_ecx = sizeof(struct bios_smap);
 2179                 i = vm86_datacall(0x15, &vmf, &vmc);
 2180                 if (i || vmf.vmf_eax != SMAP_SIG)
 2181                         break;
 2182                 has_smap = 1;
 2183                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 2184                         break;
 2185         } while (vmf.vmf_ebx != 0);
 2186 
 2187 have_smap:
 2188         /*
 2189          * If we didn't fetch the "base memory" size from INT12,
 2190          * figure it out from the SMAP (or just guess).
 2191          */
 2192         if (basemem == 0) {
 2193                 for (i = 0; i <= physmap_idx; i += 2) {
 2194                         if (physmap[i] == 0x00000000) {
 2195                                 basemem = physmap[i + 1] / 1024;
 2196                                 break;
 2197                         }
 2198                 }
 2199 
 2200                 /* XXX: If we couldn't find basemem from SMAP, just guess. */
 2201                 if (basemem == 0)
 2202                         basemem = 640;
 2203                 basemem_setup();
 2204         }
 2205 
 2206         if (physmap[1] != 0)
 2207                 goto physmap_done;
 2208 
 2209         /*
 2210          * If we failed to find an SMAP, figure out the extended
 2211          * memory size.  We will then build a simple memory map with
 2212          * two segments, one for "base memory" and the second for
 2213          * "extended memory".  Note that "extended memory" starts at a
 2214          * physical address of 1MB and that both basemem and extmem
 2215          * are in units of 1KB.
 2216          *
 2217          * First, try to fetch the extended memory size via INT 15:E801.
 2218          */
 2219         vmf.vmf_ax = 0xE801;
 2220         if (vm86_intcall(0x15, &vmf) == 0) {
 2221                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2222         } else {
 2223                 /*
 2224                  * If INT15:E801 fails, this is our last ditch effort
 2225                  * to determine the extended memory size.  Currently
 2226                  * we prefer the RTC value over INT15:88.
 2227                  */
 2228 #if 0
 2229                 vmf.vmf_ah = 0x88;
 2230                 vm86_intcall(0x15, &vmf);
 2231                 extmem = vmf.vmf_ax;
 2232 #else
 2233                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2234 #endif
 2235         }
 2236 
 2237         /*
 2238          * Special hack for chipsets that still remap the 384k hole when
 2239          * there's 16MB of memory - this really confuses people that
 2240          * are trying to use bus mastering ISA controllers with the
 2241          * "16MB limit"; they only have 16MB, but the remapping puts
 2242          * them beyond the limit.
 2243          *
 2244          * If extended memory is between 15-16MB (16-17MB phys address range),
 2245          *      chop it to 15MB.
 2246          */
 2247         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2248                 extmem = 15 * 1024;
 2249 
 2250         physmap[0] = 0;
 2251         physmap[1] = basemem * 1024;
 2252         physmap_idx = 2;
 2253         physmap[physmap_idx] = 0x100000;
 2254         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2255 
 2256 physmap_done:
 2257 #endif  
 2258         /*
 2259          * Now, physmap contains a map of physical memory.
 2260          */
 2261 
 2262 #ifdef SMP
 2263         /* make hole for AP bootstrap code */
 2264         physmap[1] = mp_bootaddress(physmap[1]);
 2265 #endif
 2266 
 2267         /*
 2268          * Maxmem isn't the "maximum memory", it's one larger than the
 2269          * highest page of the physical address space.  It should be
 2270          * called something like "Maxphyspage".  We may adjust this 
 2271          * based on ``hw.physmem'' and the results of the memory test.
 2272          */
 2273         Maxmem = atop(physmap[physmap_idx + 1]);
 2274 
 2275 #ifdef MAXMEM
 2276         Maxmem = MAXMEM / 4;
 2277 #endif
 2278 
 2279         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2280                 Maxmem = atop(physmem_tunable);
 2281 
 2282         /*
 2283          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2284          * the amount of memory in the system.
 2285          */
 2286         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2287                 Maxmem = atop(physmap[physmap_idx + 1]);
 2288 
 2289         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2290             (boothowto & RB_VERBOSE))
 2291                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2292 
 2293         /*
 2294          * If Maxmem has been increased beyond what the system has detected,
 2295          * extend the last memory segment to the new limit.
 2296          */ 
 2297         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2298                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2299 
 2300         /* call pmap initialization to make new kernel address space */
 2301         pmap_bootstrap(first);
 2302 
 2303         /*
 2304          * Size up each available chunk of physical memory.
 2305          */
 2306         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2307         pa_indx = 0;
 2308         da_indx = 1;
 2309         phys_avail[pa_indx++] = physmap[0];
 2310         phys_avail[pa_indx] = physmap[0];
 2311         dump_avail[da_indx] = physmap[0];
 2312         pte = CMAP1;
 2313 
 2314         /*
 2315          * Get dcons buffer address
 2316          */
 2317         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2318             getenv_quad("dcons.size", &dcons_size) == 0)
 2319                 dcons_addr = 0;
 2320 
 2321 #ifndef XEN
 2322         /*
 2323          * physmap is in bytes, so when converting to page boundaries,
 2324          * round up the start address and round down the end address.
 2325          */
 2326         for (i = 0; i <= physmap_idx; i += 2) {
 2327                 vm_paddr_t end;
 2328 
 2329                 end = ptoa((vm_paddr_t)Maxmem);
 2330                 if (physmap[i + 1] < end)
 2331                         end = trunc_page(physmap[i + 1]);
 2332                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2333                         int tmp, page_bad, full;
 2334                         int *ptr = (int *)CADDR1;
 2335 
 2336                         full = FALSE;
 2337                         /*
 2338                          * block out kernel memory as not available.
 2339                          */
 2340                         if (pa >= KERNLOAD && pa < first)
 2341                                 goto do_dump_avail;
 2342 
 2343                         /*
 2344                          * block out dcons buffer
 2345                          */
 2346                         if (dcons_addr > 0
 2347                             && pa >= trunc_page(dcons_addr)
 2348                             && pa < dcons_addr + dcons_size)
 2349                                 goto do_dump_avail;
 2350 
 2351                         page_bad = FALSE;
 2352 
 2353                         /*
 2354                          * map page into kernel: valid, read/write,non-cacheable
 2355                          */
 2356                         *pte = pa | PG_V | PG_RW | PG_N;
 2357                         invltlb();
 2358 
 2359                         tmp = *(int *)ptr;
 2360                         /*
 2361                          * Test for alternating 1's and 0's
 2362                          */
 2363                         *(volatile int *)ptr = 0xaaaaaaaa;
 2364                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2365                                 page_bad = TRUE;
 2366                         /*
 2367                          * Test for alternating 0's and 1's
 2368                          */
 2369                         *(volatile int *)ptr = 0x55555555;
 2370                         if (*(volatile int *)ptr != 0x55555555)
 2371                                 page_bad = TRUE;
 2372                         /*
 2373                          * Test for all 1's
 2374                          */
 2375                         *(volatile int *)ptr = 0xffffffff;
 2376                         if (*(volatile int *)ptr != 0xffffffff)
 2377                                 page_bad = TRUE;
 2378                         /*
 2379                          * Test for all 0's
 2380                          */
 2381                         *(volatile int *)ptr = 0x0;
 2382                         if (*(volatile int *)ptr != 0x0)
 2383                                 page_bad = TRUE;
 2384                         /*
 2385                          * Restore original value.
 2386                          */
 2387                         *(int *)ptr = tmp;
 2388 
 2389                         /*
 2390                          * Adjust array of valid/good pages.
 2391                          */
 2392                         if (page_bad == TRUE)
 2393                                 continue;
 2394                         /*
 2395                          * If this good page is a continuation of the
 2396                          * previous set of good pages, then just increase
 2397                          * the end pointer. Otherwise start a new chunk.
 2398                          * Note that "end" points one higher than end,
 2399                          * making the range >= start and < end.
 2400                          * If we're also doing a speculative memory
 2401                          * test and we at or past the end, bump up Maxmem
 2402                          * so that we keep going. The first bad page
 2403                          * will terminate the loop.
 2404                          */
 2405                         if (phys_avail[pa_indx] == pa) {
 2406                                 phys_avail[pa_indx] += PAGE_SIZE;
 2407                         } else {
 2408                                 pa_indx++;
 2409                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2410                                         printf(
 2411                 "Too many holes in the physical address space, giving up\n");
 2412                                         pa_indx--;
 2413                                         full = TRUE;
 2414                                         goto do_dump_avail;
 2415                                 }
 2416                                 phys_avail[pa_indx++] = pa;     /* start */
 2417                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2418                         }
 2419                         physmem++;
 2420 do_dump_avail:
 2421                         if (dump_avail[da_indx] == pa) {
 2422                                 dump_avail[da_indx] += PAGE_SIZE;
 2423                         } else {
 2424                                 da_indx++;
 2425                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2426                                         da_indx--;
 2427                                         goto do_next;
 2428                                 }
 2429                                 dump_avail[da_indx++] = pa;     /* start */
 2430                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2431                         }
 2432 do_next:
 2433                         if (full)
 2434                                 break;
 2435                 }
 2436         }
 2437         *pte = 0;
 2438         invltlb();
 2439 #else
 2440         phys_avail[0] = physfree;
 2441         phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2442         dump_avail[0] = 0;      
 2443         dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2444         
 2445 #endif
 2446         
 2447         /*
 2448          * XXX
 2449          * The last chunk must contain at least one page plus the message
 2450          * buffer to avoid complicating other code (message buffer address
 2451          * calculation, etc.).
 2452          */
 2453         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2454             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 2455                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2456                 phys_avail[pa_indx--] = 0;
 2457                 phys_avail[pa_indx--] = 0;
 2458         }
 2459 
 2460         Maxmem = atop(phys_avail[pa_indx]);
 2461 
 2462         /* Trim off space for the message buffer. */
 2463         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 2464 
 2465         /* Map the message buffer. */
 2466         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 2467                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2468                     off);
 2469 
 2470         PT_UPDATES_FLUSH();
 2471 }
 2472 
 2473 #ifdef XEN
 2474 #define MTOPSIZE (1<<(14 + PAGE_SHIFT))
 2475 
 2476 void
 2477 init386(first)
 2478         int first;
 2479 {
 2480         unsigned long gdtmachpfn;
 2481         int error, gsel_tss, metadata_missing, x, pa;
 2482         struct pcpu *pc;
 2483         struct callback_register event = {
 2484                 .type = CALLBACKTYPE_event,
 2485                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
 2486         };
 2487         struct callback_register failsafe = {
 2488                 .type = CALLBACKTYPE_failsafe,
 2489                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
 2490         };
 2491 
 2492         thread0.td_kstack = proc0kstack;
 2493         thread0.td_pcb = (struct pcb *)
 2494            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 2495 
 2496         /*
 2497          * This may be done better later if it gets more high level
 2498          * components in it. If so just link td->td_proc here.
 2499          */
 2500         proc_linkup0(&proc0, &thread0);
 2501 
 2502         metadata_missing = 0;
 2503         if (xen_start_info->mod_start) {
 2504                 preload_metadata = (caddr_t)xen_start_info->mod_start;
 2505                 preload_bootstrap_relocate(KERNBASE);
 2506         } else {
 2507                 metadata_missing = 1;
 2508         }
 2509         if (envmode == 1)
 2510                 kern_envp = static_env;
 2511         else if ((caddr_t)xen_start_info->cmd_line)
 2512                 kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
 2513 
 2514         boothowto |= xen_boothowto(kern_envp);
 2515         
 2516         /* Init basic tunables, hz etc */
 2517         init_param1();
 2518 
 2519         /*
 2520          * XEN occupies a portion of the upper virtual address space 
 2521          * At its base it manages an array mapping machine page frames 
 2522          * to physical page frames - hence we need to be able to 
 2523          * access 4GB - (64MB  - 4MB + 64k) 
 2524          */
 2525         gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2526         gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2527         gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2528         gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2529         gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2530         gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2531         gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2532         gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2533 
 2534         pc = &__pcpu[0];
 2535         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2536         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2537 
 2538         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
 2539         bzero(gdt, PAGE_SIZE);
 2540         for (x = 0; x < NGDT; x++)
 2541                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2542 
 2543         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2544 
 2545         gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
 2546         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
 2547         PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);    
 2548         lgdt(&r_gdt);
 2549         gdtset = 1;
 2550 
 2551         if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
 2552                 panic("set_trap_table failed - error %d\n", error);
 2553         }
 2554         
 2555         error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
 2556         if (error == 0)
 2557                 error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
 2558 #if     CONFIG_XEN_COMPAT <= 0x030002
 2559         if (error == -ENOXENSYS)
 2560                 HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
 2561                     (unsigned long)Xhypervisor_callback,
 2562                     GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
 2563 #endif
 2564         pcpu_init(pc, 0, sizeof(struct pcpu));
 2565         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2566                 pmap_kenter(pa + KERNBASE, pa);
 2567         dpcpu_init((void *)(first + KERNBASE), 0);
 2568         first += DPCPU_SIZE;
 2569         physfree += DPCPU_SIZE;
 2570         init_first += DPCPU_SIZE / PAGE_SIZE;
 2571 
 2572         PCPU_SET(prvspace, pc);
 2573         PCPU_SET(curthread, &thread0);
 2574         PCPU_SET(curpcb, thread0.td_pcb);
 2575 
 2576         /*
 2577          * Initialize mutexes.
 2578          *
 2579          * icu_lock: in order to allow an interrupt to occur in a critical
 2580          *           section, to set pcpu->ipending (etc...) properly, we
 2581          *           must be able to get the icu lock, so it can't be
 2582          *           under witness.
 2583          */
 2584         mutex_init();
 2585         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2586 
 2587         /* make ldt memory segments */
 2588         PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
 2589         bzero(ldt, PAGE_SIZE);
 2590         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2591         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2592         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2593                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2594 
 2595         default_proc_ldt.ldt_base = (caddr_t)ldt;
 2596         default_proc_ldt.ldt_len = 6;
 2597         _default_ldt = (int)&default_proc_ldt;
 2598         PCPU_SET(currentldt, _default_ldt);
 2599         PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
 2600         xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
 2601         
 2602 #if defined(XEN_PRIVILEGED)
 2603         /*
 2604          * Initialize the i8254 before the console so that console
 2605          * initialization can use DELAY().
 2606          */
 2607         i8254_init();
 2608 #endif
 2609         
 2610         /*
 2611          * Initialize the console before we print anything out.
 2612          */
 2613         cninit();
 2614 
 2615         if (metadata_missing)
 2616                 printf("WARNING: loader(8) metadata is missing!\n");
 2617 
 2618 #ifdef DEV_ISA
 2619         elcr_probe();
 2620         atpic_startup();
 2621 #endif
 2622 
 2623 #ifdef DDB
 2624         ksym_start = bootinfo.bi_symtab;
 2625         ksym_end = bootinfo.bi_esymtab;
 2626 #endif
 2627 
 2628         kdb_init();
 2629 
 2630 #ifdef KDB
 2631         if (boothowto & RB_KDB)
 2632                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2633 #endif
 2634 
 2635         finishidentcpu();       /* Final stage of CPU initialization */
 2636         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2637             GSEL(GCODE_SEL, SEL_KPL));
 2638         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2639             GSEL(GCODE_SEL, SEL_KPL));
 2640         initializecpu();        /* Initialize CPU registers */
 2641 
 2642         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2643         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2644         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2645             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2646         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2647         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2648         HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
 2649             PCPU_GET(common_tss.tss_esp0));
 2650         
 2651         /* pointer to selector slot for %fs/%gs */
 2652         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2653 
 2654         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2655             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2656         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2657             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2658 #ifdef PAE
 2659         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2660 #else
 2661         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2662 #endif
 2663         dblfault_tss.tss_eip = (int)dblfault_handler;
 2664         dblfault_tss.tss_eflags = PSL_KERNEL;
 2665         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2666             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2667         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2668         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2669         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2670 
 2671         vm86_initialize();
 2672         getmemsize(first);
 2673         init_param2(physmem);
 2674 
 2675         /* now running on new page tables, configured,and u/iom is accessible */
 2676 
 2677         msgbufinit(msgbufp, MSGBUF_SIZE);
 2678         /* transfer to user mode */
 2679 
 2680         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2681         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2682 
 2683         /* setup proc 0's pcb */
 2684         thread0.td_pcb->pcb_flags = 0;
 2685 #ifdef PAE
 2686         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2687 #else
 2688         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2689 #endif
 2690         thread0.td_pcb->pcb_ext = 0;
 2691         thread0.td_frame = &proc0_tf;
 2692         thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
 2693         thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
 2694 
 2695 #if defined(XEN_PRIVILEGED)
 2696         if (cpu_probe_amdc1e())
 2697                 cpu_idle_fn = cpu_idle_amdc1e;
 2698 #endif
 2699 }
 2700 
 2701 #else
 2702 void
 2703 init386(first)
 2704         int first;
 2705 {
 2706         struct gate_descriptor *gdp;
 2707         int gsel_tss, metadata_missing, x, pa;
 2708         struct pcpu *pc;
 2709 
 2710         thread0.td_kstack = proc0kstack;
 2711         thread0.td_pcb = (struct pcb *)
 2712            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 2713 
 2714         /*
 2715          * This may be done better later if it gets more high level
 2716          * components in it. If so just link td->td_proc here.
 2717          */
 2718         proc_linkup0(&proc0, &thread0);
 2719 
 2720         metadata_missing = 0;
 2721         if (bootinfo.bi_modulep) {
 2722                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2723                 preload_bootstrap_relocate(KERNBASE);
 2724         } else {
 2725                 metadata_missing = 1;
 2726         }
 2727         if (envmode == 1)
 2728                 kern_envp = static_env;
 2729         else if (bootinfo.bi_envp)
 2730                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2731 
 2732         /* Init basic tunables, hz etc */
 2733         init_param1();
 2734 
 2735         /*
 2736          * Make gdt memory segments.  All segments cover the full 4GB
 2737          * of address space and permissions are enforced at page level.
 2738          */
 2739         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2740         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2741         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2742         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2743         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2744         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2745 
 2746         pc = &__pcpu[0];
 2747         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2748         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2749         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2750 
 2751         for (x = 0; x < NGDT; x++)
 2752                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2753 
 2754         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2755         r_gdt.rd_base =  (int) gdt;
 2756         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2757         lgdt(&r_gdt);
 2758 
 2759         pcpu_init(pc, 0, sizeof(struct pcpu));
 2760         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2761                 pmap_kenter(pa + KERNBASE, pa);
 2762         dpcpu_init((void *)(first + KERNBASE), 0);
 2763         first += DPCPU_SIZE;
 2764         PCPU_SET(prvspace, pc);
 2765         PCPU_SET(curthread, &thread0);
 2766         PCPU_SET(curpcb, thread0.td_pcb);
 2767 
 2768         /*
 2769          * Initialize mutexes.
 2770          *
 2771          * icu_lock: in order to allow an interrupt to occur in a critical
 2772          *           section, to set pcpu->ipending (etc...) properly, we
 2773          *           must be able to get the icu lock, so it can't be
 2774          *           under witness.
 2775          */
 2776         mutex_init();
 2777         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2778 
 2779         /* make ldt memory segments */
 2780         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2781         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2782         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2783                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2784 
 2785         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2786         lldt(_default_ldt);
 2787         PCPU_SET(currentldt, _default_ldt);
 2788 
 2789         /* exceptions */
 2790         for (x = 0; x < NIDT; x++)
 2791                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2792                     GSEL(GCODE_SEL, SEL_KPL));
 2793         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2794             GSEL(GCODE_SEL, SEL_KPL));
 2795         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2796             GSEL(GCODE_SEL, SEL_KPL));
 2797         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2798             GSEL(GCODE_SEL, SEL_KPL));
 2799         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2800             GSEL(GCODE_SEL, SEL_KPL));
 2801         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2802             GSEL(GCODE_SEL, SEL_KPL));
 2803         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2804             GSEL(GCODE_SEL, SEL_KPL));
 2805         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2806             GSEL(GCODE_SEL, SEL_KPL));
 2807         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2808             , GSEL(GCODE_SEL, SEL_KPL));
 2809         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2810         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2811             GSEL(GCODE_SEL, SEL_KPL));
 2812         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2813             GSEL(GCODE_SEL, SEL_KPL));
 2814         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2815             GSEL(GCODE_SEL, SEL_KPL));
 2816         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2817             GSEL(GCODE_SEL, SEL_KPL));
 2818         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2819             GSEL(GCODE_SEL, SEL_KPL));
 2820         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2821             GSEL(GCODE_SEL, SEL_KPL));
 2822         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2823             GSEL(GCODE_SEL, SEL_KPL));
 2824         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2825             GSEL(GCODE_SEL, SEL_KPL));
 2826         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2827             GSEL(GCODE_SEL, SEL_KPL));
 2828         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2829             GSEL(GCODE_SEL, SEL_KPL));
 2830         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2831             GSEL(GCODE_SEL, SEL_KPL));
 2832 
 2833         r_idt.rd_limit = sizeof(idt0) - 1;
 2834         r_idt.rd_base = (int) idt;
 2835         lidt(&r_idt);
 2836 
 2837 #ifdef XBOX
 2838         /*
 2839          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 2840          * This should be 0x10de / 0x02a5.
 2841          *
 2842          * This is exactly what Linux does.
 2843          */
 2844         outl(0xcf8, 0x80000000);
 2845         if (inl(0xcfc) == 0x02a510de) {
 2846                 arch_i386_is_xbox = 1;
 2847                 pic16l_setled(XBOX_LED_GREEN);
 2848 
 2849                 /*
 2850                  * We are an XBOX, but we may have either 64MB or 128MB of
 2851                  * memory. The PCI host bridge should be programmed for this,
 2852                  * so we just query it. 
 2853                  */
 2854                 outl(0xcf8, 0x80000084);
 2855                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 2856         }
 2857 #endif /* XBOX */
 2858 
 2859         /*
 2860          * Initialize the i8254 before the console so that console
 2861          * initialization can use DELAY().
 2862          */
 2863         i8254_init();
 2864 
 2865         /*
 2866          * Initialize the console before we print anything out.
 2867          */
 2868         cninit();
 2869 
 2870         if (metadata_missing)
 2871                 printf("WARNING: loader(8) metadata is missing!\n");
 2872 
 2873 #ifdef DEV_ISA
 2874         elcr_probe();
 2875         atpic_startup();
 2876 #endif
 2877 
 2878 #ifdef DDB
 2879         ksym_start = bootinfo.bi_symtab;
 2880         ksym_end = bootinfo.bi_esymtab;
 2881 #endif
 2882 
 2883         kdb_init();
 2884 
 2885 #ifdef KDB
 2886         if (boothowto & RB_KDB)
 2887                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2888 #endif
 2889 
 2890         finishidentcpu();       /* Final stage of CPU initialization */
 2891         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2892             GSEL(GCODE_SEL, SEL_KPL));
 2893         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2894             GSEL(GCODE_SEL, SEL_KPL));
 2895         initializecpu();        /* Initialize CPU registers */
 2896 
 2897         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2898         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2899         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2900             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2901         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2902         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2903         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2904         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2905         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2906         ltr(gsel_tss);
 2907 
 2908         /* pointer to selector slot for %fs/%gs */
 2909         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2910 
 2911         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2912             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2913         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2914             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2915 #ifdef PAE
 2916         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2917 #else
 2918         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2919 #endif
 2920         dblfault_tss.tss_eip = (int)dblfault_handler;
 2921         dblfault_tss.tss_eflags = PSL_KERNEL;
 2922         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2923             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2924         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2925         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2926         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2927 
 2928         vm86_initialize();
 2929         getmemsize(first);
 2930         init_param2(physmem);
 2931 
 2932         /* now running on new page tables, configured,and u/iom is accessible */
 2933 
 2934         msgbufinit(msgbufp, MSGBUF_SIZE);
 2935 
 2936         /* make a call gate to reenter kernel with */
 2937         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2938 
 2939         x = (int) &IDTVEC(lcall_syscall);
 2940         gdp->gd_looffset = x;
 2941         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2942         gdp->gd_stkcpy = 1;
 2943         gdp->gd_type = SDT_SYS386CGT;
 2944         gdp->gd_dpl = SEL_UPL;
 2945         gdp->gd_p = 1;
 2946         gdp->gd_hioffset = x >> 16;
 2947 
 2948         /* XXX does this work? */
 2949         /* XXX yes! */
 2950         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2951         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2952 
 2953         /* transfer to user mode */
 2954 
 2955         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2956         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2957 
 2958         /* setup proc 0's pcb */
 2959         thread0.td_pcb->pcb_flags = 0;
 2960 #ifdef PAE
 2961         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2962 #else
 2963         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2964 #endif
 2965         thread0.td_pcb->pcb_ext = 0;
 2966         thread0.td_frame = &proc0_tf;
 2967 
 2968         if (cpu_probe_amdc1e())
 2969                 cpu_idle_fn = cpu_idle_amdc1e;
 2970 }
 2971 #endif
 2972 
 2973 void
 2974 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2975 {
 2976 
 2977         pcpu->pc_acpi_id = 0xffffffff;
 2978 }
 2979 
 2980 void
 2981 spinlock_enter(void)
 2982 {
 2983         struct thread *td;
 2984 
 2985         td = curthread;
 2986         if (td->td_md.md_spinlock_count == 0)
 2987                 td->td_md.md_saved_flags = intr_disable();
 2988         td->td_md.md_spinlock_count++;
 2989         critical_enter();
 2990 }
 2991 
 2992 void
 2993 spinlock_exit(void)
 2994 {
 2995         struct thread *td;
 2996 
 2997         td = curthread;
 2998         critical_exit();
 2999         td->td_md.md_spinlock_count--;
 3000         if (td->td_md.md_spinlock_count == 0)
 3001                 intr_restore(td->td_md.md_saved_flags);
 3002 }
 3003 
 3004 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 3005 static void f00f_hack(void *unused);
 3006 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 3007 
 3008 static void
 3009 f00f_hack(void *unused)
 3010 {
 3011         struct gate_descriptor *new_idt;
 3012         vm_offset_t tmp;
 3013 
 3014         if (!has_f00f_bug)
 3015                 return;
 3016 
 3017         GIANT_REQUIRED;
 3018 
 3019         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 3020 
 3021         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 3022         if (tmp == 0)
 3023                 panic("kmem_alloc returned 0");
 3024 
 3025         /* Put the problematic entry (#6) at the end of the lower page. */
 3026         new_idt = (struct gate_descriptor*)
 3027             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 3028         bcopy(idt, new_idt, sizeof(idt0));
 3029         r_idt.rd_base = (u_int)new_idt;
 3030         lidt(&r_idt);
 3031         idt = new_idt;
 3032         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 3033                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 3034                 panic("vm_map_protect failed");
 3035 }
 3036 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 3037 
 3038 /*
 3039  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 3040  * we want to start a backtrace from the function that caused us to enter
 3041  * the debugger. We have the context in the trapframe, but base the trace
 3042  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 3043  * enough for a backtrace.
 3044  */
 3045 void
 3046 makectx(struct trapframe *tf, struct pcb *pcb)
 3047 {
 3048 
 3049         pcb->pcb_edi = tf->tf_edi;
 3050         pcb->pcb_esi = tf->tf_esi;
 3051         pcb->pcb_ebp = tf->tf_ebp;
 3052         pcb->pcb_ebx = tf->tf_ebx;
 3053         pcb->pcb_eip = tf->tf_eip;
 3054         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 3055 }
 3056 
 3057 int
 3058 ptrace_set_pc(struct thread *td, u_long addr)
 3059 {
 3060 
 3061         td->td_frame->tf_eip = addr;
 3062         return (0);
 3063 }
 3064 
 3065 int
 3066 ptrace_single_step(struct thread *td)
 3067 {
 3068         td->td_frame->tf_eflags |= PSL_T;
 3069         return (0);
 3070 }
 3071 
 3072 int
 3073 ptrace_clear_single_step(struct thread *td)
 3074 {
 3075         td->td_frame->tf_eflags &= ~PSL_T;
 3076         return (0);
 3077 }
 3078 
 3079 int
 3080 fill_regs(struct thread *td, struct reg *regs)
 3081 {
 3082         struct pcb *pcb;
 3083         struct trapframe *tp;
 3084 
 3085         tp = td->td_frame;
 3086         pcb = td->td_pcb;
 3087         regs->r_fs = tp->tf_fs;
 3088         regs->r_es = tp->tf_es;
 3089         regs->r_ds = tp->tf_ds;
 3090         regs->r_edi = tp->tf_edi;
 3091         regs->r_esi = tp->tf_esi;
 3092         regs->r_ebp = tp->tf_ebp;
 3093         regs->r_ebx = tp->tf_ebx;
 3094         regs->r_edx = tp->tf_edx;
 3095         regs->r_ecx = tp->tf_ecx;
 3096         regs->r_eax = tp->tf_eax;
 3097         regs->r_eip = tp->tf_eip;
 3098         regs->r_cs = tp->tf_cs;
 3099         regs->r_eflags = tp->tf_eflags;
 3100         regs->r_esp = tp->tf_esp;
 3101         regs->r_ss = tp->tf_ss;
 3102         regs->r_gs = pcb->pcb_gs;
 3103         return (0);
 3104 }
 3105 
 3106 int
 3107 set_regs(struct thread *td, struct reg *regs)
 3108 {
 3109         struct pcb *pcb;
 3110         struct trapframe *tp;
 3111 
 3112         tp = td->td_frame;
 3113         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 3114             !CS_SECURE(regs->r_cs))
 3115                 return (EINVAL);
 3116         pcb = td->td_pcb;
 3117         tp->tf_fs = regs->r_fs;
 3118         tp->tf_es = regs->r_es;
 3119         tp->tf_ds = regs->r_ds;
 3120         tp->tf_edi = regs->r_edi;
 3121         tp->tf_esi = regs->r_esi;
 3122         tp->tf_ebp = regs->r_ebp;
 3123         tp->tf_ebx = regs->r_ebx;
 3124         tp->tf_edx = regs->r_edx;
 3125         tp->tf_ecx = regs->r_ecx;
 3126         tp->tf_eax = regs->r_eax;
 3127         tp->tf_eip = regs->r_eip;
 3128         tp->tf_cs = regs->r_cs;
 3129         tp->tf_eflags = regs->r_eflags;
 3130         tp->tf_esp = regs->r_esp;
 3131         tp->tf_ss = regs->r_ss;
 3132         pcb->pcb_gs = regs->r_gs;
 3133         return (0);
 3134 }
 3135 
 3136 #ifdef CPU_ENABLE_SSE
 3137 static void
 3138 fill_fpregs_xmm(sv_xmm, sv_87)
 3139         struct savexmm *sv_xmm;
 3140         struct save87 *sv_87;
 3141 {
 3142         register struct env87 *penv_87 = &sv_87->sv_env;
 3143         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3144         int i;
 3145 
 3146         bzero(sv_87, sizeof(*sv_87));
 3147 
 3148         /* FPU control/status */
 3149         penv_87->en_cw = penv_xmm->en_cw;
 3150         penv_87->en_sw = penv_xmm->en_sw;
 3151         penv_87->en_tw = penv_xmm->en_tw;
 3152         penv_87->en_fip = penv_xmm->en_fip;
 3153         penv_87->en_fcs = penv_xmm->en_fcs;
 3154         penv_87->en_opcode = penv_xmm->en_opcode;
 3155         penv_87->en_foo = penv_xmm->en_foo;
 3156         penv_87->en_fos = penv_xmm->en_fos;
 3157 
 3158         /* FPU registers */
 3159         for (i = 0; i < 8; ++i)
 3160                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 3161 }
 3162 
 3163 static void
 3164 set_fpregs_xmm(sv_87, sv_xmm)
 3165         struct save87 *sv_87;
 3166         struct savexmm *sv_xmm;
 3167 {
 3168         register struct env87 *penv_87 = &sv_87->sv_env;
 3169         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3170         int i;
 3171 
 3172         /* FPU control/status */
 3173         penv_xmm->en_cw = penv_87->en_cw;
 3174         penv_xmm->en_sw = penv_87->en_sw;
 3175         penv_xmm->en_tw = penv_87->en_tw;
 3176         penv_xmm->en_fip = penv_87->en_fip;
 3177         penv_xmm->en_fcs = penv_87->en_fcs;
 3178         penv_xmm->en_opcode = penv_87->en_opcode;
 3179         penv_xmm->en_foo = penv_87->en_foo;
 3180         penv_xmm->en_fos = penv_87->en_fos;
 3181 
 3182         /* FPU registers */
 3183         for (i = 0; i < 8; ++i)
 3184                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 3185 }
 3186 #endif /* CPU_ENABLE_SSE */
 3187 
 3188 int
 3189 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3190 {
 3191 
 3192         KASSERT(td == curthread || TD_IS_SUSPENDED(td),
 3193             ("not suspended thread %p", td));
 3194         npxgetregs(td);
 3195 #ifdef CPU_ENABLE_SSE
 3196         if (cpu_fxsr)
 3197                 fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
 3198                     (struct save87 *)fpregs);
 3199         else
 3200 #endif /* CPU_ENABLE_SSE */
 3201                 bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
 3202                     sizeof(*fpregs));
 3203         return (0);
 3204 }
 3205 
 3206 int
 3207 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3208 {
 3209 
 3210 #ifdef CPU_ENABLE_SSE
 3211         if (cpu_fxsr)
 3212                 set_fpregs_xmm((struct save87 *)fpregs,
 3213                     &td->td_pcb->pcb_user_save.sv_xmm);
 3214         else
 3215 #endif /* CPU_ENABLE_SSE */
 3216                 bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
 3217                     sizeof(*fpregs));
 3218         npxuserinited(td);
 3219         return (0);
 3220 }
 3221 
 3222 /*
 3223  * Get machine context.
 3224  */
 3225 int
 3226 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3227 {
 3228         struct trapframe *tp;
 3229         struct segment_descriptor *sdp;
 3230 
 3231         tp = td->td_frame;
 3232 
 3233         PROC_LOCK(curthread->td_proc);
 3234         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3235         PROC_UNLOCK(curthread->td_proc);
 3236         mcp->mc_gs = td->td_pcb->pcb_gs;
 3237         mcp->mc_fs = tp->tf_fs;
 3238         mcp->mc_es = tp->tf_es;
 3239         mcp->mc_ds = tp->tf_ds;
 3240         mcp->mc_edi = tp->tf_edi;
 3241         mcp->mc_esi = tp->tf_esi;
 3242         mcp->mc_ebp = tp->tf_ebp;
 3243         mcp->mc_isp = tp->tf_isp;
 3244         mcp->mc_eflags = tp->tf_eflags;
 3245         if (flags & GET_MC_CLEAR_RET) {
 3246                 mcp->mc_eax = 0;
 3247                 mcp->mc_edx = 0;
 3248                 mcp->mc_eflags &= ~PSL_C;
 3249         } else {
 3250                 mcp->mc_eax = tp->tf_eax;
 3251                 mcp->mc_edx = tp->tf_edx;
 3252         }
 3253         mcp->mc_ebx = tp->tf_ebx;
 3254         mcp->mc_ecx = tp->tf_ecx;
 3255         mcp->mc_eip = tp->tf_eip;
 3256         mcp->mc_cs = tp->tf_cs;
 3257         mcp->mc_esp = tp->tf_esp;
 3258         mcp->mc_ss = tp->tf_ss;
 3259         mcp->mc_len = sizeof(*mcp);
 3260         get_fpcontext(td, mcp);
 3261         sdp = &td->td_pcb->pcb_fsd;
 3262         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3263         sdp = &td->td_pcb->pcb_gsd;
 3264         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3265 
 3266         return (0);
 3267 }
 3268 
 3269 /*
 3270  * Set machine context.
 3271  *
 3272  * However, we don't set any but the user modifiable flags, and we won't
 3273  * touch the cs selector.
 3274  */
 3275 int
 3276 set_mcontext(struct thread *td, const mcontext_t *mcp)
 3277 {
 3278         struct trapframe *tp;
 3279         int eflags, ret;
 3280 
 3281         tp = td->td_frame;
 3282         if (mcp->mc_len != sizeof(*mcp))
 3283                 return (EINVAL);
 3284         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3285             (tp->tf_eflags & ~PSL_USERCHANGE);
 3286         if ((ret = set_fpcontext(td, mcp)) == 0) {
 3287                 tp->tf_fs = mcp->mc_fs;
 3288                 tp->tf_es = mcp->mc_es;
 3289                 tp->tf_ds = mcp->mc_ds;
 3290                 tp->tf_edi = mcp->mc_edi;
 3291                 tp->tf_esi = mcp->mc_esi;
 3292                 tp->tf_ebp = mcp->mc_ebp;
 3293                 tp->tf_ebx = mcp->mc_ebx;
 3294                 tp->tf_edx = mcp->mc_edx;
 3295                 tp->tf_ecx = mcp->mc_ecx;
 3296                 tp->tf_eax = mcp->mc_eax;
 3297                 tp->tf_eip = mcp->mc_eip;
 3298                 tp->tf_eflags = eflags;
 3299                 tp->tf_esp = mcp->mc_esp;
 3300                 tp->tf_ss = mcp->mc_ss;
 3301                 td->td_pcb->pcb_gs = mcp->mc_gs;
 3302                 ret = 0;
 3303         }
 3304         return (ret);
 3305 }
 3306 
 3307 static void
 3308 get_fpcontext(struct thread *td, mcontext_t *mcp)
 3309 {
 3310 
 3311 #ifndef DEV_NPX
 3312         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 3313         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 3314 #else
 3315         mcp->mc_ownedfp = npxgetregs(td);
 3316         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
 3317             sizeof(mcp->mc_fpstate));
 3318         mcp->mc_fpformat = npxformat();
 3319 #endif
 3320 }
 3321 
 3322 static int
 3323 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 3324 {
 3325 
 3326         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3327                 return (0);
 3328         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3329             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3330                 return (EINVAL);
 3331         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 3332                 /* We don't care what state is left in the FPU or PCB. */
 3333                 fpstate_drop(td);
 3334         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3335             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3336 #ifdef DEV_NPX
 3337 #ifdef CPU_ENABLE_SSE
 3338                 if (cpu_fxsr)
 3339                         ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
 3340                             en_mxcsr &= cpu_mxcsr_mask;
 3341 #endif
 3342                 npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
 3343 #endif
 3344         } else
 3345                 return (EINVAL);
 3346         return (0);
 3347 }
 3348 
 3349 static void
 3350 fpstate_drop(struct thread *td)
 3351 {
 3352 
 3353         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 3354         critical_enter();
 3355 #ifdef DEV_NPX
 3356         if (PCPU_GET(fpcurthread) == td)
 3357                 npxdrop();
 3358 #endif
 3359         /*
 3360          * XXX force a full drop of the npx.  The above only drops it if we
 3361          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3362          *
 3363          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3364          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3365          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3366          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3367          * have too many layers.
 3368          */
 3369         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 3370             PCB_NPXUSERINITDONE);
 3371         critical_exit();
 3372 }
 3373 
 3374 int
 3375 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3376 {
 3377         struct pcb *pcb;
 3378 
 3379         if (td == NULL) {
 3380                 dbregs->dr[0] = rdr0();
 3381                 dbregs->dr[1] = rdr1();
 3382                 dbregs->dr[2] = rdr2();
 3383                 dbregs->dr[3] = rdr3();
 3384                 dbregs->dr[4] = rdr4();
 3385                 dbregs->dr[5] = rdr5();
 3386                 dbregs->dr[6] = rdr6();
 3387                 dbregs->dr[7] = rdr7();
 3388         } else {
 3389                 pcb = td->td_pcb;
 3390                 dbregs->dr[0] = pcb->pcb_dr0;
 3391                 dbregs->dr[1] = pcb->pcb_dr1;
 3392                 dbregs->dr[2] = pcb->pcb_dr2;
 3393                 dbregs->dr[3] = pcb->pcb_dr3;
 3394                 dbregs->dr[4] = 0;
 3395                 dbregs->dr[5] = 0;
 3396                 dbregs->dr[6] = pcb->pcb_dr6;
 3397                 dbregs->dr[7] = pcb->pcb_dr7;
 3398         }
 3399         return (0);
 3400 }
 3401 
 3402 int
 3403 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3404 {
 3405         struct pcb *pcb;
 3406         int i;
 3407 
 3408         if (td == NULL) {
 3409                 load_dr0(dbregs->dr[0]);
 3410                 load_dr1(dbregs->dr[1]);
 3411                 load_dr2(dbregs->dr[2]);
 3412                 load_dr3(dbregs->dr[3]);
 3413                 load_dr4(dbregs->dr[4]);
 3414                 load_dr5(dbregs->dr[5]);
 3415                 load_dr6(dbregs->dr[6]);
 3416                 load_dr7(dbregs->dr[7]);
 3417         } else {
 3418                 /*
 3419                  * Don't let an illegal value for dr7 get set.  Specifically,
 3420                  * check for undefined settings.  Setting these bit patterns
 3421                  * result in undefined behaviour and can lead to an unexpected
 3422                  * TRCTRAP.
 3423                  */
 3424                 for (i = 0; i < 4; i++) {
 3425                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 3426                                 return (EINVAL);
 3427                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 3428                                 return (EINVAL);
 3429                 }
 3430                 
 3431                 pcb = td->td_pcb;
 3432                 
 3433                 /*
 3434                  * Don't let a process set a breakpoint that is not within the
 3435                  * process's address space.  If a process could do this, it
 3436                  * could halt the system by setting a breakpoint in the kernel
 3437                  * (if ddb was enabled).  Thus, we need to check to make sure
 3438                  * that no breakpoints are being enabled for addresses outside
 3439                  * process's address space.
 3440                  *
 3441                  * XXX - what about when the watched area of the user's
 3442                  * address space is written into from within the kernel
 3443                  * ... wouldn't that still cause a breakpoint to be generated
 3444                  * from within kernel mode?
 3445                  */
 3446 
 3447                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 3448                         /* dr0 is enabled */
 3449                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 3450                                 return (EINVAL);
 3451                 }
 3452                         
 3453                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 3454                         /* dr1 is enabled */
 3455                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 3456                                 return (EINVAL);
 3457                 }
 3458                         
 3459                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 3460                         /* dr2 is enabled */
 3461                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 3462                                 return (EINVAL);
 3463                 }
 3464                         
 3465                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 3466                         /* dr3 is enabled */
 3467                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 3468                                 return (EINVAL);
 3469                 }
 3470 
 3471                 pcb->pcb_dr0 = dbregs->dr[0];
 3472                 pcb->pcb_dr1 = dbregs->dr[1];
 3473                 pcb->pcb_dr2 = dbregs->dr[2];
 3474                 pcb->pcb_dr3 = dbregs->dr[3];
 3475                 pcb->pcb_dr6 = dbregs->dr[6];
 3476                 pcb->pcb_dr7 = dbregs->dr[7];
 3477 
 3478                 pcb->pcb_flags |= PCB_DBREGS;
 3479         }
 3480 
 3481         return (0);
 3482 }
 3483 
 3484 /*
 3485  * Return > 0 if a hardware breakpoint has been hit, and the
 3486  * breakpoint was in user space.  Return 0, otherwise.
 3487  */
 3488 int
 3489 user_dbreg_trap(void)
 3490 {
 3491         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 3492         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 3493         int nbp;            /* number of breakpoints that triggered */
 3494         caddr_t addr[4];    /* breakpoint addresses */
 3495         int i;
 3496         
 3497         dr7 = rdr7();
 3498         if ((dr7 & 0x000000ff) == 0) {
 3499                 /*
 3500                  * all GE and LE bits in the dr7 register are zero,
 3501                  * thus the trap couldn't have been caused by the
 3502                  * hardware debug registers
 3503                  */
 3504                 return 0;
 3505         }
 3506 
 3507         nbp = 0;
 3508         dr6 = rdr6();
 3509         bp = dr6 & 0x0000000f;
 3510 
 3511         if (!bp) {
 3512                 /*
 3513                  * None of the breakpoint bits are set meaning this
 3514                  * trap was not caused by any of the debug registers
 3515                  */
 3516                 return 0;
 3517         }
 3518 
 3519         /*
 3520          * at least one of the breakpoints were hit, check to see
 3521          * which ones and if any of them are user space addresses
 3522          */
 3523 
 3524         if (bp & 0x01) {
 3525                 addr[nbp++] = (caddr_t)rdr0();
 3526         }
 3527         if (bp & 0x02) {
 3528                 addr[nbp++] = (caddr_t)rdr1();
 3529         }
 3530         if (bp & 0x04) {
 3531                 addr[nbp++] = (caddr_t)rdr2();
 3532         }
 3533         if (bp & 0x08) {
 3534                 addr[nbp++] = (caddr_t)rdr3();
 3535         }
 3536 
 3537         for (i = 0; i < nbp; i++) {
 3538                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 3539                         /*
 3540                          * addr[i] is in user space
 3541                          */
 3542                         return nbp;
 3543                 }
 3544         }
 3545 
 3546         /*
 3547          * None of the breakpoints are in user space.
 3548          */
 3549         return 0;
 3550 }
 3551 
 3552 #ifndef DEV_APIC
 3553 #include <machine/apicvar.h>
 3554 
 3555 /*
 3556  * Provide stub functions so that the MADT APIC enumerator in the acpi
 3557  * kernel module will link against a kernel without 'device apic'.
 3558  *
 3559  * XXX - This is a gross hack.
 3560  */
 3561 void
 3562 apic_register_enumerator(struct apic_enumerator *enumerator)
 3563 {
 3564 }
 3565 
 3566 void *
 3567 ioapic_create(vm_paddr_t addr, int32_t apic_id, int intbase)
 3568 {
 3569         return (NULL);
 3570 }
 3571 
 3572 int
 3573 ioapic_disable_pin(void *cookie, u_int pin)
 3574 {
 3575         return (ENXIO);
 3576 }
 3577 
 3578 int
 3579 ioapic_get_vector(void *cookie, u_int pin)
 3580 {
 3581         return (-1);
 3582 }
 3583 
 3584 void
 3585 ioapic_register(void *cookie)
 3586 {
 3587 }
 3588 
 3589 int
 3590 ioapic_remap_vector(void *cookie, u_int pin, int vector)
 3591 {
 3592         return (ENXIO);
 3593 }
 3594 
 3595 int
 3596 ioapic_set_extint(void *cookie, u_int pin)
 3597 {
 3598         return (ENXIO);
 3599 }
 3600 
 3601 int
 3602 ioapic_set_nmi(void *cookie, u_int pin)
 3603 {
 3604         return (ENXIO);
 3605 }
 3606 
 3607 int
 3608 ioapic_set_polarity(void *cookie, u_int pin, enum intr_polarity pol)
 3609 {
 3610         return (ENXIO);
 3611 }
 3612 
 3613 int
 3614 ioapic_set_triggermode(void *cookie, u_int pin, enum intr_trigger trigger)
 3615 {
 3616         return (ENXIO);
 3617 }
 3618 
 3619 void
 3620 lapic_create(u_int apic_id, int boot_cpu)
 3621 {
 3622 }
 3623 
 3624 void
 3625 lapic_init(vm_paddr_t addr)
 3626 {
 3627 }
 3628 
 3629 int
 3630 lapic_set_lvt_mode(u_int apic_id, u_int lvt, u_int32_t mode)
 3631 {
 3632         return (ENXIO);
 3633 }
 3634 
 3635 int
 3636 lapic_set_lvt_polarity(u_int apic_id, u_int lvt, enum intr_polarity pol)
 3637 {
 3638         return (ENXIO);
 3639 }
 3640 
 3641 int
 3642 lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, enum intr_trigger trigger)
 3643 {
 3644         return (ENXIO);
 3645 }
 3646 #endif
 3647 
 3648 #ifdef KDB
 3649 
 3650 /*
 3651  * Provide inb() and outb() as functions.  They are normally only available as
 3652  * inline functions, thus cannot be called from the debugger.
 3653  */
 3654 
 3655 /* silence compiler warnings */
 3656 u_char inb_(u_short);
 3657 void outb_(u_short, u_char);
 3658 
 3659 u_char
 3660 inb_(u_short port)
 3661 {
 3662         return inb(port);
 3663 }
 3664 
 3665 void
 3666 outb_(u_short port, u_char data)
 3667 {
 3668         outb(port, data);
 3669 }
 3670 
 3671 #endif /* KDB */

Cache object: bfa19f7f154f68395458a803d08265a0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.