The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/9.1/sys/i386/i386/machdep.c 235796 2012-05-22 17:44:01Z iwasaki $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_npx.h"
   56 #include "opt_perfmon.h"
   57 #include "opt_xbox.h"
   58 #include "opt_kdtrace.h"
   59 
   60 #include <sys/param.h>
   61 #include <sys/proc.h>
   62 #include <sys/systm.h>
   63 #include <sys/bio.h>
   64 #include <sys/buf.h>
   65 #include <sys/bus.h>
   66 #include <sys/callout.h>
   67 #include <sys/cons.h>
   68 #include <sys/cpu.h>
   69 #include <sys/eventhandler.h>
   70 #include <sys/exec.h>
   71 #include <sys/imgact.h>
   72 #include <sys/kdb.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/linker.h>
   76 #include <sys/lock.h>
   77 #include <sys/malloc.h>
   78 #include <sys/msgbuf.h>
   79 #include <sys/mutex.h>
   80 #include <sys/pcpu.h>
   81 #include <sys/ptrace.h>
   82 #include <sys/reboot.h>
   83 #include <sys/sched.h>
   84 #include <sys/signalvar.h>
   85 #ifdef SMP
   86 #include <sys/smp.h>
   87 #endif
   88 #include <sys/syscallsubr.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/sysent.h>
   91 #include <sys/sysproto.h>
   92 #include <sys/ucontext.h>
   93 #include <sys/vmmeter.h>
   94 
   95 #include <vm/vm.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_pager.h>
  102 #include <vm/vm_param.h>
  103 
  104 #ifdef DDB
  105 #ifndef KDB
  106 #error KDB must be enabled in order for DDB to work!
  107 #endif
  108 #include <ddb/ddb.h>
  109 #include <ddb/db_sym.h>
  110 #endif
  111 
  112 #include <isa/rtc.h>
  113 
  114 #include <net/netisr.h>
  115 
  116 #include <machine/bootinfo.h>
  117 #include <machine/clock.h>
  118 #include <machine/cpu.h>
  119 #include <machine/cputypes.h>
  120 #include <machine/intr_machdep.h>
  121 #include <x86/mca.h>
  122 #include <machine/md_var.h>
  123 #include <machine/metadata.h>
  124 #include <machine/mp_watchdog.h>
  125 #include <machine/pc/bios.h>
  126 #include <machine/pcb.h>
  127 #include <machine/pcb_ext.h>
  128 #include <machine/proc.h>
  129 #include <machine/reg.h>
  130 #include <machine/sigframe.h>
  131 #include <machine/specialreg.h>
  132 #include <machine/vm86.h>
  133 #ifdef PERFMON
  134 #include <machine/perfmon.h>
  135 #endif
  136 #ifdef SMP
  137 #include <machine/smp.h>
  138 #endif
  139 
  140 #ifdef DEV_APIC
  141 #include <machine/apicvar.h>
  142 #endif
  143 
  144 #ifdef DEV_ISA
  145 #include <x86/isa/icu.h>
  146 #endif
  147 
  148 #ifdef XBOX
  149 #include <machine/xbox.h>
  150 
  151 int arch_i386_is_xbox = 0;
  152 uint32_t arch_i386_xbox_memsize = 0;
  153 #endif
  154 
  155 #ifdef XEN
  156 /* XEN includes */
  157 #include <machine/xen/xen-os.h>
  158 #include <xen/hypervisor.h>
  159 #include <machine/xen/xen-os.h>
  160 #include <machine/xen/xenvar.h>
  161 #include <machine/xen/xenfunc.h>
  162 #include <xen/xen_intr.h>
  163 
  164 void Xhypervisor_callback(void);
  165 void failsafe_callback(void);
  166 
  167 extern trap_info_t trap_table[];
  168 struct proc_ldt default_proc_ldt;
  169 extern int init_first;
  170 int running_xen = 1;
  171 extern unsigned long physfree;
  172 #endif /* XEN */
  173 
  174 /* Sanity check for __curthread() */
  175 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  176 
  177 extern void init386(int first);
  178 extern void dblfault_handler(void);
  179 
  180 extern void printcpuinfo(void); /* XXX header file */
  181 extern void finishidentcpu(void);
  182 extern void panicifcpuunsupported(void);
  183 
  184 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  185 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  186 
  187 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  188 #define CPU_ENABLE_SSE
  189 #endif
  190 
  191 static void cpu_startup(void *);
  192 static void fpstate_drop(struct thread *td);
  193 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  194 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  195 #ifdef CPU_ENABLE_SSE
  196 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  197 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  198 #endif /* CPU_ENABLE_SSE */
  199 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  200 
  201 #ifdef DDB
  202 extern vm_offset_t ksym_start, ksym_end;
  203 #endif
  204 
  205 /* Intel ICH registers */
  206 #define ICH_PMBASE      0x400
  207 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  208 
  209 int     _udatasel, _ucodesel;
  210 u_int   basemem;
  211 
  212 int cold = 1;
  213 
  214 #ifdef COMPAT_43
  215 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  216 #endif
  217 #ifdef COMPAT_FREEBSD4
  218 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  219 #endif
  220 
  221 long Maxmem = 0;
  222 long realmem = 0;
  223 
  224 #ifdef PAE
  225 FEATURE(pae, "Physical Address Extensions");
  226 #endif
  227 
  228 /*
  229  * The number of PHYSMAP entries must be one less than the number of
  230  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  231  * physical address that is accessible by ISA DMA is split into two
  232  * PHYSSEG entries.
  233  */
  234 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  235 
  236 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  237 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  238 
  239 /* must be 2 less so 0 0 can signal end of chunks */
  240 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  241 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  242 
  243 struct kva_md_info kmi;
  244 
  245 static struct trapframe proc0_tf;
  246 struct pcpu __pcpu[MAXCPU];
  247 
  248 struct mtx icu_lock;
  249 
  250 static void
  251 cpu_startup(dummy)
  252         void *dummy;
  253 {
  254         uintmax_t memsize;
  255         char *sysenv;
  256         
  257         /*
  258          * On MacBooks, we need to disallow the legacy USB circuit to
  259          * generate an SMI# because this can cause several problems,
  260          * namely: incorrect CPU frequency detection and failure to
  261          * start the APs.
  262          * We do this by disabling a bit in the SMI_EN (SMI Control and
  263          * Enable register) of the Intel ICH LPC Interface Bridge.
  264          */
  265         sysenv = getenv("smbios.system.product");
  266         if (sysenv != NULL) {
  267                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  268                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  269                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  270                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  271                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  272                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  273                         if (bootverbose)
  274                                 printf("Disabling LEGACY_USB_EN bit on "
  275                                     "Intel ICH.\n");
  276                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  277                 }
  278                 freeenv(sysenv);
  279         }
  280 
  281         /*
  282          * Good {morning,afternoon,evening,night}.
  283          */
  284         startrtclock();
  285         printcpuinfo();
  286         panicifcpuunsupported();
  287 #ifdef PERFMON
  288         perfmon_init();
  289 #endif
  290         realmem = Maxmem;
  291 
  292         /*
  293          * Display physical memory if SMBIOS reports reasonable amount.
  294          */
  295         memsize = 0;
  296         sysenv = getenv("smbios.memory.enabled");
  297         if (sysenv != NULL) {
  298                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  299                 freeenv(sysenv);
  300         }
  301         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  302                 memsize = ptoa((uintmax_t)Maxmem);
  303         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  304 
  305         /*
  306          * Display any holes after the first chunk of extended memory.
  307          */
  308         if (bootverbose) {
  309                 int indx;
  310 
  311                 printf("Physical memory chunk(s):\n");
  312                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  313                         vm_paddr_t size;
  314 
  315                         size = phys_avail[indx + 1] - phys_avail[indx];
  316                         printf(
  317                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  318                             (uintmax_t)phys_avail[indx],
  319                             (uintmax_t)phys_avail[indx + 1] - 1,
  320                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  321                 }
  322         }
  323 
  324         vm_ksubmap_init(&kmi);
  325 
  326         printf("avail memory = %ju (%ju MB)\n",
  327             ptoa((uintmax_t)cnt.v_free_count),
  328             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  329 
  330         /*
  331          * Set up buffers, so they can be used to read disk labels.
  332          */
  333         bufinit();
  334         vm_pager_bufferinit();
  335 #ifndef XEN
  336         cpu_setregs();
  337 #endif
  338 
  339         /*
  340          * Add BSP as an interrupt target.
  341          */
  342         intr_add_cpu(0);
  343 }
  344 
  345 /*
  346  * Send an interrupt to process.
  347  *
  348  * Stack is set up to allow sigcode stored
  349  * at top to call routine, followed by kcall
  350  * to sigreturn routine below.  After sigreturn
  351  * resets the signal mask, the stack, and the
  352  * frame pointer, it returns to the user
  353  * specified pc, psl.
  354  */
  355 #ifdef COMPAT_43
  356 static void
  357 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  358 {
  359         struct osigframe sf, *fp;
  360         struct proc *p;
  361         struct thread *td;
  362         struct sigacts *psp;
  363         struct trapframe *regs;
  364         int sig;
  365         int oonstack;
  366 
  367         td = curthread;
  368         p = td->td_proc;
  369         PROC_LOCK_ASSERT(p, MA_OWNED);
  370         sig = ksi->ksi_signo;
  371         psp = p->p_sigacts;
  372         mtx_assert(&psp->ps_mtx, MA_OWNED);
  373         regs = td->td_frame;
  374         oonstack = sigonstack(regs->tf_esp);
  375 
  376         /* Allocate space for the signal handler context. */
  377         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  378             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  379                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  380                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  381 #if defined(COMPAT_43)
  382                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  383 #endif
  384         } else
  385                 fp = (struct osigframe *)regs->tf_esp - 1;
  386 
  387         /* Translate the signal if appropriate. */
  388         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  389                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  390 
  391         /* Build the argument list for the signal handler. */
  392         sf.sf_signum = sig;
  393         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  394         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  395         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  396                 /* Signal handler installed with SA_SIGINFO. */
  397                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  398                 sf.sf_siginfo.si_signo = sig;
  399                 sf.sf_siginfo.si_code = ksi->ksi_code;
  400                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  401                 sf.sf_addr = 0;
  402         } else {
  403                 /* Old FreeBSD-style arguments. */
  404                 sf.sf_arg2 = ksi->ksi_code;
  405                 sf.sf_addr = (register_t)ksi->ksi_addr;
  406                 sf.sf_ahu.sf_handler = catcher;
  407         }
  408         mtx_unlock(&psp->ps_mtx);
  409         PROC_UNLOCK(p);
  410 
  411         /* Save most if not all of trap frame. */
  412         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  413         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  414         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  415         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  416         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  417         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  418         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  419         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  420         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  421         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  422         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  423         sf.sf_siginfo.si_sc.sc_gs = rgs();
  424         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  425 
  426         /* Build the signal context to be used by osigreturn(). */
  427         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  428         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  429         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  430         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  431         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  432         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  433         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  434         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  435 
  436         /*
  437          * If we're a vm86 process, we want to save the segment registers.
  438          * We also change eflags to be our emulated eflags, not the actual
  439          * eflags.
  440          */
  441         if (regs->tf_eflags & PSL_VM) {
  442                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  443                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  444                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  445 
  446                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  447                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  448                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  449                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  450 
  451                 if (vm86->vm86_has_vme == 0)
  452                         sf.sf_siginfo.si_sc.sc_ps =
  453                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  454                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  455 
  456                 /* See sendsig() for comments. */
  457                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  458         }
  459 
  460         /*
  461          * Copy the sigframe out to the user's stack.
  462          */
  463         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  464 #ifdef DEBUG
  465                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  466 #endif
  467                 PROC_LOCK(p);
  468                 sigexit(td, SIGILL);
  469         }
  470 
  471         regs->tf_esp = (int)fp;
  472         regs->tf_eip = PS_STRINGS - szosigcode;
  473         regs->tf_eflags &= ~(PSL_T | PSL_D);
  474         regs->tf_cs = _ucodesel;
  475         regs->tf_ds = _udatasel;
  476         regs->tf_es = _udatasel;
  477         regs->tf_fs = _udatasel;
  478         load_gs(_udatasel);
  479         regs->tf_ss = _udatasel;
  480         PROC_LOCK(p);
  481         mtx_lock(&psp->ps_mtx);
  482 }
  483 #endif /* COMPAT_43 */
  484 
  485 #ifdef COMPAT_FREEBSD4
  486 static void
  487 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  488 {
  489         struct sigframe4 sf, *sfp;
  490         struct proc *p;
  491         struct thread *td;
  492         struct sigacts *psp;
  493         struct trapframe *regs;
  494         int sig;
  495         int oonstack;
  496 
  497         td = curthread;
  498         p = td->td_proc;
  499         PROC_LOCK_ASSERT(p, MA_OWNED);
  500         sig = ksi->ksi_signo;
  501         psp = p->p_sigacts;
  502         mtx_assert(&psp->ps_mtx, MA_OWNED);
  503         regs = td->td_frame;
  504         oonstack = sigonstack(regs->tf_esp);
  505 
  506         /* Save user context. */
  507         bzero(&sf, sizeof(sf));
  508         sf.sf_uc.uc_sigmask = *mask;
  509         sf.sf_uc.uc_stack = td->td_sigstk;
  510         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  511             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  512         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  513         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  514         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  515         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  516             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  517         bzero(sf.sf_uc.uc_mcontext.__spare__,
  518             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  519         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  520 
  521         /* Allocate space for the signal handler context. */
  522         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  523             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  524                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  525                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  526 #if defined(COMPAT_43)
  527                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  528 #endif
  529         } else
  530                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  531 
  532         /* Translate the signal if appropriate. */
  533         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  534                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  535 
  536         /* Build the argument list for the signal handler. */
  537         sf.sf_signum = sig;
  538         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  539         bzero(&sf.sf_si, sizeof(sf.sf_si));
  540         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  541                 /* Signal handler installed with SA_SIGINFO. */
  542                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  543                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  544 
  545                 /* Fill in POSIX parts */
  546                 sf.sf_si.si_signo = sig;
  547                 sf.sf_si.si_code = ksi->ksi_code;
  548                 sf.sf_si.si_addr = ksi->ksi_addr;
  549         } else {
  550                 /* Old FreeBSD-style arguments. */
  551                 sf.sf_siginfo = ksi->ksi_code;
  552                 sf.sf_addr = (register_t)ksi->ksi_addr;
  553                 sf.sf_ahu.sf_handler = catcher;
  554         }
  555         mtx_unlock(&psp->ps_mtx);
  556         PROC_UNLOCK(p);
  557 
  558         /*
  559          * If we're a vm86 process, we want to save the segment registers.
  560          * We also change eflags to be our emulated eflags, not the actual
  561          * eflags.
  562          */
  563         if (regs->tf_eflags & PSL_VM) {
  564                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  565                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  566 
  567                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  568                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  569                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  570                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  571 
  572                 if (vm86->vm86_has_vme == 0)
  573                         sf.sf_uc.uc_mcontext.mc_eflags =
  574                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  575                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  576 
  577                 /*
  578                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  579                  * syscalls made by the signal handler.  This just avoids
  580                  * wasting time for our lazy fixup of such faults.  PSL_NT
  581                  * does nothing in vm86 mode, but vm86 programs can set it
  582                  * almost legitimately in probes for old cpu types.
  583                  */
  584                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  585         }
  586 
  587         /*
  588          * Copy the sigframe out to the user's stack.
  589          */
  590         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  591 #ifdef DEBUG
  592                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  593 #endif
  594                 PROC_LOCK(p);
  595                 sigexit(td, SIGILL);
  596         }
  597 
  598         regs->tf_esp = (int)sfp;
  599         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  600         regs->tf_eflags &= ~(PSL_T | PSL_D);
  601         regs->tf_cs = _ucodesel;
  602         regs->tf_ds = _udatasel;
  603         regs->tf_es = _udatasel;
  604         regs->tf_fs = _udatasel;
  605         regs->tf_ss = _udatasel;
  606         PROC_LOCK(p);
  607         mtx_lock(&psp->ps_mtx);
  608 }
  609 #endif  /* COMPAT_FREEBSD4 */
  610 
  611 void
  612 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  613 {
  614         struct sigframe sf, *sfp;
  615         struct proc *p;
  616         struct thread *td;
  617         struct sigacts *psp;
  618         char *sp;
  619         struct trapframe *regs;
  620         struct segment_descriptor *sdp;
  621         int sig;
  622         int oonstack;
  623 
  624         td = curthread;
  625         p = td->td_proc;
  626         PROC_LOCK_ASSERT(p, MA_OWNED);
  627         sig = ksi->ksi_signo;
  628         psp = p->p_sigacts;
  629         mtx_assert(&psp->ps_mtx, MA_OWNED);
  630 #ifdef COMPAT_FREEBSD4
  631         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  632                 freebsd4_sendsig(catcher, ksi, mask);
  633                 return;
  634         }
  635 #endif
  636 #ifdef COMPAT_43
  637         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  638                 osendsig(catcher, ksi, mask);
  639                 return;
  640         }
  641 #endif
  642         regs = td->td_frame;
  643         oonstack = sigonstack(regs->tf_esp);
  644 
  645         /* Save user context. */
  646         bzero(&sf, sizeof(sf));
  647         sf.sf_uc.uc_sigmask = *mask;
  648         sf.sf_uc.uc_stack = td->td_sigstk;
  649         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  650             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  651         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  652         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  653         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  654         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  655         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  656         fpstate_drop(td);
  657         /*
  658          * Unconditionally fill the fsbase and gsbase into the mcontext.
  659          */
  660         sdp = &td->td_pcb->pcb_fsd;
  661         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  662             sdp->sd_lobase;
  663         sdp = &td->td_pcb->pcb_gsd;
  664         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  665             sdp->sd_lobase;
  666         sf.sf_uc.uc_mcontext.mc_flags = 0;
  667         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  668             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  669         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  670 
  671         /* Allocate space for the signal handler context. */
  672         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  673             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  674                 sp = td->td_sigstk.ss_sp +
  675                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  676 #if defined(COMPAT_43)
  677                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  678 #endif
  679         } else
  680                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  681         /* Align to 16 bytes. */
  682         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  683 
  684         /* Translate the signal if appropriate. */
  685         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  686                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  687 
  688         /* Build the argument list for the signal handler. */
  689         sf.sf_signum = sig;
  690         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  691         bzero(&sf.sf_si, sizeof(sf.sf_si));
  692         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  693                 /* Signal handler installed with SA_SIGINFO. */
  694                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  695                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  696 
  697                 /* Fill in POSIX parts */
  698                 sf.sf_si = ksi->ksi_info;
  699                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  700         } else {
  701                 /* Old FreeBSD-style arguments. */
  702                 sf.sf_siginfo = ksi->ksi_code;
  703                 sf.sf_addr = (register_t)ksi->ksi_addr;
  704                 sf.sf_ahu.sf_handler = catcher;
  705         }
  706         mtx_unlock(&psp->ps_mtx);
  707         PROC_UNLOCK(p);
  708 
  709         /*
  710          * If we're a vm86 process, we want to save the segment registers.
  711          * We also change eflags to be our emulated eflags, not the actual
  712          * eflags.
  713          */
  714         if (regs->tf_eflags & PSL_VM) {
  715                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  716                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  717 
  718                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  719                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  720                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  721                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  722 
  723                 if (vm86->vm86_has_vme == 0)
  724                         sf.sf_uc.uc_mcontext.mc_eflags =
  725                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  726                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  727 
  728                 /*
  729                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  730                  * syscalls made by the signal handler.  This just avoids
  731                  * wasting time for our lazy fixup of such faults.  PSL_NT
  732                  * does nothing in vm86 mode, but vm86 programs can set it
  733                  * almost legitimately in probes for old cpu types.
  734                  */
  735                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  736         }
  737 
  738         /*
  739          * Copy the sigframe out to the user's stack.
  740          */
  741         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  742 #ifdef DEBUG
  743                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  744 #endif
  745                 PROC_LOCK(p);
  746                 sigexit(td, SIGILL);
  747         }
  748 
  749         regs->tf_esp = (int)sfp;
  750         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  751         regs->tf_eflags &= ~(PSL_T | PSL_D);
  752         regs->tf_cs = _ucodesel;
  753         regs->tf_ds = _udatasel;
  754         regs->tf_es = _udatasel;
  755         regs->tf_fs = _udatasel;
  756         regs->tf_ss = _udatasel;
  757         PROC_LOCK(p);
  758         mtx_lock(&psp->ps_mtx);
  759 }
  760 
  761 /*
  762  * System call to cleanup state after a signal
  763  * has been taken.  Reset signal mask and
  764  * stack state from context left by sendsig (above).
  765  * Return to previous pc and psl as specified by
  766  * context left by sendsig. Check carefully to
  767  * make sure that the user has not modified the
  768  * state to gain improper privileges.
  769  *
  770  * MPSAFE
  771  */
  772 #ifdef COMPAT_43
  773 int
  774 osigreturn(td, uap)
  775         struct thread *td;
  776         struct osigreturn_args /* {
  777                 struct osigcontext *sigcntxp;
  778         } */ *uap;
  779 {
  780         struct osigcontext sc;
  781         struct trapframe *regs;
  782         struct osigcontext *scp;
  783         int eflags, error;
  784         ksiginfo_t ksi;
  785 
  786         regs = td->td_frame;
  787         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  788         if (error != 0)
  789                 return (error);
  790         scp = &sc;
  791         eflags = scp->sc_ps;
  792         if (eflags & PSL_VM) {
  793                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  794                 struct vm86_kernel *vm86;
  795 
  796                 /*
  797                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  798                  * set up the vm86 area, and we can't enter vm86 mode.
  799                  */
  800                 if (td->td_pcb->pcb_ext == 0)
  801                         return (EINVAL);
  802                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  803                 if (vm86->vm86_inited == 0)
  804                         return (EINVAL);
  805 
  806                 /* Go back to user mode if both flags are set. */
  807                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  808                         ksiginfo_init_trap(&ksi);
  809                         ksi.ksi_signo = SIGBUS;
  810                         ksi.ksi_code = BUS_OBJERR;
  811                         ksi.ksi_addr = (void *)regs->tf_eip;
  812                         trapsignal(td, &ksi);
  813                 }
  814 
  815                 if (vm86->vm86_has_vme) {
  816                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  817                             (eflags & VME_USERCHANGE) | PSL_VM;
  818                 } else {
  819                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  820                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  821                             (eflags & VM_USERCHANGE) | PSL_VM;
  822                 }
  823                 tf->tf_vm86_ds = scp->sc_ds;
  824                 tf->tf_vm86_es = scp->sc_es;
  825                 tf->tf_vm86_fs = scp->sc_fs;
  826                 tf->tf_vm86_gs = scp->sc_gs;
  827                 tf->tf_ds = _udatasel;
  828                 tf->tf_es = _udatasel;
  829                 tf->tf_fs = _udatasel;
  830         } else {
  831                 /*
  832                  * Don't allow users to change privileged or reserved flags.
  833                  */
  834                 /*
  835                  * XXX do allow users to change the privileged flag PSL_RF.
  836                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  837                  * should sometimes set it there too.  tf_eflags is kept in
  838                  * the signal context during signal handling and there is no
  839                  * other place to remember it, so the PSL_RF bit may be
  840                  * corrupted by the signal handler without us knowing.
  841                  * Corruption of the PSL_RF bit at worst causes one more or
  842                  * one less debugger trap, so allowing it is fairly harmless.
  843                  */
  844                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  845                         return (EINVAL);
  846                 }
  847 
  848                 /*
  849                  * Don't allow users to load a valid privileged %cs.  Let the
  850                  * hardware check for invalid selectors, excess privilege in
  851                  * other selectors, invalid %eip's and invalid %esp's.
  852                  */
  853                 if (!CS_SECURE(scp->sc_cs)) {
  854                         ksiginfo_init_trap(&ksi);
  855                         ksi.ksi_signo = SIGBUS;
  856                         ksi.ksi_code = BUS_OBJERR;
  857                         ksi.ksi_trapno = T_PROTFLT;
  858                         ksi.ksi_addr = (void *)regs->tf_eip;
  859                         trapsignal(td, &ksi);
  860                         return (EINVAL);
  861                 }
  862                 regs->tf_ds = scp->sc_ds;
  863                 regs->tf_es = scp->sc_es;
  864                 regs->tf_fs = scp->sc_fs;
  865         }
  866 
  867         /* Restore remaining registers. */
  868         regs->tf_eax = scp->sc_eax;
  869         regs->tf_ebx = scp->sc_ebx;
  870         regs->tf_ecx = scp->sc_ecx;
  871         regs->tf_edx = scp->sc_edx;
  872         regs->tf_esi = scp->sc_esi;
  873         regs->tf_edi = scp->sc_edi;
  874         regs->tf_cs = scp->sc_cs;
  875         regs->tf_ss = scp->sc_ss;
  876         regs->tf_isp = scp->sc_isp;
  877         regs->tf_ebp = scp->sc_fp;
  878         regs->tf_esp = scp->sc_sp;
  879         regs->tf_eip = scp->sc_pc;
  880         regs->tf_eflags = eflags;
  881 
  882 #if defined(COMPAT_43)
  883         if (scp->sc_onstack & 1)
  884                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  885         else
  886                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  887 #endif
  888         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  889             SIGPROCMASK_OLD);
  890         return (EJUSTRETURN);
  891 }
  892 #endif /* COMPAT_43 */
  893 
  894 #ifdef COMPAT_FREEBSD4
  895 /*
  896  * MPSAFE
  897  */
  898 int
  899 freebsd4_sigreturn(td, uap)
  900         struct thread *td;
  901         struct freebsd4_sigreturn_args /* {
  902                 const ucontext4 *sigcntxp;
  903         } */ *uap;
  904 {
  905         struct ucontext4 uc;
  906         struct trapframe *regs;
  907         struct ucontext4 *ucp;
  908         int cs, eflags, error;
  909         ksiginfo_t ksi;
  910 
  911         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  912         if (error != 0)
  913                 return (error);
  914         ucp = &uc;
  915         regs = td->td_frame;
  916         eflags = ucp->uc_mcontext.mc_eflags;
  917         if (eflags & PSL_VM) {
  918                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  919                 struct vm86_kernel *vm86;
  920 
  921                 /*
  922                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  923                  * set up the vm86 area, and we can't enter vm86 mode.
  924                  */
  925                 if (td->td_pcb->pcb_ext == 0)
  926                         return (EINVAL);
  927                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  928                 if (vm86->vm86_inited == 0)
  929                         return (EINVAL);
  930 
  931                 /* Go back to user mode if both flags are set. */
  932                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  933                         ksiginfo_init_trap(&ksi);
  934                         ksi.ksi_signo = SIGBUS;
  935                         ksi.ksi_code = BUS_OBJERR;
  936                         ksi.ksi_addr = (void *)regs->tf_eip;
  937                         trapsignal(td, &ksi);
  938                 }
  939                 if (vm86->vm86_has_vme) {
  940                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  941                             (eflags & VME_USERCHANGE) | PSL_VM;
  942                 } else {
  943                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  944                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  945                             (eflags & VM_USERCHANGE) | PSL_VM;
  946                 }
  947                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  948                 tf->tf_eflags = eflags;
  949                 tf->tf_vm86_ds = tf->tf_ds;
  950                 tf->tf_vm86_es = tf->tf_es;
  951                 tf->tf_vm86_fs = tf->tf_fs;
  952                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  953                 tf->tf_ds = _udatasel;
  954                 tf->tf_es = _udatasel;
  955                 tf->tf_fs = _udatasel;
  956         } else {
  957                 /*
  958                  * Don't allow users to change privileged or reserved flags.
  959                  */
  960                 /*
  961                  * XXX do allow users to change the privileged flag PSL_RF.
  962                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  963                  * should sometimes set it there too.  tf_eflags is kept in
  964                  * the signal context during signal handling and there is no
  965                  * other place to remember it, so the PSL_RF bit may be
  966                  * corrupted by the signal handler without us knowing.
  967                  * Corruption of the PSL_RF bit at worst causes one more or
  968                  * one less debugger trap, so allowing it is fairly harmless.
  969                  */
  970                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  971                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  972                             td->td_proc->p_pid, td->td_name, eflags);
  973                         return (EINVAL);
  974                 }
  975 
  976                 /*
  977                  * Don't allow users to load a valid privileged %cs.  Let the
  978                  * hardware check for invalid selectors, excess privilege in
  979                  * other selectors, invalid %eip's and invalid %esp's.
  980                  */
  981                 cs = ucp->uc_mcontext.mc_cs;
  982                 if (!CS_SECURE(cs)) {
  983                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  984                             td->td_proc->p_pid, td->td_name, cs);
  985                         ksiginfo_init_trap(&ksi);
  986                         ksi.ksi_signo = SIGBUS;
  987                         ksi.ksi_code = BUS_OBJERR;
  988                         ksi.ksi_trapno = T_PROTFLT;
  989                         ksi.ksi_addr = (void *)regs->tf_eip;
  990                         trapsignal(td, &ksi);
  991                         return (EINVAL);
  992                 }
  993 
  994                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  995         }
  996 
  997 #if defined(COMPAT_43)
  998         if (ucp->uc_mcontext.mc_onstack & 1)
  999                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1000         else
 1001                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1002 #endif
 1003         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1004         return (EJUSTRETURN);
 1005 }
 1006 #endif  /* COMPAT_FREEBSD4 */
 1007 
 1008 /*
 1009  * MPSAFE
 1010  */
 1011 int
 1012 sys_sigreturn(td, uap)
 1013         struct thread *td;
 1014         struct sigreturn_args /* {
 1015                 const struct __ucontext *sigcntxp;
 1016         } */ *uap;
 1017 {
 1018         ucontext_t uc;
 1019         struct trapframe *regs;
 1020         ucontext_t *ucp;
 1021         int cs, eflags, error, ret;
 1022         ksiginfo_t ksi;
 1023 
 1024         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1025         if (error != 0)
 1026                 return (error);
 1027         ucp = &uc;
 1028         regs = td->td_frame;
 1029         eflags = ucp->uc_mcontext.mc_eflags;
 1030         if (eflags & PSL_VM) {
 1031                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1032                 struct vm86_kernel *vm86;
 1033 
 1034                 /*
 1035                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1036                  * set up the vm86 area, and we can't enter vm86 mode.
 1037                  */
 1038                 if (td->td_pcb->pcb_ext == 0)
 1039                         return (EINVAL);
 1040                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1041                 if (vm86->vm86_inited == 0)
 1042                         return (EINVAL);
 1043 
 1044                 /* Go back to user mode if both flags are set. */
 1045                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1046                         ksiginfo_init_trap(&ksi);
 1047                         ksi.ksi_signo = SIGBUS;
 1048                         ksi.ksi_code = BUS_OBJERR;
 1049                         ksi.ksi_addr = (void *)regs->tf_eip;
 1050                         trapsignal(td, &ksi);
 1051                 }
 1052 
 1053                 if (vm86->vm86_has_vme) {
 1054                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1055                             (eflags & VME_USERCHANGE) | PSL_VM;
 1056                 } else {
 1057                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1058                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1059                             (eflags & VM_USERCHANGE) | PSL_VM;
 1060                 }
 1061                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1062                 tf->tf_eflags = eflags;
 1063                 tf->tf_vm86_ds = tf->tf_ds;
 1064                 tf->tf_vm86_es = tf->tf_es;
 1065                 tf->tf_vm86_fs = tf->tf_fs;
 1066                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1067                 tf->tf_ds = _udatasel;
 1068                 tf->tf_es = _udatasel;
 1069                 tf->tf_fs = _udatasel;
 1070         } else {
 1071                 /*
 1072                  * Don't allow users to change privileged or reserved flags.
 1073                  */
 1074                 /*
 1075                  * XXX do allow users to change the privileged flag PSL_RF.
 1076                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
 1077                  * should sometimes set it there too.  tf_eflags is kept in
 1078                  * the signal context during signal handling and there is no
 1079                  * other place to remember it, so the PSL_RF bit may be
 1080                  * corrupted by the signal handler without us knowing.
 1081                  * Corruption of the PSL_RF bit at worst causes one more or
 1082                  * one less debugger trap, so allowing it is fairly harmless.
 1083                  */
 1084                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
 1085                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1086                             td->td_proc->p_pid, td->td_name, eflags);
 1087                         return (EINVAL);
 1088                 }
 1089 
 1090                 /*
 1091                  * Don't allow users to load a valid privileged %cs.  Let the
 1092                  * hardware check for invalid selectors, excess privilege in
 1093                  * other selectors, invalid %eip's and invalid %esp's.
 1094                  */
 1095                 cs = ucp->uc_mcontext.mc_cs;
 1096                 if (!CS_SECURE(cs)) {
 1097                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1098                             td->td_proc->p_pid, td->td_name, cs);
 1099                         ksiginfo_init_trap(&ksi);
 1100                         ksi.ksi_signo = SIGBUS;
 1101                         ksi.ksi_code = BUS_OBJERR;
 1102                         ksi.ksi_trapno = T_PROTFLT;
 1103                         ksi.ksi_addr = (void *)regs->tf_eip;
 1104                         trapsignal(td, &ksi);
 1105                         return (EINVAL);
 1106                 }
 1107 
 1108                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1109                 if (ret != 0)
 1110                         return (ret);
 1111                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1112         }
 1113 
 1114 #if defined(COMPAT_43)
 1115         if (ucp->uc_mcontext.mc_onstack & 1)
 1116                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1117         else
 1118                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1119 #endif
 1120 
 1121         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1122         return (EJUSTRETURN);
 1123 }
 1124 
 1125 /*
 1126  * Machine dependent boot() routine
 1127  *
 1128  * I haven't seen anything to put here yet
 1129  * Possibly some stuff might be grafted back here from boot()
 1130  */
 1131 void
 1132 cpu_boot(int howto)
 1133 {
 1134 }
 1135 
 1136 /*
 1137  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1138  * be made coherent later.
 1139  */
 1140 void
 1141 cpu_flush_dcache(void *ptr, size_t len)
 1142 {
 1143         /* Not applicable */
 1144 }
 1145 
 1146 /* Get current clock frequency for the given cpu id. */
 1147 int
 1148 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1149 {
 1150         uint64_t tsc1, tsc2;
 1151         uint64_t acnt, mcnt, perf;
 1152         register_t reg;
 1153 
 1154         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1155                 return (EINVAL);
 1156         if ((cpu_feature & CPUID_TSC) == 0)
 1157                 return (EOPNOTSUPP);
 1158 
 1159         /*
 1160          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
 1161          * DELAY(9) based logic fails.
 1162          */
 1163         if (tsc_is_invariant && !tsc_perf_stat)
 1164                 return (EOPNOTSUPP);
 1165 
 1166 #ifdef SMP
 1167         if (smp_cpus > 1) {
 1168                 /* Schedule ourselves on the indicated cpu. */
 1169                 thread_lock(curthread);
 1170                 sched_bind(curthread, cpu_id);
 1171                 thread_unlock(curthread);
 1172         }
 1173 #endif
 1174 
 1175         /* Calibrate by measuring a short delay. */
 1176         reg = intr_disable();
 1177         if (tsc_is_invariant) {
 1178                 wrmsr(MSR_MPERF, 0);
 1179                 wrmsr(MSR_APERF, 0);
 1180                 tsc1 = rdtsc();
 1181                 DELAY(1000);
 1182                 mcnt = rdmsr(MSR_MPERF);
 1183                 acnt = rdmsr(MSR_APERF);
 1184                 tsc2 = rdtsc();
 1185                 intr_restore(reg);
 1186                 perf = 1000 * acnt / mcnt;
 1187                 *rate = (tsc2 - tsc1) * perf;
 1188         } else {
 1189                 tsc1 = rdtsc();
 1190                 DELAY(1000);
 1191                 tsc2 = rdtsc();
 1192                 intr_restore(reg);
 1193                 *rate = (tsc2 - tsc1) * 1000;
 1194         }
 1195 
 1196 #ifdef SMP
 1197         if (smp_cpus > 1) {
 1198                 thread_lock(curthread);
 1199                 sched_unbind(curthread);
 1200                 thread_unlock(curthread);
 1201         }
 1202 #endif
 1203 
 1204         return (0);
 1205 }
 1206 
 1207 #ifdef XEN
 1208 
 1209 void
 1210 cpu_halt(void)
 1211 {
 1212         HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 1213 }
 1214 
 1215 int scheduler_running;
 1216 
 1217 static void
 1218 cpu_idle_hlt(int busy)
 1219 {
 1220 
 1221         scheduler_running = 1;
 1222         enable_intr();
 1223         idle_block();
 1224 }
 1225 
 1226 #else
 1227 /*
 1228  * Shutdown the CPU as much as possible
 1229  */
 1230 void
 1231 cpu_halt(void)
 1232 {
 1233         for (;;)
 1234                 __asm__ ("hlt");
 1235 }
 1236 
 1237 #endif
 1238 
 1239 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
 1240 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
 1241 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
 1242 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
 1243 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
 1244     0, "Use MONITOR/MWAIT for short idle");
 1245 
 1246 #define STATE_RUNNING   0x0
 1247 #define STATE_MWAIT     0x1
 1248 #define STATE_SLEEPING  0x2
 1249 
 1250 static void
 1251 cpu_idle_acpi(int busy)
 1252 {
 1253         int *state;
 1254 
 1255         state = (int *)PCPU_PTR(monitorbuf);
 1256         *state = STATE_SLEEPING;
 1257         disable_intr();
 1258         if (sched_runnable())
 1259                 enable_intr();
 1260         else if (cpu_idle_hook)
 1261                 cpu_idle_hook();
 1262         else
 1263                 __asm __volatile("sti; hlt");
 1264         *state = STATE_RUNNING;
 1265 }
 1266 
 1267 #ifndef XEN
 1268 static void
 1269 cpu_idle_hlt(int busy)
 1270 {
 1271         int *state;
 1272 
 1273         state = (int *)PCPU_PTR(monitorbuf);
 1274         *state = STATE_SLEEPING;
 1275         /*
 1276          * We must absolutely guarentee that hlt is the next instruction
 1277          * after sti or we introduce a timing window.
 1278          */
 1279         disable_intr();
 1280         if (sched_runnable())
 1281                 enable_intr();
 1282         else
 1283                 __asm __volatile("sti; hlt");
 1284         *state = STATE_RUNNING;
 1285 }
 1286 #endif
 1287 
 1288 /*
 1289  * MWAIT cpu power states.  Lower 4 bits are sub-states.
 1290  */
 1291 #define MWAIT_C0        0xf0
 1292 #define MWAIT_C1        0x00
 1293 #define MWAIT_C2        0x10
 1294 #define MWAIT_C3        0x20
 1295 #define MWAIT_C4        0x30
 1296 
 1297 static void
 1298 cpu_idle_mwait(int busy)
 1299 {
 1300         int *state;
 1301 
 1302         state = (int *)PCPU_PTR(monitorbuf);
 1303         *state = STATE_MWAIT;
 1304         if (!sched_runnable()) {
 1305                 cpu_monitor(state, 0, 0);
 1306                 if (*state == STATE_MWAIT)
 1307                         cpu_mwait(0, MWAIT_C1);
 1308         }
 1309         *state = STATE_RUNNING;
 1310 }
 1311 
 1312 static void
 1313 cpu_idle_spin(int busy)
 1314 {
 1315         int *state;
 1316         int i;
 1317 
 1318         state = (int *)PCPU_PTR(monitorbuf);
 1319         *state = STATE_RUNNING;
 1320         for (i = 0; i < 1000; i++) {
 1321                 if (sched_runnable())
 1322                         return;
 1323                 cpu_spinwait();
 1324         }
 1325 }
 1326 
 1327 /*
 1328  * C1E renders the local APIC timer dead, so we disable it by
 1329  * reading the Interrupt Pending Message register and clearing
 1330  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
 1331  * 
 1332  * Reference:
 1333  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
 1334  *   #32559 revision 3.00+
 1335  */
 1336 #define MSR_AMDK8_IPM           0xc0010055
 1337 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
 1338 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
 1339 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
 1340 
 1341 static void
 1342 cpu_probe_amdc1e(void)
 1343 {
 1344 
 1345         /*
 1346          * Detect the presence of C1E capability mostly on latest
 1347          * dual-cores (or future) k8 family.
 1348          */
 1349         if (cpu_vendor_id == CPU_VENDOR_AMD &&
 1350             (cpu_id & 0x00000f00) == 0x00000f00 &&
 1351             (cpu_id & 0x0fff0000) >=  0x00040000) {
 1352                 cpu_ident_amdc1e = 1;
 1353         }
 1354 }
 1355 
 1356 #ifdef XEN
 1357 void (*cpu_idle_fn)(int) = cpu_idle_hlt;
 1358 #else
 1359 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
 1360 #endif
 1361 
 1362 void
 1363 cpu_idle(int busy)
 1364 {
 1365 #ifndef XEN
 1366         uint64_t msr;
 1367 #endif
 1368 
 1369         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
 1370             busy, curcpu);
 1371 #if defined(MP_WATCHDOG) && !defined(XEN)
 1372         ap_watchdog(PCPU_GET(cpuid));
 1373 #endif
 1374 #ifndef XEN
 1375         /* If we are busy - try to use fast methods. */
 1376         if (busy) {
 1377                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
 1378                         cpu_idle_mwait(busy);
 1379                         goto out;
 1380                 }
 1381         }
 1382 #endif
 1383 
 1384         /* If we have time - switch timers into idle mode. */
 1385         if (!busy) {
 1386                 critical_enter();
 1387                 cpu_idleclock();
 1388         }
 1389 
 1390 #ifndef XEN
 1391         /* Apply AMD APIC timer C1E workaround. */
 1392         if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
 1393                 msr = rdmsr(MSR_AMDK8_IPM);
 1394                 if (msr & AMDK8_CMPHALT)
 1395                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
 1396         }
 1397 #endif
 1398 
 1399         /* Call main idle method. */
 1400         cpu_idle_fn(busy);
 1401 
 1402         /* Switch timers mack into active mode. */
 1403         if (!busy) {
 1404                 cpu_activeclock();
 1405                 critical_exit();
 1406         }
 1407 #ifndef XEN
 1408 out:
 1409 #endif
 1410         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
 1411             busy, curcpu);
 1412 }
 1413 
 1414 int
 1415 cpu_idle_wakeup(int cpu)
 1416 {
 1417         struct pcpu *pcpu;
 1418         int *state;
 1419 
 1420         pcpu = pcpu_find(cpu);
 1421         state = (int *)pcpu->pc_monitorbuf;
 1422         /*
 1423          * This doesn't need to be atomic since missing the race will
 1424          * simply result in unnecessary IPIs.
 1425          */
 1426         if (*state == STATE_SLEEPING)
 1427                 return (0);
 1428         if (*state == STATE_MWAIT)
 1429                 *state = STATE_RUNNING;
 1430         return (1);
 1431 }
 1432 
 1433 /*
 1434  * Ordered by speed/power consumption.
 1435  */
 1436 struct {
 1437         void    *id_fn;
 1438         char    *id_name;
 1439 } idle_tbl[] = {
 1440         { cpu_idle_spin, "spin" },
 1441         { cpu_idle_mwait, "mwait" },
 1442         { cpu_idle_hlt, "hlt" },
 1443         { cpu_idle_acpi, "acpi" },
 1444         { NULL, NULL }
 1445 };
 1446 
 1447 static int
 1448 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1449 {
 1450         char *avail, *p;
 1451         int error;
 1452         int i;
 1453 
 1454         avail = malloc(256, M_TEMP, M_WAITOK);
 1455         p = avail;
 1456         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1457                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1458                     (cpu_feature2 & CPUID2_MON) == 0)
 1459                         continue;
 1460                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1461                     cpu_idle_hook == NULL)
 1462                         continue;
 1463                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
 1464                     idle_tbl[i].id_name);
 1465         }
 1466         error = sysctl_handle_string(oidp, avail, 0, req);
 1467         free(avail, M_TEMP);
 1468         return (error);
 1469 }
 1470 
 1471 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1472     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1473 
 1474 static int
 1475 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1476 {
 1477         char buf[16];
 1478         int error;
 1479         char *p;
 1480         int i;
 1481 
 1482         p = "unknown";
 1483         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1484                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1485                         p = idle_tbl[i].id_name;
 1486                         break;
 1487                 }
 1488         }
 1489         strncpy(buf, p, sizeof(buf));
 1490         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1491         if (error != 0 || req->newptr == NULL)
 1492                 return (error);
 1493         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1494                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1495                     (cpu_feature2 & CPUID2_MON) == 0)
 1496                         continue;
 1497                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1498                     cpu_idle_hook == NULL)
 1499                         continue;
 1500                 if (strcmp(idle_tbl[i].id_name, buf))
 1501                         continue;
 1502                 cpu_idle_fn = idle_tbl[i].id_fn;
 1503                 return (0);
 1504         }
 1505         return (EINVAL);
 1506 }
 1507 
 1508 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1509     idle_sysctl, "A", "currently selected idle function");
 1510 
 1511 uint64_t (*atomic_load_acq_64)(volatile uint64_t *) =
 1512     atomic_load_acq_64_i386;
 1513 void (*atomic_store_rel_64)(volatile uint64_t *, uint64_t) =
 1514     atomic_store_rel_64_i386;
 1515 
 1516 static void
 1517 cpu_probe_cmpxchg8b(void)
 1518 {
 1519 
 1520         if ((cpu_feature & CPUID_CX8) != 0 ||
 1521             cpu_vendor_id == CPU_VENDOR_RISE) {
 1522                 atomic_load_acq_64 = atomic_load_acq_64_i586;
 1523                 atomic_store_rel_64 = atomic_store_rel_64_i586;
 1524         }
 1525 }
 1526 
 1527 /*
 1528  * Reset registers to default values on exec.
 1529  */
 1530 void
 1531 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1532 {
 1533         struct trapframe *regs = td->td_frame;
 1534         struct pcb *pcb = td->td_pcb;
 1535 
 1536         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1537         pcb->pcb_gs = _udatasel;
 1538         load_gs(_udatasel);
 1539 
 1540         mtx_lock_spin(&dt_lock);
 1541         if (td->td_proc->p_md.md_ldt)
 1542                 user_ldt_free(td);
 1543         else
 1544                 mtx_unlock_spin(&dt_lock);
 1545   
 1546         bzero((char *)regs, sizeof(struct trapframe));
 1547         regs->tf_eip = imgp->entry_addr;
 1548         regs->tf_esp = stack;
 1549         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1550         regs->tf_ss = _udatasel;
 1551         regs->tf_ds = _udatasel;
 1552         regs->tf_es = _udatasel;
 1553         regs->tf_fs = _udatasel;
 1554         regs->tf_cs = _ucodesel;
 1555 
 1556         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1557         regs->tf_ebx = imgp->ps_strings;
 1558 
 1559         /*
 1560          * Reset the hardware debug registers if they were in use.
 1561          * They won't have any meaning for the newly exec'd process.  
 1562          */
 1563         if (pcb->pcb_flags & PCB_DBREGS) {
 1564                 pcb->pcb_dr0 = 0;
 1565                 pcb->pcb_dr1 = 0;
 1566                 pcb->pcb_dr2 = 0;
 1567                 pcb->pcb_dr3 = 0;
 1568                 pcb->pcb_dr6 = 0;
 1569                 pcb->pcb_dr7 = 0;
 1570                 if (pcb == PCPU_GET(curpcb)) {
 1571                         /*
 1572                          * Clear the debug registers on the running
 1573                          * CPU, otherwise they will end up affecting
 1574                          * the next process we switch to.
 1575                          */
 1576                         reset_dbregs();
 1577                 }
 1578                 pcb->pcb_flags &= ~PCB_DBREGS;
 1579         }
 1580 
 1581         /*
 1582          * Initialize the math emulator (if any) for the current process.
 1583          * Actually, just clear the bit that says that the emulator has
 1584          * been initialized.  Initialization is delayed until the process
 1585          * traps to the emulator (if it is done at all) mainly because
 1586          * emulators don't provide an entry point for initialization.
 1587          */
 1588         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1589         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1590 
 1591         /*
 1592          * Drop the FP state if we hold it, so that the process gets a
 1593          * clean FP state if it uses the FPU again.
 1594          */
 1595         fpstate_drop(td);
 1596 
 1597         /*
 1598          * XXX - Linux emulator
 1599          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1600          * on it.
 1601          */
 1602         td->td_retval[1] = 0;
 1603 }
 1604 
 1605 void
 1606 cpu_setregs(void)
 1607 {
 1608         unsigned int cr0;
 1609 
 1610         cr0 = rcr0();
 1611 
 1612         /*
 1613          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1614          *
 1615          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1616          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1617          * bit to control the trap, because setting the CR0_EM bit does
 1618          * not cause WAIT instructions to trap.  It's important to trap
 1619          * WAIT instructions - otherwise the "wait" variants of no-wait
 1620          * control instructions would degenerate to the "no-wait" variants
 1621          * after FP context switches but work correctly otherwise.  It's
 1622          * particularly important to trap WAITs when there is no NPX -
 1623          * otherwise the "wait" variants would always degenerate.
 1624          *
 1625          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1626          * Setting it should fail or do nothing on lesser processors.
 1627          */
 1628         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1629         load_cr0(cr0);
 1630         load_gs(_udatasel);
 1631 }
 1632 
 1633 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1634 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1635         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1636 
 1637 /*
 1638  * Initialize 386 and configure to run kernel
 1639  */
 1640 
 1641 /*
 1642  * Initialize segments & interrupt table
 1643  */
 1644 
 1645 int _default_ldt;
 1646 
 1647 #ifdef XEN
 1648 union descriptor *gdt;
 1649 union descriptor *ldt;
 1650 #else
 1651 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1652 union descriptor ldt[NLDT];             /* local descriptor table */
 1653 #endif
 1654 static struct gate_descriptor idt0[NIDT];
 1655 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1656 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1657 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1658 
 1659 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1660 extern int has_f00f_bug;
 1661 #endif
 1662 
 1663 static struct i386tss dblfault_tss;
 1664 static char dblfault_stack[PAGE_SIZE];
 1665 
 1666 extern  vm_offset_t     proc0kstack;
 1667 
 1668 
 1669 /*
 1670  * software prototypes -- in more palatable form.
 1671  *
 1672  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1673  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1674  */
 1675 struct soft_segment_descriptor gdt_segs[] = {
 1676 /* GNULL_SEL    0 Null Descriptor */
 1677 {       .ssd_base = 0x0,
 1678         .ssd_limit = 0x0,
 1679         .ssd_type = 0,
 1680         .ssd_dpl = SEL_KPL,
 1681         .ssd_p = 0,
 1682         .ssd_xx = 0, .ssd_xx1 = 0,
 1683         .ssd_def32 = 0,
 1684         .ssd_gran = 0           },
 1685 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1686 {       .ssd_base = 0x0,
 1687         .ssd_limit = 0xfffff,
 1688         .ssd_type = SDT_MEMRWA,
 1689         .ssd_dpl = SEL_KPL,
 1690         .ssd_p = 1,
 1691         .ssd_xx = 0, .ssd_xx1 = 0,
 1692         .ssd_def32 = 1,
 1693         .ssd_gran = 1           },
 1694 /* GUFS_SEL     2 %fs Descriptor for user */
 1695 {       .ssd_base = 0x0,
 1696         .ssd_limit = 0xfffff,
 1697         .ssd_type = SDT_MEMRWA,
 1698         .ssd_dpl = SEL_UPL,
 1699         .ssd_p = 1,
 1700         .ssd_xx = 0, .ssd_xx1 = 0,
 1701         .ssd_def32 = 1,
 1702         .ssd_gran = 1           },
 1703 /* GUGS_SEL     3 %gs Descriptor for user */
 1704 {       .ssd_base = 0x0,
 1705         .ssd_limit = 0xfffff,
 1706         .ssd_type = SDT_MEMRWA,
 1707         .ssd_dpl = SEL_UPL,
 1708         .ssd_p = 1,
 1709         .ssd_xx = 0, .ssd_xx1 = 0,
 1710         .ssd_def32 = 1,
 1711         .ssd_gran = 1           },
 1712 /* GCODE_SEL    4 Code Descriptor for kernel */
 1713 {       .ssd_base = 0x0,
 1714         .ssd_limit = 0xfffff,
 1715         .ssd_type = SDT_MEMERA,
 1716         .ssd_dpl = SEL_KPL,
 1717         .ssd_p = 1,
 1718         .ssd_xx = 0, .ssd_xx1 = 0,
 1719         .ssd_def32 = 1,
 1720         .ssd_gran = 1           },
 1721 /* GDATA_SEL    5 Data Descriptor for kernel */
 1722 {       .ssd_base = 0x0,
 1723         .ssd_limit = 0xfffff,
 1724         .ssd_type = SDT_MEMRWA,
 1725         .ssd_dpl = SEL_KPL,
 1726         .ssd_p = 1,
 1727         .ssd_xx = 0, .ssd_xx1 = 0,
 1728         .ssd_def32 = 1,
 1729         .ssd_gran = 1           },
 1730 /* GUCODE_SEL   6 Code Descriptor for user */
 1731 {       .ssd_base = 0x0,
 1732         .ssd_limit = 0xfffff,
 1733         .ssd_type = SDT_MEMERA,
 1734         .ssd_dpl = SEL_UPL,
 1735         .ssd_p = 1,
 1736         .ssd_xx = 0, .ssd_xx1 = 0,
 1737         .ssd_def32 = 1,
 1738         .ssd_gran = 1           },
 1739 /* GUDATA_SEL   7 Data Descriptor for user */
 1740 {       .ssd_base = 0x0,
 1741         .ssd_limit = 0xfffff,
 1742         .ssd_type = SDT_MEMRWA,
 1743         .ssd_dpl = SEL_UPL,
 1744         .ssd_p = 1,
 1745         .ssd_xx = 0, .ssd_xx1 = 0,
 1746         .ssd_def32 = 1,
 1747         .ssd_gran = 1           },
 1748 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1749 {       .ssd_base = 0x400,
 1750         .ssd_limit = 0xfffff,
 1751         .ssd_type = SDT_MEMRWA,
 1752         .ssd_dpl = SEL_KPL,
 1753         .ssd_p = 1,
 1754         .ssd_xx = 0, .ssd_xx1 = 0,
 1755         .ssd_def32 = 1,
 1756         .ssd_gran = 1           },
 1757 #ifndef XEN
 1758 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1759 {
 1760         .ssd_base = 0x0,
 1761         .ssd_limit = sizeof(struct i386tss)-1,
 1762         .ssd_type = SDT_SYS386TSS,
 1763         .ssd_dpl = 0,
 1764         .ssd_p = 1,
 1765         .ssd_xx = 0, .ssd_xx1 = 0,
 1766         .ssd_def32 = 0,
 1767         .ssd_gran = 0           },
 1768 /* GLDT_SEL     10 LDT Descriptor */
 1769 {       .ssd_base = (int) ldt,
 1770         .ssd_limit = sizeof(ldt)-1,
 1771         .ssd_type = SDT_SYSLDT,
 1772         .ssd_dpl = SEL_UPL,
 1773         .ssd_p = 1,
 1774         .ssd_xx = 0, .ssd_xx1 = 0,
 1775         .ssd_def32 = 0,
 1776         .ssd_gran = 0           },
 1777 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1778 {       .ssd_base = (int) ldt,
 1779         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1780         .ssd_type = SDT_SYSLDT,
 1781         .ssd_dpl = 0,
 1782         .ssd_p = 1,
 1783         .ssd_xx = 0, .ssd_xx1 = 0,
 1784         .ssd_def32 = 0,
 1785         .ssd_gran = 0           },
 1786 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1787 {       .ssd_base = (int) &dblfault_tss,
 1788         .ssd_limit = sizeof(struct i386tss)-1,
 1789         .ssd_type = SDT_SYS386TSS,
 1790         .ssd_dpl = 0,
 1791         .ssd_p = 1,
 1792         .ssd_xx = 0, .ssd_xx1 = 0,
 1793         .ssd_def32 = 0,
 1794         .ssd_gran = 0           },
 1795 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1796 {       .ssd_base = 0,
 1797         .ssd_limit = 0xfffff,
 1798         .ssd_type = SDT_MEMERA,
 1799         .ssd_dpl = 0,
 1800         .ssd_p = 1,
 1801         .ssd_xx = 0, .ssd_xx1 = 0,
 1802         .ssd_def32 = 0,
 1803         .ssd_gran = 1           },
 1804 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1805 {       .ssd_base = 0,
 1806         .ssd_limit = 0xfffff,
 1807         .ssd_type = SDT_MEMERA,
 1808         .ssd_dpl = 0,
 1809         .ssd_p = 1,
 1810         .ssd_xx = 0, .ssd_xx1 = 0,
 1811         .ssd_def32 = 0,
 1812         .ssd_gran = 1           },
 1813 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1814 {       .ssd_base = 0,
 1815         .ssd_limit = 0xfffff,
 1816         .ssd_type = SDT_MEMRWA,
 1817         .ssd_dpl = 0,
 1818         .ssd_p = 1,
 1819         .ssd_xx = 0, .ssd_xx1 = 0,
 1820         .ssd_def32 = 1,
 1821         .ssd_gran = 1           },
 1822 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1823 {       .ssd_base = 0,
 1824         .ssd_limit = 0xfffff,
 1825         .ssd_type = SDT_MEMRWA,
 1826         .ssd_dpl = 0,
 1827         .ssd_p = 1,
 1828         .ssd_xx = 0, .ssd_xx1 = 0,
 1829         .ssd_def32 = 0,
 1830         .ssd_gran = 1           },
 1831 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1832 {       .ssd_base = 0,
 1833         .ssd_limit = 0xfffff,
 1834         .ssd_type = SDT_MEMRWA,
 1835         .ssd_dpl = 0,
 1836         .ssd_p = 1,
 1837         .ssd_xx = 0, .ssd_xx1 = 0,
 1838         .ssd_def32 = 0,
 1839         .ssd_gran = 1           },
 1840 /* GNDIS_SEL    18 NDIS Descriptor */
 1841 {       .ssd_base = 0x0,
 1842         .ssd_limit = 0x0,
 1843         .ssd_type = 0,
 1844         .ssd_dpl = 0,
 1845         .ssd_p = 0,
 1846         .ssd_xx = 0, .ssd_xx1 = 0,
 1847         .ssd_def32 = 0,
 1848         .ssd_gran = 0           },
 1849 #endif /* !XEN */
 1850 };
 1851 
 1852 static struct soft_segment_descriptor ldt_segs[] = {
 1853         /* Null Descriptor - overwritten by call gate */
 1854 {       .ssd_base = 0x0,
 1855         .ssd_limit = 0x0,
 1856         .ssd_type = 0,
 1857         .ssd_dpl = 0,
 1858         .ssd_p = 0,
 1859         .ssd_xx = 0, .ssd_xx1 = 0,
 1860         .ssd_def32 = 0,
 1861         .ssd_gran = 0           },
 1862         /* Null Descriptor - overwritten by call gate */
 1863 {       .ssd_base = 0x0,
 1864         .ssd_limit = 0x0,
 1865         .ssd_type = 0,
 1866         .ssd_dpl = 0,
 1867         .ssd_p = 0,
 1868         .ssd_xx = 0, .ssd_xx1 = 0,
 1869         .ssd_def32 = 0,
 1870         .ssd_gran = 0           },
 1871         /* Null Descriptor - overwritten by call gate */
 1872 {       .ssd_base = 0x0,
 1873         .ssd_limit = 0x0,
 1874         .ssd_type = 0,
 1875         .ssd_dpl = 0,
 1876         .ssd_p = 0,
 1877         .ssd_xx = 0, .ssd_xx1 = 0,
 1878         .ssd_def32 = 0,
 1879         .ssd_gran = 0           },
 1880         /* Code Descriptor for user */
 1881 {       .ssd_base = 0x0,
 1882         .ssd_limit = 0xfffff,
 1883         .ssd_type = SDT_MEMERA,
 1884         .ssd_dpl = SEL_UPL,
 1885         .ssd_p = 1,
 1886         .ssd_xx = 0, .ssd_xx1 = 0,
 1887         .ssd_def32 = 1,
 1888         .ssd_gran = 1           },
 1889         /* Null Descriptor - overwritten by call gate */
 1890 {       .ssd_base = 0x0,
 1891         .ssd_limit = 0x0,
 1892         .ssd_type = 0,
 1893         .ssd_dpl = 0,
 1894         .ssd_p = 0,
 1895         .ssd_xx = 0, .ssd_xx1 = 0,
 1896         .ssd_def32 = 0,
 1897         .ssd_gran = 0           },
 1898         /* Data Descriptor for user */
 1899 {       .ssd_base = 0x0,
 1900         .ssd_limit = 0xfffff,
 1901         .ssd_type = SDT_MEMRWA,
 1902         .ssd_dpl = SEL_UPL,
 1903         .ssd_p = 1,
 1904         .ssd_xx = 0, .ssd_xx1 = 0,
 1905         .ssd_def32 = 1,
 1906         .ssd_gran = 1           },
 1907 };
 1908 
 1909 void
 1910 setidt(idx, func, typ, dpl, selec)
 1911         int idx;
 1912         inthand_t *func;
 1913         int typ;
 1914         int dpl;
 1915         int selec;
 1916 {
 1917         struct gate_descriptor *ip;
 1918 
 1919         ip = idt + idx;
 1920         ip->gd_looffset = (int)func;
 1921         ip->gd_selector = selec;
 1922         ip->gd_stkcpy = 0;
 1923         ip->gd_xx = 0;
 1924         ip->gd_type = typ;
 1925         ip->gd_dpl = dpl;
 1926         ip->gd_p = 1;
 1927         ip->gd_hioffset = ((int)func)>>16 ;
 1928 }
 1929 
 1930 extern inthand_t
 1931         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1932         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1933         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1934         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1935         IDTVEC(xmm),
 1936 #ifdef KDTRACE_HOOKS
 1937         IDTVEC(dtrace_ret),
 1938 #endif
 1939         IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1940 
 1941 #ifdef DDB
 1942 /*
 1943  * Display the index and function name of any IDT entries that don't use
 1944  * the default 'rsvd' entry point.
 1945  */
 1946 DB_SHOW_COMMAND(idt, db_show_idt)
 1947 {
 1948         struct gate_descriptor *ip;
 1949         int idx;
 1950         uintptr_t func;
 1951 
 1952         ip = idt;
 1953         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1954                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1955                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1956                         db_printf("%3d\t", idx);
 1957                         db_printsym(func, DB_STGY_PROC);
 1958                         db_printf("\n");
 1959                 }
 1960                 ip++;
 1961         }
 1962 }
 1963 
 1964 /* Show privileged registers. */
 1965 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1966 {
 1967         uint64_t idtr, gdtr;
 1968 
 1969         idtr = ridt();
 1970         db_printf("idtr\t0x%08x/%04x\n",
 1971             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1972         gdtr = rgdt();
 1973         db_printf("gdtr\t0x%08x/%04x\n",
 1974             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1975         db_printf("ldtr\t0x%04x\n", rldt());
 1976         db_printf("tr\t0x%04x\n", rtr());
 1977         db_printf("cr0\t0x%08x\n", rcr0());
 1978         db_printf("cr2\t0x%08x\n", rcr2());
 1979         db_printf("cr3\t0x%08x\n", rcr3());
 1980         db_printf("cr4\t0x%08x\n", rcr4());
 1981 }
 1982 #endif
 1983 
 1984 void
 1985 sdtossd(sd, ssd)
 1986         struct segment_descriptor *sd;
 1987         struct soft_segment_descriptor *ssd;
 1988 {
 1989         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1990         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1991         ssd->ssd_type  = sd->sd_type;
 1992         ssd->ssd_dpl   = sd->sd_dpl;
 1993         ssd->ssd_p     = sd->sd_p;
 1994         ssd->ssd_def32 = sd->sd_def32;
 1995         ssd->ssd_gran  = sd->sd_gran;
 1996 }
 1997 
 1998 #ifndef XEN
 1999 static int
 2000 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 2001 {
 2002         int i, insert_idx, physmap_idx;
 2003 
 2004         physmap_idx = *physmap_idxp;
 2005         
 2006         if (boothowto & RB_VERBOSE)
 2007                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 2008                     smap->type, smap->base, smap->length);
 2009 
 2010         if (smap->type != SMAP_TYPE_MEMORY)
 2011                 return (1);
 2012 
 2013         if (smap->length == 0)
 2014                 return (1);
 2015 
 2016 #ifndef PAE
 2017         if (smap->base > 0xffffffff) {
 2018                 printf("%uK of memory above 4GB ignored\n",
 2019                     (u_int)(smap->length / 1024));
 2020                 return (1);
 2021         }
 2022 #endif
 2023 
 2024         /*
 2025          * Find insertion point while checking for overlap.  Start off by
 2026          * assuming the new entry will be added to the end.
 2027          */
 2028         insert_idx = physmap_idx + 2;
 2029         for (i = 0; i <= physmap_idx; i += 2) {
 2030                 if (smap->base < physmap[i + 1]) {
 2031                         if (smap->base + smap->length <= physmap[i]) {
 2032                                 insert_idx = i;
 2033                                 break;
 2034                         }
 2035                         if (boothowto & RB_VERBOSE)
 2036                                 printf(
 2037                     "Overlapping memory regions, ignoring second region\n");
 2038                         return (1);
 2039                 }
 2040         }
 2041 
 2042         /* See if we can prepend to the next entry. */
 2043         if (insert_idx <= physmap_idx &&
 2044             smap->base + smap->length == physmap[insert_idx]) {
 2045                 physmap[insert_idx] = smap->base;
 2046                 return (1);
 2047         }
 2048 
 2049         /* See if we can append to the previous entry. */
 2050         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 2051                 physmap[insert_idx - 1] += smap->length;
 2052                 return (1);
 2053         }
 2054 
 2055         physmap_idx += 2;
 2056         *physmap_idxp = physmap_idx;
 2057         if (physmap_idx == PHYSMAP_SIZE) {
 2058                 printf(
 2059                 "Too many segments in the physical address map, giving up\n");
 2060                 return (0);
 2061         }
 2062 
 2063         /*
 2064          * Move the last 'N' entries down to make room for the new
 2065          * entry if needed.
 2066          */
 2067         for (i = physmap_idx; i > insert_idx; i -= 2) {
 2068                 physmap[i] = physmap[i - 2];
 2069                 physmap[i + 1] = physmap[i - 1];
 2070         }
 2071 
 2072         /* Insert the new entry. */
 2073         physmap[insert_idx] = smap->base;
 2074         physmap[insert_idx + 1] = smap->base + smap->length;
 2075         return (1);
 2076 }
 2077 
 2078 static void
 2079 basemem_setup(void)
 2080 {
 2081         vm_paddr_t pa;
 2082         pt_entry_t *pte;
 2083         int i;
 2084 
 2085         if (basemem > 640) {
 2086                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2087                         basemem);
 2088                 basemem = 640;
 2089         }
 2090 
 2091         /*
 2092          * XXX if biosbasemem is now < 640, there is a `hole'
 2093          * between the end of base memory and the start of
 2094          * ISA memory.  The hole may be empty or it may
 2095          * contain BIOS code or data.  Map it read/write so
 2096          * that the BIOS can write to it.  (Memory from 0 to
 2097          * the physical end of the kernel is mapped read-only
 2098          * to begin with and then parts of it are remapped.
 2099          * The parts that aren't remapped form holes that
 2100          * remain read-only and are unused by the kernel.
 2101          * The base memory area is below the physical end of
 2102          * the kernel and right now forms a read-only hole.
 2103          * The part of it from PAGE_SIZE to
 2104          * (trunc_page(biosbasemem * 1024) - 1) will be
 2105          * remapped and used by the kernel later.)
 2106          *
 2107          * This code is similar to the code used in
 2108          * pmap_mapdev, but since no memory needs to be
 2109          * allocated we simply change the mapping.
 2110          */
 2111         for (pa = trunc_page(basemem * 1024);
 2112              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2113                 pmap_kenter(KERNBASE + pa, pa);
 2114 
 2115         /*
 2116          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 2117          * the vm86 page table so that vm86 can scribble on them using
 2118          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 2119          * page 0, at least as initialized here?
 2120          */
 2121         pte = (pt_entry_t *)vm86paddr;
 2122         for (i = basemem / 4; i < 160; i++)
 2123                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2124 }
 2125 #endif
 2126 
 2127 /*
 2128  * Populate the (physmap) array with base/bound pairs describing the
 2129  * available physical memory in the system, then test this memory and
 2130  * build the phys_avail array describing the actually-available memory.
 2131  *
 2132  * If we cannot accurately determine the physical memory map, then use
 2133  * value from the 0xE801 call, and failing that, the RTC.
 2134  *
 2135  * Total memory size may be set by the kernel environment variable
 2136  * hw.physmem or the compile-time define MAXMEM.
 2137  *
 2138  * XXX first should be vm_paddr_t.
 2139  */
 2140 static void
 2141 getmemsize(int first)
 2142 {
 2143         int has_smap, off, physmap_idx, pa_indx, da_indx;
 2144         u_long physmem_tunable, memtest;
 2145         vm_paddr_t physmap[PHYSMAP_SIZE];
 2146         pt_entry_t *pte;
 2147         quad_t dcons_addr, dcons_size;
 2148 #ifndef XEN
 2149         int hasbrokenint12, i;
 2150         u_int extmem;
 2151         struct vm86frame vmf;
 2152         struct vm86context vmc;
 2153         vm_paddr_t pa;
 2154         struct bios_smap *smap, *smapbase, *smapend;
 2155         u_int32_t smapsize;
 2156         caddr_t kmdp;
 2157 #endif
 2158 
 2159         has_smap = 0;
 2160 #if defined(XEN)
 2161         Maxmem = xen_start_info->nr_pages - init_first;
 2162         physmem = Maxmem;
 2163         basemem = 0;
 2164         physmap[0] = init_first << PAGE_SHIFT;
 2165         physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
 2166         physmap_idx = 0;
 2167 #else
 2168 #ifdef XBOX
 2169         if (arch_i386_is_xbox) {
 2170                 /*
 2171                  * We queried the memory size before, so chop off 4MB for
 2172                  * the framebuffer and inform the OS of this.
 2173                  */
 2174                 physmap[0] = 0;
 2175                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2176                 physmap_idx = 0;
 2177                 goto physmap_done;
 2178         }
 2179 #endif
 2180         bzero(&vmf, sizeof(vmf));
 2181         bzero(physmap, sizeof(physmap));
 2182         basemem = 0;
 2183 
 2184         /*
 2185          * Check if the loader supplied an SMAP memory map.  If so,
 2186          * use that and do not make any VM86 calls.
 2187          */
 2188         physmap_idx = 0;
 2189         smapbase = NULL;
 2190         kmdp = preload_search_by_type("elf kernel");
 2191         if (kmdp == NULL)
 2192                 kmdp = preload_search_by_type("elf32 kernel");
 2193         if (kmdp != NULL)
 2194                 smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2195                     MODINFO_METADATA | MODINFOMD_SMAP);
 2196         if (smapbase != NULL) {
 2197                 /*
 2198                  * subr_module.c says:
 2199                  * "Consumer may safely assume that size value precedes data."
 2200                  * ie: an int32_t immediately precedes SMAP.
 2201                  */
 2202                 smapsize = *((u_int32_t *)smapbase - 1);
 2203                 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 2204                 has_smap = 1;
 2205 
 2206                 for (smap = smapbase; smap < smapend; smap++)
 2207                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2208                                 break;
 2209                 goto have_smap;
 2210         }
 2211 
 2212         /*
 2213          * Some newer BIOSes have a broken INT 12H implementation
 2214          * which causes a kernel panic immediately.  In this case, we
 2215          * need use the SMAP to determine the base memory size.
 2216          */
 2217         hasbrokenint12 = 0;
 2218         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2219         if (hasbrokenint12 == 0) {
 2220                 /* Use INT12 to determine base memory size. */
 2221                 vm86_intcall(0x12, &vmf);
 2222                 basemem = vmf.vmf_ax;
 2223                 basemem_setup();
 2224         }
 2225 
 2226         /*
 2227          * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
 2228          * the kernel page table so we can use it as a buffer.  The
 2229          * kernel will unmap this page later.
 2230          */
 2231         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2232         vmc.npages = 0;
 2233         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 2234         vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2235 
 2236         vmf.vmf_ebx = 0;
 2237         do {
 2238                 vmf.vmf_eax = 0xE820;
 2239                 vmf.vmf_edx = SMAP_SIG;
 2240                 vmf.vmf_ecx = sizeof(struct bios_smap);
 2241                 i = vm86_datacall(0x15, &vmf, &vmc);
 2242                 if (i || vmf.vmf_eax != SMAP_SIG)
 2243                         break;
 2244                 has_smap = 1;
 2245                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 2246                         break;
 2247         } while (vmf.vmf_ebx != 0);
 2248 
 2249 have_smap:
 2250         /*
 2251          * If we didn't fetch the "base memory" size from INT12,
 2252          * figure it out from the SMAP (or just guess).
 2253          */
 2254         if (basemem == 0) {
 2255                 for (i = 0; i <= physmap_idx; i += 2) {
 2256                         if (physmap[i] == 0x00000000) {
 2257                                 basemem = physmap[i + 1] / 1024;
 2258                                 break;
 2259                         }
 2260                 }
 2261 
 2262                 /* XXX: If we couldn't find basemem from SMAP, just guess. */
 2263                 if (basemem == 0)
 2264                         basemem = 640;
 2265                 basemem_setup();
 2266         }
 2267 
 2268         if (physmap[1] != 0)
 2269                 goto physmap_done;
 2270 
 2271         /*
 2272          * If we failed to find an SMAP, figure out the extended
 2273          * memory size.  We will then build a simple memory map with
 2274          * two segments, one for "base memory" and the second for
 2275          * "extended memory".  Note that "extended memory" starts at a
 2276          * physical address of 1MB and that both basemem and extmem
 2277          * are in units of 1KB.
 2278          *
 2279          * First, try to fetch the extended memory size via INT 15:E801.
 2280          */
 2281         vmf.vmf_ax = 0xE801;
 2282         if (vm86_intcall(0x15, &vmf) == 0) {
 2283                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2284         } else {
 2285                 /*
 2286                  * If INT15:E801 fails, this is our last ditch effort
 2287                  * to determine the extended memory size.  Currently
 2288                  * we prefer the RTC value over INT15:88.
 2289                  */
 2290 #if 0
 2291                 vmf.vmf_ah = 0x88;
 2292                 vm86_intcall(0x15, &vmf);
 2293                 extmem = vmf.vmf_ax;
 2294 #else
 2295                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2296 #endif
 2297         }
 2298 
 2299         /*
 2300          * Special hack for chipsets that still remap the 384k hole when
 2301          * there's 16MB of memory - this really confuses people that
 2302          * are trying to use bus mastering ISA controllers with the
 2303          * "16MB limit"; they only have 16MB, but the remapping puts
 2304          * them beyond the limit.
 2305          *
 2306          * If extended memory is between 15-16MB (16-17MB phys address range),
 2307          *      chop it to 15MB.
 2308          */
 2309         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2310                 extmem = 15 * 1024;
 2311 
 2312         physmap[0] = 0;
 2313         physmap[1] = basemem * 1024;
 2314         physmap_idx = 2;
 2315         physmap[physmap_idx] = 0x100000;
 2316         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2317 
 2318 physmap_done:
 2319 #endif  
 2320         /*
 2321          * Now, physmap contains a map of physical memory.
 2322          */
 2323 
 2324 #ifdef SMP
 2325         /* make hole for AP bootstrap code */
 2326         physmap[1] = mp_bootaddress(physmap[1]);
 2327 #endif
 2328 
 2329         /*
 2330          * Maxmem isn't the "maximum memory", it's one larger than the
 2331          * highest page of the physical address space.  It should be
 2332          * called something like "Maxphyspage".  We may adjust this 
 2333          * based on ``hw.physmem'' and the results of the memory test.
 2334          */
 2335         Maxmem = atop(physmap[physmap_idx + 1]);
 2336 
 2337 #ifdef MAXMEM
 2338         Maxmem = MAXMEM / 4;
 2339 #endif
 2340 
 2341         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2342                 Maxmem = atop(physmem_tunable);
 2343 
 2344         /*
 2345          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2346          * the amount of memory in the system.
 2347          */
 2348         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2349                 Maxmem = atop(physmap[physmap_idx + 1]);
 2350 
 2351         /*
 2352          * By default enable the memory test on real hardware, and disable
 2353          * it if we appear to be running in a VM.  This avoids touching all
 2354          * pages unnecessarily, which doesn't matter on real hardware but is
 2355          * bad for shared VM hosts.  Use a general name so that
 2356          * one could eventually do more with the code than just disable it.
 2357          */
 2358         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 2359         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 2360 
 2361         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2362             (boothowto & RB_VERBOSE))
 2363                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2364 
 2365         /*
 2366          * If Maxmem has been increased beyond what the system has detected,
 2367          * extend the last memory segment to the new limit.
 2368          */ 
 2369         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2370                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2371 
 2372         /* call pmap initialization to make new kernel address space */
 2373         pmap_bootstrap(first);
 2374 
 2375         /*
 2376          * Size up each available chunk of physical memory.
 2377          */
 2378         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2379         pa_indx = 0;
 2380         da_indx = 1;
 2381         phys_avail[pa_indx++] = physmap[0];
 2382         phys_avail[pa_indx] = physmap[0];
 2383         dump_avail[da_indx] = physmap[0];
 2384         pte = CMAP1;
 2385 
 2386         /*
 2387          * Get dcons buffer address
 2388          */
 2389         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2390             getenv_quad("dcons.size", &dcons_size) == 0)
 2391                 dcons_addr = 0;
 2392 
 2393 #ifndef XEN
 2394         /*
 2395          * physmap is in bytes, so when converting to page boundaries,
 2396          * round up the start address and round down the end address.
 2397          */
 2398         for (i = 0; i <= physmap_idx; i += 2) {
 2399                 vm_paddr_t end;
 2400 
 2401                 end = ptoa((vm_paddr_t)Maxmem);
 2402                 if (physmap[i + 1] < end)
 2403                         end = trunc_page(physmap[i + 1]);
 2404                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2405                         int tmp, page_bad, full;
 2406                         int *ptr = (int *)CADDR1;
 2407 
 2408                         full = FALSE;
 2409                         /*
 2410                          * block out kernel memory as not available.
 2411                          */
 2412                         if (pa >= KERNLOAD && pa < first)
 2413                                 goto do_dump_avail;
 2414 
 2415                         /*
 2416                          * block out dcons buffer
 2417                          */
 2418                         if (dcons_addr > 0
 2419                             && pa >= trunc_page(dcons_addr)
 2420                             && pa < dcons_addr + dcons_size)
 2421                                 goto do_dump_avail;
 2422 
 2423                         page_bad = FALSE;
 2424                         if (memtest == 0)
 2425                                 goto skip_memtest;
 2426 
 2427                         /*
 2428                          * map page into kernel: valid, read/write,non-cacheable
 2429                          */
 2430                         *pte = pa | PG_V | PG_RW | PG_N;
 2431                         invltlb();
 2432 
 2433                         tmp = *(int *)ptr;
 2434                         /*
 2435                          * Test for alternating 1's and 0's
 2436                          */
 2437                         *(volatile int *)ptr = 0xaaaaaaaa;
 2438                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2439                                 page_bad = TRUE;
 2440                         /*
 2441                          * Test for alternating 0's and 1's
 2442                          */
 2443                         *(volatile int *)ptr = 0x55555555;
 2444                         if (*(volatile int *)ptr != 0x55555555)
 2445                                 page_bad = TRUE;
 2446                         /*
 2447                          * Test for all 1's
 2448                          */
 2449                         *(volatile int *)ptr = 0xffffffff;
 2450                         if (*(volatile int *)ptr != 0xffffffff)
 2451                                 page_bad = TRUE;
 2452                         /*
 2453                          * Test for all 0's
 2454                          */
 2455                         *(volatile int *)ptr = 0x0;
 2456                         if (*(volatile int *)ptr != 0x0)
 2457                                 page_bad = TRUE;
 2458                         /*
 2459                          * Restore original value.
 2460                          */
 2461                         *(int *)ptr = tmp;
 2462 
 2463 skip_memtest:
 2464                         /*
 2465                          * Adjust array of valid/good pages.
 2466                          */
 2467                         if (page_bad == TRUE)
 2468                                 continue;
 2469                         /*
 2470                          * If this good page is a continuation of the
 2471                          * previous set of good pages, then just increase
 2472                          * the end pointer. Otherwise start a new chunk.
 2473                          * Note that "end" points one higher than end,
 2474                          * making the range >= start and < end.
 2475                          * If we're also doing a speculative memory
 2476                          * test and we at or past the end, bump up Maxmem
 2477                          * so that we keep going. The first bad page
 2478                          * will terminate the loop.
 2479                          */
 2480                         if (phys_avail[pa_indx] == pa) {
 2481                                 phys_avail[pa_indx] += PAGE_SIZE;
 2482                         } else {
 2483                                 pa_indx++;
 2484                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2485                                         printf(
 2486                 "Too many holes in the physical address space, giving up\n");
 2487                                         pa_indx--;
 2488                                         full = TRUE;
 2489                                         goto do_dump_avail;
 2490                                 }
 2491                                 phys_avail[pa_indx++] = pa;     /* start */
 2492                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2493                         }
 2494                         physmem++;
 2495 do_dump_avail:
 2496                         if (dump_avail[da_indx] == pa) {
 2497                                 dump_avail[da_indx] += PAGE_SIZE;
 2498                         } else {
 2499                                 da_indx++;
 2500                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2501                                         da_indx--;
 2502                                         goto do_next;
 2503                                 }
 2504                                 dump_avail[da_indx++] = pa;     /* start */
 2505                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2506                         }
 2507 do_next:
 2508                         if (full)
 2509                                 break;
 2510                 }
 2511         }
 2512         *pte = 0;
 2513         invltlb();
 2514 #else
 2515         phys_avail[0] = physfree;
 2516         phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2517         dump_avail[0] = 0;      
 2518         dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2519         
 2520 #endif
 2521         
 2522         /*
 2523          * XXX
 2524          * The last chunk must contain at least one page plus the message
 2525          * buffer to avoid complicating other code (message buffer address
 2526          * calculation, etc.).
 2527          */
 2528         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2529             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2530                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2531                 phys_avail[pa_indx--] = 0;
 2532                 phys_avail[pa_indx--] = 0;
 2533         }
 2534 
 2535         Maxmem = atop(phys_avail[pa_indx]);
 2536 
 2537         /* Trim off space for the message buffer. */
 2538         phys_avail[pa_indx] -= round_page(msgbufsize);
 2539 
 2540         /* Map the message buffer. */
 2541         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2542                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2543                     off);
 2544 
 2545         PT_UPDATES_FLUSH();
 2546 }
 2547 
 2548 #ifdef XEN
 2549 #define MTOPSIZE (1<<(14 + PAGE_SHIFT))
 2550 
 2551 void
 2552 init386(first)
 2553         int first;
 2554 {
 2555         unsigned long gdtmachpfn;
 2556         int error, gsel_tss, metadata_missing, x, pa;
 2557         size_t kstack0_sz;
 2558         struct pcpu *pc;
 2559         struct callback_register event = {
 2560                 .type = CALLBACKTYPE_event,
 2561                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
 2562         };
 2563         struct callback_register failsafe = {
 2564                 .type = CALLBACKTYPE_failsafe,
 2565                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
 2566         };
 2567 
 2568         thread0.td_kstack = proc0kstack;
 2569         thread0.td_kstack_pages = KSTACK_PAGES;
 2570         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2571         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2572 
 2573         /*
 2574          * This may be done better later if it gets more high level
 2575          * components in it. If so just link td->td_proc here.
 2576          */
 2577         proc_linkup0(&proc0, &thread0);
 2578 
 2579         metadata_missing = 0;
 2580         if (xen_start_info->mod_start) {
 2581                 preload_metadata = (caddr_t)xen_start_info->mod_start;
 2582                 preload_bootstrap_relocate(KERNBASE);
 2583         } else {
 2584                 metadata_missing = 1;
 2585         }
 2586         if (envmode == 1)
 2587                 kern_envp = static_env;
 2588         else if ((caddr_t)xen_start_info->cmd_line)
 2589                 kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
 2590 
 2591         boothowto |= xen_boothowto(kern_envp);
 2592         
 2593         /* Init basic tunables, hz etc */
 2594         init_param1();
 2595 
 2596         /*
 2597          * XEN occupies a portion of the upper virtual address space 
 2598          * At its base it manages an array mapping machine page frames 
 2599          * to physical page frames - hence we need to be able to 
 2600          * access 4GB - (64MB  - 4MB + 64k) 
 2601          */
 2602         gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2603         gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2604         gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2605         gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2606         gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2607         gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2608         gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2609         gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2610 
 2611         pc = &__pcpu[0];
 2612         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2613         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2614 
 2615         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
 2616         bzero(gdt, PAGE_SIZE);
 2617         for (x = 0; x < NGDT; x++)
 2618                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2619 
 2620         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2621 
 2622         gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
 2623         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
 2624         PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);    
 2625         lgdt(&r_gdt);
 2626         gdtset = 1;
 2627 
 2628         if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
 2629                 panic("set_trap_table failed - error %d\n", error);
 2630         }
 2631         
 2632         error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
 2633         if (error == 0)
 2634                 error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
 2635 #if     CONFIG_XEN_COMPAT <= 0x030002
 2636         if (error == -ENOXENSYS)
 2637                 HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
 2638                     (unsigned long)Xhypervisor_callback,
 2639                     GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
 2640 #endif
 2641         pcpu_init(pc, 0, sizeof(struct pcpu));
 2642         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2643                 pmap_kenter(pa + KERNBASE, pa);
 2644         dpcpu_init((void *)(first + KERNBASE), 0);
 2645         first += DPCPU_SIZE;
 2646         physfree += DPCPU_SIZE;
 2647         init_first += DPCPU_SIZE / PAGE_SIZE;
 2648 
 2649         PCPU_SET(prvspace, pc);
 2650         PCPU_SET(curthread, &thread0);
 2651         PCPU_SET(curpcb, thread0.td_pcb);
 2652 
 2653         /*
 2654          * Initialize mutexes.
 2655          *
 2656          * icu_lock: in order to allow an interrupt to occur in a critical
 2657          *           section, to set pcpu->ipending (etc...) properly, we
 2658          *           must be able to get the icu lock, so it can't be
 2659          *           under witness.
 2660          */
 2661         mutex_init();
 2662         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2663 
 2664         /* make ldt memory segments */
 2665         PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
 2666         bzero(ldt, PAGE_SIZE);
 2667         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2668         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2669         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2670                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2671 
 2672         default_proc_ldt.ldt_base = (caddr_t)ldt;
 2673         default_proc_ldt.ldt_len = 6;
 2674         _default_ldt = (int)&default_proc_ldt;
 2675         PCPU_SET(currentldt, _default_ldt);
 2676         PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
 2677         xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
 2678         
 2679 #if defined(XEN_PRIVILEGED)
 2680         /*
 2681          * Initialize the i8254 before the console so that console
 2682          * initialization can use DELAY().
 2683          */
 2684         i8254_init();
 2685 #endif
 2686         
 2687         /*
 2688          * Initialize the console before we print anything out.
 2689          */
 2690         cninit();
 2691 
 2692         if (metadata_missing)
 2693                 printf("WARNING: loader(8) metadata is missing!\n");
 2694 
 2695 #ifdef DEV_ISA
 2696 #ifdef DEV_ATPIC
 2697         elcr_probe();
 2698         atpic_startup();
 2699 #else
 2700         /* Reset and mask the atpics and leave them shut down. */
 2701         atpic_reset();
 2702 
 2703         /*
 2704          * Point the ICU spurious interrupt vectors at the APIC spurious
 2705          * interrupt handler.
 2706          */
 2707         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2708             GSEL(GCODE_SEL, SEL_KPL));
 2709         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2710             GSEL(GCODE_SEL, SEL_KPL));
 2711 #endif
 2712 #endif
 2713 
 2714 #ifdef DDB
 2715         ksym_start = bootinfo.bi_symtab;
 2716         ksym_end = bootinfo.bi_esymtab;
 2717 #endif
 2718 
 2719         kdb_init();
 2720 
 2721 #ifdef KDB
 2722         if (boothowto & RB_KDB)
 2723                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2724 #endif
 2725 
 2726         finishidentcpu();       /* Final stage of CPU initialization */
 2727         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2728             GSEL(GCODE_SEL, SEL_KPL));
 2729         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2730             GSEL(GCODE_SEL, SEL_KPL));
 2731         initializecpu();        /* Initialize CPU registers */
 2732 
 2733         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2734         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2735         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2736             kstack0_sz - sizeof(struct pcb) - 16);
 2737         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2738         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2739         HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
 2740             PCPU_GET(common_tss.tss_esp0));
 2741         
 2742         /* pointer to selector slot for %fs/%gs */
 2743         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2744 
 2745         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2746             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2747         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2748             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2749 #ifdef PAE
 2750         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2751 #else
 2752         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2753 #endif
 2754         dblfault_tss.tss_eip = (int)dblfault_handler;
 2755         dblfault_tss.tss_eflags = PSL_KERNEL;
 2756         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2757             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2758         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2759         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2760         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2761 
 2762         vm86_initialize();
 2763         getmemsize(first);
 2764         init_param2(physmem);
 2765 
 2766         /* now running on new page tables, configured,and u/iom is accessible */
 2767 
 2768         msgbufinit(msgbufp, msgbufsize);
 2769         /* transfer to user mode */
 2770 
 2771         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2772         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2773 
 2774         /* setup proc 0's pcb */
 2775         thread0.td_pcb->pcb_flags = 0;
 2776 #ifdef PAE
 2777         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2778 #else
 2779         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2780 #endif
 2781         thread0.td_pcb->pcb_ext = 0;
 2782         thread0.td_frame = &proc0_tf;
 2783         thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
 2784         thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
 2785 
 2786         cpu_probe_amdc1e();
 2787         cpu_probe_cmpxchg8b();
 2788 }
 2789 
 2790 #else
 2791 void
 2792 init386(first)
 2793         int first;
 2794 {
 2795         struct gate_descriptor *gdp;
 2796         int gsel_tss, metadata_missing, x, pa;
 2797         size_t kstack0_sz;
 2798         struct pcpu *pc;
 2799 
 2800         thread0.td_kstack = proc0kstack;
 2801         thread0.td_kstack_pages = KSTACK_PAGES;
 2802         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2803         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2804 
 2805         /*
 2806          * This may be done better later if it gets more high level
 2807          * components in it. If so just link td->td_proc here.
 2808          */
 2809         proc_linkup0(&proc0, &thread0);
 2810 
 2811         metadata_missing = 0;
 2812         if (bootinfo.bi_modulep) {
 2813                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2814                 preload_bootstrap_relocate(KERNBASE);
 2815         } else {
 2816                 metadata_missing = 1;
 2817         }
 2818         if (envmode == 1)
 2819                 kern_envp = static_env;
 2820         else if (bootinfo.bi_envp)
 2821                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2822 
 2823         /* Init basic tunables, hz etc */
 2824         init_param1();
 2825 
 2826         /*
 2827          * Make gdt memory segments.  All segments cover the full 4GB
 2828          * of address space and permissions are enforced at page level.
 2829          */
 2830         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2831         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2832         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2833         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2834         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2835         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2836 
 2837         pc = &__pcpu[0];
 2838         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2839         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2840         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2841 
 2842         for (x = 0; x < NGDT; x++)
 2843                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2844 
 2845         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2846         r_gdt.rd_base =  (int) gdt;
 2847         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2848         lgdt(&r_gdt);
 2849 
 2850         pcpu_init(pc, 0, sizeof(struct pcpu));
 2851         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2852                 pmap_kenter(pa + KERNBASE, pa);
 2853         dpcpu_init((void *)(first + KERNBASE), 0);
 2854         first += DPCPU_SIZE;
 2855         PCPU_SET(prvspace, pc);
 2856         PCPU_SET(curthread, &thread0);
 2857         PCPU_SET(curpcb, thread0.td_pcb);
 2858 
 2859         /*
 2860          * Initialize mutexes.
 2861          *
 2862          * icu_lock: in order to allow an interrupt to occur in a critical
 2863          *           section, to set pcpu->ipending (etc...) properly, we
 2864          *           must be able to get the icu lock, so it can't be
 2865          *           under witness.
 2866          */
 2867         mutex_init();
 2868         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2869 
 2870         /* make ldt memory segments */
 2871         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2872         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2873         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2874                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2875 
 2876         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2877         lldt(_default_ldt);
 2878         PCPU_SET(currentldt, _default_ldt);
 2879 
 2880         /* exceptions */
 2881         for (x = 0; x < NIDT; x++)
 2882                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2883                     GSEL(GCODE_SEL, SEL_KPL));
 2884         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2885             GSEL(GCODE_SEL, SEL_KPL));
 2886         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2887             GSEL(GCODE_SEL, SEL_KPL));
 2888         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2889             GSEL(GCODE_SEL, SEL_KPL));
 2890         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2891             GSEL(GCODE_SEL, SEL_KPL));
 2892         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2893             GSEL(GCODE_SEL, SEL_KPL));
 2894         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2895             GSEL(GCODE_SEL, SEL_KPL));
 2896         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2897             GSEL(GCODE_SEL, SEL_KPL));
 2898         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2899             , GSEL(GCODE_SEL, SEL_KPL));
 2900         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2901         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2902             GSEL(GCODE_SEL, SEL_KPL));
 2903         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2904             GSEL(GCODE_SEL, SEL_KPL));
 2905         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2906             GSEL(GCODE_SEL, SEL_KPL));
 2907         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2908             GSEL(GCODE_SEL, SEL_KPL));
 2909         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2910             GSEL(GCODE_SEL, SEL_KPL));
 2911         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2912             GSEL(GCODE_SEL, SEL_KPL));
 2913         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2914             GSEL(GCODE_SEL, SEL_KPL));
 2915         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2916             GSEL(GCODE_SEL, SEL_KPL));
 2917         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2918             GSEL(GCODE_SEL, SEL_KPL));
 2919         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2920             GSEL(GCODE_SEL, SEL_KPL));
 2921         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2922             GSEL(GCODE_SEL, SEL_KPL));
 2923 #ifdef KDTRACE_HOOKS
 2924         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
 2925             GSEL(GCODE_SEL, SEL_KPL));
 2926 #endif
 2927 
 2928         r_idt.rd_limit = sizeof(idt0) - 1;
 2929         r_idt.rd_base = (int) idt;
 2930         lidt(&r_idt);
 2931 
 2932 #ifdef XBOX
 2933         /*
 2934          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 2935          * This should be 0x10de / 0x02a5.
 2936          *
 2937          * This is exactly what Linux does.
 2938          */
 2939         outl(0xcf8, 0x80000000);
 2940         if (inl(0xcfc) == 0x02a510de) {
 2941                 arch_i386_is_xbox = 1;
 2942                 pic16l_setled(XBOX_LED_GREEN);
 2943 
 2944                 /*
 2945                  * We are an XBOX, but we may have either 64MB or 128MB of
 2946                  * memory. The PCI host bridge should be programmed for this,
 2947                  * so we just query it. 
 2948                  */
 2949                 outl(0xcf8, 0x80000084);
 2950                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 2951         }
 2952 #endif /* XBOX */
 2953 
 2954         /*
 2955          * Initialize the i8254 before the console so that console
 2956          * initialization can use DELAY().
 2957          */
 2958         i8254_init();
 2959 
 2960         /*
 2961          * Initialize the console before we print anything out.
 2962          */
 2963         cninit();
 2964 
 2965         if (metadata_missing)
 2966                 printf("WARNING: loader(8) metadata is missing!\n");
 2967 
 2968 #ifdef DEV_ISA
 2969 #ifdef DEV_ATPIC
 2970         elcr_probe();
 2971         atpic_startup();
 2972 #else
 2973         /* Reset and mask the atpics and leave them shut down. */
 2974         atpic_reset();
 2975 
 2976         /*
 2977          * Point the ICU spurious interrupt vectors at the APIC spurious
 2978          * interrupt handler.
 2979          */
 2980         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2981             GSEL(GCODE_SEL, SEL_KPL));
 2982         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2983             GSEL(GCODE_SEL, SEL_KPL));
 2984 #endif
 2985 #endif
 2986 
 2987 #ifdef DDB
 2988         ksym_start = bootinfo.bi_symtab;
 2989         ksym_end = bootinfo.bi_esymtab;
 2990 #endif
 2991 
 2992         kdb_init();
 2993 
 2994 #ifdef KDB
 2995         if (boothowto & RB_KDB)
 2996                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2997 #endif
 2998 
 2999         finishidentcpu();       /* Final stage of CPU initialization */
 3000         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 3001             GSEL(GCODE_SEL, SEL_KPL));
 3002         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 3003             GSEL(GCODE_SEL, SEL_KPL));
 3004         initializecpu();        /* Initialize CPU registers */
 3005 
 3006         /* make an initial tss so cpu can get interrupt stack on syscall! */
 3007         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 3008         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 3009             kstack0_sz - sizeof(struct pcb) - 16);
 3010         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 3011         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 3012         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 3013         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 3014         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 3015         ltr(gsel_tss);
 3016 
 3017         /* pointer to selector slot for %fs/%gs */
 3018         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 3019 
 3020         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 3021             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 3022         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 3023             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 3024 #ifdef PAE
 3025         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 3026 #else
 3027         dblfault_tss.tss_cr3 = (int)IdlePTD;
 3028 #endif
 3029         dblfault_tss.tss_eip = (int)dblfault_handler;
 3030         dblfault_tss.tss_eflags = PSL_KERNEL;
 3031         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 3032             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 3033         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 3034         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 3035         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 3036 
 3037         vm86_initialize();
 3038         getmemsize(first);
 3039         init_param2(physmem);
 3040 
 3041         /* now running on new page tables, configured,and u/iom is accessible */
 3042 
 3043         msgbufinit(msgbufp, msgbufsize);
 3044 
 3045         /* make a call gate to reenter kernel with */
 3046         gdp = &ldt[LSYS5CALLS_SEL].gd;
 3047 
 3048         x = (int) &IDTVEC(lcall_syscall);
 3049         gdp->gd_looffset = x;
 3050         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 3051         gdp->gd_stkcpy = 1;
 3052         gdp->gd_type = SDT_SYS386CGT;
 3053         gdp->gd_dpl = SEL_UPL;
 3054         gdp->gd_p = 1;
 3055         gdp->gd_hioffset = x >> 16;
 3056 
 3057         /* XXX does this work? */
 3058         /* XXX yes! */
 3059         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3060         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3061 
 3062         /* transfer to user mode */
 3063 
 3064         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 3065         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 3066 
 3067         /* setup proc 0's pcb */
 3068         thread0.td_pcb->pcb_flags = 0;
 3069 #ifdef PAE
 3070         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 3071 #else
 3072         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 3073 #endif
 3074         thread0.td_pcb->pcb_ext = 0;
 3075         thread0.td_frame = &proc0_tf;
 3076 
 3077         cpu_probe_amdc1e();
 3078         cpu_probe_cmpxchg8b();
 3079 }
 3080 #endif
 3081 
 3082 void
 3083 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 3084 {
 3085 
 3086         pcpu->pc_acpi_id = 0xffffffff;
 3087 }
 3088 
 3089 void
 3090 spinlock_enter(void)
 3091 {
 3092         struct thread *td;
 3093         register_t flags;
 3094 
 3095         td = curthread;
 3096         if (td->td_md.md_spinlock_count == 0) {
 3097                 flags = intr_disable();
 3098                 td->td_md.md_spinlock_count = 1;
 3099                 td->td_md.md_saved_flags = flags;
 3100         } else
 3101                 td->td_md.md_spinlock_count++;
 3102         critical_enter();
 3103 }
 3104 
 3105 void
 3106 spinlock_exit(void)
 3107 {
 3108         struct thread *td;
 3109         register_t flags;
 3110 
 3111         td = curthread;
 3112         critical_exit();
 3113         flags = td->td_md.md_saved_flags;
 3114         td->td_md.md_spinlock_count--;
 3115         if (td->td_md.md_spinlock_count == 0)
 3116                 intr_restore(flags);
 3117 }
 3118 
 3119 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 3120 static void f00f_hack(void *unused);
 3121 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 3122 
 3123 static void
 3124 f00f_hack(void *unused)
 3125 {
 3126         struct gate_descriptor *new_idt;
 3127         vm_offset_t tmp;
 3128 
 3129         if (!has_f00f_bug)
 3130                 return;
 3131 
 3132         GIANT_REQUIRED;
 3133 
 3134         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 3135 
 3136         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 3137         if (tmp == 0)
 3138                 panic("kmem_alloc returned 0");
 3139 
 3140         /* Put the problematic entry (#6) at the end of the lower page. */
 3141         new_idt = (struct gate_descriptor*)
 3142             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 3143         bcopy(idt, new_idt, sizeof(idt0));
 3144         r_idt.rd_base = (u_int)new_idt;
 3145         lidt(&r_idt);
 3146         idt = new_idt;
 3147         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 3148                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 3149                 panic("vm_map_protect failed");
 3150 }
 3151 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 3152 
 3153 /*
 3154  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 3155  * we want to start a backtrace from the function that caused us to enter
 3156  * the debugger. We have the context in the trapframe, but base the trace
 3157  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 3158  * enough for a backtrace.
 3159  */
 3160 void
 3161 makectx(struct trapframe *tf, struct pcb *pcb)
 3162 {
 3163 
 3164         pcb->pcb_edi = tf->tf_edi;
 3165         pcb->pcb_esi = tf->tf_esi;
 3166         pcb->pcb_ebp = tf->tf_ebp;
 3167         pcb->pcb_ebx = tf->tf_ebx;
 3168         pcb->pcb_eip = tf->tf_eip;
 3169         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 3170 }
 3171 
 3172 int
 3173 ptrace_set_pc(struct thread *td, u_long addr)
 3174 {
 3175 
 3176         td->td_frame->tf_eip = addr;
 3177         return (0);
 3178 }
 3179 
 3180 int
 3181 ptrace_single_step(struct thread *td)
 3182 {
 3183         td->td_frame->tf_eflags |= PSL_T;
 3184         return (0);
 3185 }
 3186 
 3187 int
 3188 ptrace_clear_single_step(struct thread *td)
 3189 {
 3190         td->td_frame->tf_eflags &= ~PSL_T;
 3191         return (0);
 3192 }
 3193 
 3194 int
 3195 fill_regs(struct thread *td, struct reg *regs)
 3196 {
 3197         struct pcb *pcb;
 3198         struct trapframe *tp;
 3199 
 3200         tp = td->td_frame;
 3201         pcb = td->td_pcb;
 3202         regs->r_gs = pcb->pcb_gs;
 3203         return (fill_frame_regs(tp, regs));
 3204 }
 3205 
 3206 int
 3207 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 3208 {
 3209         regs->r_fs = tp->tf_fs;
 3210         regs->r_es = tp->tf_es;
 3211         regs->r_ds = tp->tf_ds;
 3212         regs->r_edi = tp->tf_edi;
 3213         regs->r_esi = tp->tf_esi;
 3214         regs->r_ebp = tp->tf_ebp;
 3215         regs->r_ebx = tp->tf_ebx;
 3216         regs->r_edx = tp->tf_edx;
 3217         regs->r_ecx = tp->tf_ecx;
 3218         regs->r_eax = tp->tf_eax;
 3219         regs->r_eip = tp->tf_eip;
 3220         regs->r_cs = tp->tf_cs;
 3221         regs->r_eflags = tp->tf_eflags;
 3222         regs->r_esp = tp->tf_esp;
 3223         regs->r_ss = tp->tf_ss;
 3224         return (0);
 3225 }
 3226 
 3227 int
 3228 set_regs(struct thread *td, struct reg *regs)
 3229 {
 3230         struct pcb *pcb;
 3231         struct trapframe *tp;
 3232 
 3233         tp = td->td_frame;
 3234         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 3235             !CS_SECURE(regs->r_cs))
 3236                 return (EINVAL);
 3237         pcb = td->td_pcb;
 3238         tp->tf_fs = regs->r_fs;
 3239         tp->tf_es = regs->r_es;
 3240         tp->tf_ds = regs->r_ds;
 3241         tp->tf_edi = regs->r_edi;
 3242         tp->tf_esi = regs->r_esi;
 3243         tp->tf_ebp = regs->r_ebp;
 3244         tp->tf_ebx = regs->r_ebx;
 3245         tp->tf_edx = regs->r_edx;
 3246         tp->tf_ecx = regs->r_ecx;
 3247         tp->tf_eax = regs->r_eax;
 3248         tp->tf_eip = regs->r_eip;
 3249         tp->tf_cs = regs->r_cs;
 3250         tp->tf_eflags = regs->r_eflags;
 3251         tp->tf_esp = regs->r_esp;
 3252         tp->tf_ss = regs->r_ss;
 3253         pcb->pcb_gs = regs->r_gs;
 3254         return (0);
 3255 }
 3256 
 3257 #ifdef CPU_ENABLE_SSE
 3258 static void
 3259 fill_fpregs_xmm(sv_xmm, sv_87)
 3260         struct savexmm *sv_xmm;
 3261         struct save87 *sv_87;
 3262 {
 3263         register struct env87 *penv_87 = &sv_87->sv_env;
 3264         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3265         int i;
 3266 
 3267         bzero(sv_87, sizeof(*sv_87));
 3268 
 3269         /* FPU control/status */
 3270         penv_87->en_cw = penv_xmm->en_cw;
 3271         penv_87->en_sw = penv_xmm->en_sw;
 3272         penv_87->en_tw = penv_xmm->en_tw;
 3273         penv_87->en_fip = penv_xmm->en_fip;
 3274         penv_87->en_fcs = penv_xmm->en_fcs;
 3275         penv_87->en_opcode = penv_xmm->en_opcode;
 3276         penv_87->en_foo = penv_xmm->en_foo;
 3277         penv_87->en_fos = penv_xmm->en_fos;
 3278 
 3279         /* FPU registers */
 3280         for (i = 0; i < 8; ++i)
 3281                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 3282 }
 3283 
 3284 static void
 3285 set_fpregs_xmm(sv_87, sv_xmm)
 3286         struct save87 *sv_87;
 3287         struct savexmm *sv_xmm;
 3288 {
 3289         register struct env87 *penv_87 = &sv_87->sv_env;
 3290         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3291         int i;
 3292 
 3293         /* FPU control/status */
 3294         penv_xmm->en_cw = penv_87->en_cw;
 3295         penv_xmm->en_sw = penv_87->en_sw;
 3296         penv_xmm->en_tw = penv_87->en_tw;
 3297         penv_xmm->en_fip = penv_87->en_fip;
 3298         penv_xmm->en_fcs = penv_87->en_fcs;
 3299         penv_xmm->en_opcode = penv_87->en_opcode;
 3300         penv_xmm->en_foo = penv_87->en_foo;
 3301         penv_xmm->en_fos = penv_87->en_fos;
 3302 
 3303         /* FPU registers */
 3304         for (i = 0; i < 8; ++i)
 3305                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 3306 }
 3307 #endif /* CPU_ENABLE_SSE */
 3308 
 3309 int
 3310 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3311 {
 3312 
 3313         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 3314             P_SHOULDSTOP(td->td_proc),
 3315             ("not suspended thread %p", td));
 3316 #ifdef DEV_NPX
 3317         npxgetregs(td);
 3318 #else
 3319         bzero(fpregs, sizeof(*fpregs));
 3320 #endif
 3321 #ifdef CPU_ENABLE_SSE
 3322         if (cpu_fxsr)
 3323                 fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
 3324                     (struct save87 *)fpregs);
 3325         else
 3326 #endif /* CPU_ENABLE_SSE */
 3327                 bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
 3328                     sizeof(*fpregs));
 3329         return (0);
 3330 }
 3331 
 3332 int
 3333 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3334 {
 3335 
 3336 #ifdef CPU_ENABLE_SSE
 3337         if (cpu_fxsr)
 3338                 set_fpregs_xmm((struct save87 *)fpregs,
 3339                     &td->td_pcb->pcb_user_save.sv_xmm);
 3340         else
 3341 #endif /* CPU_ENABLE_SSE */
 3342                 bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
 3343                     sizeof(*fpregs));
 3344 #ifdef DEV_NPX
 3345         npxuserinited(td);
 3346 #endif
 3347         return (0);
 3348 }
 3349 
 3350 /*
 3351  * Get machine context.
 3352  */
 3353 int
 3354 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3355 {
 3356         struct trapframe *tp;
 3357         struct segment_descriptor *sdp;
 3358 
 3359         tp = td->td_frame;
 3360 
 3361         PROC_LOCK(curthread->td_proc);
 3362         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3363         PROC_UNLOCK(curthread->td_proc);
 3364         mcp->mc_gs = td->td_pcb->pcb_gs;
 3365         mcp->mc_fs = tp->tf_fs;
 3366         mcp->mc_es = tp->tf_es;
 3367         mcp->mc_ds = tp->tf_ds;
 3368         mcp->mc_edi = tp->tf_edi;
 3369         mcp->mc_esi = tp->tf_esi;
 3370         mcp->mc_ebp = tp->tf_ebp;
 3371         mcp->mc_isp = tp->tf_isp;
 3372         mcp->mc_eflags = tp->tf_eflags;
 3373         if (flags & GET_MC_CLEAR_RET) {
 3374                 mcp->mc_eax = 0;
 3375                 mcp->mc_edx = 0;
 3376                 mcp->mc_eflags &= ~PSL_C;
 3377         } else {
 3378                 mcp->mc_eax = tp->tf_eax;
 3379                 mcp->mc_edx = tp->tf_edx;
 3380         }
 3381         mcp->mc_ebx = tp->tf_ebx;
 3382         mcp->mc_ecx = tp->tf_ecx;
 3383         mcp->mc_eip = tp->tf_eip;
 3384         mcp->mc_cs = tp->tf_cs;
 3385         mcp->mc_esp = tp->tf_esp;
 3386         mcp->mc_ss = tp->tf_ss;
 3387         mcp->mc_len = sizeof(*mcp);
 3388         get_fpcontext(td, mcp);
 3389         sdp = &td->td_pcb->pcb_fsd;
 3390         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3391         sdp = &td->td_pcb->pcb_gsd;
 3392         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3393         mcp->mc_flags = 0;
 3394         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 3395         return (0);
 3396 }
 3397 
 3398 /*
 3399  * Set machine context.
 3400  *
 3401  * However, we don't set any but the user modifiable flags, and we won't
 3402  * touch the cs selector.
 3403  */
 3404 int
 3405 set_mcontext(struct thread *td, const mcontext_t *mcp)
 3406 {
 3407         struct trapframe *tp;
 3408         int eflags, ret;
 3409 
 3410         tp = td->td_frame;
 3411         if (mcp->mc_len != sizeof(*mcp))
 3412                 return (EINVAL);
 3413         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3414             (tp->tf_eflags & ~PSL_USERCHANGE);
 3415         if ((ret = set_fpcontext(td, mcp)) == 0) {
 3416                 tp->tf_fs = mcp->mc_fs;
 3417                 tp->tf_es = mcp->mc_es;
 3418                 tp->tf_ds = mcp->mc_ds;
 3419                 tp->tf_edi = mcp->mc_edi;
 3420                 tp->tf_esi = mcp->mc_esi;
 3421                 tp->tf_ebp = mcp->mc_ebp;
 3422                 tp->tf_ebx = mcp->mc_ebx;
 3423                 tp->tf_edx = mcp->mc_edx;
 3424                 tp->tf_ecx = mcp->mc_ecx;
 3425                 tp->tf_eax = mcp->mc_eax;
 3426                 tp->tf_eip = mcp->mc_eip;
 3427                 tp->tf_eflags = eflags;
 3428                 tp->tf_esp = mcp->mc_esp;
 3429                 tp->tf_ss = mcp->mc_ss;
 3430                 td->td_pcb->pcb_gs = mcp->mc_gs;
 3431                 ret = 0;
 3432         }
 3433         return (ret);
 3434 }
 3435 
 3436 static void
 3437 get_fpcontext(struct thread *td, mcontext_t *mcp)
 3438 {
 3439 
 3440 #ifndef DEV_NPX
 3441         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 3442         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 3443         bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 3444 #else
 3445         mcp->mc_ownedfp = npxgetregs(td);
 3446         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
 3447             sizeof(mcp->mc_fpstate));
 3448         mcp->mc_fpformat = npxformat();
 3449 #endif
 3450 }
 3451 
 3452 static int
 3453 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 3454 {
 3455 
 3456         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3457                 return (0);
 3458         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3459             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3460                 return (EINVAL);
 3461         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 3462                 /* We don't care what state is left in the FPU or PCB. */
 3463                 fpstate_drop(td);
 3464         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3465             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3466 #ifdef DEV_NPX
 3467 #ifdef CPU_ENABLE_SSE
 3468                 if (cpu_fxsr)
 3469                         ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
 3470                             en_mxcsr &= cpu_mxcsr_mask;
 3471 #endif
 3472                 npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
 3473 #endif
 3474         } else
 3475                 return (EINVAL);
 3476         return (0);
 3477 }
 3478 
 3479 static void
 3480 fpstate_drop(struct thread *td)
 3481 {
 3482 
 3483         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 3484         critical_enter();
 3485 #ifdef DEV_NPX
 3486         if (PCPU_GET(fpcurthread) == td)
 3487                 npxdrop();
 3488 #endif
 3489         /*
 3490          * XXX force a full drop of the npx.  The above only drops it if we
 3491          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3492          *
 3493          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3494          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3495          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3496          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3497          * have too many layers.
 3498          */
 3499         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 3500             PCB_NPXUSERINITDONE);
 3501         critical_exit();
 3502 }
 3503 
 3504 int
 3505 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3506 {
 3507         struct pcb *pcb;
 3508 
 3509         if (td == NULL) {
 3510                 dbregs->dr[0] = rdr0();
 3511                 dbregs->dr[1] = rdr1();
 3512                 dbregs->dr[2] = rdr2();
 3513                 dbregs->dr[3] = rdr3();
 3514                 dbregs->dr[4] = rdr4();
 3515                 dbregs->dr[5] = rdr5();
 3516                 dbregs->dr[6] = rdr6();
 3517                 dbregs->dr[7] = rdr7();
 3518         } else {
 3519                 pcb = td->td_pcb;
 3520                 dbregs->dr[0] = pcb->pcb_dr0;
 3521                 dbregs->dr[1] = pcb->pcb_dr1;
 3522                 dbregs->dr[2] = pcb->pcb_dr2;
 3523                 dbregs->dr[3] = pcb->pcb_dr3;
 3524                 dbregs->dr[4] = 0;
 3525                 dbregs->dr[5] = 0;
 3526                 dbregs->dr[6] = pcb->pcb_dr6;
 3527                 dbregs->dr[7] = pcb->pcb_dr7;
 3528         }
 3529         return (0);
 3530 }
 3531 
 3532 int
 3533 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3534 {
 3535         struct pcb *pcb;
 3536         int i;
 3537 
 3538         if (td == NULL) {
 3539                 load_dr0(dbregs->dr[0]);
 3540                 load_dr1(dbregs->dr[1]);
 3541                 load_dr2(dbregs->dr[2]);
 3542                 load_dr3(dbregs->dr[3]);
 3543                 load_dr4(dbregs->dr[4]);
 3544                 load_dr5(dbregs->dr[5]);
 3545                 load_dr6(dbregs->dr[6]);
 3546                 load_dr7(dbregs->dr[7]);
 3547         } else {
 3548                 /*
 3549                  * Don't let an illegal value for dr7 get set.  Specifically,
 3550                  * check for undefined settings.  Setting these bit patterns
 3551                  * result in undefined behaviour and can lead to an unexpected
 3552                  * TRCTRAP.
 3553                  */
 3554                 for (i = 0; i < 4; i++) {
 3555                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 3556                                 return (EINVAL);
 3557                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 3558                                 return (EINVAL);
 3559                 }
 3560                 
 3561                 pcb = td->td_pcb;
 3562                 
 3563                 /*
 3564                  * Don't let a process set a breakpoint that is not within the
 3565                  * process's address space.  If a process could do this, it
 3566                  * could halt the system by setting a breakpoint in the kernel
 3567                  * (if ddb was enabled).  Thus, we need to check to make sure
 3568                  * that no breakpoints are being enabled for addresses outside
 3569                  * process's address space.
 3570                  *
 3571                  * XXX - what about when the watched area of the user's
 3572                  * address space is written into from within the kernel
 3573                  * ... wouldn't that still cause a breakpoint to be generated
 3574                  * from within kernel mode?
 3575                  */
 3576 
 3577                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 3578                         /* dr0 is enabled */
 3579                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 3580                                 return (EINVAL);
 3581                 }
 3582                         
 3583                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 3584                         /* dr1 is enabled */
 3585                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 3586                                 return (EINVAL);
 3587                 }
 3588                         
 3589                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 3590                         /* dr2 is enabled */
 3591                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 3592                                 return (EINVAL);
 3593                 }
 3594                         
 3595                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 3596                         /* dr3 is enabled */
 3597                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 3598                                 return (EINVAL);
 3599                 }
 3600 
 3601                 pcb->pcb_dr0 = dbregs->dr[0];
 3602                 pcb->pcb_dr1 = dbregs->dr[1];
 3603                 pcb->pcb_dr2 = dbregs->dr[2];
 3604                 pcb->pcb_dr3 = dbregs->dr[3];
 3605                 pcb->pcb_dr6 = dbregs->dr[6];
 3606                 pcb->pcb_dr7 = dbregs->dr[7];
 3607 
 3608                 pcb->pcb_flags |= PCB_DBREGS;
 3609         }
 3610 
 3611         return (0);
 3612 }
 3613 
 3614 /*
 3615  * Return > 0 if a hardware breakpoint has been hit, and the
 3616  * breakpoint was in user space.  Return 0, otherwise.
 3617  */
 3618 int
 3619 user_dbreg_trap(void)
 3620 {
 3621         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 3622         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 3623         int nbp;            /* number of breakpoints that triggered */
 3624         caddr_t addr[4];    /* breakpoint addresses */
 3625         int i;
 3626         
 3627         dr7 = rdr7();
 3628         if ((dr7 & 0x000000ff) == 0) {
 3629                 /*
 3630                  * all GE and LE bits in the dr7 register are zero,
 3631                  * thus the trap couldn't have been caused by the
 3632                  * hardware debug registers
 3633                  */
 3634                 return 0;
 3635         }
 3636 
 3637         nbp = 0;
 3638         dr6 = rdr6();
 3639         bp = dr6 & 0x0000000f;
 3640 
 3641         if (!bp) {
 3642                 /*
 3643                  * None of the breakpoint bits are set meaning this
 3644                  * trap was not caused by any of the debug registers
 3645                  */
 3646                 return 0;
 3647         }
 3648 
 3649         /*
 3650          * at least one of the breakpoints were hit, check to see
 3651          * which ones and if any of them are user space addresses
 3652          */
 3653 
 3654         if (bp & 0x01) {
 3655                 addr[nbp++] = (caddr_t)rdr0();
 3656         }
 3657         if (bp & 0x02) {
 3658                 addr[nbp++] = (caddr_t)rdr1();
 3659         }
 3660         if (bp & 0x04) {
 3661                 addr[nbp++] = (caddr_t)rdr2();
 3662         }
 3663         if (bp & 0x08) {
 3664                 addr[nbp++] = (caddr_t)rdr3();
 3665         }
 3666 
 3667         for (i = 0; i < nbp; i++) {
 3668                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 3669                         /*
 3670                          * addr[i] is in user space
 3671                          */
 3672                         return nbp;
 3673                 }
 3674         }
 3675 
 3676         /*
 3677          * None of the breakpoints are in user space.
 3678          */
 3679         return 0;
 3680 }
 3681 
 3682 #ifdef KDB
 3683 
 3684 /*
 3685  * Provide inb() and outb() as functions.  They are normally only available as
 3686  * inline functions, thus cannot be called from the debugger.
 3687  */
 3688 
 3689 /* silence compiler warnings */
 3690 u_char inb_(u_short);
 3691 void outb_(u_short, u_char);
 3692 
 3693 u_char
 3694 inb_(u_short port)
 3695 {
 3696         return inb(port);
 3697 }
 3698 
 3699 void
 3700 outb_(u_short port, u_char data)
 3701 {
 3702         outb(port, data);
 3703 }
 3704 
 3705 #endif /* KDB */

Cache object: 1f5a8f41ab4bc1928fcdd1b647107e28


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.