The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/9.2/sys/i386/i386/machdep.c 251290 2013-06-03 04:57:15Z kib $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_npx.h"
   56 #include "opt_perfmon.h"
   57 #include "opt_xbox.h"
   58 #include "opt_kdtrace.h"
   59 
   60 #include <sys/param.h>
   61 #include <sys/proc.h>
   62 #include <sys/systm.h>
   63 #include <sys/bio.h>
   64 #include <sys/buf.h>
   65 #include <sys/bus.h>
   66 #include <sys/callout.h>
   67 #include <sys/cons.h>
   68 #include <sys/cpu.h>
   69 #include <sys/eventhandler.h>
   70 #include <sys/exec.h>
   71 #include <sys/imgact.h>
   72 #include <sys/kdb.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/linker.h>
   76 #include <sys/lock.h>
   77 #include <sys/malloc.h>
   78 #include <sys/memrange.h>
   79 #include <sys/msgbuf.h>
   80 #include <sys/mutex.h>
   81 #include <sys/pcpu.h>
   82 #include <sys/ptrace.h>
   83 #include <sys/reboot.h>
   84 #include <sys/sched.h>
   85 #include <sys/signalvar.h>
   86 #ifdef SMP
   87 #include <sys/smp.h>
   88 #endif
   89 #include <sys/syscallsubr.h>
   90 #include <sys/sysctl.h>
   91 #include <sys/sysent.h>
   92 #include <sys/sysproto.h>
   93 #include <sys/ucontext.h>
   94 #include <sys/vmmeter.h>
   95 
   96 #include <vm/vm.h>
   97 #include <vm/vm_extern.h>
   98 #include <vm/vm_kern.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_map.h>
  101 #include <vm/vm_object.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_param.h>
  104 
  105 #ifdef DDB
  106 #ifndef KDB
  107 #error KDB must be enabled in order for DDB to work!
  108 #endif
  109 #include <ddb/ddb.h>
  110 #include <ddb/db_sym.h>
  111 #endif
  112 
  113 #include <isa/rtc.h>
  114 
  115 #include <net/netisr.h>
  116 
  117 #include <machine/bootinfo.h>
  118 #include <machine/clock.h>
  119 #include <machine/cpu.h>
  120 #include <machine/cputypes.h>
  121 #include <machine/intr_machdep.h>
  122 #include <x86/mca.h>
  123 #include <machine/md_var.h>
  124 #include <machine/metadata.h>
  125 #include <machine/mp_watchdog.h>
  126 #include <machine/pc/bios.h>
  127 #include <machine/pcb.h>
  128 #include <machine/pcb_ext.h>
  129 #include <machine/proc.h>
  130 #include <machine/reg.h>
  131 #include <machine/sigframe.h>
  132 #include <machine/specialreg.h>
  133 #include <machine/vm86.h>
  134 #ifdef PERFMON
  135 #include <machine/perfmon.h>
  136 #endif
  137 #ifdef SMP
  138 #include <machine/smp.h>
  139 #endif
  140 
  141 #ifdef DEV_APIC
  142 #include <machine/apicvar.h>
  143 #endif
  144 
  145 #ifdef DEV_ISA
  146 #include <x86/isa/icu.h>
  147 #endif
  148 
  149 #ifdef XBOX
  150 #include <machine/xbox.h>
  151 
  152 int arch_i386_is_xbox = 0;
  153 uint32_t arch_i386_xbox_memsize = 0;
  154 #endif
  155 
  156 #ifdef XEN
  157 /* XEN includes */
  158 #include <machine/xen/xen-os.h>
  159 #include <xen/hypervisor.h>
  160 #include <machine/xen/xen-os.h>
  161 #include <machine/xen/xenvar.h>
  162 #include <machine/xen/xenfunc.h>
  163 #include <xen/xen_intr.h>
  164 
  165 void Xhypervisor_callback(void);
  166 void failsafe_callback(void);
  167 
  168 extern trap_info_t trap_table[];
  169 struct proc_ldt default_proc_ldt;
  170 extern int init_first;
  171 int running_xen = 1;
  172 extern unsigned long physfree;
  173 #endif /* XEN */
  174 
  175 /* Sanity check for __curthread() */
  176 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  177 
  178 extern void init386(int first);
  179 extern void dblfault_handler(void);
  180 
  181 extern void printcpuinfo(void); /* XXX header file */
  182 extern void finishidentcpu(void);
  183 extern void panicifcpuunsupported(void);
  184 
  185 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  186 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  187 
  188 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  189 #define CPU_ENABLE_SSE
  190 #endif
  191 
  192 static void cpu_startup(void *);
  193 static void fpstate_drop(struct thread *td);
  194 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  195 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  196 #ifdef CPU_ENABLE_SSE
  197 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  198 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  199 #endif /* CPU_ENABLE_SSE */
  200 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  201 
  202 #ifdef DDB
  203 extern vm_offset_t ksym_start, ksym_end;
  204 #endif
  205 
  206 /* Intel ICH registers */
  207 #define ICH_PMBASE      0x400
  208 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  209 
  210 int     _udatasel, _ucodesel;
  211 u_int   basemem;
  212 
  213 int cold = 1;
  214 
  215 #ifdef COMPAT_43
  216 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  217 #endif
  218 #ifdef COMPAT_FREEBSD4
  219 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  220 #endif
  221 
  222 long Maxmem = 0;
  223 long realmem = 0;
  224 
  225 #ifdef PAE
  226 FEATURE(pae, "Physical Address Extensions");
  227 #endif
  228 
  229 /*
  230  * The number of PHYSMAP entries must be one less than the number of
  231  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  232  * physical address that is accessible by ISA DMA is split into two
  233  * PHYSSEG entries.
  234  */
  235 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  236 
  237 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  238 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  239 
  240 /* must be 2 less so 0 0 can signal end of chunks */
  241 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  242 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  243 
  244 struct kva_md_info kmi;
  245 
  246 static struct trapframe proc0_tf;
  247 struct pcpu __pcpu[MAXCPU];
  248 
  249 struct mtx icu_lock;
  250 
  251 struct mem_range_softc mem_range_softc;
  252 
  253 static void
  254 cpu_startup(dummy)
  255         void *dummy;
  256 {
  257         uintmax_t memsize;
  258         char *sysenv;
  259         
  260         /*
  261          * On MacBooks, we need to disallow the legacy USB circuit to
  262          * generate an SMI# because this can cause several problems,
  263          * namely: incorrect CPU frequency detection and failure to
  264          * start the APs.
  265          * We do this by disabling a bit in the SMI_EN (SMI Control and
  266          * Enable register) of the Intel ICH LPC Interface Bridge.
  267          */
  268         sysenv = getenv("smbios.system.product");
  269         if (sysenv != NULL) {
  270                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  271                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  272                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  273                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  274                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  275                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  276                         if (bootverbose)
  277                                 printf("Disabling LEGACY_USB_EN bit on "
  278                                     "Intel ICH.\n");
  279                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  280                 }
  281                 freeenv(sysenv);
  282         }
  283 
  284         /*
  285          * Good {morning,afternoon,evening,night}.
  286          */
  287         startrtclock();
  288         printcpuinfo();
  289         panicifcpuunsupported();
  290 #ifdef PERFMON
  291         perfmon_init();
  292 #endif
  293         realmem = Maxmem;
  294 
  295         /*
  296          * Display physical memory if SMBIOS reports reasonable amount.
  297          */
  298         memsize = 0;
  299         sysenv = getenv("smbios.memory.enabled");
  300         if (sysenv != NULL) {
  301                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  302                 freeenv(sysenv);
  303         }
  304         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  305                 memsize = ptoa((uintmax_t)Maxmem);
  306         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  307 
  308         /*
  309          * Display any holes after the first chunk of extended memory.
  310          */
  311         if (bootverbose) {
  312                 int indx;
  313 
  314                 printf("Physical memory chunk(s):\n");
  315                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  316                         vm_paddr_t size;
  317 
  318                         size = phys_avail[indx + 1] - phys_avail[indx];
  319                         printf(
  320                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  321                             (uintmax_t)phys_avail[indx],
  322                             (uintmax_t)phys_avail[indx + 1] - 1,
  323                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  324                 }
  325         }
  326 
  327         vm_ksubmap_init(&kmi);
  328 
  329         printf("avail memory = %ju (%ju MB)\n",
  330             ptoa((uintmax_t)cnt.v_free_count),
  331             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  332 
  333         /*
  334          * Set up buffers, so they can be used to read disk labels.
  335          */
  336         bufinit();
  337         vm_pager_bufferinit();
  338 #ifndef XEN
  339         cpu_setregs();
  340 #endif
  341 
  342         /*
  343          * Add BSP as an interrupt target.
  344          */
  345         intr_add_cpu(0);
  346 }
  347 
  348 /*
  349  * Send an interrupt to process.
  350  *
  351  * Stack is set up to allow sigcode stored
  352  * at top to call routine, followed by kcall
  353  * to sigreturn routine below.  After sigreturn
  354  * resets the signal mask, the stack, and the
  355  * frame pointer, it returns to the user
  356  * specified pc, psl.
  357  */
  358 #ifdef COMPAT_43
  359 static void
  360 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  361 {
  362         struct osigframe sf, *fp;
  363         struct proc *p;
  364         struct thread *td;
  365         struct sigacts *psp;
  366         struct trapframe *regs;
  367         int sig;
  368         int oonstack;
  369 
  370         td = curthread;
  371         p = td->td_proc;
  372         PROC_LOCK_ASSERT(p, MA_OWNED);
  373         sig = ksi->ksi_signo;
  374         psp = p->p_sigacts;
  375         mtx_assert(&psp->ps_mtx, MA_OWNED);
  376         regs = td->td_frame;
  377         oonstack = sigonstack(regs->tf_esp);
  378 
  379         /* Allocate space for the signal handler context. */
  380         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  381             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  382                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  383                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  384 #if defined(COMPAT_43)
  385                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  386 #endif
  387         } else
  388                 fp = (struct osigframe *)regs->tf_esp - 1;
  389 
  390         /* Translate the signal if appropriate. */
  391         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  392                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  393 
  394         /* Build the argument list for the signal handler. */
  395         sf.sf_signum = sig;
  396         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  397         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  398         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  399                 /* Signal handler installed with SA_SIGINFO. */
  400                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  401                 sf.sf_siginfo.si_signo = sig;
  402                 sf.sf_siginfo.si_code = ksi->ksi_code;
  403                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  404                 sf.sf_addr = 0;
  405         } else {
  406                 /* Old FreeBSD-style arguments. */
  407                 sf.sf_arg2 = ksi->ksi_code;
  408                 sf.sf_addr = (register_t)ksi->ksi_addr;
  409                 sf.sf_ahu.sf_handler = catcher;
  410         }
  411         mtx_unlock(&psp->ps_mtx);
  412         PROC_UNLOCK(p);
  413 
  414         /* Save most if not all of trap frame. */
  415         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  416         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  417         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  418         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  419         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  420         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  421         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  422         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  423         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  424         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  425         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  426         sf.sf_siginfo.si_sc.sc_gs = rgs();
  427         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  428 
  429         /* Build the signal context to be used by osigreturn(). */
  430         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  431         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  432         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  433         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  434         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  435         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  436         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  437         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  438 
  439         /*
  440          * If we're a vm86 process, we want to save the segment registers.
  441          * We also change eflags to be our emulated eflags, not the actual
  442          * eflags.
  443          */
  444         if (regs->tf_eflags & PSL_VM) {
  445                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  446                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  447                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  448 
  449                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  450                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  451                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  452                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  453 
  454                 if (vm86->vm86_has_vme == 0)
  455                         sf.sf_siginfo.si_sc.sc_ps =
  456                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  457                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  458 
  459                 /* See sendsig() for comments. */
  460                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  461         }
  462 
  463         /*
  464          * Copy the sigframe out to the user's stack.
  465          */
  466         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  467 #ifdef DEBUG
  468                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  469 #endif
  470                 PROC_LOCK(p);
  471                 sigexit(td, SIGILL);
  472         }
  473 
  474         regs->tf_esp = (int)fp;
  475         if (p->p_sysent->sv_sigcode_base != 0) {
  476                 regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  477                     szosigcode;
  478         } else {
  479                 /* a.out sysentvec does not use shared page */
  480                 regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
  481         }
  482         regs->tf_eflags &= ~(PSL_T | PSL_D);
  483         regs->tf_cs = _ucodesel;
  484         regs->tf_ds = _udatasel;
  485         regs->tf_es = _udatasel;
  486         regs->tf_fs = _udatasel;
  487         load_gs(_udatasel);
  488         regs->tf_ss = _udatasel;
  489         PROC_LOCK(p);
  490         mtx_lock(&psp->ps_mtx);
  491 }
  492 #endif /* COMPAT_43 */
  493 
  494 #ifdef COMPAT_FREEBSD4
  495 static void
  496 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  497 {
  498         struct sigframe4 sf, *sfp;
  499         struct proc *p;
  500         struct thread *td;
  501         struct sigacts *psp;
  502         struct trapframe *regs;
  503         int sig;
  504         int oonstack;
  505 
  506         td = curthread;
  507         p = td->td_proc;
  508         PROC_LOCK_ASSERT(p, MA_OWNED);
  509         sig = ksi->ksi_signo;
  510         psp = p->p_sigacts;
  511         mtx_assert(&psp->ps_mtx, MA_OWNED);
  512         regs = td->td_frame;
  513         oonstack = sigonstack(regs->tf_esp);
  514 
  515         /* Save user context. */
  516         bzero(&sf, sizeof(sf));
  517         sf.sf_uc.uc_sigmask = *mask;
  518         sf.sf_uc.uc_stack = td->td_sigstk;
  519         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  520             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  521         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  522         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  523         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  524         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  525             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  526         bzero(sf.sf_uc.uc_mcontext.__spare__,
  527             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  528         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  529 
  530         /* Allocate space for the signal handler context. */
  531         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  532             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  533                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  534                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  535 #if defined(COMPAT_43)
  536                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  537 #endif
  538         } else
  539                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  540 
  541         /* Translate the signal if appropriate. */
  542         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  543                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  544 
  545         /* Build the argument list for the signal handler. */
  546         sf.sf_signum = sig;
  547         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  548         bzero(&sf.sf_si, sizeof(sf.sf_si));
  549         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  550                 /* Signal handler installed with SA_SIGINFO. */
  551                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  552                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  553 
  554                 /* Fill in POSIX parts */
  555                 sf.sf_si.si_signo = sig;
  556                 sf.sf_si.si_code = ksi->ksi_code;
  557                 sf.sf_si.si_addr = ksi->ksi_addr;
  558         } else {
  559                 /* Old FreeBSD-style arguments. */
  560                 sf.sf_siginfo = ksi->ksi_code;
  561                 sf.sf_addr = (register_t)ksi->ksi_addr;
  562                 sf.sf_ahu.sf_handler = catcher;
  563         }
  564         mtx_unlock(&psp->ps_mtx);
  565         PROC_UNLOCK(p);
  566 
  567         /*
  568          * If we're a vm86 process, we want to save the segment registers.
  569          * We also change eflags to be our emulated eflags, not the actual
  570          * eflags.
  571          */
  572         if (regs->tf_eflags & PSL_VM) {
  573                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  574                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  575 
  576                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  577                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  578                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  579                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  580 
  581                 if (vm86->vm86_has_vme == 0)
  582                         sf.sf_uc.uc_mcontext.mc_eflags =
  583                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  584                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  585 
  586                 /*
  587                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  588                  * syscalls made by the signal handler.  This just avoids
  589                  * wasting time for our lazy fixup of such faults.  PSL_NT
  590                  * does nothing in vm86 mode, but vm86 programs can set it
  591                  * almost legitimately in probes for old cpu types.
  592                  */
  593                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  594         }
  595 
  596         /*
  597          * Copy the sigframe out to the user's stack.
  598          */
  599         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  600 #ifdef DEBUG
  601                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  602 #endif
  603                 PROC_LOCK(p);
  604                 sigexit(td, SIGILL);
  605         }
  606 
  607         regs->tf_esp = (int)sfp;
  608         regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  609             szfreebsd4_sigcode;
  610         regs->tf_eflags &= ~(PSL_T | PSL_D);
  611         regs->tf_cs = _ucodesel;
  612         regs->tf_ds = _udatasel;
  613         regs->tf_es = _udatasel;
  614         regs->tf_fs = _udatasel;
  615         regs->tf_ss = _udatasel;
  616         PROC_LOCK(p);
  617         mtx_lock(&psp->ps_mtx);
  618 }
  619 #endif  /* COMPAT_FREEBSD4 */
  620 
  621 void
  622 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  623 {
  624         struct sigframe sf, *sfp;
  625         struct proc *p;
  626         struct thread *td;
  627         struct sigacts *psp;
  628         char *sp;
  629         struct trapframe *regs;
  630         struct segment_descriptor *sdp;
  631         int sig;
  632         int oonstack;
  633 
  634         td = curthread;
  635         p = td->td_proc;
  636         PROC_LOCK_ASSERT(p, MA_OWNED);
  637         sig = ksi->ksi_signo;
  638         psp = p->p_sigacts;
  639         mtx_assert(&psp->ps_mtx, MA_OWNED);
  640 #ifdef COMPAT_FREEBSD4
  641         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  642                 freebsd4_sendsig(catcher, ksi, mask);
  643                 return;
  644         }
  645 #endif
  646 #ifdef COMPAT_43
  647         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  648                 osendsig(catcher, ksi, mask);
  649                 return;
  650         }
  651 #endif
  652         regs = td->td_frame;
  653         oonstack = sigonstack(regs->tf_esp);
  654 
  655         /* Save user context. */
  656         bzero(&sf, sizeof(sf));
  657         sf.sf_uc.uc_sigmask = *mask;
  658         sf.sf_uc.uc_stack = td->td_sigstk;
  659         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  660             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  661         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  662         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  663         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  664         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  665         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  666         fpstate_drop(td);
  667         /*
  668          * Unconditionally fill the fsbase and gsbase into the mcontext.
  669          */
  670         sdp = &td->td_pcb->pcb_fsd;
  671         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  672             sdp->sd_lobase;
  673         sdp = &td->td_pcb->pcb_gsd;
  674         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  675             sdp->sd_lobase;
  676         sf.sf_uc.uc_mcontext.mc_flags = 0;
  677         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  678             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  679         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  680 
  681         /* Allocate space for the signal handler context. */
  682         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  683             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  684                 sp = td->td_sigstk.ss_sp +
  685                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  686 #if defined(COMPAT_43)
  687                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  688 #endif
  689         } else
  690                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  691         /* Align to 16 bytes. */
  692         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  693 
  694         /* Translate the signal if appropriate. */
  695         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  696                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  697 
  698         /* Build the argument list for the signal handler. */
  699         sf.sf_signum = sig;
  700         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  701         bzero(&sf.sf_si, sizeof(sf.sf_si));
  702         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  703                 /* Signal handler installed with SA_SIGINFO. */
  704                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  705                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  706 
  707                 /* Fill in POSIX parts */
  708                 sf.sf_si = ksi->ksi_info;
  709                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  710         } else {
  711                 /* Old FreeBSD-style arguments. */
  712                 sf.sf_siginfo = ksi->ksi_code;
  713                 sf.sf_addr = (register_t)ksi->ksi_addr;
  714                 sf.sf_ahu.sf_handler = catcher;
  715         }
  716         mtx_unlock(&psp->ps_mtx);
  717         PROC_UNLOCK(p);
  718 
  719         /*
  720          * If we're a vm86 process, we want to save the segment registers.
  721          * We also change eflags to be our emulated eflags, not the actual
  722          * eflags.
  723          */
  724         if (regs->tf_eflags & PSL_VM) {
  725                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  726                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  727 
  728                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  729                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  730                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  731                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  732 
  733                 if (vm86->vm86_has_vme == 0)
  734                         sf.sf_uc.uc_mcontext.mc_eflags =
  735                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  736                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  737 
  738                 /*
  739                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  740                  * syscalls made by the signal handler.  This just avoids
  741                  * wasting time for our lazy fixup of such faults.  PSL_NT
  742                  * does nothing in vm86 mode, but vm86 programs can set it
  743                  * almost legitimately in probes for old cpu types.
  744                  */
  745                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  746         }
  747 
  748         /*
  749          * Copy the sigframe out to the user's stack.
  750          */
  751         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  752 #ifdef DEBUG
  753                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  754 #endif
  755                 PROC_LOCK(p);
  756                 sigexit(td, SIGILL);
  757         }
  758 
  759         regs->tf_esp = (int)sfp;
  760         regs->tf_eip = p->p_sysent->sv_sigcode_base;
  761         regs->tf_eflags &= ~(PSL_T | PSL_D);
  762         regs->tf_cs = _ucodesel;
  763         regs->tf_ds = _udatasel;
  764         regs->tf_es = _udatasel;
  765         regs->tf_fs = _udatasel;
  766         regs->tf_ss = _udatasel;
  767         PROC_LOCK(p);
  768         mtx_lock(&psp->ps_mtx);
  769 }
  770 
  771 /*
  772  * System call to cleanup state after a signal
  773  * has been taken.  Reset signal mask and
  774  * stack state from context left by sendsig (above).
  775  * Return to previous pc and psl as specified by
  776  * context left by sendsig. Check carefully to
  777  * make sure that the user has not modified the
  778  * state to gain improper privileges.
  779  *
  780  * MPSAFE
  781  */
  782 #ifdef COMPAT_43
  783 int
  784 osigreturn(td, uap)
  785         struct thread *td;
  786         struct osigreturn_args /* {
  787                 struct osigcontext *sigcntxp;
  788         } */ *uap;
  789 {
  790         struct osigcontext sc;
  791         struct trapframe *regs;
  792         struct osigcontext *scp;
  793         int eflags, error;
  794         ksiginfo_t ksi;
  795 
  796         regs = td->td_frame;
  797         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  798         if (error != 0)
  799                 return (error);
  800         scp = &sc;
  801         eflags = scp->sc_ps;
  802         if (eflags & PSL_VM) {
  803                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  804                 struct vm86_kernel *vm86;
  805 
  806                 /*
  807                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  808                  * set up the vm86 area, and we can't enter vm86 mode.
  809                  */
  810                 if (td->td_pcb->pcb_ext == 0)
  811                         return (EINVAL);
  812                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  813                 if (vm86->vm86_inited == 0)
  814                         return (EINVAL);
  815 
  816                 /* Go back to user mode if both flags are set. */
  817                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  818                         ksiginfo_init_trap(&ksi);
  819                         ksi.ksi_signo = SIGBUS;
  820                         ksi.ksi_code = BUS_OBJERR;
  821                         ksi.ksi_addr = (void *)regs->tf_eip;
  822                         trapsignal(td, &ksi);
  823                 }
  824 
  825                 if (vm86->vm86_has_vme) {
  826                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  827                             (eflags & VME_USERCHANGE) | PSL_VM;
  828                 } else {
  829                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  830                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  831                             (eflags & VM_USERCHANGE) | PSL_VM;
  832                 }
  833                 tf->tf_vm86_ds = scp->sc_ds;
  834                 tf->tf_vm86_es = scp->sc_es;
  835                 tf->tf_vm86_fs = scp->sc_fs;
  836                 tf->tf_vm86_gs = scp->sc_gs;
  837                 tf->tf_ds = _udatasel;
  838                 tf->tf_es = _udatasel;
  839                 tf->tf_fs = _udatasel;
  840         } else {
  841                 /*
  842                  * Don't allow users to change privileged or reserved flags.
  843                  */
  844                 /*
  845                  * XXX do allow users to change the privileged flag PSL_RF.
  846                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  847                  * should sometimes set it there too.  tf_eflags is kept in
  848                  * the signal context during signal handling and there is no
  849                  * other place to remember it, so the PSL_RF bit may be
  850                  * corrupted by the signal handler without us knowing.
  851                  * Corruption of the PSL_RF bit at worst causes one more or
  852                  * one less debugger trap, so allowing it is fairly harmless.
  853                  */
  854                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  855                         return (EINVAL);
  856                 }
  857 
  858                 /*
  859                  * Don't allow users to load a valid privileged %cs.  Let the
  860                  * hardware check for invalid selectors, excess privilege in
  861                  * other selectors, invalid %eip's and invalid %esp's.
  862                  */
  863                 if (!CS_SECURE(scp->sc_cs)) {
  864                         ksiginfo_init_trap(&ksi);
  865                         ksi.ksi_signo = SIGBUS;
  866                         ksi.ksi_code = BUS_OBJERR;
  867                         ksi.ksi_trapno = T_PROTFLT;
  868                         ksi.ksi_addr = (void *)regs->tf_eip;
  869                         trapsignal(td, &ksi);
  870                         return (EINVAL);
  871                 }
  872                 regs->tf_ds = scp->sc_ds;
  873                 regs->tf_es = scp->sc_es;
  874                 regs->tf_fs = scp->sc_fs;
  875         }
  876 
  877         /* Restore remaining registers. */
  878         regs->tf_eax = scp->sc_eax;
  879         regs->tf_ebx = scp->sc_ebx;
  880         regs->tf_ecx = scp->sc_ecx;
  881         regs->tf_edx = scp->sc_edx;
  882         regs->tf_esi = scp->sc_esi;
  883         regs->tf_edi = scp->sc_edi;
  884         regs->tf_cs = scp->sc_cs;
  885         regs->tf_ss = scp->sc_ss;
  886         regs->tf_isp = scp->sc_isp;
  887         regs->tf_ebp = scp->sc_fp;
  888         regs->tf_esp = scp->sc_sp;
  889         regs->tf_eip = scp->sc_pc;
  890         regs->tf_eflags = eflags;
  891 
  892 #if defined(COMPAT_43)
  893         if (scp->sc_onstack & 1)
  894                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  895         else
  896                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  897 #endif
  898         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  899             SIGPROCMASK_OLD);
  900         return (EJUSTRETURN);
  901 }
  902 #endif /* COMPAT_43 */
  903 
  904 #ifdef COMPAT_FREEBSD4
  905 /*
  906  * MPSAFE
  907  */
  908 int
  909 freebsd4_sigreturn(td, uap)
  910         struct thread *td;
  911         struct freebsd4_sigreturn_args /* {
  912                 const ucontext4 *sigcntxp;
  913         } */ *uap;
  914 {
  915         struct ucontext4 uc;
  916         struct trapframe *regs;
  917         struct ucontext4 *ucp;
  918         int cs, eflags, error;
  919         ksiginfo_t ksi;
  920 
  921         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  922         if (error != 0)
  923                 return (error);
  924         ucp = &uc;
  925         regs = td->td_frame;
  926         eflags = ucp->uc_mcontext.mc_eflags;
  927         if (eflags & PSL_VM) {
  928                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  929                 struct vm86_kernel *vm86;
  930 
  931                 /*
  932                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  933                  * set up the vm86 area, and we can't enter vm86 mode.
  934                  */
  935                 if (td->td_pcb->pcb_ext == 0)
  936                         return (EINVAL);
  937                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  938                 if (vm86->vm86_inited == 0)
  939                         return (EINVAL);
  940 
  941                 /* Go back to user mode if both flags are set. */
  942                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  943                         ksiginfo_init_trap(&ksi);
  944                         ksi.ksi_signo = SIGBUS;
  945                         ksi.ksi_code = BUS_OBJERR;
  946                         ksi.ksi_addr = (void *)regs->tf_eip;
  947                         trapsignal(td, &ksi);
  948                 }
  949                 if (vm86->vm86_has_vme) {
  950                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  951                             (eflags & VME_USERCHANGE) | PSL_VM;
  952                 } else {
  953                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  954                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  955                             (eflags & VM_USERCHANGE) | PSL_VM;
  956                 }
  957                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  958                 tf->tf_eflags = eflags;
  959                 tf->tf_vm86_ds = tf->tf_ds;
  960                 tf->tf_vm86_es = tf->tf_es;
  961                 tf->tf_vm86_fs = tf->tf_fs;
  962                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  963                 tf->tf_ds = _udatasel;
  964                 tf->tf_es = _udatasel;
  965                 tf->tf_fs = _udatasel;
  966         } else {
  967                 /*
  968                  * Don't allow users to change privileged or reserved flags.
  969                  */
  970                 /*
  971                  * XXX do allow users to change the privileged flag PSL_RF.
  972                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  973                  * should sometimes set it there too.  tf_eflags is kept in
  974                  * the signal context during signal handling and there is no
  975                  * other place to remember it, so the PSL_RF bit may be
  976                  * corrupted by the signal handler without us knowing.
  977                  * Corruption of the PSL_RF bit at worst causes one more or
  978                  * one less debugger trap, so allowing it is fairly harmless.
  979                  */
  980                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  981                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  982                             td->td_proc->p_pid, td->td_name, eflags);
  983                         return (EINVAL);
  984                 }
  985 
  986                 /*
  987                  * Don't allow users to load a valid privileged %cs.  Let the
  988                  * hardware check for invalid selectors, excess privilege in
  989                  * other selectors, invalid %eip's and invalid %esp's.
  990                  */
  991                 cs = ucp->uc_mcontext.mc_cs;
  992                 if (!CS_SECURE(cs)) {
  993                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  994                             td->td_proc->p_pid, td->td_name, cs);
  995                         ksiginfo_init_trap(&ksi);
  996                         ksi.ksi_signo = SIGBUS;
  997                         ksi.ksi_code = BUS_OBJERR;
  998                         ksi.ksi_trapno = T_PROTFLT;
  999                         ksi.ksi_addr = (void *)regs->tf_eip;
 1000                         trapsignal(td, &ksi);
 1001                         return (EINVAL);
 1002                 }
 1003 
 1004                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1005         }
 1006 
 1007 #if defined(COMPAT_43)
 1008         if (ucp->uc_mcontext.mc_onstack & 1)
 1009                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1010         else
 1011                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1012 #endif
 1013         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1014         return (EJUSTRETURN);
 1015 }
 1016 #endif  /* COMPAT_FREEBSD4 */
 1017 
 1018 /*
 1019  * MPSAFE
 1020  */
 1021 int
 1022 sys_sigreturn(td, uap)
 1023         struct thread *td;
 1024         struct sigreturn_args /* {
 1025                 const struct __ucontext *sigcntxp;
 1026         } */ *uap;
 1027 {
 1028         ucontext_t uc;
 1029         struct trapframe *regs;
 1030         ucontext_t *ucp;
 1031         int cs, eflags, error, ret;
 1032         ksiginfo_t ksi;
 1033 
 1034         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
 1035         if (error != 0)
 1036                 return (error);
 1037         ucp = &uc;
 1038         regs = td->td_frame;
 1039         eflags = ucp->uc_mcontext.mc_eflags;
 1040         if (eflags & PSL_VM) {
 1041                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
 1042                 struct vm86_kernel *vm86;
 1043 
 1044                 /*
 1045                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
 1046                  * set up the vm86 area, and we can't enter vm86 mode.
 1047                  */
 1048                 if (td->td_pcb->pcb_ext == 0)
 1049                         return (EINVAL);
 1050                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
 1051                 if (vm86->vm86_inited == 0)
 1052                         return (EINVAL);
 1053 
 1054                 /* Go back to user mode if both flags are set. */
 1055                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
 1056                         ksiginfo_init_trap(&ksi);
 1057                         ksi.ksi_signo = SIGBUS;
 1058                         ksi.ksi_code = BUS_OBJERR;
 1059                         ksi.ksi_addr = (void *)regs->tf_eip;
 1060                         trapsignal(td, &ksi);
 1061                 }
 1062 
 1063                 if (vm86->vm86_has_vme) {
 1064                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1065                             (eflags & VME_USERCHANGE) | PSL_VM;
 1066                 } else {
 1067                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1068                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1069                             (eflags & VM_USERCHANGE) | PSL_VM;
 1070                 }
 1071                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1072                 tf->tf_eflags = eflags;
 1073                 tf->tf_vm86_ds = tf->tf_ds;
 1074                 tf->tf_vm86_es = tf->tf_es;
 1075                 tf->tf_vm86_fs = tf->tf_fs;
 1076                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1077                 tf->tf_ds = _udatasel;
 1078                 tf->tf_es = _udatasel;
 1079                 tf->tf_fs = _udatasel;
 1080         } else {
 1081                 /*
 1082                  * Don't allow users to change privileged or reserved flags.
 1083                  */
 1084                 /*
 1085                  * XXX do allow users to change the privileged flag PSL_RF.
 1086                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
 1087                  * should sometimes set it there too.  tf_eflags is kept in
 1088                  * the signal context during signal handling and there is no
 1089                  * other place to remember it, so the PSL_RF bit may be
 1090                  * corrupted by the signal handler without us knowing.
 1091                  * Corruption of the PSL_RF bit at worst causes one more or
 1092                  * one less debugger trap, so allowing it is fairly harmless.
 1093                  */
 1094                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
 1095                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1096                             td->td_proc->p_pid, td->td_name, eflags);
 1097                         return (EINVAL);
 1098                 }
 1099 
 1100                 /*
 1101                  * Don't allow users to load a valid privileged %cs.  Let the
 1102                  * hardware check for invalid selectors, excess privilege in
 1103                  * other selectors, invalid %eip's and invalid %esp's.
 1104                  */
 1105                 cs = ucp->uc_mcontext.mc_cs;
 1106                 if (!CS_SECURE(cs)) {
 1107                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1108                             td->td_proc->p_pid, td->td_name, cs);
 1109                         ksiginfo_init_trap(&ksi);
 1110                         ksi.ksi_signo = SIGBUS;
 1111                         ksi.ksi_code = BUS_OBJERR;
 1112                         ksi.ksi_trapno = T_PROTFLT;
 1113                         ksi.ksi_addr = (void *)regs->tf_eip;
 1114                         trapsignal(td, &ksi);
 1115                         return (EINVAL);
 1116                 }
 1117 
 1118                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1119                 if (ret != 0)
 1120                         return (ret);
 1121                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1122         }
 1123 
 1124 #if defined(COMPAT_43)
 1125         if (ucp->uc_mcontext.mc_onstack & 1)
 1126                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1127         else
 1128                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1129 #endif
 1130 
 1131         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1132         return (EJUSTRETURN);
 1133 }
 1134 
 1135 /*
 1136  * Machine dependent boot() routine
 1137  *
 1138  * I haven't seen anything to put here yet
 1139  * Possibly some stuff might be grafted back here from boot()
 1140  */
 1141 void
 1142 cpu_boot(int howto)
 1143 {
 1144 }
 1145 
 1146 /*
 1147  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1148  * be made coherent later.
 1149  */
 1150 void
 1151 cpu_flush_dcache(void *ptr, size_t len)
 1152 {
 1153         /* Not applicable */
 1154 }
 1155 
 1156 /* Get current clock frequency for the given cpu id. */
 1157 int
 1158 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1159 {
 1160         uint64_t tsc1, tsc2;
 1161         uint64_t acnt, mcnt, perf;
 1162         register_t reg;
 1163 
 1164         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1165                 return (EINVAL);
 1166         if ((cpu_feature & CPUID_TSC) == 0)
 1167                 return (EOPNOTSUPP);
 1168 
 1169         /*
 1170          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
 1171          * DELAY(9) based logic fails.
 1172          */
 1173         if (tsc_is_invariant && !tsc_perf_stat)
 1174                 return (EOPNOTSUPP);
 1175 
 1176 #ifdef SMP
 1177         if (smp_cpus > 1) {
 1178                 /* Schedule ourselves on the indicated cpu. */
 1179                 thread_lock(curthread);
 1180                 sched_bind(curthread, cpu_id);
 1181                 thread_unlock(curthread);
 1182         }
 1183 #endif
 1184 
 1185         /* Calibrate by measuring a short delay. */
 1186         reg = intr_disable();
 1187         if (tsc_is_invariant) {
 1188                 wrmsr(MSR_MPERF, 0);
 1189                 wrmsr(MSR_APERF, 0);
 1190                 tsc1 = rdtsc();
 1191                 DELAY(1000);
 1192                 mcnt = rdmsr(MSR_MPERF);
 1193                 acnt = rdmsr(MSR_APERF);
 1194                 tsc2 = rdtsc();
 1195                 intr_restore(reg);
 1196                 perf = 1000 * acnt / mcnt;
 1197                 *rate = (tsc2 - tsc1) * perf;
 1198         } else {
 1199                 tsc1 = rdtsc();
 1200                 DELAY(1000);
 1201                 tsc2 = rdtsc();
 1202                 intr_restore(reg);
 1203                 *rate = (tsc2 - tsc1) * 1000;
 1204         }
 1205 
 1206 #ifdef SMP
 1207         if (smp_cpus > 1) {
 1208                 thread_lock(curthread);
 1209                 sched_unbind(curthread);
 1210                 thread_unlock(curthread);
 1211         }
 1212 #endif
 1213 
 1214         return (0);
 1215 }
 1216 
 1217 #ifdef XEN
 1218 
 1219 void
 1220 cpu_halt(void)
 1221 {
 1222         HYPERVISOR_shutdown(SHUTDOWN_poweroff);
 1223 }
 1224 
 1225 int scheduler_running;
 1226 
 1227 static void
 1228 cpu_idle_hlt(int busy)
 1229 {
 1230 
 1231         scheduler_running = 1;
 1232         enable_intr();
 1233         idle_block();
 1234 }
 1235 
 1236 #else
 1237 /*
 1238  * Shutdown the CPU as much as possible
 1239  */
 1240 void
 1241 cpu_halt(void)
 1242 {
 1243         for (;;)
 1244                 __asm__ ("hlt");
 1245 }
 1246 
 1247 #endif
 1248 
 1249 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
 1250 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
 1251 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
 1252 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
 1253 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
 1254     0, "Use MONITOR/MWAIT for short idle");
 1255 
 1256 #define STATE_RUNNING   0x0
 1257 #define STATE_MWAIT     0x1
 1258 #define STATE_SLEEPING  0x2
 1259 
 1260 static void
 1261 cpu_idle_acpi(int busy)
 1262 {
 1263         int *state;
 1264 
 1265         state = (int *)PCPU_PTR(monitorbuf);
 1266         *state = STATE_SLEEPING;
 1267         disable_intr();
 1268         if (sched_runnable())
 1269                 enable_intr();
 1270         else if (cpu_idle_hook)
 1271                 cpu_idle_hook();
 1272         else
 1273                 __asm __volatile("sti; hlt");
 1274         *state = STATE_RUNNING;
 1275 }
 1276 
 1277 #ifndef XEN
 1278 static void
 1279 cpu_idle_hlt(int busy)
 1280 {
 1281         int *state;
 1282 
 1283         state = (int *)PCPU_PTR(monitorbuf);
 1284         *state = STATE_SLEEPING;
 1285         /*
 1286          * We must absolutely guarentee that hlt is the next instruction
 1287          * after sti or we introduce a timing window.
 1288          */
 1289         disable_intr();
 1290         if (sched_runnable())
 1291                 enable_intr();
 1292         else
 1293                 __asm __volatile("sti; hlt");
 1294         *state = STATE_RUNNING;
 1295 }
 1296 #endif
 1297 
 1298 /*
 1299  * MWAIT cpu power states.  Lower 4 bits are sub-states.
 1300  */
 1301 #define MWAIT_C0        0xf0
 1302 #define MWAIT_C1        0x00
 1303 #define MWAIT_C2        0x10
 1304 #define MWAIT_C3        0x20
 1305 #define MWAIT_C4        0x30
 1306 
 1307 static void
 1308 cpu_idle_mwait(int busy)
 1309 {
 1310         int *state;
 1311 
 1312         state = (int *)PCPU_PTR(monitorbuf);
 1313         *state = STATE_MWAIT;
 1314         if (!sched_runnable()) {
 1315                 cpu_monitor(state, 0, 0);
 1316                 if (*state == STATE_MWAIT)
 1317                         cpu_mwait(0, MWAIT_C1);
 1318         }
 1319         *state = STATE_RUNNING;
 1320 }
 1321 
 1322 static void
 1323 cpu_idle_spin(int busy)
 1324 {
 1325         int *state;
 1326         int i;
 1327 
 1328         state = (int *)PCPU_PTR(monitorbuf);
 1329         *state = STATE_RUNNING;
 1330         for (i = 0; i < 1000; i++) {
 1331                 if (sched_runnable())
 1332                         return;
 1333                 cpu_spinwait();
 1334         }
 1335 }
 1336 
 1337 /*
 1338  * C1E renders the local APIC timer dead, so we disable it by
 1339  * reading the Interrupt Pending Message register and clearing
 1340  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
 1341  * 
 1342  * Reference:
 1343  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
 1344  *   #32559 revision 3.00+
 1345  */
 1346 #define MSR_AMDK8_IPM           0xc0010055
 1347 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
 1348 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
 1349 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
 1350 
 1351 static void
 1352 cpu_probe_amdc1e(void)
 1353 {
 1354 
 1355         /*
 1356          * Detect the presence of C1E capability mostly on latest
 1357          * dual-cores (or future) k8 family.
 1358          */
 1359         if (cpu_vendor_id == CPU_VENDOR_AMD &&
 1360             (cpu_id & 0x00000f00) == 0x00000f00 &&
 1361             (cpu_id & 0x0fff0000) >=  0x00040000) {
 1362                 cpu_ident_amdc1e = 1;
 1363         }
 1364 }
 1365 
 1366 #ifdef XEN
 1367 void (*cpu_idle_fn)(int) = cpu_idle_hlt;
 1368 #else
 1369 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
 1370 #endif
 1371 
 1372 void
 1373 cpu_idle(int busy)
 1374 {
 1375 #ifndef XEN
 1376         uint64_t msr;
 1377 #endif
 1378 
 1379         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
 1380             busy, curcpu);
 1381 #if defined(MP_WATCHDOG) && !defined(XEN)
 1382         ap_watchdog(PCPU_GET(cpuid));
 1383 #endif
 1384 #ifndef XEN
 1385         /* If we are busy - try to use fast methods. */
 1386         if (busy) {
 1387                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
 1388                         cpu_idle_mwait(busy);
 1389                         goto out;
 1390                 }
 1391         }
 1392 #endif
 1393 
 1394         /* If we have time - switch timers into idle mode. */
 1395         if (!busy) {
 1396                 critical_enter();
 1397                 cpu_idleclock();
 1398         }
 1399 
 1400 #ifndef XEN
 1401         /* Apply AMD APIC timer C1E workaround. */
 1402         if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
 1403                 msr = rdmsr(MSR_AMDK8_IPM);
 1404                 if (msr & AMDK8_CMPHALT)
 1405                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
 1406         }
 1407 #endif
 1408 
 1409         /* Call main idle method. */
 1410         cpu_idle_fn(busy);
 1411 
 1412         /* Switch timers mack into active mode. */
 1413         if (!busy) {
 1414                 cpu_activeclock();
 1415                 critical_exit();
 1416         }
 1417 #ifndef XEN
 1418 out:
 1419 #endif
 1420         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
 1421             busy, curcpu);
 1422 }
 1423 
 1424 int
 1425 cpu_idle_wakeup(int cpu)
 1426 {
 1427         struct pcpu *pcpu;
 1428         int *state;
 1429 
 1430         pcpu = pcpu_find(cpu);
 1431         state = (int *)pcpu->pc_monitorbuf;
 1432         /*
 1433          * This doesn't need to be atomic since missing the race will
 1434          * simply result in unnecessary IPIs.
 1435          */
 1436         if (*state == STATE_SLEEPING)
 1437                 return (0);
 1438         if (*state == STATE_MWAIT)
 1439                 *state = STATE_RUNNING;
 1440         return (1);
 1441 }
 1442 
 1443 /*
 1444  * Ordered by speed/power consumption.
 1445  */
 1446 struct {
 1447         void    *id_fn;
 1448         char    *id_name;
 1449 } idle_tbl[] = {
 1450         { cpu_idle_spin, "spin" },
 1451         { cpu_idle_mwait, "mwait" },
 1452         { cpu_idle_hlt, "hlt" },
 1453         { cpu_idle_acpi, "acpi" },
 1454         { NULL, NULL }
 1455 };
 1456 
 1457 static int
 1458 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1459 {
 1460         char *avail, *p;
 1461         int error;
 1462         int i;
 1463 
 1464         avail = malloc(256, M_TEMP, M_WAITOK);
 1465         p = avail;
 1466         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1467                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1468                     (cpu_feature2 & CPUID2_MON) == 0)
 1469                         continue;
 1470                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1471                     cpu_idle_hook == NULL)
 1472                         continue;
 1473                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
 1474                     idle_tbl[i].id_name);
 1475         }
 1476         error = sysctl_handle_string(oidp, avail, 0, req);
 1477         free(avail, M_TEMP);
 1478         return (error);
 1479 }
 1480 
 1481 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1482     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1483 
 1484 static int
 1485 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1486 {
 1487         char buf[16];
 1488         int error;
 1489         char *p;
 1490         int i;
 1491 
 1492         p = "unknown";
 1493         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1494                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1495                         p = idle_tbl[i].id_name;
 1496                         break;
 1497                 }
 1498         }
 1499         strncpy(buf, p, sizeof(buf));
 1500         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1501         if (error != 0 || req->newptr == NULL)
 1502                 return (error);
 1503         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1504                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1505                     (cpu_feature2 & CPUID2_MON) == 0)
 1506                         continue;
 1507                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
 1508                     cpu_idle_hook == NULL)
 1509                         continue;
 1510                 if (strcmp(idle_tbl[i].id_name, buf))
 1511                         continue;
 1512                 cpu_idle_fn = idle_tbl[i].id_fn;
 1513                 return (0);
 1514         }
 1515         return (EINVAL);
 1516 }
 1517 
 1518 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1519     idle_sysctl, "A", "currently selected idle function");
 1520 
 1521 uint64_t (*atomic_load_acq_64)(volatile uint64_t *) =
 1522     atomic_load_acq_64_i386;
 1523 void (*atomic_store_rel_64)(volatile uint64_t *, uint64_t) =
 1524     atomic_store_rel_64_i386;
 1525 
 1526 static void
 1527 cpu_probe_cmpxchg8b(void)
 1528 {
 1529 
 1530         if ((cpu_feature & CPUID_CX8) != 0 ||
 1531             cpu_vendor_id == CPU_VENDOR_RISE) {
 1532                 atomic_load_acq_64 = atomic_load_acq_64_i586;
 1533                 atomic_store_rel_64 = atomic_store_rel_64_i586;
 1534         }
 1535 }
 1536 
 1537 /*
 1538  * Reset registers to default values on exec.
 1539  */
 1540 void
 1541 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1542 {
 1543         struct trapframe *regs = td->td_frame;
 1544         struct pcb *pcb = td->td_pcb;
 1545 
 1546         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1547         pcb->pcb_gs = _udatasel;
 1548         load_gs(_udatasel);
 1549 
 1550         mtx_lock_spin(&dt_lock);
 1551         if (td->td_proc->p_md.md_ldt)
 1552                 user_ldt_free(td);
 1553         else
 1554                 mtx_unlock_spin(&dt_lock);
 1555   
 1556         bzero((char *)regs, sizeof(struct trapframe));
 1557         regs->tf_eip = imgp->entry_addr;
 1558         regs->tf_esp = stack;
 1559         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1560         regs->tf_ss = _udatasel;
 1561         regs->tf_ds = _udatasel;
 1562         regs->tf_es = _udatasel;
 1563         regs->tf_fs = _udatasel;
 1564         regs->tf_cs = _ucodesel;
 1565 
 1566         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1567         regs->tf_ebx = imgp->ps_strings;
 1568 
 1569         /*
 1570          * Reset the hardware debug registers if they were in use.
 1571          * They won't have any meaning for the newly exec'd process.  
 1572          */
 1573         if (pcb->pcb_flags & PCB_DBREGS) {
 1574                 pcb->pcb_dr0 = 0;
 1575                 pcb->pcb_dr1 = 0;
 1576                 pcb->pcb_dr2 = 0;
 1577                 pcb->pcb_dr3 = 0;
 1578                 pcb->pcb_dr6 = 0;
 1579                 pcb->pcb_dr7 = 0;
 1580                 if (pcb == curpcb) {
 1581                         /*
 1582                          * Clear the debug registers on the running
 1583                          * CPU, otherwise they will end up affecting
 1584                          * the next process we switch to.
 1585                          */
 1586                         reset_dbregs();
 1587                 }
 1588                 pcb->pcb_flags &= ~PCB_DBREGS;
 1589         }
 1590 
 1591         /*
 1592          * Initialize the math emulator (if any) for the current process.
 1593          * Actually, just clear the bit that says that the emulator has
 1594          * been initialized.  Initialization is delayed until the process
 1595          * traps to the emulator (if it is done at all) mainly because
 1596          * emulators don't provide an entry point for initialization.
 1597          */
 1598         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1599         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1600 
 1601         /*
 1602          * Drop the FP state if we hold it, so that the process gets a
 1603          * clean FP state if it uses the FPU again.
 1604          */
 1605         fpstate_drop(td);
 1606 
 1607         /*
 1608          * XXX - Linux emulator
 1609          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1610          * on it.
 1611          */
 1612         td->td_retval[1] = 0;
 1613 }
 1614 
 1615 void
 1616 cpu_setregs(void)
 1617 {
 1618         unsigned int cr0;
 1619 
 1620         cr0 = rcr0();
 1621 
 1622         /*
 1623          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1624          *
 1625          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1626          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1627          * bit to control the trap, because setting the CR0_EM bit does
 1628          * not cause WAIT instructions to trap.  It's important to trap
 1629          * WAIT instructions - otherwise the "wait" variants of no-wait
 1630          * control instructions would degenerate to the "no-wait" variants
 1631          * after FP context switches but work correctly otherwise.  It's
 1632          * particularly important to trap WAITs when there is no NPX -
 1633          * otherwise the "wait" variants would always degenerate.
 1634          *
 1635          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1636          * Setting it should fail or do nothing on lesser processors.
 1637          */
 1638         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1639         load_cr0(cr0);
 1640         load_gs(_udatasel);
 1641 }
 1642 
 1643 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1644 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1645         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1646 
 1647 /*
 1648  * Initialize 386 and configure to run kernel
 1649  */
 1650 
 1651 /*
 1652  * Initialize segments & interrupt table
 1653  */
 1654 
 1655 int _default_ldt;
 1656 
 1657 #ifdef XEN
 1658 union descriptor *gdt;
 1659 union descriptor *ldt;
 1660 #else
 1661 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1662 union descriptor ldt[NLDT];             /* local descriptor table */
 1663 #endif
 1664 static struct gate_descriptor idt0[NIDT];
 1665 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1666 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1667 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1668 
 1669 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1670 extern int has_f00f_bug;
 1671 #endif
 1672 
 1673 static struct i386tss dblfault_tss;
 1674 static char dblfault_stack[PAGE_SIZE];
 1675 
 1676 extern  vm_offset_t     proc0kstack;
 1677 
 1678 
 1679 /*
 1680  * software prototypes -- in more palatable form.
 1681  *
 1682  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1683  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1684  */
 1685 struct soft_segment_descriptor gdt_segs[] = {
 1686 /* GNULL_SEL    0 Null Descriptor */
 1687 {       .ssd_base = 0x0,
 1688         .ssd_limit = 0x0,
 1689         .ssd_type = 0,
 1690         .ssd_dpl = SEL_KPL,
 1691         .ssd_p = 0,
 1692         .ssd_xx = 0, .ssd_xx1 = 0,
 1693         .ssd_def32 = 0,
 1694         .ssd_gran = 0           },
 1695 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1696 {       .ssd_base = 0x0,
 1697         .ssd_limit = 0xfffff,
 1698         .ssd_type = SDT_MEMRWA,
 1699         .ssd_dpl = SEL_KPL,
 1700         .ssd_p = 1,
 1701         .ssd_xx = 0, .ssd_xx1 = 0,
 1702         .ssd_def32 = 1,
 1703         .ssd_gran = 1           },
 1704 /* GUFS_SEL     2 %fs Descriptor for user */
 1705 {       .ssd_base = 0x0,
 1706         .ssd_limit = 0xfffff,
 1707         .ssd_type = SDT_MEMRWA,
 1708         .ssd_dpl = SEL_UPL,
 1709         .ssd_p = 1,
 1710         .ssd_xx = 0, .ssd_xx1 = 0,
 1711         .ssd_def32 = 1,
 1712         .ssd_gran = 1           },
 1713 /* GUGS_SEL     3 %gs Descriptor for user */
 1714 {       .ssd_base = 0x0,
 1715         .ssd_limit = 0xfffff,
 1716         .ssd_type = SDT_MEMRWA,
 1717         .ssd_dpl = SEL_UPL,
 1718         .ssd_p = 1,
 1719         .ssd_xx = 0, .ssd_xx1 = 0,
 1720         .ssd_def32 = 1,
 1721         .ssd_gran = 1           },
 1722 /* GCODE_SEL    4 Code Descriptor for kernel */
 1723 {       .ssd_base = 0x0,
 1724         .ssd_limit = 0xfffff,
 1725         .ssd_type = SDT_MEMERA,
 1726         .ssd_dpl = SEL_KPL,
 1727         .ssd_p = 1,
 1728         .ssd_xx = 0, .ssd_xx1 = 0,
 1729         .ssd_def32 = 1,
 1730         .ssd_gran = 1           },
 1731 /* GDATA_SEL    5 Data Descriptor for kernel */
 1732 {       .ssd_base = 0x0,
 1733         .ssd_limit = 0xfffff,
 1734         .ssd_type = SDT_MEMRWA,
 1735         .ssd_dpl = SEL_KPL,
 1736         .ssd_p = 1,
 1737         .ssd_xx = 0, .ssd_xx1 = 0,
 1738         .ssd_def32 = 1,
 1739         .ssd_gran = 1           },
 1740 /* GUCODE_SEL   6 Code Descriptor for user */
 1741 {       .ssd_base = 0x0,
 1742         .ssd_limit = 0xfffff,
 1743         .ssd_type = SDT_MEMERA,
 1744         .ssd_dpl = SEL_UPL,
 1745         .ssd_p = 1,
 1746         .ssd_xx = 0, .ssd_xx1 = 0,
 1747         .ssd_def32 = 1,
 1748         .ssd_gran = 1           },
 1749 /* GUDATA_SEL   7 Data Descriptor for user */
 1750 {       .ssd_base = 0x0,
 1751         .ssd_limit = 0xfffff,
 1752         .ssd_type = SDT_MEMRWA,
 1753         .ssd_dpl = SEL_UPL,
 1754         .ssd_p = 1,
 1755         .ssd_xx = 0, .ssd_xx1 = 0,
 1756         .ssd_def32 = 1,
 1757         .ssd_gran = 1           },
 1758 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1759 {       .ssd_base = 0x400,
 1760         .ssd_limit = 0xfffff,
 1761         .ssd_type = SDT_MEMRWA,
 1762         .ssd_dpl = SEL_KPL,
 1763         .ssd_p = 1,
 1764         .ssd_xx = 0, .ssd_xx1 = 0,
 1765         .ssd_def32 = 1,
 1766         .ssd_gran = 1           },
 1767 #ifndef XEN
 1768 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1769 {
 1770         .ssd_base = 0x0,
 1771         .ssd_limit = sizeof(struct i386tss)-1,
 1772         .ssd_type = SDT_SYS386TSS,
 1773         .ssd_dpl = 0,
 1774         .ssd_p = 1,
 1775         .ssd_xx = 0, .ssd_xx1 = 0,
 1776         .ssd_def32 = 0,
 1777         .ssd_gran = 0           },
 1778 /* GLDT_SEL     10 LDT Descriptor */
 1779 {       .ssd_base = (int) ldt,
 1780         .ssd_limit = sizeof(ldt)-1,
 1781         .ssd_type = SDT_SYSLDT,
 1782         .ssd_dpl = SEL_UPL,
 1783         .ssd_p = 1,
 1784         .ssd_xx = 0, .ssd_xx1 = 0,
 1785         .ssd_def32 = 0,
 1786         .ssd_gran = 0           },
 1787 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1788 {       .ssd_base = (int) ldt,
 1789         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1790         .ssd_type = SDT_SYSLDT,
 1791         .ssd_dpl = 0,
 1792         .ssd_p = 1,
 1793         .ssd_xx = 0, .ssd_xx1 = 0,
 1794         .ssd_def32 = 0,
 1795         .ssd_gran = 0           },
 1796 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1797 {       .ssd_base = (int) &dblfault_tss,
 1798         .ssd_limit = sizeof(struct i386tss)-1,
 1799         .ssd_type = SDT_SYS386TSS,
 1800         .ssd_dpl = 0,
 1801         .ssd_p = 1,
 1802         .ssd_xx = 0, .ssd_xx1 = 0,
 1803         .ssd_def32 = 0,
 1804         .ssd_gran = 0           },
 1805 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1806 {       .ssd_base = 0,
 1807         .ssd_limit = 0xfffff,
 1808         .ssd_type = SDT_MEMERA,
 1809         .ssd_dpl = 0,
 1810         .ssd_p = 1,
 1811         .ssd_xx = 0, .ssd_xx1 = 0,
 1812         .ssd_def32 = 0,
 1813         .ssd_gran = 1           },
 1814 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1815 {       .ssd_base = 0,
 1816         .ssd_limit = 0xfffff,
 1817         .ssd_type = SDT_MEMERA,
 1818         .ssd_dpl = 0,
 1819         .ssd_p = 1,
 1820         .ssd_xx = 0, .ssd_xx1 = 0,
 1821         .ssd_def32 = 0,
 1822         .ssd_gran = 1           },
 1823 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1824 {       .ssd_base = 0,
 1825         .ssd_limit = 0xfffff,
 1826         .ssd_type = SDT_MEMRWA,
 1827         .ssd_dpl = 0,
 1828         .ssd_p = 1,
 1829         .ssd_xx = 0, .ssd_xx1 = 0,
 1830         .ssd_def32 = 1,
 1831         .ssd_gran = 1           },
 1832 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1833 {       .ssd_base = 0,
 1834         .ssd_limit = 0xfffff,
 1835         .ssd_type = SDT_MEMRWA,
 1836         .ssd_dpl = 0,
 1837         .ssd_p = 1,
 1838         .ssd_xx = 0, .ssd_xx1 = 0,
 1839         .ssd_def32 = 0,
 1840         .ssd_gran = 1           },
 1841 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1842 {       .ssd_base = 0,
 1843         .ssd_limit = 0xfffff,
 1844         .ssd_type = SDT_MEMRWA,
 1845         .ssd_dpl = 0,
 1846         .ssd_p = 1,
 1847         .ssd_xx = 0, .ssd_xx1 = 0,
 1848         .ssd_def32 = 0,
 1849         .ssd_gran = 1           },
 1850 /* GNDIS_SEL    18 NDIS Descriptor */
 1851 {       .ssd_base = 0x0,
 1852         .ssd_limit = 0x0,
 1853         .ssd_type = 0,
 1854         .ssd_dpl = 0,
 1855         .ssd_p = 0,
 1856         .ssd_xx = 0, .ssd_xx1 = 0,
 1857         .ssd_def32 = 0,
 1858         .ssd_gran = 0           },
 1859 #endif /* !XEN */
 1860 };
 1861 
 1862 static struct soft_segment_descriptor ldt_segs[] = {
 1863         /* Null Descriptor - overwritten by call gate */
 1864 {       .ssd_base = 0x0,
 1865         .ssd_limit = 0x0,
 1866         .ssd_type = 0,
 1867         .ssd_dpl = 0,
 1868         .ssd_p = 0,
 1869         .ssd_xx = 0, .ssd_xx1 = 0,
 1870         .ssd_def32 = 0,
 1871         .ssd_gran = 0           },
 1872         /* Null Descriptor - overwritten by call gate */
 1873 {       .ssd_base = 0x0,
 1874         .ssd_limit = 0x0,
 1875         .ssd_type = 0,
 1876         .ssd_dpl = 0,
 1877         .ssd_p = 0,
 1878         .ssd_xx = 0, .ssd_xx1 = 0,
 1879         .ssd_def32 = 0,
 1880         .ssd_gran = 0           },
 1881         /* Null Descriptor - overwritten by call gate */
 1882 {       .ssd_base = 0x0,
 1883         .ssd_limit = 0x0,
 1884         .ssd_type = 0,
 1885         .ssd_dpl = 0,
 1886         .ssd_p = 0,
 1887         .ssd_xx = 0, .ssd_xx1 = 0,
 1888         .ssd_def32 = 0,
 1889         .ssd_gran = 0           },
 1890         /* Code Descriptor for user */
 1891 {       .ssd_base = 0x0,
 1892         .ssd_limit = 0xfffff,
 1893         .ssd_type = SDT_MEMERA,
 1894         .ssd_dpl = SEL_UPL,
 1895         .ssd_p = 1,
 1896         .ssd_xx = 0, .ssd_xx1 = 0,
 1897         .ssd_def32 = 1,
 1898         .ssd_gran = 1           },
 1899         /* Null Descriptor - overwritten by call gate */
 1900 {       .ssd_base = 0x0,
 1901         .ssd_limit = 0x0,
 1902         .ssd_type = 0,
 1903         .ssd_dpl = 0,
 1904         .ssd_p = 0,
 1905         .ssd_xx = 0, .ssd_xx1 = 0,
 1906         .ssd_def32 = 0,
 1907         .ssd_gran = 0           },
 1908         /* Data Descriptor for user */
 1909 {       .ssd_base = 0x0,
 1910         .ssd_limit = 0xfffff,
 1911         .ssd_type = SDT_MEMRWA,
 1912         .ssd_dpl = SEL_UPL,
 1913         .ssd_p = 1,
 1914         .ssd_xx = 0, .ssd_xx1 = 0,
 1915         .ssd_def32 = 1,
 1916         .ssd_gran = 1           },
 1917 };
 1918 
 1919 void
 1920 setidt(idx, func, typ, dpl, selec)
 1921         int idx;
 1922         inthand_t *func;
 1923         int typ;
 1924         int dpl;
 1925         int selec;
 1926 {
 1927         struct gate_descriptor *ip;
 1928 
 1929         ip = idt + idx;
 1930         ip->gd_looffset = (int)func;
 1931         ip->gd_selector = selec;
 1932         ip->gd_stkcpy = 0;
 1933         ip->gd_xx = 0;
 1934         ip->gd_type = typ;
 1935         ip->gd_dpl = dpl;
 1936         ip->gd_p = 1;
 1937         ip->gd_hioffset = ((int)func)>>16 ;
 1938 }
 1939 
 1940 extern inthand_t
 1941         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1942         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1943         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1944         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1945         IDTVEC(xmm),
 1946 #ifdef KDTRACE_HOOKS
 1947         IDTVEC(dtrace_ret),
 1948 #endif
 1949         IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1950 
 1951 #ifdef DDB
 1952 /*
 1953  * Display the index and function name of any IDT entries that don't use
 1954  * the default 'rsvd' entry point.
 1955  */
 1956 DB_SHOW_COMMAND(idt, db_show_idt)
 1957 {
 1958         struct gate_descriptor *ip;
 1959         int idx;
 1960         uintptr_t func;
 1961 
 1962         ip = idt;
 1963         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1964                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1965                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1966                         db_printf("%3d\t", idx);
 1967                         db_printsym(func, DB_STGY_PROC);
 1968                         db_printf("\n");
 1969                 }
 1970                 ip++;
 1971         }
 1972 }
 1973 
 1974 /* Show privileged registers. */
 1975 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1976 {
 1977         uint64_t idtr, gdtr;
 1978 
 1979         idtr = ridt();
 1980         db_printf("idtr\t0x%08x/%04x\n",
 1981             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1982         gdtr = rgdt();
 1983         db_printf("gdtr\t0x%08x/%04x\n",
 1984             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1985         db_printf("ldtr\t0x%04x\n", rldt());
 1986         db_printf("tr\t0x%04x\n", rtr());
 1987         db_printf("cr0\t0x%08x\n", rcr0());
 1988         db_printf("cr2\t0x%08x\n", rcr2());
 1989         db_printf("cr3\t0x%08x\n", rcr3());
 1990         db_printf("cr4\t0x%08x\n", rcr4());
 1991 }
 1992 #endif
 1993 
 1994 void
 1995 sdtossd(sd, ssd)
 1996         struct segment_descriptor *sd;
 1997         struct soft_segment_descriptor *ssd;
 1998 {
 1999         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 2000         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 2001         ssd->ssd_type  = sd->sd_type;
 2002         ssd->ssd_dpl   = sd->sd_dpl;
 2003         ssd->ssd_p     = sd->sd_p;
 2004         ssd->ssd_def32 = sd->sd_def32;
 2005         ssd->ssd_gran  = sd->sd_gran;
 2006 }
 2007 
 2008 #ifndef XEN
 2009 static int
 2010 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 2011 {
 2012         int i, insert_idx, physmap_idx;
 2013 
 2014         physmap_idx = *physmap_idxp;
 2015         
 2016         if (boothowto & RB_VERBOSE)
 2017                 printf("SMAP type=%02x base=%016llx len=%016llx\n",
 2018                     smap->type, smap->base, smap->length);
 2019 
 2020         if (smap->type != SMAP_TYPE_MEMORY)
 2021                 return (1);
 2022 
 2023         if (smap->length == 0)
 2024                 return (1);
 2025 
 2026 #ifndef PAE
 2027         if (smap->base > 0xffffffff) {
 2028                 printf("%uK of memory above 4GB ignored\n",
 2029                     (u_int)(smap->length / 1024));
 2030                 return (1);
 2031         }
 2032 #endif
 2033 
 2034         /*
 2035          * Find insertion point while checking for overlap.  Start off by
 2036          * assuming the new entry will be added to the end.
 2037          */
 2038         insert_idx = physmap_idx + 2;
 2039         for (i = 0; i <= physmap_idx; i += 2) {
 2040                 if (smap->base < physmap[i + 1]) {
 2041                         if (smap->base + smap->length <= physmap[i]) {
 2042                                 insert_idx = i;
 2043                                 break;
 2044                         }
 2045                         if (boothowto & RB_VERBOSE)
 2046                                 printf(
 2047                     "Overlapping memory regions, ignoring second region\n");
 2048                         return (1);
 2049                 }
 2050         }
 2051 
 2052         /* See if we can prepend to the next entry. */
 2053         if (insert_idx <= physmap_idx &&
 2054             smap->base + smap->length == physmap[insert_idx]) {
 2055                 physmap[insert_idx] = smap->base;
 2056                 return (1);
 2057         }
 2058 
 2059         /* See if we can append to the previous entry. */
 2060         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 2061                 physmap[insert_idx - 1] += smap->length;
 2062                 return (1);
 2063         }
 2064 
 2065         physmap_idx += 2;
 2066         *physmap_idxp = physmap_idx;
 2067         if (physmap_idx == PHYSMAP_SIZE) {
 2068                 printf(
 2069                 "Too many segments in the physical address map, giving up\n");
 2070                 return (0);
 2071         }
 2072 
 2073         /*
 2074          * Move the last 'N' entries down to make room for the new
 2075          * entry if needed.
 2076          */
 2077         for (i = physmap_idx; i > insert_idx; i -= 2) {
 2078                 physmap[i] = physmap[i - 2];
 2079                 physmap[i + 1] = physmap[i - 1];
 2080         }
 2081 
 2082         /* Insert the new entry. */
 2083         physmap[insert_idx] = smap->base;
 2084         physmap[insert_idx + 1] = smap->base + smap->length;
 2085         return (1);
 2086 }
 2087 
 2088 static void
 2089 basemem_setup(void)
 2090 {
 2091         vm_paddr_t pa;
 2092         pt_entry_t *pte;
 2093         int i;
 2094 
 2095         if (basemem > 640) {
 2096                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 2097                         basemem);
 2098                 basemem = 640;
 2099         }
 2100 
 2101         /*
 2102          * XXX if biosbasemem is now < 640, there is a `hole'
 2103          * between the end of base memory and the start of
 2104          * ISA memory.  The hole may be empty or it may
 2105          * contain BIOS code or data.  Map it read/write so
 2106          * that the BIOS can write to it.  (Memory from 0 to
 2107          * the physical end of the kernel is mapped read-only
 2108          * to begin with and then parts of it are remapped.
 2109          * The parts that aren't remapped form holes that
 2110          * remain read-only and are unused by the kernel.
 2111          * The base memory area is below the physical end of
 2112          * the kernel and right now forms a read-only hole.
 2113          * The part of it from PAGE_SIZE to
 2114          * (trunc_page(biosbasemem * 1024) - 1) will be
 2115          * remapped and used by the kernel later.)
 2116          *
 2117          * This code is similar to the code used in
 2118          * pmap_mapdev, but since no memory needs to be
 2119          * allocated we simply change the mapping.
 2120          */
 2121         for (pa = trunc_page(basemem * 1024);
 2122              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 2123                 pmap_kenter(KERNBASE + pa, pa);
 2124 
 2125         /*
 2126          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 2127          * the vm86 page table so that vm86 can scribble on them using
 2128          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 2129          * page 0, at least as initialized here?
 2130          */
 2131         pte = (pt_entry_t *)vm86paddr;
 2132         for (i = basemem / 4; i < 160; i++)
 2133                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 2134 }
 2135 #endif
 2136 
 2137 /*
 2138  * Populate the (physmap) array with base/bound pairs describing the
 2139  * available physical memory in the system, then test this memory and
 2140  * build the phys_avail array describing the actually-available memory.
 2141  *
 2142  * If we cannot accurately determine the physical memory map, then use
 2143  * value from the 0xE801 call, and failing that, the RTC.
 2144  *
 2145  * Total memory size may be set by the kernel environment variable
 2146  * hw.physmem or the compile-time define MAXMEM.
 2147  *
 2148  * XXX first should be vm_paddr_t.
 2149  */
 2150 static void
 2151 getmemsize(int first)
 2152 {
 2153         int has_smap, off, physmap_idx, pa_indx, da_indx;
 2154         u_long physmem_tunable, memtest;
 2155         vm_paddr_t physmap[PHYSMAP_SIZE];
 2156         pt_entry_t *pte;
 2157         quad_t dcons_addr, dcons_size;
 2158 #ifndef XEN
 2159         int hasbrokenint12, i;
 2160         u_int extmem;
 2161         struct vm86frame vmf;
 2162         struct vm86context vmc;
 2163         vm_paddr_t pa;
 2164         struct bios_smap *smap, *smapbase, *smapend;
 2165         u_int32_t smapsize;
 2166         caddr_t kmdp;
 2167 #endif
 2168 
 2169         has_smap = 0;
 2170 #if defined(XEN)
 2171         Maxmem = xen_start_info->nr_pages - init_first;
 2172         physmem = Maxmem;
 2173         basemem = 0;
 2174         physmap[0] = init_first << PAGE_SHIFT;
 2175         physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
 2176         physmap_idx = 0;
 2177 #else
 2178 #ifdef XBOX
 2179         if (arch_i386_is_xbox) {
 2180                 /*
 2181                  * We queried the memory size before, so chop off 4MB for
 2182                  * the framebuffer and inform the OS of this.
 2183                  */
 2184                 physmap[0] = 0;
 2185                 physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
 2186                 physmap_idx = 0;
 2187                 goto physmap_done;
 2188         }
 2189 #endif
 2190         bzero(&vmf, sizeof(vmf));
 2191         bzero(physmap, sizeof(physmap));
 2192         basemem = 0;
 2193 
 2194         /*
 2195          * Check if the loader supplied an SMAP memory map.  If so,
 2196          * use that and do not make any VM86 calls.
 2197          */
 2198         physmap_idx = 0;
 2199         smapbase = NULL;
 2200         kmdp = preload_search_by_type("elf kernel");
 2201         if (kmdp == NULL)
 2202                 kmdp = preload_search_by_type("elf32 kernel");
 2203         if (kmdp != NULL)
 2204                 smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2205                     MODINFO_METADATA | MODINFOMD_SMAP);
 2206         if (smapbase != NULL) {
 2207                 /*
 2208                  * subr_module.c says:
 2209                  * "Consumer may safely assume that size value precedes data."
 2210                  * ie: an int32_t immediately precedes SMAP.
 2211                  */
 2212                 smapsize = *((u_int32_t *)smapbase - 1);
 2213                 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 2214                 has_smap = 1;
 2215 
 2216                 for (smap = smapbase; smap < smapend; smap++)
 2217                         if (!add_smap_entry(smap, physmap, &physmap_idx))
 2218                                 break;
 2219                 goto have_smap;
 2220         }
 2221 
 2222         /*
 2223          * Some newer BIOSes have a broken INT 12H implementation
 2224          * which causes a kernel panic immediately.  In this case, we
 2225          * need use the SMAP to determine the base memory size.
 2226          */
 2227         hasbrokenint12 = 0;
 2228         TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
 2229         if (hasbrokenint12 == 0) {
 2230                 /* Use INT12 to determine base memory size. */
 2231                 vm86_intcall(0x12, &vmf);
 2232                 basemem = vmf.vmf_ax;
 2233                 basemem_setup();
 2234         }
 2235 
 2236         /*
 2237          * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
 2238          * the kernel page table so we can use it as a buffer.  The
 2239          * kernel will unmap this page later.
 2240          */
 2241         pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
 2242         vmc.npages = 0;
 2243         smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
 2244         vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
 2245 
 2246         vmf.vmf_ebx = 0;
 2247         do {
 2248                 vmf.vmf_eax = 0xE820;
 2249                 vmf.vmf_edx = SMAP_SIG;
 2250                 vmf.vmf_ecx = sizeof(struct bios_smap);
 2251                 i = vm86_datacall(0x15, &vmf, &vmc);
 2252                 if (i || vmf.vmf_eax != SMAP_SIG)
 2253                         break;
 2254                 has_smap = 1;
 2255                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 2256                         break;
 2257         } while (vmf.vmf_ebx != 0);
 2258 
 2259 have_smap:
 2260         /*
 2261          * If we didn't fetch the "base memory" size from INT12,
 2262          * figure it out from the SMAP (or just guess).
 2263          */
 2264         if (basemem == 0) {
 2265                 for (i = 0; i <= physmap_idx; i += 2) {
 2266                         if (physmap[i] == 0x00000000) {
 2267                                 basemem = physmap[i + 1] / 1024;
 2268                                 break;
 2269                         }
 2270                 }
 2271 
 2272                 /* XXX: If we couldn't find basemem from SMAP, just guess. */
 2273                 if (basemem == 0)
 2274                         basemem = 640;
 2275                 basemem_setup();
 2276         }
 2277 
 2278         if (physmap[1] != 0)
 2279                 goto physmap_done;
 2280 
 2281         /*
 2282          * If we failed to find an SMAP, figure out the extended
 2283          * memory size.  We will then build a simple memory map with
 2284          * two segments, one for "base memory" and the second for
 2285          * "extended memory".  Note that "extended memory" starts at a
 2286          * physical address of 1MB and that both basemem and extmem
 2287          * are in units of 1KB.
 2288          *
 2289          * First, try to fetch the extended memory size via INT 15:E801.
 2290          */
 2291         vmf.vmf_ax = 0xE801;
 2292         if (vm86_intcall(0x15, &vmf) == 0) {
 2293                 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
 2294         } else {
 2295                 /*
 2296                  * If INT15:E801 fails, this is our last ditch effort
 2297                  * to determine the extended memory size.  Currently
 2298                  * we prefer the RTC value over INT15:88.
 2299                  */
 2300 #if 0
 2301                 vmf.vmf_ah = 0x88;
 2302                 vm86_intcall(0x15, &vmf);
 2303                 extmem = vmf.vmf_ax;
 2304 #else
 2305                 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
 2306 #endif
 2307         }
 2308 
 2309         /*
 2310          * Special hack for chipsets that still remap the 384k hole when
 2311          * there's 16MB of memory - this really confuses people that
 2312          * are trying to use bus mastering ISA controllers with the
 2313          * "16MB limit"; they only have 16MB, but the remapping puts
 2314          * them beyond the limit.
 2315          *
 2316          * If extended memory is between 15-16MB (16-17MB phys address range),
 2317          *      chop it to 15MB.
 2318          */
 2319         if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
 2320                 extmem = 15 * 1024;
 2321 
 2322         physmap[0] = 0;
 2323         physmap[1] = basemem * 1024;
 2324         physmap_idx = 2;
 2325         physmap[physmap_idx] = 0x100000;
 2326         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 2327 
 2328 physmap_done:
 2329 #endif  
 2330         /*
 2331          * Now, physmap contains a map of physical memory.
 2332          */
 2333 
 2334 #ifdef SMP
 2335         /* make hole for AP bootstrap code */
 2336         physmap[1] = mp_bootaddress(physmap[1]);
 2337 #endif
 2338 
 2339         /*
 2340          * Maxmem isn't the "maximum memory", it's one larger than the
 2341          * highest page of the physical address space.  It should be
 2342          * called something like "Maxphyspage".  We may adjust this 
 2343          * based on ``hw.physmem'' and the results of the memory test.
 2344          */
 2345         Maxmem = atop(physmap[physmap_idx + 1]);
 2346 
 2347 #ifdef MAXMEM
 2348         Maxmem = MAXMEM / 4;
 2349 #endif
 2350 
 2351         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 2352                 Maxmem = atop(physmem_tunable);
 2353 
 2354         /*
 2355          * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
 2356          * the amount of memory in the system.
 2357          */
 2358         if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
 2359                 Maxmem = atop(physmap[physmap_idx + 1]);
 2360 
 2361         /*
 2362          * By default enable the memory test on real hardware, and disable
 2363          * it if we appear to be running in a VM.  This avoids touching all
 2364          * pages unnecessarily, which doesn't matter on real hardware but is
 2365          * bad for shared VM hosts.  Use a general name so that
 2366          * one could eventually do more with the code than just disable it.
 2367          */
 2368         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 2369         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 2370 
 2371         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 2372             (boothowto & RB_VERBOSE))
 2373                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 2374 
 2375         /*
 2376          * If Maxmem has been increased beyond what the system has detected,
 2377          * extend the last memory segment to the new limit.
 2378          */ 
 2379         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 2380                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 2381 
 2382         /* call pmap initialization to make new kernel address space */
 2383         pmap_bootstrap(first);
 2384 
 2385         /*
 2386          * Size up each available chunk of physical memory.
 2387          */
 2388         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 2389         pa_indx = 0;
 2390         da_indx = 1;
 2391         phys_avail[pa_indx++] = physmap[0];
 2392         phys_avail[pa_indx] = physmap[0];
 2393         dump_avail[da_indx] = physmap[0];
 2394         pte = CMAP1;
 2395 
 2396         /*
 2397          * Get dcons buffer address
 2398          */
 2399         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 2400             getenv_quad("dcons.size", &dcons_size) == 0)
 2401                 dcons_addr = 0;
 2402 
 2403 #ifndef XEN
 2404         /*
 2405          * physmap is in bytes, so when converting to page boundaries,
 2406          * round up the start address and round down the end address.
 2407          */
 2408         for (i = 0; i <= physmap_idx; i += 2) {
 2409                 vm_paddr_t end;
 2410 
 2411                 end = ptoa((vm_paddr_t)Maxmem);
 2412                 if (physmap[i + 1] < end)
 2413                         end = trunc_page(physmap[i + 1]);
 2414                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2415                         int tmp, page_bad, full;
 2416                         int *ptr = (int *)CADDR1;
 2417 
 2418                         full = FALSE;
 2419                         /*
 2420                          * block out kernel memory as not available.
 2421                          */
 2422                         if (pa >= KERNLOAD && pa < first)
 2423                                 goto do_dump_avail;
 2424 
 2425                         /*
 2426                          * block out dcons buffer
 2427                          */
 2428                         if (dcons_addr > 0
 2429                             && pa >= trunc_page(dcons_addr)
 2430                             && pa < dcons_addr + dcons_size)
 2431                                 goto do_dump_avail;
 2432 
 2433                         page_bad = FALSE;
 2434                         if (memtest == 0)
 2435                                 goto skip_memtest;
 2436 
 2437                         /*
 2438                          * map page into kernel: valid, read/write,non-cacheable
 2439                          */
 2440                         *pte = pa | PG_V | PG_RW | PG_N;
 2441                         invltlb();
 2442 
 2443                         tmp = *(int *)ptr;
 2444                         /*
 2445                          * Test for alternating 1's and 0's
 2446                          */
 2447                         *(volatile int *)ptr = 0xaaaaaaaa;
 2448                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2449                                 page_bad = TRUE;
 2450                         /*
 2451                          * Test for alternating 0's and 1's
 2452                          */
 2453                         *(volatile int *)ptr = 0x55555555;
 2454                         if (*(volatile int *)ptr != 0x55555555)
 2455                                 page_bad = TRUE;
 2456                         /*
 2457                          * Test for all 1's
 2458                          */
 2459                         *(volatile int *)ptr = 0xffffffff;
 2460                         if (*(volatile int *)ptr != 0xffffffff)
 2461                                 page_bad = TRUE;
 2462                         /*
 2463                          * Test for all 0's
 2464                          */
 2465                         *(volatile int *)ptr = 0x0;
 2466                         if (*(volatile int *)ptr != 0x0)
 2467                                 page_bad = TRUE;
 2468                         /*
 2469                          * Restore original value.
 2470                          */
 2471                         *(int *)ptr = tmp;
 2472 
 2473 skip_memtest:
 2474                         /*
 2475                          * Adjust array of valid/good pages.
 2476                          */
 2477                         if (page_bad == TRUE)
 2478                                 continue;
 2479                         /*
 2480                          * If this good page is a continuation of the
 2481                          * previous set of good pages, then just increase
 2482                          * the end pointer. Otherwise start a new chunk.
 2483                          * Note that "end" points one higher than end,
 2484                          * making the range >= start and < end.
 2485                          * If we're also doing a speculative memory
 2486                          * test and we at or past the end, bump up Maxmem
 2487                          * so that we keep going. The first bad page
 2488                          * will terminate the loop.
 2489                          */
 2490                         if (phys_avail[pa_indx] == pa) {
 2491                                 phys_avail[pa_indx] += PAGE_SIZE;
 2492                         } else {
 2493                                 pa_indx++;
 2494                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2495                                         printf(
 2496                 "Too many holes in the physical address space, giving up\n");
 2497                                         pa_indx--;
 2498                                         full = TRUE;
 2499                                         goto do_dump_avail;
 2500                                 }
 2501                                 phys_avail[pa_indx++] = pa;     /* start */
 2502                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2503                         }
 2504                         physmem++;
 2505 do_dump_avail:
 2506                         if (dump_avail[da_indx] == pa) {
 2507                                 dump_avail[da_indx] += PAGE_SIZE;
 2508                         } else {
 2509                                 da_indx++;
 2510                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2511                                         da_indx--;
 2512                                         goto do_next;
 2513                                 }
 2514                                 dump_avail[da_indx++] = pa;     /* start */
 2515                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2516                         }
 2517 do_next:
 2518                         if (full)
 2519                                 break;
 2520                 }
 2521         }
 2522         *pte = 0;
 2523         invltlb();
 2524 #else
 2525         phys_avail[0] = physfree;
 2526         phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2527         dump_avail[0] = 0;      
 2528         dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
 2529         
 2530 #endif
 2531         
 2532         /*
 2533          * XXX
 2534          * The last chunk must contain at least one page plus the message
 2535          * buffer to avoid complicating other code (message buffer address
 2536          * calculation, etc.).
 2537          */
 2538         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2539             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2540                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2541                 phys_avail[pa_indx--] = 0;
 2542                 phys_avail[pa_indx--] = 0;
 2543         }
 2544 
 2545         Maxmem = atop(phys_avail[pa_indx]);
 2546 
 2547         /* Trim off space for the message buffer. */
 2548         phys_avail[pa_indx] -= round_page(msgbufsize);
 2549 
 2550         /* Map the message buffer. */
 2551         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2552                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2553                     off);
 2554 
 2555         PT_UPDATES_FLUSH();
 2556 }
 2557 
 2558 #ifdef XEN
 2559 #define MTOPSIZE (1<<(14 + PAGE_SHIFT))
 2560 
 2561 void
 2562 init386(first)
 2563         int first;
 2564 {
 2565         unsigned long gdtmachpfn;
 2566         int error, gsel_tss, metadata_missing, x, pa;
 2567         size_t kstack0_sz;
 2568         struct pcpu *pc;
 2569         struct callback_register event = {
 2570                 .type = CALLBACKTYPE_event,
 2571                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
 2572         };
 2573         struct callback_register failsafe = {
 2574                 .type = CALLBACKTYPE_failsafe,
 2575                 .address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
 2576         };
 2577 
 2578         thread0.td_kstack = proc0kstack;
 2579         thread0.td_kstack_pages = KSTACK_PAGES;
 2580         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2581         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2582 
 2583         /*
 2584          * This may be done better later if it gets more high level
 2585          * components in it. If so just link td->td_proc here.
 2586          */
 2587         proc_linkup0(&proc0, &thread0);
 2588 
 2589         metadata_missing = 0;
 2590         if (xen_start_info->mod_start) {
 2591                 preload_metadata = (caddr_t)xen_start_info->mod_start;
 2592                 preload_bootstrap_relocate(KERNBASE);
 2593         } else {
 2594                 metadata_missing = 1;
 2595         }
 2596         if (envmode == 1)
 2597                 kern_envp = static_env;
 2598         else if ((caddr_t)xen_start_info->cmd_line)
 2599                 kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
 2600 
 2601         boothowto |= xen_boothowto(kern_envp);
 2602         
 2603         /* Init basic tunables, hz etc */
 2604         init_param1();
 2605 
 2606         /*
 2607          * XEN occupies a portion of the upper virtual address space 
 2608          * At its base it manages an array mapping machine page frames 
 2609          * to physical page frames - hence we need to be able to 
 2610          * access 4GB - (64MB  - 4MB + 64k) 
 2611          */
 2612         gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2613         gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2614         gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2615         gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2616         gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2617         gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2618         gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2619         gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
 2620 
 2621         pc = &__pcpu[0];
 2622         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2623         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2624 
 2625         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
 2626         bzero(gdt, PAGE_SIZE);
 2627         for (x = 0; x < NGDT; x++)
 2628                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2629 
 2630         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2631 
 2632         gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
 2633         PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
 2634         PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);    
 2635         lgdt(&r_gdt);
 2636         gdtset = 1;
 2637 
 2638         if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
 2639                 panic("set_trap_table failed - error %d\n", error);
 2640         }
 2641         
 2642         error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
 2643         if (error == 0)
 2644                 error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
 2645 #if     CONFIG_XEN_COMPAT <= 0x030002
 2646         if (error == -ENOXENSYS)
 2647                 HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
 2648                     (unsigned long)Xhypervisor_callback,
 2649                     GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
 2650 #endif
 2651         pcpu_init(pc, 0, sizeof(struct pcpu));
 2652         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2653                 pmap_kenter(pa + KERNBASE, pa);
 2654         dpcpu_init((void *)(first + KERNBASE), 0);
 2655         first += DPCPU_SIZE;
 2656         physfree += DPCPU_SIZE;
 2657         init_first += DPCPU_SIZE / PAGE_SIZE;
 2658 
 2659         PCPU_SET(prvspace, pc);
 2660         PCPU_SET(curthread, &thread0);
 2661         PCPU_SET(curpcb, thread0.td_pcb);
 2662 
 2663         /*
 2664          * Initialize mutexes.
 2665          *
 2666          * icu_lock: in order to allow an interrupt to occur in a critical
 2667          *           section, to set pcpu->ipending (etc...) properly, we
 2668          *           must be able to get the icu lock, so it can't be
 2669          *           under witness.
 2670          */
 2671         mutex_init();
 2672         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2673 
 2674         /* make ldt memory segments */
 2675         PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
 2676         bzero(ldt, PAGE_SIZE);
 2677         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2678         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2679         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2680                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2681 
 2682         default_proc_ldt.ldt_base = (caddr_t)ldt;
 2683         default_proc_ldt.ldt_len = 6;
 2684         _default_ldt = (int)&default_proc_ldt;
 2685         PCPU_SET(currentldt, _default_ldt);
 2686         PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
 2687         xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
 2688         
 2689 #if defined(XEN_PRIVILEGED)
 2690         /*
 2691          * Initialize the i8254 before the console so that console
 2692          * initialization can use DELAY().
 2693          */
 2694         i8254_init();
 2695 #endif
 2696         
 2697         /*
 2698          * Initialize the console before we print anything out.
 2699          */
 2700         cninit();
 2701 
 2702         if (metadata_missing)
 2703                 printf("WARNING: loader(8) metadata is missing!\n");
 2704 
 2705 #ifdef DEV_ISA
 2706 #ifdef DEV_ATPIC
 2707         elcr_probe();
 2708         atpic_startup();
 2709 #else
 2710         /* Reset and mask the atpics and leave them shut down. */
 2711         atpic_reset();
 2712 
 2713         /*
 2714          * Point the ICU spurious interrupt vectors at the APIC spurious
 2715          * interrupt handler.
 2716          */
 2717         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2718             GSEL(GCODE_SEL, SEL_KPL));
 2719         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2720             GSEL(GCODE_SEL, SEL_KPL));
 2721 #endif
 2722 #endif
 2723 
 2724 #ifdef DDB
 2725         ksym_start = bootinfo.bi_symtab;
 2726         ksym_end = bootinfo.bi_esymtab;
 2727 #endif
 2728 
 2729         kdb_init();
 2730 
 2731 #ifdef KDB
 2732         if (boothowto & RB_KDB)
 2733                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2734 #endif
 2735 
 2736         finishidentcpu();       /* Final stage of CPU initialization */
 2737         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2738             GSEL(GCODE_SEL, SEL_KPL));
 2739         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2740             GSEL(GCODE_SEL, SEL_KPL));
 2741         initializecpu();        /* Initialize CPU registers */
 2742 
 2743         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2744         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2745         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2746             kstack0_sz - sizeof(struct pcb) - 16);
 2747         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2748         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2749         HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
 2750             PCPU_GET(common_tss.tss_esp0));
 2751         
 2752         /* pointer to selector slot for %fs/%gs */
 2753         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2754 
 2755         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2756             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2757         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2758             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2759 #ifdef PAE
 2760         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 2761 #else
 2762         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2763 #endif
 2764         dblfault_tss.tss_eip = (int)dblfault_handler;
 2765         dblfault_tss.tss_eflags = PSL_KERNEL;
 2766         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2767             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2768         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2769         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2770         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2771 
 2772         vm86_initialize();
 2773         getmemsize(first);
 2774         init_param2(physmem);
 2775 
 2776         /* now running on new page tables, configured,and u/iom is accessible */
 2777 
 2778         msgbufinit(msgbufp, msgbufsize);
 2779         /* transfer to user mode */
 2780 
 2781         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2782         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2783 
 2784         /* setup proc 0's pcb */
 2785         thread0.td_pcb->pcb_flags = 0;
 2786 #ifdef PAE
 2787         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 2788 #else
 2789         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2790 #endif
 2791         thread0.td_pcb->pcb_ext = 0;
 2792         thread0.td_frame = &proc0_tf;
 2793         thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
 2794         thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
 2795 
 2796         cpu_probe_amdc1e();
 2797         cpu_probe_cmpxchg8b();
 2798 }
 2799 
 2800 #else
 2801 void
 2802 init386(first)
 2803         int first;
 2804 {
 2805         struct gate_descriptor *gdp;
 2806         int gsel_tss, metadata_missing, x, pa;
 2807         size_t kstack0_sz;
 2808         struct pcpu *pc;
 2809 
 2810         thread0.td_kstack = proc0kstack;
 2811         thread0.td_kstack_pages = KSTACK_PAGES;
 2812         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2813         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2814 
 2815         /*
 2816          * This may be done better later if it gets more high level
 2817          * components in it. If so just link td->td_proc here.
 2818          */
 2819         proc_linkup0(&proc0, &thread0);
 2820 
 2821         metadata_missing = 0;
 2822         if (bootinfo.bi_modulep) {
 2823                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2824                 preload_bootstrap_relocate(KERNBASE);
 2825         } else {
 2826                 metadata_missing = 1;
 2827         }
 2828         if (envmode == 1)
 2829                 kern_envp = static_env;
 2830         else if (bootinfo.bi_envp)
 2831                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2832 
 2833         /* Init basic tunables, hz etc */
 2834         init_param1();
 2835 
 2836         /*
 2837          * Make gdt memory segments.  All segments cover the full 4GB
 2838          * of address space and permissions are enforced at page level.
 2839          */
 2840         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2841         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2842         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2843         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2844         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2845         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2846 
 2847         pc = &__pcpu[0];
 2848         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2849         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2850         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2851 
 2852         for (x = 0; x < NGDT; x++)
 2853                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2854 
 2855         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2856         r_gdt.rd_base =  (int) gdt;
 2857         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2858         lgdt(&r_gdt);
 2859 
 2860         pcpu_init(pc, 0, sizeof(struct pcpu));
 2861         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2862                 pmap_kenter(pa + KERNBASE, pa);
 2863         dpcpu_init((void *)(first + KERNBASE), 0);
 2864         first += DPCPU_SIZE;
 2865         PCPU_SET(prvspace, pc);
 2866         PCPU_SET(curthread, &thread0);
 2867         PCPU_SET(curpcb, thread0.td_pcb);
 2868 
 2869         /*
 2870          * Initialize mutexes.
 2871          *
 2872          * icu_lock: in order to allow an interrupt to occur in a critical
 2873          *           section, to set pcpu->ipending (etc...) properly, we
 2874          *           must be able to get the icu lock, so it can't be
 2875          *           under witness.
 2876          */
 2877         mutex_init();
 2878         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2879 
 2880         /* make ldt memory segments */
 2881         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2882         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2883         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2884                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2885 
 2886         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2887         lldt(_default_ldt);
 2888         PCPU_SET(currentldt, _default_ldt);
 2889 
 2890         /* exceptions */
 2891         for (x = 0; x < NIDT; x++)
 2892                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2893                     GSEL(GCODE_SEL, SEL_KPL));
 2894         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2895             GSEL(GCODE_SEL, SEL_KPL));
 2896         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2897             GSEL(GCODE_SEL, SEL_KPL));
 2898         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2899             GSEL(GCODE_SEL, SEL_KPL));
 2900         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2901             GSEL(GCODE_SEL, SEL_KPL));
 2902         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2903             GSEL(GCODE_SEL, SEL_KPL));
 2904         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2905             GSEL(GCODE_SEL, SEL_KPL));
 2906         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2907             GSEL(GCODE_SEL, SEL_KPL));
 2908         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2909             , GSEL(GCODE_SEL, SEL_KPL));
 2910         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2911         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2912             GSEL(GCODE_SEL, SEL_KPL));
 2913         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2914             GSEL(GCODE_SEL, SEL_KPL));
 2915         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2916             GSEL(GCODE_SEL, SEL_KPL));
 2917         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2918             GSEL(GCODE_SEL, SEL_KPL));
 2919         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2920             GSEL(GCODE_SEL, SEL_KPL));
 2921         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2922             GSEL(GCODE_SEL, SEL_KPL));
 2923         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2924             GSEL(GCODE_SEL, SEL_KPL));
 2925         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2926             GSEL(GCODE_SEL, SEL_KPL));
 2927         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2928             GSEL(GCODE_SEL, SEL_KPL));
 2929         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2930             GSEL(GCODE_SEL, SEL_KPL));
 2931         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2932             GSEL(GCODE_SEL, SEL_KPL));
 2933 #ifdef KDTRACE_HOOKS
 2934         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
 2935             GSEL(GCODE_SEL, SEL_KPL));
 2936 #endif
 2937 
 2938         r_idt.rd_limit = sizeof(idt0) - 1;
 2939         r_idt.rd_base = (int) idt;
 2940         lidt(&r_idt);
 2941 
 2942 #ifdef XBOX
 2943         /*
 2944          * The following code queries the PCI ID of 0:0:0. For the XBOX,
 2945          * This should be 0x10de / 0x02a5.
 2946          *
 2947          * This is exactly what Linux does.
 2948          */
 2949         outl(0xcf8, 0x80000000);
 2950         if (inl(0xcfc) == 0x02a510de) {
 2951                 arch_i386_is_xbox = 1;
 2952                 pic16l_setled(XBOX_LED_GREEN);
 2953 
 2954                 /*
 2955                  * We are an XBOX, but we may have either 64MB or 128MB of
 2956                  * memory. The PCI host bridge should be programmed for this,
 2957                  * so we just query it. 
 2958                  */
 2959                 outl(0xcf8, 0x80000084);
 2960                 arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
 2961         }
 2962 #endif /* XBOX */
 2963 
 2964         /*
 2965          * Initialize the i8254 before the console so that console
 2966          * initialization can use DELAY().
 2967          */
 2968         i8254_init();
 2969 
 2970         /*
 2971          * Initialize the console before we print anything out.
 2972          */
 2973         cninit();
 2974 
 2975         if (metadata_missing)
 2976                 printf("WARNING: loader(8) metadata is missing!\n");
 2977 
 2978 #ifdef DEV_ISA
 2979 #ifdef DEV_ATPIC
 2980         elcr_probe();
 2981         atpic_startup();
 2982 #else
 2983         /* Reset and mask the atpics and leave them shut down. */
 2984         atpic_reset();
 2985 
 2986         /*
 2987          * Point the ICU spurious interrupt vectors at the APIC spurious
 2988          * interrupt handler.
 2989          */
 2990         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2991             GSEL(GCODE_SEL, SEL_KPL));
 2992         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2993             GSEL(GCODE_SEL, SEL_KPL));
 2994 #endif
 2995 #endif
 2996 
 2997 #ifdef DDB
 2998         ksym_start = bootinfo.bi_symtab;
 2999         ksym_end = bootinfo.bi_esymtab;
 3000 #endif
 3001 
 3002         kdb_init();
 3003 
 3004 #ifdef KDB
 3005         if (boothowto & RB_KDB)
 3006                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 3007 #endif
 3008 
 3009         finishidentcpu();       /* Final stage of CPU initialization */
 3010         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 3011             GSEL(GCODE_SEL, SEL_KPL));
 3012         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 3013             GSEL(GCODE_SEL, SEL_KPL));
 3014         initializecpu();        /* Initialize CPU registers */
 3015 
 3016         /* make an initial tss so cpu can get interrupt stack on syscall! */
 3017         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 3018         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 3019             kstack0_sz - sizeof(struct pcb) - 16);
 3020         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 3021         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 3022         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 3023         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 3024         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 3025         ltr(gsel_tss);
 3026 
 3027         /* pointer to selector slot for %fs/%gs */
 3028         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 3029 
 3030         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 3031             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 3032         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 3033             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 3034 #ifdef PAE
 3035         dblfault_tss.tss_cr3 = (int)IdlePDPT;
 3036 #else
 3037         dblfault_tss.tss_cr3 = (int)IdlePTD;
 3038 #endif
 3039         dblfault_tss.tss_eip = (int)dblfault_handler;
 3040         dblfault_tss.tss_eflags = PSL_KERNEL;
 3041         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 3042             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 3043         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 3044         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 3045         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 3046 
 3047         vm86_initialize();
 3048         getmemsize(first);
 3049         init_param2(physmem);
 3050 
 3051         /* now running on new page tables, configured,and u/iom is accessible */
 3052 
 3053         msgbufinit(msgbufp, msgbufsize);
 3054 
 3055         /* make a call gate to reenter kernel with */
 3056         gdp = &ldt[LSYS5CALLS_SEL].gd;
 3057 
 3058         x = (int) &IDTVEC(lcall_syscall);
 3059         gdp->gd_looffset = x;
 3060         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 3061         gdp->gd_stkcpy = 1;
 3062         gdp->gd_type = SDT_SYS386CGT;
 3063         gdp->gd_dpl = SEL_UPL;
 3064         gdp->gd_p = 1;
 3065         gdp->gd_hioffset = x >> 16;
 3066 
 3067         /* XXX does this work? */
 3068         /* XXX yes! */
 3069         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3070         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 3071 
 3072         /* transfer to user mode */
 3073 
 3074         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 3075         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 3076 
 3077         /* setup proc 0's pcb */
 3078         thread0.td_pcb->pcb_flags = 0;
 3079 #ifdef PAE
 3080         thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
 3081 #else
 3082         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 3083 #endif
 3084         thread0.td_pcb->pcb_ext = 0;
 3085         thread0.td_frame = &proc0_tf;
 3086 
 3087         cpu_probe_amdc1e();
 3088         cpu_probe_cmpxchg8b();
 3089 }
 3090 #endif
 3091 
 3092 void
 3093 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 3094 {
 3095 
 3096         pcpu->pc_acpi_id = 0xffffffff;
 3097 }
 3098 
 3099 void
 3100 spinlock_enter(void)
 3101 {
 3102         struct thread *td;
 3103         register_t flags;
 3104 
 3105         td = curthread;
 3106         if (td->td_md.md_spinlock_count == 0) {
 3107                 flags = intr_disable();
 3108                 td->td_md.md_spinlock_count = 1;
 3109                 td->td_md.md_saved_flags = flags;
 3110         } else
 3111                 td->td_md.md_spinlock_count++;
 3112         critical_enter();
 3113 }
 3114 
 3115 void
 3116 spinlock_exit(void)
 3117 {
 3118         struct thread *td;
 3119         register_t flags;
 3120 
 3121         td = curthread;
 3122         critical_exit();
 3123         flags = td->td_md.md_saved_flags;
 3124         td->td_md.md_spinlock_count--;
 3125         if (td->td_md.md_spinlock_count == 0)
 3126                 intr_restore(flags);
 3127 }
 3128 
 3129 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 3130 static void f00f_hack(void *unused);
 3131 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 3132 
 3133 static void
 3134 f00f_hack(void *unused)
 3135 {
 3136         struct gate_descriptor *new_idt;
 3137         vm_offset_t tmp;
 3138 
 3139         if (!has_f00f_bug)
 3140                 return;
 3141 
 3142         GIANT_REQUIRED;
 3143 
 3144         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 3145 
 3146         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 3147         if (tmp == 0)
 3148                 panic("kmem_alloc returned 0");
 3149 
 3150         /* Put the problematic entry (#6) at the end of the lower page. */
 3151         new_idt = (struct gate_descriptor*)
 3152             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 3153         bcopy(idt, new_idt, sizeof(idt0));
 3154         r_idt.rd_base = (u_int)new_idt;
 3155         lidt(&r_idt);
 3156         idt = new_idt;
 3157         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 3158                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 3159                 panic("vm_map_protect failed");
 3160 }
 3161 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 3162 
 3163 /*
 3164  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 3165  * we want to start a backtrace from the function that caused us to enter
 3166  * the debugger. We have the context in the trapframe, but base the trace
 3167  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 3168  * enough for a backtrace.
 3169  */
 3170 void
 3171 makectx(struct trapframe *tf, struct pcb *pcb)
 3172 {
 3173 
 3174         pcb->pcb_edi = tf->tf_edi;
 3175         pcb->pcb_esi = tf->tf_esi;
 3176         pcb->pcb_ebp = tf->tf_ebp;
 3177         pcb->pcb_ebx = tf->tf_ebx;
 3178         pcb->pcb_eip = tf->tf_eip;
 3179         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 3180 }
 3181 
 3182 int
 3183 ptrace_set_pc(struct thread *td, u_long addr)
 3184 {
 3185 
 3186         td->td_frame->tf_eip = addr;
 3187         return (0);
 3188 }
 3189 
 3190 int
 3191 ptrace_single_step(struct thread *td)
 3192 {
 3193         td->td_frame->tf_eflags |= PSL_T;
 3194         return (0);
 3195 }
 3196 
 3197 int
 3198 ptrace_clear_single_step(struct thread *td)
 3199 {
 3200         td->td_frame->tf_eflags &= ~PSL_T;
 3201         return (0);
 3202 }
 3203 
 3204 int
 3205 fill_regs(struct thread *td, struct reg *regs)
 3206 {
 3207         struct pcb *pcb;
 3208         struct trapframe *tp;
 3209 
 3210         tp = td->td_frame;
 3211         pcb = td->td_pcb;
 3212         regs->r_gs = pcb->pcb_gs;
 3213         return (fill_frame_regs(tp, regs));
 3214 }
 3215 
 3216 int
 3217 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 3218 {
 3219         regs->r_fs = tp->tf_fs;
 3220         regs->r_es = tp->tf_es;
 3221         regs->r_ds = tp->tf_ds;
 3222         regs->r_edi = tp->tf_edi;
 3223         regs->r_esi = tp->tf_esi;
 3224         regs->r_ebp = tp->tf_ebp;
 3225         regs->r_ebx = tp->tf_ebx;
 3226         regs->r_edx = tp->tf_edx;
 3227         regs->r_ecx = tp->tf_ecx;
 3228         regs->r_eax = tp->tf_eax;
 3229         regs->r_eip = tp->tf_eip;
 3230         regs->r_cs = tp->tf_cs;
 3231         regs->r_eflags = tp->tf_eflags;
 3232         regs->r_esp = tp->tf_esp;
 3233         regs->r_ss = tp->tf_ss;
 3234         return (0);
 3235 }
 3236 
 3237 int
 3238 set_regs(struct thread *td, struct reg *regs)
 3239 {
 3240         struct pcb *pcb;
 3241         struct trapframe *tp;
 3242 
 3243         tp = td->td_frame;
 3244         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 3245             !CS_SECURE(regs->r_cs))
 3246                 return (EINVAL);
 3247         pcb = td->td_pcb;
 3248         tp->tf_fs = regs->r_fs;
 3249         tp->tf_es = regs->r_es;
 3250         tp->tf_ds = regs->r_ds;
 3251         tp->tf_edi = regs->r_edi;
 3252         tp->tf_esi = regs->r_esi;
 3253         tp->tf_ebp = regs->r_ebp;
 3254         tp->tf_ebx = regs->r_ebx;
 3255         tp->tf_edx = regs->r_edx;
 3256         tp->tf_ecx = regs->r_ecx;
 3257         tp->tf_eax = regs->r_eax;
 3258         tp->tf_eip = regs->r_eip;
 3259         tp->tf_cs = regs->r_cs;
 3260         tp->tf_eflags = regs->r_eflags;
 3261         tp->tf_esp = regs->r_esp;
 3262         tp->tf_ss = regs->r_ss;
 3263         pcb->pcb_gs = regs->r_gs;
 3264         return (0);
 3265 }
 3266 
 3267 #ifdef CPU_ENABLE_SSE
 3268 static void
 3269 fill_fpregs_xmm(sv_xmm, sv_87)
 3270         struct savexmm *sv_xmm;
 3271         struct save87 *sv_87;
 3272 {
 3273         register struct env87 *penv_87 = &sv_87->sv_env;
 3274         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3275         int i;
 3276 
 3277         bzero(sv_87, sizeof(*sv_87));
 3278 
 3279         /* FPU control/status */
 3280         penv_87->en_cw = penv_xmm->en_cw;
 3281         penv_87->en_sw = penv_xmm->en_sw;
 3282         penv_87->en_tw = penv_xmm->en_tw;
 3283         penv_87->en_fip = penv_xmm->en_fip;
 3284         penv_87->en_fcs = penv_xmm->en_fcs;
 3285         penv_87->en_opcode = penv_xmm->en_opcode;
 3286         penv_87->en_foo = penv_xmm->en_foo;
 3287         penv_87->en_fos = penv_xmm->en_fos;
 3288 
 3289         /* FPU registers */
 3290         for (i = 0; i < 8; ++i)
 3291                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 3292 }
 3293 
 3294 static void
 3295 set_fpregs_xmm(sv_87, sv_xmm)
 3296         struct save87 *sv_87;
 3297         struct savexmm *sv_xmm;
 3298 {
 3299         register struct env87 *penv_87 = &sv_87->sv_env;
 3300         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 3301         int i;
 3302 
 3303         /* FPU control/status */
 3304         penv_xmm->en_cw = penv_87->en_cw;
 3305         penv_xmm->en_sw = penv_87->en_sw;
 3306         penv_xmm->en_tw = penv_87->en_tw;
 3307         penv_xmm->en_fip = penv_87->en_fip;
 3308         penv_xmm->en_fcs = penv_87->en_fcs;
 3309         penv_xmm->en_opcode = penv_87->en_opcode;
 3310         penv_xmm->en_foo = penv_87->en_foo;
 3311         penv_xmm->en_fos = penv_87->en_fos;
 3312 
 3313         /* FPU registers */
 3314         for (i = 0; i < 8; ++i)
 3315                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 3316 }
 3317 #endif /* CPU_ENABLE_SSE */
 3318 
 3319 int
 3320 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 3321 {
 3322 
 3323         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 3324             P_SHOULDSTOP(td->td_proc),
 3325             ("not suspended thread %p", td));
 3326 #ifdef DEV_NPX
 3327         npxgetregs(td);
 3328 #else
 3329         bzero(fpregs, sizeof(*fpregs));
 3330 #endif
 3331 #ifdef CPU_ENABLE_SSE
 3332         if (cpu_fxsr)
 3333                 fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
 3334                     (struct save87 *)fpregs);
 3335         else
 3336 #endif /* CPU_ENABLE_SSE */
 3337                 bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
 3338                     sizeof(*fpregs));
 3339         return (0);
 3340 }
 3341 
 3342 int
 3343 set_fpregs(struct thread *td, struct fpreg *fpregs)
 3344 {
 3345 
 3346 #ifdef CPU_ENABLE_SSE
 3347         if (cpu_fxsr)
 3348                 set_fpregs_xmm((struct save87 *)fpregs,
 3349                     &td->td_pcb->pcb_user_save.sv_xmm);
 3350         else
 3351 #endif /* CPU_ENABLE_SSE */
 3352                 bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
 3353                     sizeof(*fpregs));
 3354 #ifdef DEV_NPX
 3355         npxuserinited(td);
 3356 #endif
 3357         return (0);
 3358 }
 3359 
 3360 /*
 3361  * Get machine context.
 3362  */
 3363 int
 3364 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 3365 {
 3366         struct trapframe *tp;
 3367         struct segment_descriptor *sdp;
 3368 
 3369         tp = td->td_frame;
 3370 
 3371         PROC_LOCK(curthread->td_proc);
 3372         mcp->mc_onstack = sigonstack(tp->tf_esp);
 3373         PROC_UNLOCK(curthread->td_proc);
 3374         mcp->mc_gs = td->td_pcb->pcb_gs;
 3375         mcp->mc_fs = tp->tf_fs;
 3376         mcp->mc_es = tp->tf_es;
 3377         mcp->mc_ds = tp->tf_ds;
 3378         mcp->mc_edi = tp->tf_edi;
 3379         mcp->mc_esi = tp->tf_esi;
 3380         mcp->mc_ebp = tp->tf_ebp;
 3381         mcp->mc_isp = tp->tf_isp;
 3382         mcp->mc_eflags = tp->tf_eflags;
 3383         if (flags & GET_MC_CLEAR_RET) {
 3384                 mcp->mc_eax = 0;
 3385                 mcp->mc_edx = 0;
 3386                 mcp->mc_eflags &= ~PSL_C;
 3387         } else {
 3388                 mcp->mc_eax = tp->tf_eax;
 3389                 mcp->mc_edx = tp->tf_edx;
 3390         }
 3391         mcp->mc_ebx = tp->tf_ebx;
 3392         mcp->mc_ecx = tp->tf_ecx;
 3393         mcp->mc_eip = tp->tf_eip;
 3394         mcp->mc_cs = tp->tf_cs;
 3395         mcp->mc_esp = tp->tf_esp;
 3396         mcp->mc_ss = tp->tf_ss;
 3397         mcp->mc_len = sizeof(*mcp);
 3398         get_fpcontext(td, mcp);
 3399         sdp = &td->td_pcb->pcb_fsd;
 3400         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3401         sdp = &td->td_pcb->pcb_gsd;
 3402         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 3403         mcp->mc_flags = 0;
 3404         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 3405         return (0);
 3406 }
 3407 
 3408 /*
 3409  * Set machine context.
 3410  *
 3411  * However, we don't set any but the user modifiable flags, and we won't
 3412  * touch the cs selector.
 3413  */
 3414 int
 3415 set_mcontext(struct thread *td, const mcontext_t *mcp)
 3416 {
 3417         struct trapframe *tp;
 3418         int eflags, ret;
 3419 
 3420         tp = td->td_frame;
 3421         if (mcp->mc_len != sizeof(*mcp))
 3422                 return (EINVAL);
 3423         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 3424             (tp->tf_eflags & ~PSL_USERCHANGE);
 3425         if ((ret = set_fpcontext(td, mcp)) == 0) {
 3426                 tp->tf_fs = mcp->mc_fs;
 3427                 tp->tf_es = mcp->mc_es;
 3428                 tp->tf_ds = mcp->mc_ds;
 3429                 tp->tf_edi = mcp->mc_edi;
 3430                 tp->tf_esi = mcp->mc_esi;
 3431                 tp->tf_ebp = mcp->mc_ebp;
 3432                 tp->tf_ebx = mcp->mc_ebx;
 3433                 tp->tf_edx = mcp->mc_edx;
 3434                 tp->tf_ecx = mcp->mc_ecx;
 3435                 tp->tf_eax = mcp->mc_eax;
 3436                 tp->tf_eip = mcp->mc_eip;
 3437                 tp->tf_eflags = eflags;
 3438                 tp->tf_esp = mcp->mc_esp;
 3439                 tp->tf_ss = mcp->mc_ss;
 3440                 td->td_pcb->pcb_gs = mcp->mc_gs;
 3441                 ret = 0;
 3442         }
 3443         return (ret);
 3444 }
 3445 
 3446 static void
 3447 get_fpcontext(struct thread *td, mcontext_t *mcp)
 3448 {
 3449 
 3450 #ifndef DEV_NPX
 3451         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 3452         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 3453         bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 3454 #else
 3455         mcp->mc_ownedfp = npxgetregs(td);
 3456         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0],
 3457             sizeof(mcp->mc_fpstate));
 3458         mcp->mc_fpformat = npxformat();
 3459 #endif
 3460 }
 3461 
 3462 static int
 3463 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 3464 {
 3465 
 3466         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 3467                 return (0);
 3468         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 3469             mcp->mc_fpformat != _MC_FPFMT_XMM)
 3470                 return (EINVAL);
 3471         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 3472                 /* We don't care what state is left in the FPU or PCB. */
 3473                 fpstate_drop(td);
 3474         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 3475             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 3476 #ifdef DEV_NPX
 3477 #ifdef CPU_ENABLE_SSE
 3478                 if (cpu_fxsr)
 3479                         ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
 3480                             en_mxcsr &= cpu_mxcsr_mask;
 3481 #endif
 3482                 npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
 3483 #endif
 3484         } else
 3485                 return (EINVAL);
 3486         return (0);
 3487 }
 3488 
 3489 static void
 3490 fpstate_drop(struct thread *td)
 3491 {
 3492 
 3493         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 3494         critical_enter();
 3495 #ifdef DEV_NPX
 3496         if (PCPU_GET(fpcurthread) == td)
 3497                 npxdrop();
 3498 #endif
 3499         /*
 3500          * XXX force a full drop of the npx.  The above only drops it if we
 3501          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 3502          *
 3503          * XXX I don't much like npxgetregs()'s semantics of doing a full
 3504          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 3505          * We only need to drop to !PCB_INITDONE in sendsig().  But
 3506          * sendsig() is the only caller of npxgetregs()... perhaps we just
 3507          * have too many layers.
 3508          */
 3509         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 3510             PCB_NPXUSERINITDONE);
 3511         critical_exit();
 3512 }
 3513 
 3514 int
 3515 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 3516 {
 3517         struct pcb *pcb;
 3518 
 3519         if (td == NULL) {
 3520                 dbregs->dr[0] = rdr0();
 3521                 dbregs->dr[1] = rdr1();
 3522                 dbregs->dr[2] = rdr2();
 3523                 dbregs->dr[3] = rdr3();
 3524                 dbregs->dr[4] = rdr4();
 3525                 dbregs->dr[5] = rdr5();
 3526                 dbregs->dr[6] = rdr6();
 3527                 dbregs->dr[7] = rdr7();
 3528         } else {
 3529                 pcb = td->td_pcb;
 3530                 dbregs->dr[0] = pcb->pcb_dr0;
 3531                 dbregs->dr[1] = pcb->pcb_dr1;
 3532                 dbregs->dr[2] = pcb->pcb_dr2;
 3533                 dbregs->dr[3] = pcb->pcb_dr3;
 3534                 dbregs->dr[4] = 0;
 3535                 dbregs->dr[5] = 0;
 3536                 dbregs->dr[6] = pcb->pcb_dr6;
 3537                 dbregs->dr[7] = pcb->pcb_dr7;
 3538         }
 3539         return (0);
 3540 }
 3541 
 3542 int
 3543 set_dbregs(struct thread *td, struct dbreg *dbregs)
 3544 {
 3545         struct pcb *pcb;
 3546         int i;
 3547 
 3548         if (td == NULL) {
 3549                 load_dr0(dbregs->dr[0]);
 3550                 load_dr1(dbregs->dr[1]);
 3551                 load_dr2(dbregs->dr[2]);
 3552                 load_dr3(dbregs->dr[3]);
 3553                 load_dr4(dbregs->dr[4]);
 3554                 load_dr5(dbregs->dr[5]);
 3555                 load_dr6(dbregs->dr[6]);
 3556                 load_dr7(dbregs->dr[7]);
 3557         } else {
 3558                 /*
 3559                  * Don't let an illegal value for dr7 get set.  Specifically,
 3560                  * check for undefined settings.  Setting these bit patterns
 3561                  * result in undefined behaviour and can lead to an unexpected
 3562                  * TRCTRAP.
 3563                  */
 3564                 for (i = 0; i < 4; i++) {
 3565                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 3566                                 return (EINVAL);
 3567                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 3568                                 return (EINVAL);
 3569                 }
 3570                 
 3571                 pcb = td->td_pcb;
 3572                 
 3573                 /*
 3574                  * Don't let a process set a breakpoint that is not within the
 3575                  * process's address space.  If a process could do this, it
 3576                  * could halt the system by setting a breakpoint in the kernel
 3577                  * (if ddb was enabled).  Thus, we need to check to make sure
 3578                  * that no breakpoints are being enabled for addresses outside
 3579                  * process's address space.
 3580                  *
 3581                  * XXX - what about when the watched area of the user's
 3582                  * address space is written into from within the kernel
 3583                  * ... wouldn't that still cause a breakpoint to be generated
 3584                  * from within kernel mode?
 3585                  */
 3586 
 3587                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 3588                         /* dr0 is enabled */
 3589                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 3590                                 return (EINVAL);
 3591                 }
 3592                         
 3593                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 3594                         /* dr1 is enabled */
 3595                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 3596                                 return (EINVAL);
 3597                 }
 3598                         
 3599                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 3600                         /* dr2 is enabled */
 3601                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 3602                                 return (EINVAL);
 3603                 }
 3604                         
 3605                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 3606                         /* dr3 is enabled */
 3607                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 3608                                 return (EINVAL);
 3609                 }
 3610 
 3611                 pcb->pcb_dr0 = dbregs->dr[0];
 3612                 pcb->pcb_dr1 = dbregs->dr[1];
 3613                 pcb->pcb_dr2 = dbregs->dr[2];
 3614                 pcb->pcb_dr3 = dbregs->dr[3];
 3615                 pcb->pcb_dr6 = dbregs->dr[6];
 3616                 pcb->pcb_dr7 = dbregs->dr[7];
 3617 
 3618                 pcb->pcb_flags |= PCB_DBREGS;
 3619         }
 3620 
 3621         return (0);
 3622 }
 3623 
 3624 /*
 3625  * Return > 0 if a hardware breakpoint has been hit, and the
 3626  * breakpoint was in user space.  Return 0, otherwise.
 3627  */
 3628 int
 3629 user_dbreg_trap(void)
 3630 {
 3631         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 3632         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 3633         int nbp;            /* number of breakpoints that triggered */
 3634         caddr_t addr[4];    /* breakpoint addresses */
 3635         int i;
 3636         
 3637         dr7 = rdr7();
 3638         if ((dr7 & 0x000000ff) == 0) {
 3639                 /*
 3640                  * all GE and LE bits in the dr7 register are zero,
 3641                  * thus the trap couldn't have been caused by the
 3642                  * hardware debug registers
 3643                  */
 3644                 return 0;
 3645         }
 3646 
 3647         nbp = 0;
 3648         dr6 = rdr6();
 3649         bp = dr6 & 0x0000000f;
 3650 
 3651         if (!bp) {
 3652                 /*
 3653                  * None of the breakpoint bits are set meaning this
 3654                  * trap was not caused by any of the debug registers
 3655                  */
 3656                 return 0;
 3657         }
 3658 
 3659         /*
 3660          * at least one of the breakpoints were hit, check to see
 3661          * which ones and if any of them are user space addresses
 3662          */
 3663 
 3664         if (bp & 0x01) {
 3665                 addr[nbp++] = (caddr_t)rdr0();
 3666         }
 3667         if (bp & 0x02) {
 3668                 addr[nbp++] = (caddr_t)rdr1();
 3669         }
 3670         if (bp & 0x04) {
 3671                 addr[nbp++] = (caddr_t)rdr2();
 3672         }
 3673         if (bp & 0x08) {
 3674                 addr[nbp++] = (caddr_t)rdr3();
 3675         }
 3676 
 3677         for (i = 0; i < nbp; i++) {
 3678                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 3679                         /*
 3680                          * addr[i] is in user space
 3681                          */
 3682                         return nbp;
 3683                 }
 3684         }
 3685 
 3686         /*
 3687          * None of the breakpoints are in user space.
 3688          */
 3689         return 0;
 3690 }
 3691 
 3692 #ifdef KDB
 3693 
 3694 /*
 3695  * Provide inb() and outb() as functions.  They are normally only available as
 3696  * inline functions, thus cannot be called from the debugger.
 3697  */
 3698 
 3699 /* silence compiler warnings */
 3700 u_char inb_(u_short);
 3701 void outb_(u_short, u_char);
 3702 
 3703 u_char
 3704 inb_(u_short port)
 3705 {
 3706         return inb(port);
 3707 }
 3708 
 3709 void
 3710 outb_(u_short port, u_char data)
 3711 {
 3712         outb(port, data);
 3713 }
 3714 
 3715 #endif /* KDB */

Cache object: 512c9878b1681d94ed817954b3a0308e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.