The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1996, by Steve Passe
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. The name of the developer may NOT be used to endorse or promote products
   13  *    derived from this software without specific prior written permission.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include "opt_apic.h"
   33 #include "opt_cpu.h"
   34 #include "opt_kstack_pages.h"
   35 #include "opt_pmap.h"
   36 #include "opt_sched.h"
   37 #include "opt_smp.h"
   38 
   39 #if !defined(lint)
   40 #if !defined(SMP)
   41 #error How did you get here?
   42 #endif
   43 
   44 #ifndef DEV_APIC
   45 #error The apic device is required for SMP, add "device apic" to your config file.
   46 #endif
   47 #endif /* not lint */
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/cons.h>   /* cngetc() */
   53 #include <sys/cpuset.h>
   54 #include <sys/kdb.h>
   55 #include <sys/kernel.h>
   56 #include <sys/ktr.h>
   57 #include <sys/lock.h>
   58 #include <sys/malloc.h>
   59 #include <sys/memrange.h>
   60 #include <sys/mutex.h>
   61 #include <sys/pcpu.h>
   62 #include <sys/proc.h>
   63 #include <sys/sched.h>
   64 #include <sys/smp.h>
   65 #include <sys/sysctl.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/pmap.h>
   70 #include <vm/vm_kern.h>
   71 #include <vm/vm_extern.h>
   72 
   73 #include <x86/apicreg.h>
   74 #include <machine/clock.h>
   75 #include <machine/cpu.h>
   76 #include <machine/cputypes.h>
   77 #include <x86/mca.h>
   78 #include <machine/md_var.h>
   79 #include <machine/pcb.h>
   80 #include <machine/psl.h>
   81 #include <machine/smp.h>
   82 #include <machine/specialreg.h>
   83 #include <x86/ucode.h>
   84 
   85 #ifdef DEV_ACPI
   86 #include <contrib/dev/acpica/include/acpi.h>
   87 #include <dev/acpica/acpivar.h>
   88 #endif
   89 
   90 #define WARMBOOT_TARGET         0
   91 #define WARMBOOT_OFF            (PMAP_MAP_LOW + 0x0467)
   92 #define WARMBOOT_SEG            (PMAP_MAP_LOW + 0x0469)
   93 
   94 #define CMOS_REG                (0x70)
   95 #define CMOS_DATA               (0x71)
   96 #define BIOS_RESET              (0x0f)
   97 #define BIOS_WARM               (0x0a)
   98 
   99 /*
  100  * this code MUST be enabled here and in mpboot.s.
  101  * it follows the very early stages of AP boot by placing values in CMOS ram.
  102  * it NORMALLY will never be needed and thus the primitive method for enabling.
  103  *
  104 #define CHECK_POINTS
  105  */
  106 
  107 #if defined(CHECK_POINTS)
  108 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  109 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  110 
  111 #define CHECK_INIT(D);                          \
  112         CHECK_WRITE(0x34, (D));                 \
  113         CHECK_WRITE(0x35, (D));                 \
  114         CHECK_WRITE(0x36, (D));                 \
  115         CHECK_WRITE(0x37, (D));                 \
  116         CHECK_WRITE(0x38, (D));                 \
  117         CHECK_WRITE(0x39, (D));
  118 
  119 #define CHECK_PRINT(S);                         \
  120         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  121            (S),                                 \
  122            CHECK_READ(0x34),                    \
  123            CHECK_READ(0x35),                    \
  124            CHECK_READ(0x36),                    \
  125            CHECK_READ(0x37),                    \
  126            CHECK_READ(0x38),                    \
  127            CHECK_READ(0x39));
  128 
  129 #else                           /* CHECK_POINTS */
  130 
  131 #define CHECK_INIT(D)
  132 #define CHECK_PRINT(S)
  133 #define CHECK_WRITE(A, D)
  134 
  135 #endif                          /* CHECK_POINTS */
  136 
  137 /*
  138  * Local data and functions.
  139  */
  140 
  141 static void     install_ap_tramp(void);
  142 static int      start_all_aps(void);
  143 static int      start_ap(int apic_id);
  144 
  145 static char *ap_copyout_buf;
  146 static char *ap_tramp_stack_base;
  147 
  148 unsigned int boot_address;
  149 
  150 #define MiB(v)  (v ## ULL << 20)
  151 
  152 /* Allocate memory for the AP trampoline. */
  153 void
  154 alloc_ap_trampoline(vm_paddr_t *physmap, unsigned int *physmap_idx)
  155 {
  156         unsigned int i;
  157         bool allocated;
  158 
  159         allocated = false;
  160         for (i = *physmap_idx; i <= *physmap_idx; i -= 2) {
  161                 /*
  162                  * Find a memory region big enough and below the 1MB boundary
  163                  * for the trampoline code.
  164                  * NB: needs to be page aligned.
  165                  */
  166                 if (physmap[i] >= MiB(1) ||
  167                     (trunc_page(physmap[i + 1]) - round_page(physmap[i])) <
  168                     round_page(bootMP_size))
  169                         continue;
  170 
  171                 allocated = true;
  172                 /*
  173                  * Try to steal from the end of the region to mimic previous
  174                  * behaviour, else fallback to steal from the start.
  175                  */
  176                 if (physmap[i + 1] < MiB(1)) {
  177                         boot_address = trunc_page(physmap[i + 1]);
  178                         if ((physmap[i + 1] - boot_address) < bootMP_size)
  179                                 boot_address -= round_page(bootMP_size);
  180                         physmap[i + 1] = boot_address;
  181                 } else {
  182                         boot_address = round_page(physmap[i]);
  183                         physmap[i] = boot_address + round_page(bootMP_size);
  184                 }
  185                 if (physmap[i] == physmap[i + 1] && *physmap_idx != 0) {
  186                         memmove(&physmap[i], &physmap[i + 2],
  187                             sizeof(*physmap) * (*physmap_idx - i + 2));
  188                         *physmap_idx -= 2;
  189                 }
  190                 break;
  191         }
  192 
  193         if (!allocated) {
  194                 boot_address = basemem * 1024 - bootMP_size;
  195                 if (bootverbose)
  196                         printf(
  197 "Cannot find enough space for the boot trampoline, placing it at %#x",
  198                             boot_address);
  199         }
  200 }
  201 
  202 /*
  203  * Initialize the IPI handlers and start up the AP's.
  204  */
  205 void
  206 cpu_mp_start(void)
  207 {
  208         int i;
  209 
  210         /* Initialize the logical ID to APIC ID table. */
  211         for (i = 0; i < MAXCPU; i++) {
  212                 cpu_apic_ids[i] = -1;
  213         }
  214 
  215         /* Install an inter-CPU IPI for TLB invalidation */
  216         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  217                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  218         setidt(IPI_INVLPG, IDTVEC(invlpg),
  219                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  220         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  221                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  222 
  223         /* Install an inter-CPU IPI for cache invalidation. */
  224         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  225                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  226 
  227         /* Install an inter-CPU IPI for all-CPU rendezvous */
  228         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  229                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  230 
  231         /* Install generic inter-CPU IPI handler */
  232         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  233                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  234 
  235         /* Install an inter-CPU IPI for CPU stop/restart */
  236         setidt(IPI_STOP, IDTVEC(cpustop),
  237                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  238 
  239         /* Install an inter-CPU IPI for CPU suspend/resume */
  240         setidt(IPI_SUSPEND, IDTVEC(cpususpend),
  241                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  242 
  243         /* Install an IPI for calling delayed SWI */
  244         setidt(IPI_SWI, IDTVEC(ipi_swi),
  245                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  246 
  247         /* Set boot_cpu_id if needed. */
  248         if (boot_cpu_id == -1) {
  249                 boot_cpu_id = PCPU_GET(apic_id);
  250                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  251         } else
  252                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  253                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  254 
  255         /* Probe logical/physical core configuration. */
  256         topo_probe();
  257 
  258         assign_cpu_ids();
  259 
  260         /* Start each Application Processor */
  261         start_all_aps();
  262 
  263         set_interrupt_apic_ids();
  264 
  265 #if defined(DEV_ACPI) && MAXMEMDOM > 1
  266         acpi_pxm_set_cpu_locality();
  267 #endif
  268 }
  269 
  270 /*
  271  * AP CPU's call this to initialize themselves.
  272  */
  273 void
  274 init_secondary(void)
  275 {
  276         struct pcpu *pc;
  277         struct i386tss *common_tssp;
  278         struct region_descriptor r_gdt, r_idt;
  279         int gsel_tss, myid, x;
  280         u_int cr0;
  281 
  282         /* bootAP is set in start_ap() to our ID. */
  283         myid = bootAP;
  284 
  285         /* Update microcode before doing anything else. */
  286         ucode_load_ap(myid);
  287 
  288         /* Get per-cpu data */
  289         pc = &__pcpu[myid];
  290 
  291         /* prime data page for it to use */
  292         pcpu_init(pc, myid, sizeof(struct pcpu));
  293         dpcpu_init(dpcpu, myid);
  294         pc->pc_apic_id = cpu_apic_ids[myid];
  295         pc->pc_prvspace = pc;
  296         pc->pc_curthread = 0;
  297         pc->pc_common_tssp = common_tssp = &(__pcpu[0].pc_common_tssp)[myid];
  298 
  299         fix_cpuid();
  300 
  301         gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
  302         gdt_segs[GPROC0_SEL].ssd_base = (int)common_tssp;
  303         gdt_segs[GLDT_SEL].ssd_base = (int)ldt;
  304 
  305         for (x = 0; x < NGDT; x++) {
  306                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  307         }
  308 
  309         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  310         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  311         lgdt(&r_gdt);                   /* does magic intra-segment return */
  312 
  313         r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
  314         r_idt.rd_base = (int)idt;
  315         lidt(&r_idt);
  316 
  317         lldt(_default_ldt);
  318         PCPU_SET(currentldt, _default_ldt);
  319 
  320         PCPU_SET(trampstk, (uintptr_t)ap_tramp_stack_base + TRAMP_STACK_SZ -
  321             VM86_STACK_SPACE);
  322 
  323         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  324         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  325         common_tssp->tss_esp0 = PCPU_GET(trampstk);
  326         common_tssp->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
  327         common_tssp->tss_ioopt = sizeof(struct i386tss) << 16;
  328         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  329         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  330         ltr(gsel_tss);
  331 
  332         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  333         PCPU_SET(copyout_buf, ap_copyout_buf);
  334 
  335         /*
  336          * Set to a known state:
  337          * Set by mpboot.s: CR0_PG, CR0_PE
  338          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  339          */
  340         cr0 = rcr0();
  341         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  342         load_cr0(cr0);
  343         CHECK_WRITE(0x38, 5);
  344 
  345         /* signal our startup to the BSP. */
  346         mp_naps++;
  347         CHECK_WRITE(0x39, 6);
  348 
  349         /* Spin until the BSP releases the AP's. */
  350         while (atomic_load_acq_int(&aps_ready) == 0)
  351                 ia32_pause();
  352 
  353         /* BSP may have changed PTD while we were waiting */
  354         invltlb();
  355 
  356 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  357         lidt(&r_idt);
  358 #endif
  359 
  360         init_secondary_tail();
  361 }
  362 
  363 /*
  364  * start each AP in our list
  365  */
  366 #define TMPMAP_START 1
  367 static int
  368 start_all_aps(void)
  369 {
  370         u_char mpbiosreason;
  371         u_int32_t mpbioswarmvec;
  372         int apic_id, cpu;
  373 
  374         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  375 
  376         pmap_remap_lower(true);
  377 
  378         /* install the AP 1st level boot code */
  379         install_ap_tramp();
  380 
  381         /* save the current value of the warm-start vector */
  382         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  383         outb(CMOS_REG, BIOS_RESET);
  384         mpbiosreason = inb(CMOS_DATA);
  385 
  386         /* take advantage of the P==V mapping for PTD[0] for AP boot */
  387 
  388         /* start each AP */
  389         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  390                 apic_id = cpu_apic_ids[cpu];
  391 
  392                 /* allocate and set up a boot stack data page */
  393                 bootstacks[cpu] = kmem_malloc(kstack_pages * PAGE_SIZE,
  394                     M_WAITOK | M_ZERO);
  395                 dpcpu = kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
  396                 /* setup a vector to our boot code */
  397                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  398                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  399                 outb(CMOS_REG, BIOS_RESET);
  400                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  401 
  402                 bootSTK = (char *)bootstacks[cpu] + kstack_pages *
  403                     PAGE_SIZE - 4;
  404                 bootAP = cpu;
  405 
  406                 ap_tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
  407                 ap_copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
  408 
  409                 /* attempt to start the Application Processor */
  410                 CHECK_INIT(99); /* setup checkpoints */
  411                 if (!start_ap(apic_id)) {
  412                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  413                         CHECK_PRINT("trace");   /* show checkpoints */
  414                         /* better panic as the AP may be running loose */
  415                         printf("panic y/n? [y] ");
  416                         if (cngetc() != 'n')
  417                                 panic("bye-bye");
  418                 }
  419                 CHECK_PRINT("trace");           /* show checkpoints */
  420 
  421                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  422         }
  423 
  424         pmap_remap_lower(false);
  425 
  426         /* restore the warmstart vector */
  427         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  428 
  429         outb(CMOS_REG, BIOS_RESET);
  430         outb(CMOS_DATA, mpbiosreason);
  431 
  432         /* number of APs actually started */
  433         return mp_naps;
  434 }
  435 
  436 /*
  437  * load the 1st level AP boot code into base memory.
  438  */
  439 
  440 /* targets for relocation */
  441 extern void bigJump(void);
  442 extern void bootCodeSeg(void);
  443 extern void bootDataSeg(void);
  444 extern void MPentry(void);
  445 extern u_int MP_GDT;
  446 extern u_int mp_gdtbase;
  447 
  448 static void
  449 install_ap_tramp(void)
  450 {
  451         int     x;
  452         int     size = *(int *) ((u_long) & bootMP_size);
  453         vm_offset_t va = boot_address;
  454         u_char *src = (u_char *) ((u_long) bootMP);
  455         u_char *dst = (u_char *) va;
  456         u_int   boot_base = (u_int) bootMP;
  457         u_int8_t *dst8;
  458         u_int16_t *dst16;
  459         u_int32_t *dst32;
  460 
  461         KASSERT (size <= PAGE_SIZE,
  462             ("'size' do not fit into PAGE_SIZE, as expected."));
  463         pmap_kenter(va, boot_address);
  464         pmap_invalidate_page (kernel_pmap, va);
  465         for (x = 0; x < size; ++x)
  466                 *dst++ = *src++;
  467 
  468         /*
  469          * modify addresses in code we just moved to basemem. unfortunately we
  470          * need fairly detailed info about mpboot.s for this to work.  changes
  471          * to mpboot.s might require changes here.
  472          */
  473 
  474         /* boot code is located in KERNEL space */
  475         dst = (u_char *) va;
  476 
  477         /* modify the lgdt arg */
  478         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
  479         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
  480 
  481         /* modify the ljmp target for MPentry() */
  482         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
  483         *dst32 = (u_int)MPentry;
  484 
  485         /* modify the target for boot code segment */
  486         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
  487         dst8 = (u_int8_t *) (dst16 + 1);
  488         *dst16 = (u_int) boot_address & 0xffff;
  489         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  490 
  491         /* modify the target for boot data segment */
  492         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
  493         dst8 = (u_int8_t *) (dst16 + 1);
  494         *dst16 = (u_int) boot_address & 0xffff;
  495         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  496 }
  497 
  498 /*
  499  * This function starts the AP (application processor) identified
  500  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  501  * to accomplish this.  This is necessary because of the nuances
  502  * of the different hardware we might encounter.  It isn't pretty,
  503  * but it seems to work.
  504  */
  505 static int
  506 start_ap(int apic_id)
  507 {
  508         int vector, ms;
  509         int cpus;
  510 
  511         /* calculate the vector */
  512         vector = (boot_address >> 12) & 0xff;
  513 
  514         /* used as a watchpoint to signal AP startup */
  515         cpus = mp_naps;
  516 
  517         ipi_startup(apic_id, vector);
  518 
  519         /* Wait up to 5 seconds for it to start. */
  520         for (ms = 0; ms < 5000; ms++) {
  521                 if (mp_naps > cpus)
  522                         return 1;       /* return SUCCESS */
  523                 DELAY(1000);
  524         }
  525         return 0;               /* return FAILURE */
  526 }
  527 
  528 /*
  529  * Flush the TLB on other CPU's
  530  */
  531 
  532 /* Variables needed for SMP tlb shootdown. */
  533 vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
  534 pmap_t smp_tlb_pmap;
  535 volatile uint32_t smp_tlb_generation;
  536 
  537 /*
  538  * Used by pmap to request cache or TLB invalidation on local and
  539  * remote processors.  Mask provides the set of remote CPUs which are
  540  * to be signalled with the invalidation IPI.  Vector specifies which
  541  * invalidation IPI is used.  As an optimization, the curcpu_cb
  542  * callback is invoked on the calling CPU while waiting for remote
  543  * CPUs to complete the operation.
  544  *
  545  * The callback function is called unconditionally on the caller's
  546  * underlying processor, even when this processor is not set in the
  547  * mask.  So, the callback function must be prepared to handle such
  548  * spurious invocations.
  549  */
  550 static void
  551 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
  552     vm_offset_t addr1, vm_offset_t addr2, smp_invl_cb_t curcpu_cb)
  553 {
  554         cpuset_t other_cpus;
  555         volatile uint32_t *p_cpudone;
  556         uint32_t generation;
  557         int cpu;
  558 
  559         /*
  560          * It is not necessary to signal other CPUs while booting or
  561          * when in the debugger.
  562          */
  563         if (kdb_active || KERNEL_PANICKED() || !smp_started) {
  564                 curcpu_cb(pmap, addr1, addr2);
  565                 return;
  566         }
  567 
  568         sched_pin();
  569 
  570         /*
  571          * Check for other cpus.  Return if none.
  572          */
  573         if (CPU_ISFULLSET(&mask)) {
  574                 if (mp_ncpus <= 1)
  575                         goto nospinexit;
  576         } else {
  577                 CPU_CLR(PCPU_GET(cpuid), &mask);
  578                 if (CPU_EMPTY(&mask))
  579                         goto nospinexit;
  580         }
  581 
  582         KASSERT((read_eflags() & PSL_I) != 0,
  583             ("smp_targeted_tlb_shootdown: interrupts disabled"));
  584         mtx_lock_spin(&smp_ipi_mtx);
  585         smp_tlb_addr1 = addr1;
  586         smp_tlb_addr2 = addr2;
  587         smp_tlb_pmap = pmap;
  588         generation = ++smp_tlb_generation;
  589         if (CPU_ISFULLSET(&mask)) {
  590                 ipi_all_but_self(vector);
  591                 other_cpus = all_cpus;
  592                 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
  593         } else {
  594                 other_cpus = mask;
  595                 ipi_selected(mask, vector);
  596         }
  597         curcpu_cb(pmap, addr1, addr2);
  598         CPU_FOREACH_ISSET(cpu, &other_cpus) {
  599                 p_cpudone = &cpuid_to_pcpu[cpu]->pc_smp_tlb_done;
  600                 while (*p_cpudone != generation)
  601                         ia32_pause();
  602         }
  603         mtx_unlock_spin(&smp_ipi_mtx);
  604         sched_unpin();
  605         return;
  606 
  607 nospinexit:
  608         curcpu_cb(pmap, addr1, addr2);
  609         sched_unpin();
  610 }
  611 
  612 void
  613 smp_masked_invltlb(cpuset_t mask, pmap_t pmap, smp_invl_cb_t curcpu_cb)
  614 {
  615         smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0, curcpu_cb);
  616 #ifdef COUNT_XINVLTLB_HITS
  617         ipi_global++;
  618 #endif
  619 }
  620 
  621 void
  622 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr, pmap_t pmap,
  623     smp_invl_cb_t curcpu_cb)
  624 {
  625         smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0, curcpu_cb);
  626 #ifdef COUNT_XINVLTLB_HITS
  627         ipi_page++;
  628 #endif
  629 }
  630 
  631 void
  632 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2,
  633     pmap_t pmap, smp_invl_cb_t curcpu_cb)
  634 {
  635         smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1, addr2,
  636             curcpu_cb);
  637 #ifdef COUNT_XINVLTLB_HITS
  638         ipi_range++;
  639         ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
  640 #endif
  641 }
  642 
  643 void
  644 smp_cache_flush(smp_invl_cb_t curcpu_cb)
  645 {
  646         smp_targeted_tlb_shootdown(all_cpus, IPI_INVLCACHE, NULL, 0, 0,
  647             curcpu_cb);
  648 }
  649 
  650 /*
  651  * Handlers for TLB related IPIs
  652  */
  653 void
  654 invltlb_handler(void)
  655 {
  656         uint32_t generation;
  657 
  658         trap_check_kstack();
  659 #ifdef COUNT_XINVLTLB_HITS
  660         xhits_gbl[PCPU_GET(cpuid)]++;
  661 #endif /* COUNT_XINVLTLB_HITS */
  662 #ifdef COUNT_IPIS
  663         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
  664 #endif /* COUNT_IPIS */
  665 
  666         /*
  667          * Reading the generation here allows greater parallelism
  668          * since invalidating the TLB is a serializing operation.
  669          */
  670         generation = smp_tlb_generation;
  671         if (smp_tlb_pmap == kernel_pmap)
  672                 invltlb_glob();
  673         PCPU_SET(smp_tlb_done, generation);
  674 }
  675 
  676 void
  677 invlpg_handler(void)
  678 {
  679         uint32_t generation;
  680 
  681         trap_check_kstack();
  682 #ifdef COUNT_XINVLTLB_HITS
  683         xhits_pg[PCPU_GET(cpuid)]++;
  684 #endif /* COUNT_XINVLTLB_HITS */
  685 #ifdef COUNT_IPIS
  686         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
  687 #endif /* COUNT_IPIS */
  688 
  689         generation = smp_tlb_generation;        /* Overlap with serialization */
  690         if (smp_tlb_pmap == kernel_pmap)
  691                 invlpg(smp_tlb_addr1);
  692         PCPU_SET(smp_tlb_done, generation);
  693 }
  694 
  695 void
  696 invlrng_handler(void)
  697 {
  698         vm_offset_t addr, addr2;
  699         uint32_t generation;
  700 
  701         trap_check_kstack();
  702 #ifdef COUNT_XINVLTLB_HITS
  703         xhits_rng[PCPU_GET(cpuid)]++;
  704 #endif /* COUNT_XINVLTLB_HITS */
  705 #ifdef COUNT_IPIS
  706         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
  707 #endif /* COUNT_IPIS */
  708 
  709         addr = smp_tlb_addr1;
  710         addr2 = smp_tlb_addr2;
  711         generation = smp_tlb_generation;        /* Overlap with serialization */
  712         if (smp_tlb_pmap == kernel_pmap) {
  713                 do {
  714                         invlpg(addr);
  715                         addr += PAGE_SIZE;
  716                 } while (addr < addr2);
  717         }
  718 
  719         PCPU_SET(smp_tlb_done, generation);
  720 }
  721 
  722 void
  723 invlcache_handler(void)
  724 {
  725         uint32_t generation;
  726 
  727         trap_check_kstack();
  728 #ifdef COUNT_IPIS
  729         (*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
  730 #endif /* COUNT_IPIS */
  731 
  732         /*
  733          * Reading the generation here allows greater parallelism
  734          * since wbinvd is a serializing instruction.  Without the
  735          * temporary, we'd wait for wbinvd to complete, then the read
  736          * would execute, then the dependent write, which must then
  737          * complete before return from interrupt.
  738          */
  739         generation = smp_tlb_generation;
  740         wbinvd();
  741         PCPU_SET(smp_tlb_done, generation);
  742 }

Cache object: 536ab0dca8c526e7d07389a7980c1a4e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.