The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD: releng/10.2/sys/i386/i386/mp_machdep.c 281560 2015-04-15 16:52:34Z jhb $");
   28 
   29 #include "opt_apic.h"
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_pmap.h"
   33 #include "opt_sched.h"
   34 #include "opt_smp.h"
   35 
   36 #if !defined(lint)
   37 #if !defined(SMP)
   38 #error How did you get here?
   39 #endif
   40 
   41 #ifndef DEV_APIC
   42 #error The apic device is required for SMP, add "device apic" to your config file.
   43 #endif
   44 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
   45 #error SMP not supported with CPU_DISABLE_CMPXCHG
   46 #endif
   47 #endif /* not lint */
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/cons.h>   /* cngetc() */
   53 #include <sys/cpuset.h>
   54 #ifdef GPROF 
   55 #include <sys/gmon.h>
   56 #endif
   57 #include <sys/kernel.h>
   58 #include <sys/ktr.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/memrange.h>
   62 #include <sys/mutex.h>
   63 #include <sys/pcpu.h>
   64 #include <sys/proc.h>
   65 #include <sys/sched.h>
   66 #include <sys/smp.h>
   67 #include <sys/sysctl.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_kern.h>
   73 #include <vm/vm_extern.h>
   74 
   75 #include <x86/apicreg.h>
   76 #include <machine/clock.h>
   77 #include <machine/cputypes.h>
   78 #include <x86/mca.h>
   79 #include <machine/md_var.h>
   80 #include <machine/pcb.h>
   81 #include <machine/psl.h>
   82 #include <machine/smp.h>
   83 #include <machine/specialreg.h>
   84 #include <machine/cpu.h>
   85 
   86 #define WARMBOOT_TARGET         0
   87 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   88 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   89 
   90 #define CMOS_REG                (0x70)
   91 #define CMOS_DATA               (0x71)
   92 #define BIOS_RESET              (0x0f)
   93 #define BIOS_WARM               (0x0a)
   94 
   95 /*
   96  * this code MUST be enabled here and in mpboot.s.
   97  * it follows the very early stages of AP boot by placing values in CMOS ram.
   98  * it NORMALLY will never be needed and thus the primitive method for enabling.
   99  *
  100 #define CHECK_POINTS
  101  */
  102 
  103 #if defined(CHECK_POINTS) && !defined(PC98)
  104 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  105 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  106 
  107 #define CHECK_INIT(D);                          \
  108         CHECK_WRITE(0x34, (D));                 \
  109         CHECK_WRITE(0x35, (D));                 \
  110         CHECK_WRITE(0x36, (D));                 \
  111         CHECK_WRITE(0x37, (D));                 \
  112         CHECK_WRITE(0x38, (D));                 \
  113         CHECK_WRITE(0x39, (D));
  114 
  115 #define CHECK_PRINT(S);                         \
  116         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  117            (S),                                 \
  118            CHECK_READ(0x34),                    \
  119            CHECK_READ(0x35),                    \
  120            CHECK_READ(0x36),                    \
  121            CHECK_READ(0x37),                    \
  122            CHECK_READ(0x38),                    \
  123            CHECK_READ(0x39));
  124 
  125 #else                           /* CHECK_POINTS */
  126 
  127 #define CHECK_INIT(D)
  128 #define CHECK_PRINT(S)
  129 #define CHECK_WRITE(A, D)
  130 
  131 #endif                          /* CHECK_POINTS */
  132 
  133 /* lock region used by kernel profiling */
  134 int     mcount_lock;
  135 
  136 int     mp_naps;                /* # of Applications processors */
  137 int     boot_cpu_id = -1;       /* designated BSP */
  138 
  139 extern  struct pcpu __pcpu[];
  140 
  141 /* AP uses this during bootstrap.  Do not staticize.  */
  142 char *bootSTK;
  143 static int bootAP;
  144 
  145 /* Free these after use */
  146 void *bootstacks[MAXCPU];
  147 static void *dpcpu;
  148 
  149 struct pcb stoppcbs[MAXCPU];
  150 struct susppcb **susppcbs;
  151 
  152 /* Variables needed for SMP tlb shootdown. */
  153 vm_offset_t smp_tlb_addr1;
  154 vm_offset_t smp_tlb_addr2;
  155 volatile int smp_tlb_wait;
  156 
  157 #ifdef COUNT_IPIS
  158 /* Interrupt counts. */
  159 static u_long *ipi_preempt_counts[MAXCPU];
  160 static u_long *ipi_ast_counts[MAXCPU];
  161 u_long *ipi_invltlb_counts[MAXCPU];
  162 u_long *ipi_invlrng_counts[MAXCPU];
  163 u_long *ipi_invlpg_counts[MAXCPU];
  164 u_long *ipi_invlcache_counts[MAXCPU];
  165 u_long *ipi_rendezvous_counts[MAXCPU];
  166 u_long *ipi_lazypmap_counts[MAXCPU];
  167 static u_long *ipi_hardclock_counts[MAXCPU];
  168 #endif
  169 
  170 /* Default cpu_ops implementation. */
  171 struct cpu_ops cpu_ops = {
  172         .ipi_vectored = lapic_ipi_vectored
  173 };
  174 
  175 /*
  176  * Local data and functions.
  177  */
  178 
  179 static volatile cpuset_t ipi_nmi_pending;
  180 
  181 /* used to hold the AP's until we are ready to release them */
  182 static struct mtx ap_boot_mtx;
  183 
  184 /* Set to 1 once we're ready to let the APs out of the pen. */
  185 static volatile int aps_ready = 0;
  186 
  187 /*
  188  * Store data from cpu_add() until later in the boot when we actually setup
  189  * the APs.
  190  */
  191 struct cpu_info {
  192         int     cpu_present:1;
  193         int     cpu_bsp:1;
  194         int     cpu_disabled:1;
  195         int     cpu_hyperthread:1;
  196 } static cpu_info[MAX_APIC_ID + 1];
  197 int cpu_apic_ids[MAXCPU];
  198 int apic_cpuids[MAX_APIC_ID + 1];
  199 
  200 /* Holds pending bitmap based IPIs per CPU */
  201 volatile u_int cpu_ipi_pending[MAXCPU];
  202 
  203 static u_int boot_address;
  204 static int cpu_logical;                 /* logical cpus per core */
  205 static int cpu_cores;                   /* cores per package */
  206 
  207 static void     assign_cpu_ids(void);
  208 static void     install_ap_tramp(void);
  209 static void     set_interrupt_apic_ids(void);
  210 static int      start_all_aps(void);
  211 static int      start_ap(int apic_id);
  212 static void     release_aps(void *dummy);
  213 
  214 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  215 static int      hyperthreading_allowed = 1;
  216 
  217 static void
  218 mem_range_AP_init(void)
  219 {
  220         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  221                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  222 }
  223 
  224 static void
  225 topo_probe_amd(void)
  226 {
  227         int core_id_bits;
  228         int id;
  229 
  230         /* AMD processors do not support HTT. */
  231         cpu_logical = 1;
  232 
  233         if ((amd_feature2 & AMDID2_CMP) == 0) {
  234                 cpu_cores = 1;
  235                 return;
  236         }
  237 
  238         core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
  239             AMDID_COREID_SIZE_SHIFT;
  240         if (core_id_bits == 0) {
  241                 cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  242                 return;
  243         }
  244 
  245         /* Fam 10h and newer should get here. */
  246         for (id = 0; id <= MAX_APIC_ID; id++) {
  247                 /* Check logical CPU availability. */
  248                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  249                         continue;
  250                 /* Check if logical CPU has the same package ID. */
  251                 if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
  252                         continue;
  253                 cpu_cores++;
  254         }
  255 }
  256 
  257 /*
  258  * Round up to the next power of two, if necessary, and then
  259  * take log2.
  260  * Returns -1 if argument is zero.
  261  */
  262 static __inline int
  263 mask_width(u_int x)
  264 {
  265 
  266         return (fls(x << (1 - powerof2(x))) - 1);
  267 }
  268 
  269 static void
  270 topo_probe_0x4(void)
  271 {
  272         u_int p[4];
  273         int pkg_id_bits;
  274         int core_id_bits;
  275         int max_cores;
  276         int max_logical;
  277         int id;
  278 
  279         /* Both zero and one here mean one logical processor per package. */
  280         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  281             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  282         if (max_logical <= 1)
  283                 return;
  284 
  285         /*
  286          * Because of uniformity assumption we examine only
  287          * those logical processors that belong to the same
  288          * package as BSP.  Further, we count number of
  289          * logical processors that belong to the same core
  290          * as BSP thus deducing number of threads per core.
  291          */
  292         if (cpu_high >= 0x4) {
  293                 cpuid_count(0x04, 0, p);
  294                 max_cores = ((p[0] >> 26) & 0x3f) + 1;
  295         } else
  296                 max_cores = 1;
  297         core_id_bits = mask_width(max_logical/max_cores);
  298         if (core_id_bits < 0)
  299                 return;
  300         pkg_id_bits = core_id_bits + mask_width(max_cores);
  301 
  302         for (id = 0; id <= MAX_APIC_ID; id++) {
  303                 /* Check logical CPU availability. */
  304                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  305                         continue;
  306                 /* Check if logical CPU has the same package ID. */
  307                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  308                         continue;
  309                 cpu_cores++;
  310                 /* Check if logical CPU has the same package and core IDs. */
  311                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  312                         cpu_logical++;
  313         }
  314 
  315         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  316             ("topo_probe_0x4 couldn't find BSP"));
  317 
  318         cpu_cores /= cpu_logical;
  319         hyperthreading_cpus = cpu_logical;
  320 }
  321 
  322 static void
  323 topo_probe_0xb(void)
  324 {
  325         u_int p[4];
  326         int bits;
  327         int cnt;
  328         int i;
  329         int logical;
  330         int type;
  331         int x;
  332 
  333         /* We only support three levels for now. */
  334         for (i = 0; i < 3; i++) {
  335                 cpuid_count(0x0b, i, p);
  336 
  337                 /* Fall back if CPU leaf 11 doesn't really exist. */
  338                 if (i == 0 && p[1] == 0) {
  339                         topo_probe_0x4();
  340                         return;
  341                 }
  342 
  343                 bits = p[0] & 0x1f;
  344                 logical = p[1] &= 0xffff;
  345                 type = (p[2] >> 8) & 0xff;
  346                 if (type == 0 || logical == 0)
  347                         break;
  348                 /*
  349                  * Because of uniformity assumption we examine only
  350                  * those logical processors that belong to the same
  351                  * package as BSP.
  352                  */
  353                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  354                         if (!cpu_info[x].cpu_present ||
  355                             cpu_info[x].cpu_disabled)
  356                                 continue;
  357                         if (x >> bits == boot_cpu_id >> bits)
  358                                 cnt++;
  359                 }
  360                 if (type == CPUID_TYPE_SMT)
  361                         cpu_logical = cnt;
  362                 else if (type == CPUID_TYPE_CORE)
  363                         cpu_cores = cnt;
  364         }
  365         if (cpu_logical == 0)
  366                 cpu_logical = 1;
  367         cpu_cores /= cpu_logical;
  368 }
  369 
  370 /*
  371  * Both topology discovery code and code that consumes topology
  372  * information assume top-down uniformity of the topology.
  373  * That is, all physical packages must be identical and each
  374  * core in a package must have the same number of threads.
  375  * Topology information is queried only on BSP, on which this
  376  * code runs and for which it can query CPUID information.
  377  * Then topology is extrapolated on all packages using the
  378  * uniformity assumption.
  379  */
  380 static void
  381 topo_probe(void)
  382 {
  383         static int cpu_topo_probed = 0;
  384 
  385         if (cpu_topo_probed)
  386                 return;
  387 
  388         CPU_ZERO(&logical_cpus_mask);
  389         if (mp_ncpus <= 1)
  390                 cpu_cores = cpu_logical = 1;
  391         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  392                 topo_probe_amd();
  393         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  394                 /*
  395                  * See Intel(R) 64 Architecture Processor
  396                  * Topology Enumeration article for details.
  397                  *
  398                  * Note that 0x1 <= cpu_high < 4 case should be
  399                  * compatible with topo_probe_0x4() logic when
  400                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  401                  * or it should trigger the fallback otherwise.
  402                  */
  403                 if (cpu_high >= 0xb)
  404                         topo_probe_0xb();
  405                 else if (cpu_high >= 0x1)
  406                         topo_probe_0x4();
  407         }
  408 
  409         /*
  410          * Fallback: assume each logical CPU is in separate
  411          * physical package.  That is, no multi-core, no SMT.
  412          */
  413         if (cpu_cores == 0 || cpu_logical == 0)
  414                 cpu_cores = cpu_logical = 1;
  415         cpu_topo_probed = 1;
  416 }
  417 
  418 struct cpu_group *
  419 cpu_topo(void)
  420 {
  421         int cg_flags;
  422 
  423         /*
  424          * Determine whether any threading flags are
  425          * necessry.
  426          */
  427         topo_probe();
  428         if (cpu_logical > 1 && hyperthreading_cpus)
  429                 cg_flags = CG_FLAG_HTT;
  430         else if (cpu_logical > 1)
  431                 cg_flags = CG_FLAG_SMT;
  432         else
  433                 cg_flags = 0;
  434         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  435                 printf("WARNING: Non-uniform processors.\n");
  436                 printf("WARNING: Using suboptimal topology.\n");
  437                 return (smp_topo_none());
  438         }
  439         /*
  440          * No multi-core or hyper-threaded.
  441          */
  442         if (cpu_logical * cpu_cores == 1)
  443                 return (smp_topo_none());
  444         /*
  445          * Only HTT no multi-core.
  446          */
  447         if (cpu_logical > 1 && cpu_cores == 1)
  448                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  449         /*
  450          * Only multi-core no HTT.
  451          */
  452         if (cpu_cores > 1 && cpu_logical == 1)
  453                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  454         /*
  455          * Both HTT and multi-core.
  456          */
  457         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  458             CG_SHARE_L1, cpu_logical, cg_flags));
  459 }
  460 
  461 
  462 /*
  463  * Calculate usable address in base memory for AP trampoline code.
  464  */
  465 u_int
  466 mp_bootaddress(u_int basemem)
  467 {
  468 
  469         boot_address = trunc_page(basemem);     /* round down to 4k boundary */
  470         if ((basemem - boot_address) < bootMP_size)
  471                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  472 
  473         return boot_address;
  474 }
  475 
  476 void
  477 cpu_add(u_int apic_id, char boot_cpu)
  478 {
  479 
  480         if (apic_id > MAX_APIC_ID) {
  481                 panic("SMP: APIC ID %d too high", apic_id);
  482                 return;
  483         }
  484         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  485             apic_id));
  486         cpu_info[apic_id].cpu_present = 1;
  487         if (boot_cpu) {
  488                 KASSERT(boot_cpu_id == -1,
  489                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  490                     boot_cpu_id));
  491                 boot_cpu_id = apic_id;
  492                 cpu_info[apic_id].cpu_bsp = 1;
  493         }
  494         if (mp_ncpus < MAXCPU) {
  495                 mp_ncpus++;
  496                 mp_maxid = mp_ncpus - 1;
  497         }
  498         if (bootverbose)
  499                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  500                     "AP");
  501 }
  502 
  503 void
  504 cpu_mp_setmaxid(void)
  505 {
  506 
  507         /*
  508          * mp_maxid should be already set by calls to cpu_add().
  509          * Just sanity check its value here.
  510          */
  511         if (mp_ncpus == 0)
  512                 KASSERT(mp_maxid == 0,
  513                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  514         else if (mp_ncpus == 1)
  515                 mp_maxid = 0;
  516         else
  517                 KASSERT(mp_maxid >= mp_ncpus - 1,
  518                     ("%s: counters out of sync: max %d, count %d", __func__,
  519                         mp_maxid, mp_ncpus));
  520 }
  521 
  522 int
  523 cpu_mp_probe(void)
  524 {
  525 
  526         /*
  527          * Always record BSP in CPU map so that the mbuf init code works
  528          * correctly.
  529          */
  530         CPU_SETOF(0, &all_cpus);
  531         if (mp_ncpus == 0) {
  532                 /*
  533                  * No CPUs were found, so this must be a UP system.  Setup
  534                  * the variables to represent a system with a single CPU
  535                  * with an id of 0.
  536                  */
  537                 mp_ncpus = 1;
  538                 return (0);
  539         }
  540 
  541         /* At least one CPU was found. */
  542         if (mp_ncpus == 1) {
  543                 /*
  544                  * One CPU was found, so this must be a UP system with
  545                  * an I/O APIC.
  546                  */
  547                 mp_maxid = 0;
  548                 return (0);
  549         }
  550 
  551         /* At least two CPUs were found. */
  552         return (1);
  553 }
  554 
  555 /*
  556  * Initialize the IPI handlers and start up the AP's.
  557  */
  558 void
  559 cpu_mp_start(void)
  560 {
  561         int i;
  562 
  563         /* Initialize the logical ID to APIC ID table. */
  564         for (i = 0; i < MAXCPU; i++) {
  565                 cpu_apic_ids[i] = -1;
  566                 cpu_ipi_pending[i] = 0;
  567         }
  568 
  569         /* Install an inter-CPU IPI for TLB invalidation */
  570         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  571                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  572         setidt(IPI_INVLPG, IDTVEC(invlpg),
  573                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  574         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  575                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  576 
  577         /* Install an inter-CPU IPI for cache invalidation. */
  578         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  579                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  580 
  581         /* Install an inter-CPU IPI for lazy pmap release */
  582         setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
  583                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  584 
  585         /* Install an inter-CPU IPI for all-CPU rendezvous */
  586         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  587                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  588 
  589         /* Install generic inter-CPU IPI handler */
  590         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  591                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  592 
  593         /* Install an inter-CPU IPI for CPU stop/restart */
  594         setidt(IPI_STOP, IDTVEC(cpustop),
  595                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  596 
  597         /* Install an inter-CPU IPI for CPU suspend/resume */
  598         setidt(IPI_SUSPEND, IDTVEC(cpususpend),
  599                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  600 
  601         /* Set boot_cpu_id if needed. */
  602         if (boot_cpu_id == -1) {
  603                 boot_cpu_id = PCPU_GET(apic_id);
  604                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  605         } else
  606                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  607                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  608 
  609         /* Probe logical/physical core configuration. */
  610         topo_probe();
  611 
  612         assign_cpu_ids();
  613 
  614         /* Start each Application Processor */
  615         start_all_aps();
  616 
  617         set_interrupt_apic_ids();
  618 }
  619 
  620 
  621 /*
  622  * Print various information about the SMP system hardware and setup.
  623  */
  624 void
  625 cpu_mp_announce(void)
  626 {
  627         const char *hyperthread;
  628         int i;
  629 
  630         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  631             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  632         if (hyperthreading_cpus > 1)
  633             printf(" x %d HTT threads", cpu_logical);
  634         else if (cpu_logical > 1)
  635             printf(" x %d SMT threads", cpu_logical);
  636         printf("\n");
  637 
  638         /* List active CPUs first. */
  639         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  640         for (i = 1; i < mp_ncpus; i++) {
  641                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  642                         hyperthread = "/HT";
  643                 else
  644                         hyperthread = "";
  645                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  646                     cpu_apic_ids[i]);
  647         }
  648 
  649         /* List disabled CPUs last. */
  650         for (i = 0; i <= MAX_APIC_ID; i++) {
  651                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  652                         continue;
  653                 if (cpu_info[i].cpu_hyperthread)
  654                         hyperthread = "/HT";
  655                 else
  656                         hyperthread = "";
  657                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  658                     i);
  659         }
  660 }
  661 
  662 /*
  663  * AP CPU's call this to initialize themselves.
  664  */
  665 void
  666 init_secondary(void)
  667 {
  668         struct pcpu *pc;
  669         vm_offset_t addr;
  670         int     gsel_tss;
  671         int     x, myid;
  672         u_int   cpuid, cr0;
  673 
  674         /* bootAP is set in start_ap() to our ID. */
  675         myid = bootAP;
  676 
  677         /* Get per-cpu data */
  678         pc = &__pcpu[myid];
  679 
  680         /* prime data page for it to use */
  681         pcpu_init(pc, myid, sizeof(struct pcpu));
  682         dpcpu_init(dpcpu, myid);
  683         pc->pc_apic_id = cpu_apic_ids[myid];
  684         pc->pc_prvspace = pc;
  685         pc->pc_curthread = 0;
  686 
  687         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
  688         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
  689 
  690         for (x = 0; x < NGDT; x++) {
  691                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  692         }
  693 
  694         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  695         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  696         lgdt(&r_gdt);                   /* does magic intra-segment return */
  697 
  698         lidt(&r_idt);
  699 
  700         lldt(_default_ldt);
  701         PCPU_SET(currentldt, _default_ldt);
  702 
  703         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  704         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  705         PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
  706         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
  707         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
  708         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  709         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  710         ltr(gsel_tss);
  711 
  712         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  713 
  714         /*
  715          * Set to a known state:
  716          * Set by mpboot.s: CR0_PG, CR0_PE
  717          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  718          */
  719         cr0 = rcr0();
  720         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  721         load_cr0(cr0);
  722         CHECK_WRITE(0x38, 5);
  723         
  724         /* Disable local APIC just to be sure. */
  725         lapic_disable();
  726 
  727         /* signal our startup to the BSP. */
  728         mp_naps++;
  729         CHECK_WRITE(0x39, 6);
  730 
  731         /* Spin until the BSP releases the AP's. */
  732         while (!aps_ready)
  733                 ia32_pause();
  734 
  735         /* BSP may have changed PTD while we were waiting */
  736         invltlb();
  737         for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
  738                 invlpg(addr);
  739 
  740 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  741         lidt(&r_idt);
  742 #endif
  743 
  744         /* Initialize the PAT MSR if present. */
  745         pmap_init_pat();
  746 
  747         /* set up CPU registers and state */
  748         cpu_setregs();
  749 
  750         /* set up SSE/NX */
  751         initializecpu();
  752 
  753         /* set up FPU state on the AP */
  754         npxinit(false);
  755 
  756         if (cpu_ops.cpu_init)
  757                 cpu_ops.cpu_init();
  758 
  759         /* A quick check from sanity claus */
  760         cpuid = PCPU_GET(cpuid);
  761         if (PCPU_GET(apic_id) != lapic_id()) {
  762                 printf("SMP: cpuid = %d\n", cpuid);
  763                 printf("SMP: actual apic_id = %d\n", lapic_id());
  764                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  765                 panic("cpuid mismatch! boom!!");
  766         }
  767 
  768         /* Initialize curthread. */
  769         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  770         PCPU_SET(curthread, PCPU_GET(idlethread));
  771 
  772         mca_init();
  773 
  774         mtx_lock_spin(&ap_boot_mtx);
  775 
  776         /* Init local apic for irq's */
  777         lapic_setup(1);
  778 
  779         /* Set memory range attributes for this CPU to match the BSP */
  780         mem_range_AP_init();
  781 
  782         smp_cpus++;
  783 
  784         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
  785         printf("SMP: AP CPU #%d Launched!\n", cpuid);
  786 
  787         /* Determine if we are a logical CPU. */
  788         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  789         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  790                 CPU_SET(cpuid, &logical_cpus_mask);
  791 
  792         if (bootverbose)
  793                 lapic_dump("AP");
  794 
  795         if (smp_cpus == mp_ncpus) {
  796                 /* enable IPI's, tlb shootdown, freezes etc */
  797                 atomic_store_rel_int(&smp_started, 1);
  798         }
  799 
  800         mtx_unlock_spin(&ap_boot_mtx);
  801 
  802         /* Wait until all the AP's are up. */
  803         while (smp_started == 0)
  804                 ia32_pause();
  805 
  806         /* Start per-CPU event timers. */
  807         cpu_initclocks_ap();
  808 
  809         /* Enter the scheduler. */
  810         sched_throw(NULL);
  811 
  812         panic("scheduler returned us to %s", __func__);
  813         /* NOTREACHED */
  814 }
  815 
  816 /*******************************************************************
  817  * local functions and data
  818  */
  819 
  820 /*
  821  * We tell the I/O APIC code about all the CPUs we want to receive
  822  * interrupts.  If we don't want certain CPUs to receive IRQs we
  823  * can simply not tell the I/O APIC code about them in this function.
  824  * We also do not tell it about the BSP since it tells itself about
  825  * the BSP internally to work with UP kernels and on UP machines.
  826  */
  827 static void
  828 set_interrupt_apic_ids(void)
  829 {
  830         u_int i, apic_id;
  831 
  832         for (i = 0; i < MAXCPU; i++) {
  833                 apic_id = cpu_apic_ids[i];
  834                 if (apic_id == -1)
  835                         continue;
  836                 if (cpu_info[apic_id].cpu_bsp)
  837                         continue;
  838                 if (cpu_info[apic_id].cpu_disabled)
  839                         continue;
  840 
  841                 /* Don't let hyperthreads service interrupts. */
  842                 if (hyperthreading_cpus > 1 &&
  843                     apic_id % hyperthreading_cpus != 0)
  844                         continue;
  845 
  846                 intr_add_cpu(i);
  847         }
  848 }
  849 
  850 /*
  851  * Assign logical CPU IDs to local APICs.
  852  */
  853 static void
  854 assign_cpu_ids(void)
  855 {
  856         u_int i;
  857 
  858         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  859             &hyperthreading_allowed);
  860 
  861         /* Check for explicitly disabled CPUs. */
  862         for (i = 0; i <= MAX_APIC_ID; i++) {
  863                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  864                         continue;
  865 
  866                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  867                         cpu_info[i].cpu_hyperthread = 1;
  868 
  869                         /*
  870                          * Don't use HT CPU if it has been disabled by a
  871                          * tunable.
  872                          */
  873                         if (hyperthreading_allowed == 0) {
  874                                 cpu_info[i].cpu_disabled = 1;
  875                                 continue;
  876                         }
  877                 }
  878 
  879                 /* Don't use this CPU if it has been disabled by a tunable. */
  880                 if (resource_disabled("lapic", i)) {
  881                         cpu_info[i].cpu_disabled = 1;
  882                         continue;
  883                 }
  884         }
  885 
  886         if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
  887                 hyperthreading_cpus = 0;
  888                 cpu_logical = 1;
  889         }
  890 
  891         /*
  892          * Assign CPU IDs to local APIC IDs and disable any CPUs
  893          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  894          *
  895          * To minimize confusion for userland, we attempt to number
  896          * CPUs such that all threads and cores in a package are
  897          * grouped together.  For now we assume that the BSP is always
  898          * the first thread in a package and just start adding APs
  899          * starting with the BSP's APIC ID.
  900          */
  901         mp_ncpus = 1;
  902         cpu_apic_ids[0] = boot_cpu_id;
  903         apic_cpuids[boot_cpu_id] = 0;
  904         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  905              i == MAX_APIC_ID ? i = 0 : i++) {
  906                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  907                     cpu_info[i].cpu_disabled)
  908                         continue;
  909 
  910                 if (mp_ncpus < MAXCPU) {
  911                         cpu_apic_ids[mp_ncpus] = i;
  912                         apic_cpuids[i] = mp_ncpus;
  913                         mp_ncpus++;
  914                 } else
  915                         cpu_info[i].cpu_disabled = 1;
  916         }
  917         KASSERT(mp_maxid >= mp_ncpus - 1,
  918             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  919             mp_ncpus));         
  920 }
  921 
  922 /*
  923  * start each AP in our list
  924  */
  925 /* Lowest 1MB is already mapped: don't touch*/
  926 #define TMPMAP_START 1
  927 static int
  928 start_all_aps(void)
  929 {
  930 #ifndef PC98
  931         u_char mpbiosreason;
  932 #endif
  933         u_int32_t mpbioswarmvec;
  934         int apic_id, cpu, i;
  935 
  936         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  937 
  938         /* install the AP 1st level boot code */
  939         install_ap_tramp();
  940 
  941         /* save the current value of the warm-start vector */
  942         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  943 #ifndef PC98
  944         outb(CMOS_REG, BIOS_RESET);
  945         mpbiosreason = inb(CMOS_DATA);
  946 #endif
  947 
  948         /* set up temporary P==V mapping for AP boot */
  949         /* XXX this is a hack, we should boot the AP on its own stack/PTD */
  950         for (i = TMPMAP_START; i < NKPT; i++)
  951                 PTD[i] = PTD[KPTDI + i];
  952         invltlb();
  953 
  954         /* start each AP */
  955         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  956                 apic_id = cpu_apic_ids[cpu];
  957 
  958                 /* allocate and set up a boot stack data page */
  959                 bootstacks[cpu] =
  960                     (char *)kmem_malloc(kernel_arena, KSTACK_PAGES * PAGE_SIZE,
  961                     M_WAITOK | M_ZERO);
  962                 dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
  963                     M_WAITOK | M_ZERO);
  964                 /* setup a vector to our boot code */
  965                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  966                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  967 #ifndef PC98
  968                 outb(CMOS_REG, BIOS_RESET);
  969                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  970 #endif
  971 
  972                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
  973                 bootAP = cpu;
  974 
  975                 /* attempt to start the Application Processor */
  976                 CHECK_INIT(99); /* setup checkpoints */
  977                 if (!start_ap(apic_id)) {
  978                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  979                         CHECK_PRINT("trace");   /* show checkpoints */
  980                         /* better panic as the AP may be running loose */
  981                         printf("panic y/n? [y] ");
  982                         if (cngetc() != 'n')
  983                                 panic("bye-bye");
  984                 }
  985                 CHECK_PRINT("trace");           /* show checkpoints */
  986 
  987                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  988         }
  989 
  990         /* restore the warmstart vector */
  991         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  992 
  993 #ifndef PC98
  994         outb(CMOS_REG, BIOS_RESET);
  995         outb(CMOS_DATA, mpbiosreason);
  996 #endif
  997 
  998         /* Undo V==P hack from above */
  999         for (i = TMPMAP_START; i < NKPT; i++)
 1000                 PTD[i] = 0;
 1001         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
 1002 
 1003         /* number of APs actually started */
 1004         return mp_naps;
 1005 }
 1006 
 1007 /*
 1008  * load the 1st level AP boot code into base memory.
 1009  */
 1010 
 1011 /* targets for relocation */
 1012 extern void bigJump(void);
 1013 extern void bootCodeSeg(void);
 1014 extern void bootDataSeg(void);
 1015 extern void MPentry(void);
 1016 extern u_int MP_GDT;
 1017 extern u_int mp_gdtbase;
 1018 
 1019 static void
 1020 install_ap_tramp(void)
 1021 {
 1022         int     x;
 1023         int     size = *(int *) ((u_long) & bootMP_size);
 1024         vm_offset_t va = boot_address + KERNBASE;
 1025         u_char *src = (u_char *) ((u_long) bootMP);
 1026         u_char *dst = (u_char *) va;
 1027         u_int   boot_base = (u_int) bootMP;
 1028         u_int8_t *dst8;
 1029         u_int16_t *dst16;
 1030         u_int32_t *dst32;
 1031 
 1032         KASSERT (size <= PAGE_SIZE,
 1033             ("'size' do not fit into PAGE_SIZE, as expected."));
 1034         pmap_kenter(va, boot_address);
 1035         pmap_invalidate_page (kernel_pmap, va);
 1036         for (x = 0; x < size; ++x)
 1037                 *dst++ = *src++;
 1038 
 1039         /*
 1040          * modify addresses in code we just moved to basemem. unfortunately we
 1041          * need fairly detailed info about mpboot.s for this to work.  changes
 1042          * to mpboot.s might require changes here.
 1043          */
 1044 
 1045         /* boot code is located in KERNEL space */
 1046         dst = (u_char *) va;
 1047 
 1048         /* modify the lgdt arg */
 1049         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
 1050         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
 1051 
 1052         /* modify the ljmp target for MPentry() */
 1053         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
 1054         *dst32 = ((u_int) MPentry - KERNBASE);
 1055 
 1056         /* modify the target for boot code segment */
 1057         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
 1058         dst8 = (u_int8_t *) (dst16 + 1);
 1059         *dst16 = (u_int) boot_address & 0xffff;
 1060         *dst8 = ((u_int) boot_address >> 16) & 0xff;
 1061 
 1062         /* modify the target for boot data segment */
 1063         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
 1064         dst8 = (u_int8_t *) (dst16 + 1);
 1065         *dst16 = (u_int) boot_address & 0xffff;
 1066         *dst8 = ((u_int) boot_address >> 16) & 0xff;
 1067 }
 1068 
 1069 /*
 1070  * This function starts the AP (application processor) identified
 1071  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
 1072  * to accomplish this.  This is necessary because of the nuances
 1073  * of the different hardware we might encounter.  It isn't pretty,
 1074  * but it seems to work.
 1075  */
 1076 static int
 1077 start_ap(int apic_id)
 1078 {
 1079         int vector, ms;
 1080         int cpus;
 1081 
 1082         /* calculate the vector */
 1083         vector = (boot_address >> 12) & 0xff;
 1084 
 1085         /* used as a watchpoint to signal AP startup */
 1086         cpus = mp_naps;
 1087 
 1088         ipi_startup(apic_id, vector);
 1089 
 1090         /* Wait up to 5 seconds for it to start. */
 1091         for (ms = 0; ms < 5000; ms++) {
 1092                 if (mp_naps > cpus)
 1093                         return 1;       /* return SUCCESS */
 1094                 DELAY(1000);
 1095         }
 1096         return 0;               /* return FAILURE */
 1097 }
 1098 
 1099 #ifdef COUNT_XINVLTLB_HITS
 1100 u_int xhits_gbl[MAXCPU];
 1101 u_int xhits_pg[MAXCPU];
 1102 u_int xhits_rng[MAXCPU];
 1103 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1104 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1105     sizeof(xhits_gbl), "IU", "");
 1106 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1107     sizeof(xhits_pg), "IU", "");
 1108 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1109     sizeof(xhits_rng), "IU", "");
 1110 
 1111 u_int ipi_global;
 1112 u_int ipi_page;
 1113 u_int ipi_range;
 1114 u_int ipi_range_size;
 1115 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1116 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1117 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1118 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
 1119     0, "");
 1120 
 1121 u_int ipi_masked_global;
 1122 u_int ipi_masked_page;
 1123 u_int ipi_masked_range;
 1124 u_int ipi_masked_range_size;
 1125 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1126     &ipi_masked_global, 0, "");
 1127 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1128     &ipi_masked_page, 0, "");
 1129 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1130     &ipi_masked_range, 0, "");
 1131 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1132     &ipi_masked_range_size, 0, "");
 1133 #endif /* COUNT_XINVLTLB_HITS */
 1134 
 1135 /*
 1136  * Init and startup IPI.
 1137  */
 1138 void
 1139 ipi_startup(int apic_id, int vector)
 1140 {
 1141 
 1142         /*
 1143          * This attempts to follow the algorithm described in the
 1144          * Intel Multiprocessor Specification v1.4 in section B.4.
 1145          * For each IPI, we allow the local APIC ~20us to deliver the
 1146          * IPI.  If that times out, we panic.
 1147          */
 1148 
 1149         /*
 1150          * first we do an INIT IPI: this INIT IPI might be run, resetting
 1151          * and running the target CPU. OR this INIT IPI might be latched (P5
 1152          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
 1153          * ignored.
 1154          */
 1155         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
 1156             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
 1157         lapic_ipi_wait(100);
 1158 
 1159         /* Explicitly deassert the INIT IPI. */
 1160         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
 1161             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
 1162             apic_id);
 1163 
 1164         DELAY(10000);           /* wait ~10mS */
 1165 
 1166         /*
 1167          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1168          * latched, (P5 bug) this 1st STARTUP would then terminate
 1169          * immediately, and the previously started INIT IPI would continue. OR
 1170          * the previous INIT IPI has already run. and this STARTUP IPI will
 1171          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1172          * will run.
 1173          */
 1174         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1175             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1176             vector, apic_id);
 1177         if (!lapic_ipi_wait(100))
 1178                 panic("Failed to deliver first STARTUP IPI to APIC %d",
 1179                     apic_id);
 1180         DELAY(200);             /* wait ~200uS */
 1181 
 1182         /*
 1183          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1184          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1185          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1186          * recognized after hardware RESET or INIT IPI.
 1187          */
 1188         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1189             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1190             vector, apic_id);
 1191         if (!lapic_ipi_wait(100))
 1192                 panic("Failed to deliver second STARTUP IPI to APIC %d",
 1193                     apic_id);
 1194 
 1195         DELAY(200);             /* wait ~200uS */
 1196 }
 1197 
 1198 /*
 1199  * Send an IPI to specified CPU handling the bitmap logic.
 1200  */
 1201 static void
 1202 ipi_send_cpu(int cpu, u_int ipi)
 1203 {
 1204         u_int bitmap, old_pending, new_pending;
 1205 
 1206         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1207 
 1208         if (IPI_IS_BITMAPED(ipi)) {
 1209                 bitmap = 1 << ipi;
 1210                 ipi = IPI_BITMAP_VECTOR;
 1211                 do {
 1212                         old_pending = cpu_ipi_pending[cpu];
 1213                         new_pending = old_pending | bitmap;
 1214                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1215                     old_pending, new_pending)); 
 1216                 if (old_pending)
 1217                         return;
 1218         }
 1219         cpu_ops.ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1220 }
 1221 
 1222 /*
 1223  * Flush the TLB on all other CPU's
 1224  */
 1225 static void
 1226 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1227 {
 1228         u_int ncpu;
 1229 
 1230         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1231         if (ncpu < 1)
 1232                 return;         /* no other cpus */
 1233         if (!(read_eflags() & PSL_I))
 1234                 panic("%s: interrupts disabled", __func__);
 1235         mtx_lock_spin(&smp_ipi_mtx);
 1236         smp_tlb_addr1 = addr1;
 1237         smp_tlb_addr2 = addr2;
 1238         atomic_store_rel_int(&smp_tlb_wait, 0);
 1239         ipi_all_but_self(vector);
 1240         while (smp_tlb_wait < ncpu)
 1241                 ia32_pause();
 1242         mtx_unlock_spin(&smp_ipi_mtx);
 1243 }
 1244 
 1245 static void
 1246 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1247 {
 1248         int cpu, ncpu, othercpus;
 1249 
 1250         othercpus = mp_ncpus - 1;
 1251         if (CPU_ISFULLSET(&mask)) {
 1252                 if (othercpus < 1)
 1253                         return;
 1254         } else {
 1255                 CPU_CLR(PCPU_GET(cpuid), &mask);
 1256                 if (CPU_EMPTY(&mask))
 1257                         return;
 1258         }
 1259         if (!(read_eflags() & PSL_I))
 1260                 panic("%s: interrupts disabled", __func__);
 1261         mtx_lock_spin(&smp_ipi_mtx);
 1262         smp_tlb_addr1 = addr1;
 1263         smp_tlb_addr2 = addr2;
 1264         atomic_store_rel_int(&smp_tlb_wait, 0);
 1265         if (CPU_ISFULLSET(&mask)) {
 1266                 ncpu = othercpus;
 1267                 ipi_all_but_self(vector);
 1268         } else {
 1269                 ncpu = 0;
 1270                 while ((cpu = CPU_FFS(&mask)) != 0) {
 1271                         cpu--;
 1272                         CPU_CLR(cpu, &mask);
 1273                         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
 1274                             vector);
 1275                         ipi_send_cpu(cpu, vector);
 1276                         ncpu++;
 1277                 }
 1278         }
 1279         while (smp_tlb_wait < ncpu)
 1280                 ia32_pause();
 1281         mtx_unlock_spin(&smp_ipi_mtx);
 1282 }
 1283 
 1284 void
 1285 smp_cache_flush(void)
 1286 {
 1287 
 1288         if (smp_started)
 1289                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1290 }
 1291 
 1292 void
 1293 smp_invltlb(void)
 1294 {
 1295 
 1296         if (smp_started) {
 1297                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1298 #ifdef COUNT_XINVLTLB_HITS
 1299                 ipi_global++;
 1300 #endif
 1301         }
 1302 }
 1303 
 1304 void
 1305 smp_invlpg(vm_offset_t addr)
 1306 {
 1307 
 1308         if (smp_started) {
 1309                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1310 #ifdef COUNT_XINVLTLB_HITS
 1311                 ipi_page++;
 1312 #endif
 1313         }
 1314 }
 1315 
 1316 void
 1317 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1318 {
 1319 
 1320         if (smp_started) {
 1321                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1322 #ifdef COUNT_XINVLTLB_HITS
 1323                 ipi_range++;
 1324                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1325 #endif
 1326         }
 1327 }
 1328 
 1329 void
 1330 smp_masked_invltlb(cpuset_t mask)
 1331 {
 1332 
 1333         if (smp_started) {
 1334                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1335 #ifdef COUNT_XINVLTLB_HITS
 1336                 ipi_masked_global++;
 1337 #endif
 1338         }
 1339 }
 1340 
 1341 void
 1342 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
 1343 {
 1344 
 1345         if (smp_started) {
 1346                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1347 #ifdef COUNT_XINVLTLB_HITS
 1348                 ipi_masked_page++;
 1349 #endif
 1350         }
 1351 }
 1352 
 1353 void
 1354 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1355 {
 1356 
 1357         if (smp_started) {
 1358                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1359 #ifdef COUNT_XINVLTLB_HITS
 1360                 ipi_masked_range++;
 1361                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1362 #endif
 1363         }
 1364 }
 1365 
 1366 void
 1367 ipi_bitmap_handler(struct trapframe frame)
 1368 {
 1369         struct trapframe *oldframe;
 1370         struct thread *td;
 1371         int cpu = PCPU_GET(cpuid);
 1372         u_int ipi_bitmap;
 1373 
 1374         critical_enter();
 1375         td = curthread;
 1376         td->td_intr_nesting_level++;
 1377         oldframe = td->td_intr_frame;
 1378         td->td_intr_frame = &frame;
 1379         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1380         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1381 #ifdef COUNT_IPIS
 1382                 (*ipi_preempt_counts[cpu])++;
 1383 #endif
 1384                 sched_preempt(td);
 1385         }
 1386         if (ipi_bitmap & (1 << IPI_AST)) {
 1387 #ifdef COUNT_IPIS
 1388                 (*ipi_ast_counts[cpu])++;
 1389 #endif
 1390                 /* Nothing to do for AST */
 1391         }
 1392         if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
 1393 #ifdef COUNT_IPIS
 1394                 (*ipi_hardclock_counts[cpu])++;
 1395 #endif
 1396                 hardclockintr();
 1397         }
 1398         td->td_intr_frame = oldframe;
 1399         td->td_intr_nesting_level--;
 1400         critical_exit();
 1401 }
 1402 
 1403 /*
 1404  * send an IPI to a set of cpus.
 1405  */
 1406 void
 1407 ipi_selected(cpuset_t cpus, u_int ipi)
 1408 {
 1409         int cpu;
 1410 
 1411         /*
 1412          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1413          * of help in order to understand what is the source.
 1414          * Set the mask of receiving CPUs for this purpose.
 1415          */
 1416         if (ipi == IPI_STOP_HARD)
 1417                 CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
 1418 
 1419         while ((cpu = CPU_FFS(&cpus)) != 0) {
 1420                 cpu--;
 1421                 CPU_CLR(cpu, &cpus);
 1422                 CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1423                 ipi_send_cpu(cpu, ipi);
 1424         }
 1425 }
 1426 
 1427 /*
 1428  * send an IPI to a specific CPU.
 1429  */
 1430 void
 1431 ipi_cpu(int cpu, u_int ipi)
 1432 {
 1433 
 1434         /*
 1435          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1436          * of help in order to understand what is the source.
 1437          * Set the mask of receiving CPUs for this purpose.
 1438          */
 1439         if (ipi == IPI_STOP_HARD)
 1440                 CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
 1441 
 1442         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1443         ipi_send_cpu(cpu, ipi);
 1444 }
 1445 
 1446 /*
 1447  * send an IPI to all CPUs EXCEPT myself
 1448  */
 1449 void
 1450 ipi_all_but_self(u_int ipi)
 1451 {
 1452         cpuset_t other_cpus;
 1453 
 1454         other_cpus = all_cpus;
 1455         CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 1456         if (IPI_IS_BITMAPED(ipi)) {
 1457                 ipi_selected(other_cpus, ipi);
 1458                 return;
 1459         }
 1460 
 1461         /*
 1462          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1463          * of help in order to understand what is the source.
 1464          * Set the mask of receiving CPUs for this purpose.
 1465          */
 1466         if (ipi == IPI_STOP_HARD)
 1467                 CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
 1468 
 1469         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1470         cpu_ops.ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1471 }
 1472 
 1473 int
 1474 ipi_nmi_handler()
 1475 {
 1476         u_int cpuid;
 1477 
 1478         /*
 1479          * As long as there is not a simple way to know about a NMI's
 1480          * source, if the bitmask for the current CPU is present in
 1481          * the global pending bitword an IPI_STOP_HARD has been issued
 1482          * and should be handled.
 1483          */
 1484         cpuid = PCPU_GET(cpuid);
 1485         if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
 1486                 return (1);
 1487 
 1488         CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
 1489         cpustop_handler();
 1490         return (0);
 1491 }
 1492 
 1493 /*
 1494  * Handle an IPI_STOP by saving our current context and spinning until we
 1495  * are resumed.
 1496  */
 1497 void
 1498 cpustop_handler(void)
 1499 {
 1500         u_int cpu;
 1501 
 1502         cpu = PCPU_GET(cpuid);
 1503 
 1504         savectx(&stoppcbs[cpu]);
 1505 
 1506         /* Indicate that we are stopped */
 1507         CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1508 
 1509         /* Wait for restart */
 1510         while (!CPU_ISSET(cpu, &started_cpus))
 1511             ia32_pause();
 1512 
 1513         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1514         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1515 
 1516         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1517                 cpustop_restartfunc();
 1518                 cpustop_restartfunc = NULL;
 1519         }
 1520 }
 1521 
 1522 /*
 1523  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1524  * are resumed.
 1525  */
 1526 void
 1527 cpususpend_handler(void)
 1528 {
 1529         u_int cpu;
 1530 
 1531         mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
 1532 
 1533         cpu = PCPU_GET(cpuid);
 1534         if (savectx(&susppcbs[cpu]->sp_pcb)) {
 1535                 npxsuspend(susppcbs[cpu]->sp_fpususpend);
 1536                 wbinvd();
 1537                 CPU_SET_ATOMIC(cpu, &suspended_cpus);
 1538         } else {
 1539                 npxresume(susppcbs[cpu]->sp_fpususpend);
 1540                 pmap_init_pat();
 1541                 initializecpu();
 1542                 PCPU_SET(switchtime, 0);
 1543                 PCPU_SET(switchticks, ticks);
 1544 
 1545                 /* Indicate that we are resumed */
 1546                 CPU_CLR_ATOMIC(cpu, &suspended_cpus);
 1547         }
 1548 
 1549         /* Wait for resume */
 1550         while (!CPU_ISSET(cpu, &started_cpus))
 1551                 ia32_pause();
 1552 
 1553         if (cpu_ops.cpu_resume)
 1554                 cpu_ops.cpu_resume();
 1555 
 1556         /* Resume MCA and local APIC */
 1557         mca_resume();
 1558         lapic_setup(0);
 1559 
 1560         /* Indicate that we are resumed */
 1561         CPU_CLR_ATOMIC(cpu, &suspended_cpus);
 1562         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1563 }
 1564 
 1565 /*
 1566  * Handlers for TLB related IPIs
 1567  */
 1568 void
 1569 invltlb_handler(void)
 1570 {
 1571         uint64_t cr3;
 1572 #ifdef COUNT_XINVLTLB_HITS
 1573         xhits_gbl[PCPU_GET(cpuid)]++;
 1574 #endif /* COUNT_XINVLTLB_HITS */
 1575 #ifdef COUNT_IPIS
 1576         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 1577 #endif /* COUNT_IPIS */
 1578 
 1579         cr3 = rcr3();
 1580         load_cr3(cr3);
 1581         atomic_add_int(&smp_tlb_wait, 1);
 1582 }
 1583 
 1584 void
 1585 invlpg_handler(void)
 1586 {
 1587 #ifdef COUNT_XINVLTLB_HITS
 1588         xhits_pg[PCPU_GET(cpuid)]++;
 1589 #endif /* COUNT_XINVLTLB_HITS */
 1590 #ifdef COUNT_IPIS
 1591         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 1592 #endif /* COUNT_IPIS */
 1593 
 1594         invlpg(smp_tlb_addr1);
 1595 
 1596         atomic_add_int(&smp_tlb_wait, 1);
 1597 }
 1598 
 1599 void
 1600 invlrng_handler(void)
 1601 {
 1602         vm_offset_t addr;
 1603 #ifdef COUNT_XINVLTLB_HITS
 1604         xhits_rng[PCPU_GET(cpuid)]++;
 1605 #endif /* COUNT_XINVLTLB_HITS */
 1606 #ifdef COUNT_IPIS
 1607         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
 1608 #endif /* COUNT_IPIS */
 1609 
 1610         addr = smp_tlb_addr1;
 1611         do {
 1612                 invlpg(addr);
 1613                 addr += PAGE_SIZE;
 1614         } while (addr < smp_tlb_addr2);
 1615 
 1616         atomic_add_int(&smp_tlb_wait, 1);
 1617 }
 1618 
 1619 void
 1620 invlcache_handler(void)
 1621 {
 1622 #ifdef COUNT_IPIS
 1623         (*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
 1624 #endif /* COUNT_IPIS */
 1625 
 1626         wbinvd();
 1627         atomic_add_int(&smp_tlb_wait, 1);
 1628 }
 1629 
 1630 /*
 1631  * This is called once the rest of the system is up and running and we're
 1632  * ready to let the AP's out of the pen.
 1633  */
 1634 static void
 1635 release_aps(void *dummy __unused)
 1636 {
 1637 
 1638         if (mp_ncpus == 1) 
 1639                 return;
 1640         atomic_store_rel_int(&aps_ready, 1);
 1641         while (smp_started == 0)
 1642                 ia32_pause();
 1643 }
 1644 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1645 
 1646 #ifdef COUNT_IPIS
 1647 /*
 1648  * Setup interrupt counters for IPI handlers.
 1649  */
 1650 static void
 1651 mp_ipi_intrcnt(void *dummy)
 1652 {
 1653         char buf[64];
 1654         int i;
 1655 
 1656         CPU_FOREACH(i) {
 1657                 snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
 1658                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1659                 snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
 1660                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1661                 snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
 1662                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1663                 snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
 1664                 intrcnt_add(buf, &ipi_invlcache_counts[i]);
 1665                 snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
 1666                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1667                 snprintf(buf, sizeof(buf), "cpu%d:ast", i);
 1668                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1669                 snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
 1670                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1671                 snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
 1672                 intrcnt_add(buf, &ipi_lazypmap_counts[i]);
 1673                 snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
 1674                 intrcnt_add(buf, &ipi_hardclock_counts[i]);
 1675         }               
 1676 }
 1677 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1678 #endif

Cache object: a9baa311fbcc9f15c20f5a0acce9d326


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.