The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1996, by Steve Passe
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. The name of the developer may NOT be used to endorse or promote products
   13  *    derived from this software without specific prior written permission.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include "opt_apic.h"
   33 #include "opt_cpu.h"
   34 #include "opt_kstack_pages.h"
   35 #include "opt_pmap.h"
   36 #include "opt_sched.h"
   37 #include "opt_smp.h"
   38 
   39 #if !defined(lint)
   40 #if !defined(SMP)
   41 #error How did you get here?
   42 #endif
   43 
   44 #ifndef DEV_APIC
   45 #error The apic device is required for SMP, add "device apic" to your config file.
   46 #endif
   47 #endif /* not lint */
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/cons.h>   /* cngetc() */
   53 #include <sys/cpuset.h>
   54 #ifdef GPROF 
   55 #include <sys/gmon.h>
   56 #endif
   57 #include <sys/kdb.h>
   58 #include <sys/kernel.h>
   59 #include <sys/ktr.h>
   60 #include <sys/lock.h>
   61 #include <sys/malloc.h>
   62 #include <sys/memrange.h>
   63 #include <sys/mutex.h>
   64 #include <sys/pcpu.h>
   65 #include <sys/proc.h>
   66 #include <sys/sched.h>
   67 #include <sys/smp.h>
   68 #include <sys/sysctl.h>
   69 
   70 #include <vm/vm.h>
   71 #include <vm/vm_param.h>
   72 #include <vm/pmap.h>
   73 #include <vm/vm_kern.h>
   74 #include <vm/vm_extern.h>
   75 
   76 #include <x86/apicreg.h>
   77 #include <machine/clock.h>
   78 #include <machine/cpu.h>
   79 #include <machine/cputypes.h>
   80 #include <x86/mca.h>
   81 #include <machine/md_var.h>
   82 #include <machine/pcb.h>
   83 #include <machine/psl.h>
   84 #include <machine/smp.h>
   85 #include <machine/specialreg.h>
   86 #include <x86/ucode.h>
   87 
   88 #ifdef DEV_ACPI
   89 #include <contrib/dev/acpica/include/acpi.h>
   90 #include <dev/acpica/acpivar.h>
   91 #endif
   92 
   93 #define WARMBOOT_TARGET         0
   94 #define WARMBOOT_OFF            (PMAP_MAP_LOW + 0x0467)
   95 #define WARMBOOT_SEG            (PMAP_MAP_LOW + 0x0469)
   96 
   97 #define CMOS_REG                (0x70)
   98 #define CMOS_DATA               (0x71)
   99 #define BIOS_RESET              (0x0f)
  100 #define BIOS_WARM               (0x0a)
  101 
  102 /*
  103  * this code MUST be enabled here and in mpboot.s.
  104  * it follows the very early stages of AP boot by placing values in CMOS ram.
  105  * it NORMALLY will never be needed and thus the primitive method for enabling.
  106  *
  107 #define CHECK_POINTS
  108  */
  109 
  110 #if defined(CHECK_POINTS)
  111 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  112 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  113 
  114 #define CHECK_INIT(D);                          \
  115         CHECK_WRITE(0x34, (D));                 \
  116         CHECK_WRITE(0x35, (D));                 \
  117         CHECK_WRITE(0x36, (D));                 \
  118         CHECK_WRITE(0x37, (D));                 \
  119         CHECK_WRITE(0x38, (D));                 \
  120         CHECK_WRITE(0x39, (D));
  121 
  122 #define CHECK_PRINT(S);                         \
  123         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  124            (S),                                 \
  125            CHECK_READ(0x34),                    \
  126            CHECK_READ(0x35),                    \
  127            CHECK_READ(0x36),                    \
  128            CHECK_READ(0x37),                    \
  129            CHECK_READ(0x38),                    \
  130            CHECK_READ(0x39));
  131 
  132 #else                           /* CHECK_POINTS */
  133 
  134 #define CHECK_INIT(D)
  135 #define CHECK_PRINT(S)
  136 #define CHECK_WRITE(A, D)
  137 
  138 #endif                          /* CHECK_POINTS */
  139 
  140 /*
  141  * Local data and functions.
  142  */
  143 
  144 static void     install_ap_tramp(void);
  145 static int      start_all_aps(void);
  146 static int      start_ap(int apic_id);
  147 
  148 static char *ap_copyout_buf;
  149 static char *ap_tramp_stack_base;
  150 
  151 unsigned int boot_address;
  152 
  153 #define MiB(v)  (v ## ULL << 20)
  154 
  155 /* Allocate memory for the AP trampoline. */
  156 void
  157 alloc_ap_trampoline(vm_paddr_t *physmap, unsigned int *physmap_idx)
  158 {
  159         unsigned int i;
  160         bool allocated;
  161 
  162         allocated = false;
  163         for (i = *physmap_idx; i <= *physmap_idx; i -= 2) {
  164                 /*
  165                  * Find a memory region big enough and below the 1MB boundary
  166                  * for the trampoline code.
  167                  * NB: needs to be page aligned.
  168                  */
  169                 if (physmap[i] >= MiB(1) ||
  170                     (trunc_page(physmap[i + 1]) - round_page(physmap[i])) <
  171                     round_page(bootMP_size))
  172                         continue;
  173 
  174                 allocated = true;
  175                 /*
  176                  * Try to steal from the end of the region to mimic previous
  177                  * behaviour, else fallback to steal from the start.
  178                  */
  179                 if (physmap[i + 1] < MiB(1)) {
  180                         boot_address = trunc_page(physmap[i + 1]);
  181                         if ((physmap[i + 1] - boot_address) < bootMP_size)
  182                                 boot_address -= round_page(bootMP_size);
  183                         physmap[i + 1] = boot_address;
  184                 } else {
  185                         boot_address = round_page(physmap[i]);
  186                         physmap[i] = boot_address + round_page(bootMP_size);
  187                 }
  188                 if (physmap[i] == physmap[i + 1] && *physmap_idx != 0) {
  189                         memmove(&physmap[i], &physmap[i + 2],
  190                             sizeof(*physmap) * (*physmap_idx - i + 2));
  191                         *physmap_idx -= 2;
  192                 }
  193                 break;
  194         }
  195 
  196         if (!allocated) {
  197                 boot_address = basemem * 1024 - bootMP_size;
  198                 if (bootverbose)
  199                         printf(
  200 "Cannot find enough space for the boot trampoline, placing it at %#x",
  201                             boot_address);
  202         }
  203 }
  204 
  205 /*
  206  * Initialize the IPI handlers and start up the AP's.
  207  */
  208 void
  209 cpu_mp_start(void)
  210 {
  211         int i;
  212 
  213         /* Initialize the logical ID to APIC ID table. */
  214         for (i = 0; i < MAXCPU; i++) {
  215                 cpu_apic_ids[i] = -1;
  216         }
  217 
  218         /* Install an inter-CPU IPI for TLB invalidation */
  219         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  220                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  221         setidt(IPI_INVLPG, IDTVEC(invlpg),
  222                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  223         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  224                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  225 
  226         /* Install an inter-CPU IPI for cache invalidation. */
  227         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  228                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  229 
  230         /* Install an inter-CPU IPI for all-CPU rendezvous */
  231         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  232                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  233 
  234         /* Install generic inter-CPU IPI handler */
  235         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  236                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  237 
  238         /* Install an inter-CPU IPI for CPU stop/restart */
  239         setidt(IPI_STOP, IDTVEC(cpustop),
  240                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  241 
  242         /* Install an inter-CPU IPI for CPU suspend/resume */
  243         setidt(IPI_SUSPEND, IDTVEC(cpususpend),
  244                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  245 
  246         /* Install an IPI for calling delayed SWI */
  247         setidt(IPI_SWI, IDTVEC(ipi_swi),
  248                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  249 
  250         /* Set boot_cpu_id if needed. */
  251         if (boot_cpu_id == -1) {
  252                 boot_cpu_id = PCPU_GET(apic_id);
  253                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  254         } else
  255                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  256                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  257 
  258         /* Probe logical/physical core configuration. */
  259         topo_probe();
  260 
  261         assign_cpu_ids();
  262 
  263         /* Start each Application Processor */
  264         start_all_aps();
  265 
  266         set_interrupt_apic_ids();
  267 
  268 #if defined(DEV_ACPI) && MAXMEMDOM > 1
  269         acpi_pxm_set_cpu_locality();
  270 #endif
  271 }
  272 
  273 /*
  274  * AP CPU's call this to initialize themselves.
  275  */
  276 void
  277 init_secondary(void)
  278 {
  279         struct pcpu *pc;
  280         struct i386tss *common_tssp;
  281         struct region_descriptor r_gdt, r_idt;
  282         int gsel_tss, myid, x;
  283         u_int cr0;
  284 
  285         /* bootAP is set in start_ap() to our ID. */
  286         myid = bootAP;
  287 
  288         /* Update microcode before doing anything else. */
  289         ucode_load_ap(myid);
  290 
  291         /* Get per-cpu data */
  292         pc = &__pcpu[myid];
  293 
  294         /* prime data page for it to use */
  295         pcpu_init(pc, myid, sizeof(struct pcpu));
  296         dpcpu_init(dpcpu, myid);
  297         pc->pc_apic_id = cpu_apic_ids[myid];
  298         pc->pc_prvspace = pc;
  299         pc->pc_curthread = 0;
  300         pc->pc_common_tssp = common_tssp = &(__pcpu[0].pc_common_tssp)[myid];
  301 
  302         fix_cpuid();
  303 
  304         gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
  305         gdt_segs[GPROC0_SEL].ssd_base = (int)common_tssp;
  306         gdt_segs[GLDT_SEL].ssd_base = (int)ldt;
  307 
  308         for (x = 0; x < NGDT; x++) {
  309                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  310         }
  311 
  312         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  313         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  314         lgdt(&r_gdt);                   /* does magic intra-segment return */
  315 
  316         r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
  317         r_idt.rd_base = (int)idt;
  318         lidt(&r_idt);
  319 
  320         lldt(_default_ldt);
  321         PCPU_SET(currentldt, _default_ldt);
  322 
  323         PCPU_SET(trampstk, (uintptr_t)ap_tramp_stack_base + TRAMP_STACK_SZ -
  324             VM86_STACK_SPACE);
  325 
  326         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  327         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  328         common_tssp->tss_esp0 = PCPU_GET(trampstk);
  329         common_tssp->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
  330         common_tssp->tss_ioopt = sizeof(struct i386tss) << 16;
  331         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  332         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  333         ltr(gsel_tss);
  334 
  335         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  336         PCPU_SET(copyout_buf, ap_copyout_buf);
  337 
  338         /*
  339          * Set to a known state:
  340          * Set by mpboot.s: CR0_PG, CR0_PE
  341          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  342          */
  343         cr0 = rcr0();
  344         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  345         load_cr0(cr0);
  346         CHECK_WRITE(0x38, 5);
  347 
  348         /* signal our startup to the BSP. */
  349         mp_naps++;
  350         CHECK_WRITE(0x39, 6);
  351 
  352         /* Spin until the BSP releases the AP's. */
  353         while (atomic_load_acq_int(&aps_ready) == 0)
  354                 ia32_pause();
  355 
  356         /* BSP may have changed PTD while we were waiting */
  357         invltlb();
  358 
  359 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  360         lidt(&r_idt);
  361 #endif
  362 
  363         init_secondary_tail();
  364 }
  365 
  366 /*
  367  * start each AP in our list
  368  */
  369 #define TMPMAP_START 1
  370 static int
  371 start_all_aps(void)
  372 {
  373         u_char mpbiosreason;
  374         u_int32_t mpbioswarmvec;
  375         int apic_id, cpu;
  376 
  377         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  378 
  379         pmap_remap_lower(true);
  380 
  381         /* install the AP 1st level boot code */
  382         install_ap_tramp();
  383 
  384         /* save the current value of the warm-start vector */
  385         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  386         outb(CMOS_REG, BIOS_RESET);
  387         mpbiosreason = inb(CMOS_DATA);
  388 
  389         /* take advantage of the P==V mapping for PTD[0] for AP boot */
  390 
  391         /* start each AP */
  392         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  393                 apic_id = cpu_apic_ids[cpu];
  394 
  395                 /* allocate and set up a boot stack data page */
  396                 bootstacks[cpu] = (char *)kmem_malloc(kstack_pages * PAGE_SIZE,
  397                     M_WAITOK | M_ZERO);
  398                 dpcpu = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
  399                 /* setup a vector to our boot code */
  400                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  401                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  402                 outb(CMOS_REG, BIOS_RESET);
  403                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  404 
  405                 bootSTK = (char *)bootstacks[cpu] + kstack_pages *
  406                     PAGE_SIZE - 4;
  407                 bootAP = cpu;
  408 
  409                 ap_tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
  410                 ap_copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
  411 
  412                 /* attempt to start the Application Processor */
  413                 CHECK_INIT(99); /* setup checkpoints */
  414                 if (!start_ap(apic_id)) {
  415                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  416                         CHECK_PRINT("trace");   /* show checkpoints */
  417                         /* better panic as the AP may be running loose */
  418                         printf("panic y/n? [y] ");
  419                         if (cngetc() != 'n')
  420                                 panic("bye-bye");
  421                 }
  422                 CHECK_PRINT("trace");           /* show checkpoints */
  423 
  424                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  425         }
  426 
  427         pmap_remap_lower(false);
  428 
  429         /* restore the warmstart vector */
  430         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  431 
  432         outb(CMOS_REG, BIOS_RESET);
  433         outb(CMOS_DATA, mpbiosreason);
  434 
  435         /* number of APs actually started */
  436         return mp_naps;
  437 }
  438 
  439 /*
  440  * load the 1st level AP boot code into base memory.
  441  */
  442 
  443 /* targets for relocation */
  444 extern void bigJump(void);
  445 extern void bootCodeSeg(void);
  446 extern void bootDataSeg(void);
  447 extern void MPentry(void);
  448 extern u_int MP_GDT;
  449 extern u_int mp_gdtbase;
  450 
  451 static void
  452 install_ap_tramp(void)
  453 {
  454         int     x;
  455         int     size = *(int *) ((u_long) & bootMP_size);
  456         vm_offset_t va = boot_address;
  457         u_char *src = (u_char *) ((u_long) bootMP);
  458         u_char *dst = (u_char *) va;
  459         u_int   boot_base = (u_int) bootMP;
  460         u_int8_t *dst8;
  461         u_int16_t *dst16;
  462         u_int32_t *dst32;
  463 
  464         KASSERT (size <= PAGE_SIZE,
  465             ("'size' do not fit into PAGE_SIZE, as expected."));
  466         pmap_kenter(va, boot_address);
  467         pmap_invalidate_page (kernel_pmap, va);
  468         for (x = 0; x < size; ++x)
  469                 *dst++ = *src++;
  470 
  471         /*
  472          * modify addresses in code we just moved to basemem. unfortunately we
  473          * need fairly detailed info about mpboot.s for this to work.  changes
  474          * to mpboot.s might require changes here.
  475          */
  476 
  477         /* boot code is located in KERNEL space */
  478         dst = (u_char *) va;
  479 
  480         /* modify the lgdt arg */
  481         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
  482         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
  483 
  484         /* modify the ljmp target for MPentry() */
  485         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
  486         *dst32 = (u_int)MPentry;
  487 
  488         /* modify the target for boot code segment */
  489         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
  490         dst8 = (u_int8_t *) (dst16 + 1);
  491         *dst16 = (u_int) boot_address & 0xffff;
  492         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  493 
  494         /* modify the target for boot data segment */
  495         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
  496         dst8 = (u_int8_t *) (dst16 + 1);
  497         *dst16 = (u_int) boot_address & 0xffff;
  498         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  499 }
  500 
  501 /*
  502  * This function starts the AP (application processor) identified
  503  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  504  * to accomplish this.  This is necessary because of the nuances
  505  * of the different hardware we might encounter.  It isn't pretty,
  506  * but it seems to work.
  507  */
  508 static int
  509 start_ap(int apic_id)
  510 {
  511         int vector, ms;
  512         int cpus;
  513 
  514         /* calculate the vector */
  515         vector = (boot_address >> 12) & 0xff;
  516 
  517         /* used as a watchpoint to signal AP startup */
  518         cpus = mp_naps;
  519 
  520         ipi_startup(apic_id, vector);
  521 
  522         /* Wait up to 5 seconds for it to start. */
  523         for (ms = 0; ms < 5000; ms++) {
  524                 if (mp_naps > cpus)
  525                         return 1;       /* return SUCCESS */
  526                 DELAY(1000);
  527         }
  528         return 0;               /* return FAILURE */
  529 }
  530 
  531 /*
  532  * Flush the TLB on other CPU's
  533  */
  534 
  535 /* Variables needed for SMP tlb shootdown. */
  536 vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
  537 pmap_t smp_tlb_pmap;
  538 volatile uint32_t smp_tlb_generation;
  539 
  540 /*
  541  * Used by pmap to request cache or TLB invalidation on local and
  542  * remote processors.  Mask provides the set of remote CPUs which are
  543  * to be signalled with the invalidation IPI.  Vector specifies which
  544  * invalidation IPI is used.  As an optimization, the curcpu_cb
  545  * callback is invoked on the calling CPU while waiting for remote
  546  * CPUs to complete the operation.
  547  *
  548  * The callback function is called unconditionally on the caller's
  549  * underlying processor, even when this processor is not set in the
  550  * mask.  So, the callback function must be prepared to handle such
  551  * spurious invocations.
  552  */
  553 static void
  554 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
  555     vm_offset_t addr1, vm_offset_t addr2, smp_invl_cb_t curcpu_cb)
  556 {
  557         cpuset_t other_cpus;
  558         volatile uint32_t *p_cpudone;
  559         uint32_t generation;
  560         int cpu;
  561 
  562         /*
  563          * It is not necessary to signal other CPUs while booting or
  564          * when in the debugger.
  565          */
  566         if (kdb_active || KERNEL_PANICKED() || !smp_started) {
  567                 curcpu_cb(pmap, addr1, addr2);
  568                 return;
  569         }
  570 
  571         sched_pin();
  572 
  573         /*
  574          * Check for other cpus.  Return if none.
  575          */
  576         if (CPU_ISFULLSET(&mask)) {
  577                 if (mp_ncpus <= 1)
  578                         goto nospinexit;
  579         } else {
  580                 CPU_CLR(PCPU_GET(cpuid), &mask);
  581                 if (CPU_EMPTY(&mask))
  582                         goto nospinexit;
  583         }
  584 
  585         KASSERT((read_eflags() & PSL_I) != 0,
  586             ("smp_targeted_tlb_shootdown: interrupts disabled"));
  587         mtx_lock_spin(&smp_ipi_mtx);
  588         smp_tlb_addr1 = addr1;
  589         smp_tlb_addr2 = addr2;
  590         smp_tlb_pmap = pmap;
  591         generation = ++smp_tlb_generation;
  592         if (CPU_ISFULLSET(&mask)) {
  593                 ipi_all_but_self(vector);
  594                 other_cpus = all_cpus;
  595                 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
  596         } else {
  597                 other_cpus = mask;
  598                 ipi_selected(mask, vector);
  599         }
  600         curcpu_cb(pmap, addr1, addr2);
  601         CPU_FOREACH_ISSET(cpu, &other_cpus) {
  602                 p_cpudone = &cpuid_to_pcpu[cpu]->pc_smp_tlb_done;
  603                 while (*p_cpudone != generation)
  604                         ia32_pause();
  605         }
  606         mtx_unlock_spin(&smp_ipi_mtx);
  607         sched_unpin();
  608         return;
  609 
  610 nospinexit:
  611         curcpu_cb(pmap, addr1, addr2);
  612         sched_unpin();
  613 }
  614 
  615 void
  616 smp_masked_invltlb(cpuset_t mask, pmap_t pmap, smp_invl_cb_t curcpu_cb)
  617 {
  618         smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0, curcpu_cb);
  619 #ifdef COUNT_XINVLTLB_HITS
  620         ipi_global++;
  621 #endif
  622 }
  623 
  624 void
  625 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr, pmap_t pmap,
  626     smp_invl_cb_t curcpu_cb)
  627 {
  628         smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0, curcpu_cb);
  629 #ifdef COUNT_XINVLTLB_HITS
  630         ipi_page++;
  631 #endif
  632 }
  633 
  634 void
  635 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2,
  636     pmap_t pmap, smp_invl_cb_t curcpu_cb)
  637 {
  638         smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1, addr2,
  639             curcpu_cb);
  640 #ifdef COUNT_XINVLTLB_HITS
  641         ipi_range++;
  642         ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
  643 #endif
  644 }
  645 
  646 void
  647 smp_cache_flush(smp_invl_cb_t curcpu_cb)
  648 {
  649         smp_targeted_tlb_shootdown(all_cpus, IPI_INVLCACHE, NULL, 0, 0,
  650             curcpu_cb);
  651 }
  652 
  653 /*
  654  * Handlers for TLB related IPIs
  655  */
  656 void
  657 invltlb_handler(void)
  658 {
  659         uint32_t generation;
  660 
  661         trap_check_kstack();
  662 #ifdef COUNT_XINVLTLB_HITS
  663         xhits_gbl[PCPU_GET(cpuid)]++;
  664 #endif /* COUNT_XINVLTLB_HITS */
  665 #ifdef COUNT_IPIS
  666         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
  667 #endif /* COUNT_IPIS */
  668 
  669         /*
  670          * Reading the generation here allows greater parallelism
  671          * since invalidating the TLB is a serializing operation.
  672          */
  673         generation = smp_tlb_generation;
  674         if (smp_tlb_pmap == kernel_pmap)
  675                 invltlb_glob();
  676         PCPU_SET(smp_tlb_done, generation);
  677 }
  678 
  679 void
  680 invlpg_handler(void)
  681 {
  682         uint32_t generation;
  683 
  684         trap_check_kstack();
  685 #ifdef COUNT_XINVLTLB_HITS
  686         xhits_pg[PCPU_GET(cpuid)]++;
  687 #endif /* COUNT_XINVLTLB_HITS */
  688 #ifdef COUNT_IPIS
  689         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
  690 #endif /* COUNT_IPIS */
  691 
  692         generation = smp_tlb_generation;        /* Overlap with serialization */
  693         if (smp_tlb_pmap == kernel_pmap)
  694                 invlpg(smp_tlb_addr1);
  695         PCPU_SET(smp_tlb_done, generation);
  696 }
  697 
  698 void
  699 invlrng_handler(void)
  700 {
  701         vm_offset_t addr, addr2;
  702         uint32_t generation;
  703 
  704         trap_check_kstack();
  705 #ifdef COUNT_XINVLTLB_HITS
  706         xhits_rng[PCPU_GET(cpuid)]++;
  707 #endif /* COUNT_XINVLTLB_HITS */
  708 #ifdef COUNT_IPIS
  709         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
  710 #endif /* COUNT_IPIS */
  711 
  712         addr = smp_tlb_addr1;
  713         addr2 = smp_tlb_addr2;
  714         generation = smp_tlb_generation;        /* Overlap with serialization */
  715         if (smp_tlb_pmap == kernel_pmap) {
  716                 do {
  717                         invlpg(addr);
  718                         addr += PAGE_SIZE;
  719                 } while (addr < addr2);
  720         }
  721 
  722         PCPU_SET(smp_tlb_done, generation);
  723 }
  724 
  725 void
  726 invlcache_handler(void)
  727 {
  728         uint32_t generation;
  729 
  730         trap_check_kstack();
  731 #ifdef COUNT_IPIS
  732         (*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
  733 #endif /* COUNT_IPIS */
  734 
  735         /*
  736          * Reading the generation here allows greater parallelism
  737          * since wbinvd is a serializing instruction.  Without the
  738          * temporary, we'd wait for wbinvd to complete, then the read
  739          * would execute, then the dependent write, which must then
  740          * complete before return from interrupt.
  741          */
  742         generation = smp_tlb_generation;
  743         wbinvd();
  744         PCPU_SET(smp_tlb_done, generation);
  745 }

Cache object: 68aaf4ffb7eac753b10271e0253f2149


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.