The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD$
   26  */
   27 
   28 #include "opt_smp.h"
   29 #include "opt_vm86.h"
   30 #include "opt_cpu.h"
   31 #include "opt_user_ldt.h"
   32 
   33 #ifdef SMP
   34 #include <machine/smptests.h>
   35 #else
   36 #error
   37 #endif
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/malloc.h>
   43 #include <sys/memrange.h>
   44 #include <sys/proc.h>
   45 #include <sys/sysctl.h>
   46 #ifdef BETTER_CLOCK
   47 #include <sys/dkstat.h>
   48 #endif
   49 
   50 #include <vm/vm.h>
   51 #include <vm/vm_param.h>
   52 #include <vm/pmap.h>
   53 #include <vm/vm_kern.h>
   54 #include <vm/vm_extern.h>
   55 #ifdef BETTER_CLOCK
   56 #include <sys/lock.h>
   57 #include <vm/vm_map.h>
   58 #include <sys/user.h>
   59 #ifdef GPROF 
   60 #include <sys/gmon.h>
   61 #endif
   62 #endif
   63 
   64 #include <machine/smp.h>
   65 #include <machine/apic.h>
   66 #include <machine/atomic.h>
   67 #include <machine/cpufunc.h>
   68 #include <machine/mpapic.h>
   69 #include <machine/psl.h>
   70 #include <machine/segments.h>
   71 #include <machine/smptests.h>   /** TEST_DEFAULT_CONFIG, TEST_TEST1 */
   72 #include <machine/tss.h>
   73 #include <machine/specialreg.h>
   74 #include <machine/cputypes.h>
   75 #include <machine/globaldata.h>
   76 
   77 #include <i386/i386/cons.h>     /* cngetc() */
   78 
   79 #if defined(APIC_IO)
   80 #include <machine/md_var.h>             /* setidt() */
   81 #include <i386/isa/icu.h>               /* IPIs */
   82 #include <i386/isa/intr_machdep.h>      /* IPIs */
   83 #endif  /* APIC_IO */
   84 
   85 #if defined(TEST_DEFAULT_CONFIG)
   86 #define MPFPS_MPFB1     TEST_DEFAULT_CONFIG
   87 #else
   88 #define MPFPS_MPFB1     mpfps->mpfb1
   89 #endif  /* TEST_DEFAULT_CONFIG */
   90 
   91 #define WARMBOOT_TARGET         0
   92 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   93 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   94 
   95 #ifdef PC98
   96 #define BIOS_BASE               (0xe8000)
   97 #define BIOS_SIZE               (0x18000)
   98 #else
   99 #define BIOS_BASE               (0xf0000)
  100 #define BIOS_SIZE               (0x10000)
  101 #endif
  102 #define BIOS_COUNT              (BIOS_SIZE/4)
  103 
  104 #define CMOS_REG                (0x70)
  105 #define CMOS_DATA               (0x71)
  106 #define BIOS_RESET              (0x0f)
  107 #define BIOS_WARM               (0x0a)
  108 
  109 #define PROCENTRY_FLAG_EN       0x01
  110 #define PROCENTRY_FLAG_BP       0x02
  111 #define IOAPICENTRY_FLAG_EN     0x01
  112 
  113 
  114 /* MP Floating Pointer Structure */
  115 typedef struct MPFPS {
  116         char    signature[4];
  117         void   *pap;
  118         u_char  length;
  119         u_char  spec_rev;
  120         u_char  checksum;
  121         u_char  mpfb1;
  122         u_char  mpfb2;
  123         u_char  mpfb3;
  124         u_char  mpfb4;
  125         u_char  mpfb5;
  126 }      *mpfps_t;
  127 
  128 /* MP Configuration Table Header */
  129 typedef struct MPCTH {
  130         char    signature[4];
  131         u_short base_table_length;
  132         u_char  spec_rev;
  133         u_char  checksum;
  134         u_char  oem_id[8];
  135         u_char  product_id[12];
  136         void   *oem_table_pointer;
  137         u_short oem_table_size;
  138         u_short entry_count;
  139         void   *apic_address;
  140         u_short extended_table_length;
  141         u_char  extended_table_checksum;
  142         u_char  reserved;
  143 }      *mpcth_t;
  144 
  145 
  146 typedef struct PROCENTRY {
  147         u_char  type;
  148         u_char  apic_id;
  149         u_char  apic_version;
  150         u_char  cpu_flags;
  151         u_long  cpu_signature;
  152         u_long  feature_flags;
  153         u_long  reserved1;
  154         u_long  reserved2;
  155 }      *proc_entry_ptr;
  156 
  157 typedef struct BUSENTRY {
  158         u_char  type;
  159         u_char  bus_id;
  160         char    bus_type[6];
  161 }      *bus_entry_ptr;
  162 
  163 typedef struct IOAPICENTRY {
  164         u_char  type;
  165         u_char  apic_id;
  166         u_char  apic_version;
  167         u_char  apic_flags;
  168         void   *apic_address;
  169 }      *io_apic_entry_ptr;
  170 
  171 typedef struct INTENTRY {
  172         u_char  type;
  173         u_char  int_type;
  174         u_short int_flags;
  175         u_char  src_bus_id;
  176         u_char  src_bus_irq;
  177         u_char  dst_apic_id;
  178         u_char  dst_apic_int;
  179 }      *int_entry_ptr;
  180 
  181 /* descriptions of MP basetable entries */
  182 typedef struct BASETABLE_ENTRY {
  183         u_char  type;
  184         u_char  length;
  185         char    name[16];
  186 }       basetable_entry;
  187 
  188 /*
  189  * this code MUST be enabled here and in mpboot.s.
  190  * it follows the very early stages of AP boot by placing values in CMOS ram.
  191  * it NORMALLY will never be needed and thus the primitive method for enabling.
  192  *
  193 #define CHECK_POINTS
  194  */
  195 
  196 #if defined(CHECK_POINTS) && !defined(PC98)
  197 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  198 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  199 
  200 #define CHECK_INIT(D);                          \
  201         CHECK_WRITE(0x34, (D));                 \
  202         CHECK_WRITE(0x35, (D));                 \
  203         CHECK_WRITE(0x36, (D));                 \
  204         CHECK_WRITE(0x37, (D));                 \
  205         CHECK_WRITE(0x38, (D));                 \
  206         CHECK_WRITE(0x39, (D));
  207 
  208 #define CHECK_PRINT(S);                         \
  209         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  210            (S),                                 \
  211            CHECK_READ(0x34),                    \
  212            CHECK_READ(0x35),                    \
  213            CHECK_READ(0x36),                    \
  214            CHECK_READ(0x37),                    \
  215            CHECK_READ(0x38),                    \
  216            CHECK_READ(0x39));
  217 
  218 #else                           /* CHECK_POINTS */
  219 
  220 #define CHECK_INIT(D)
  221 #define CHECK_PRINT(S)
  222 
  223 #endif                          /* CHECK_POINTS */
  224 
  225 /*
  226  * Values to send to the POST hardware.
  227  */
  228 #define MP_BOOTADDRESS_POST     0x10
  229 #define MP_PROBE_POST           0x11
  230 #define MPTABLE_PASS1_POST      0x12
  231 
  232 #define MP_START_POST           0x13
  233 #define MP_ENABLE_POST          0x14
  234 #define MPTABLE_PASS2_POST      0x15
  235 
  236 #define START_ALL_APS_POST      0x16
  237 #define INSTALL_AP_TRAMP_POST   0x17
  238 #define START_AP_POST           0x18
  239 
  240 #define MP_ANNOUNCE_POST        0x19
  241 
  242 
  243 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
  244 int     current_postcode;
  245 
  246 /** XXX FIXME: what system files declare these??? */
  247 extern struct region_descriptor r_gdt, r_idt;
  248 
  249 int     bsp_apic_ready = 0;     /* flags useability of BSP apic */
  250 int     mp_ncpus;               /* # of CPUs, including BSP */
  251 int     mp_naps;                /* # of Applications processors */
  252 int     mp_nbusses;             /* # of busses */
  253 int     mp_napics;              /* # of IO APICs */
  254 int     boot_cpu_id;            /* designated BSP */
  255 vm_offset_t cpu_apic_address;
  256 vm_offset_t io_apic_address[NAPICID];   /* NAPICID is more than enough */
  257 extern  int nkpt;
  258 
  259 u_int32_t cpu_apic_versions[NCPU];
  260 u_int32_t io_apic_versions[NAPIC];
  261 
  262 #ifdef APIC_INTR_DIAGNOSTIC
  263 int apic_itrace_enter[32];
  264 int apic_itrace_tryisrlock[32];
  265 int apic_itrace_gotisrlock[32];
  266 int apic_itrace_active[32];
  267 int apic_itrace_masked[32];
  268 int apic_itrace_noisrlock[32];
  269 int apic_itrace_masked2[32];
  270 int apic_itrace_unmask[32];
  271 int apic_itrace_noforward[32];
  272 int apic_itrace_leave[32];
  273 int apic_itrace_enter2[32];
  274 int apic_itrace_doreti[32];
  275 int apic_itrace_splz[32];
  276 int apic_itrace_eoi[32];
  277 #ifdef APIC_INTR_DIAGNOSTIC_IRQ
  278 unsigned short apic_itrace_debugbuffer[32768];
  279 int apic_itrace_debugbuffer_idx;
  280 struct simplelock apic_itrace_debuglock;
  281 #endif
  282 #endif
  283 
  284 #ifdef APIC_INTR_REORDER
  285 struct {
  286         volatile int *location;
  287         int bit;
  288 } apic_isrbit_location[32];
  289 #endif
  290 
  291 struct apic_intmapinfo  int_to_apicintpin[APIC_INTMAPSIZE];
  292 
  293 /*
  294  * APIC ID logical/physical mapping structures.
  295  * We oversize these to simplify boot-time config.
  296  */
  297 int     cpu_num_to_apic_id[NAPICID];
  298 int     io_num_to_apic_id[NAPICID];
  299 int     apic_id_to_logical[NAPICID];
  300 
  301 
  302 /* Bitmap of all available CPUs */
  303 u_int   all_cpus;
  304 
  305 /* AP uses this PTD during bootstrap.  Do not staticize.  */
  306 pd_entry_t *bootPTD;
  307 
  308 /* Hotwire a 0->4MB V==P mapping */
  309 extern pt_entry_t *KPTphys;
  310 
  311 /* Virtual address of per-cpu common_tss */
  312 extern struct i386tss common_tss;
  313 #ifdef VM86
  314 extern struct segment_descriptor common_tssd;
  315 extern u_int private_tss;               /* flag indicating private tss */
  316 extern u_int my_tr;
  317 #endif /* VM86 */
  318 
  319 /* IdlePTD per cpu */
  320 pd_entry_t *IdlePTDS[NCPU];
  321 
  322 /* "my" private page table page, for BSP init */
  323 extern pt_entry_t SMP_prvpt[];
  324 
  325 /* Private page pointer to curcpu's PTD, used during BSP init */
  326 extern pd_entry_t *my_idlePTD;
  327 
  328 struct pcb stoppcbs[NCPU];
  329 
  330 int smp_started;                /* has the system started? */
  331 
  332 /*
  333  * Local data and functions.
  334  */
  335 
  336 static int      mp_capable;
  337 static u_int    boot_address;
  338 static u_int    base_memory;
  339 
  340 static int      picmode;                /* 0: virtual wire mode, 1: PIC mode */
  341 static mpfps_t  mpfps;
  342 static int      search_for_sig(u_int32_t target, int count);
  343 static void     mp_enable(u_int boot_addr);
  344 
  345 static int      mptable_pass1(void);
  346 static int      mptable_pass2(void);
  347 static void     default_mp_table(int type);
  348 static void     fix_mp_table(void);
  349 static void     setup_apic_irq_mapping(void);
  350 static void     init_locks(void);
  351 static int      start_all_aps(u_int boot_addr);
  352 static void     install_ap_tramp(u_int boot_addr);
  353 static int      start_ap(int logicalCpu, u_int boot_addr);
  354 
  355 /*
  356  * Calculate usable address in base memory for AP trampoline code.
  357  */
  358 u_int
  359 mp_bootaddress(u_int basemem)
  360 {
  361         POSTCODE(MP_BOOTADDRESS_POST);
  362 
  363         base_memory = basemem * 1024;   /* convert to bytes */
  364 
  365         boot_address = base_memory & ~0xfff;    /* round down to 4k boundary */
  366         if ((base_memory - boot_address) < bootMP_size)
  367                 boot_address -= 4096;   /* not enough, lower by 4k */
  368 
  369         return boot_address;
  370 }
  371 
  372 
  373 /*
  374  * Look for an Intel MP spec table (ie, SMP capable hardware).
  375  */
  376 int
  377 mp_probe(void)
  378 {
  379         int     x;
  380         u_long  segment;
  381         u_int32_t target;
  382 
  383         POSTCODE(MP_PROBE_POST);
  384 
  385         /* see if EBDA exists */
  386         if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
  387                 /* search first 1K of EBDA */
  388                 target = (u_int32_t) (segment << 4);
  389                 if ((x = search_for_sig(target, 1024 / 4)) >= 0)
  390                         goto found;
  391         } else {
  392                 /* last 1K of base memory, effective 'top of base' passed in */
  393                 target = (u_int32_t) (base_memory - 0x400);
  394                 if ((x = search_for_sig(target, 1024 / 4)) >= 0)
  395                         goto found;
  396         }
  397 
  398         /* search the BIOS */
  399         target = (u_int32_t) BIOS_BASE;
  400         if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
  401                 goto found;
  402 
  403         /* nothing found */
  404         mpfps = (mpfps_t)0;
  405         mp_capable = 0;
  406         return 0;
  407 
  408 found:
  409         /* calculate needed resources */
  410         mpfps = (mpfps_t)x;
  411         if (mptable_pass1())
  412                 panic("you must reconfigure your kernel");
  413 
  414         /* flag fact that we are running multiple processors */
  415         mp_capable = 1;
  416         return 1;
  417 }
  418 
  419 
  420 /*
  421  * Startup the SMP processors.
  422  */
  423 void
  424 mp_start(void)
  425 {
  426         POSTCODE(MP_START_POST);
  427 
  428         /* look for MP capable motherboard */
  429         if (mp_capable)
  430                 mp_enable(boot_address);
  431         else
  432                 panic("MP hardware not found!");
  433 }
  434 
  435 
  436 /*
  437  * Print various information about the SMP system hardware and setup.
  438  */
  439 void
  440 mp_announce(void)
  441 {
  442         int     x;
  443 
  444         POSTCODE(MP_ANNOUNCE_POST);
  445 
  446         printf("FreeBSD/SMP: Multiprocessor motherboard\n");
  447         printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
  448         printf(", version: 0x%08x", cpu_apic_versions[0]);
  449         printf(", at 0x%08x\n", cpu_apic_address);
  450         for (x = 1; x <= mp_naps; ++x) {
  451                 printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
  452                 printf(", version: 0x%08x", cpu_apic_versions[x]);
  453                 printf(", at 0x%08x\n", cpu_apic_address);
  454         }
  455 
  456 #if defined(APIC_IO)
  457         for (x = 0; x < mp_napics; ++x) {
  458                 printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
  459                 printf(", version: 0x%08x", io_apic_versions[x]);
  460                 printf(", at 0x%08x\n", io_apic_address[x]);
  461         }
  462 #else
  463         printf(" Warning: APIC I/O disabled\n");
  464 #endif  /* APIC_IO */
  465 }
  466 
  467 /*
  468  * AP cpu's call this to sync up protected mode.
  469  */
  470 void
  471 init_secondary(void)
  472 {
  473         int     gsel_tss;
  474 #ifndef VM86
  475         u_int   my_tr;
  476 #endif
  477 
  478         r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
  479         r_gdt.rd_base = (int) gdt;
  480         lgdt(&r_gdt);                   /* does magic intra-segment return */
  481         lidt(&r_idt);
  482         lldt(_default_ldt);
  483 #ifdef USER_LDT
  484         currentldt = _default_ldt;
  485 #endif
  486 
  487         my_tr = NGDT + cpuid;
  488         gsel_tss = GSEL(my_tr, SEL_KPL);
  489         gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
  490         common_tss.tss_esp0 = 0;        /* not used until after switch */
  491         common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
  492         common_tss.tss_ioopt = (sizeof common_tss) << 16;
  493 #ifdef VM86
  494         common_tssd = gdt[my_tr].sd;
  495         private_tss = 0;
  496 #endif /* VM86 */
  497         ltr(gsel_tss);
  498 
  499         load_cr0(0x8005003b);           /* XXX! */
  500 
  501         PTD[0] = 0;
  502         pmap_set_opt((unsigned *)PTD);
  503 
  504         invltlb();
  505 }
  506 
  507 
  508 #if defined(APIC_IO)
  509 /*
  510  * Final configuration of the BSP's local APIC:
  511  *  - disable 'pic mode'.
  512  *  - disable 'virtual wire mode'.
  513  *  - enable NMI.
  514  */
  515 void
  516 bsp_apic_configure(void)
  517 {
  518         u_char          byte;
  519         u_int32_t       temp;
  520 
  521         /* leave 'pic mode' if necessary */
  522         if (picmode) {
  523                 outb(0x22, 0x70);       /* select IMCR */
  524                 byte = inb(0x23);       /* current contents */
  525                 byte |= 0x01;           /* mask external INTR */
  526                 outb(0x23, byte);       /* disconnect 8259s/NMI */
  527         }
  528 
  529         /* mask lint0 (the 8259 'virtual wire' connection) */
  530         temp = lapic.lvt_lint0;
  531         temp |= APIC_LVT_M;             /* set the mask */
  532         lapic.lvt_lint0 = temp;
  533 
  534         /* setup lint1 to handle NMI */
  535         temp = lapic.lvt_lint1;
  536         temp &= ~APIC_LVT_M;            /* clear the mask */
  537         lapic.lvt_lint1 = temp;
  538 
  539         if (bootverbose)
  540                 apic_dump("bsp_apic_configure()");
  541 }
  542 #endif  /* APIC_IO */
  543 
  544 
  545 /*******************************************************************
  546  * local functions and data
  547  */
  548 
  549 /*
  550  * start the SMP system
  551  */
  552 static void
  553 mp_enable(u_int boot_addr)
  554 {
  555         int     x;
  556 #if defined(APIC_IO)
  557         int     apic;
  558         u_int   ux;
  559 #endif  /* APIC_IO */
  560 
  561         POSTCODE(MP_ENABLE_POST);
  562 
  563         /* turn on 4MB of V == P addressing so we can get to MP table */
  564         *(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
  565         invltlb();
  566 
  567         /* examine the MP table for needed info, uses physical addresses */
  568         x = mptable_pass2();
  569 
  570         *(int *)PTD = 0;
  571         invltlb();
  572 
  573         /* can't process default configs till the CPU APIC is pmapped */
  574         if (x)
  575                 default_mp_table(x);
  576 
  577         /* post scan cleanup */
  578         fix_mp_table();
  579         setup_apic_irq_mapping();
  580 
  581 #if defined(APIC_IO)
  582 
  583         /* fill the LOGICAL io_apic_versions table */
  584         for (apic = 0; apic < mp_napics; ++apic) {
  585                 ux = io_apic_read(apic, IOAPIC_VER);
  586                 io_apic_versions[apic] = ux;
  587         }
  588 
  589         /* program each IO APIC in the system */
  590         for (apic = 0; apic < mp_napics; ++apic)
  591                 if (io_apic_setup(apic) < 0)
  592                         panic("IO APIC setup failure");
  593 
  594         /* install a 'Spurious INTerrupt' vector */
  595         setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
  596                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  597 
  598         /* install an inter-CPU IPI for TLB invalidation */
  599         setidt(XINVLTLB_OFFSET, Xinvltlb,
  600                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  601 
  602 #ifdef BETTER_CLOCK
  603         /* install an inter-CPU IPI for reading processor state */
  604         setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
  605                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  606 #endif
  607 
  608         /* install an inter-CPU IPI for all-CPU rendezvous */
  609         setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
  610                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  611         
  612         /* install an inter-CPU IPI for forcing an additional software trap */
  613         setidt(XCPUAST_OFFSET, Xcpuast,
  614                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  615         
  616         /* install an inter-CPU IPI for interrupt forwarding */
  617         setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
  618                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  619 
  620         /* install an inter-CPU IPI for CPU stop/restart */
  621         setidt(XCPUSTOP_OFFSET, Xcpustop,
  622                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  623 
  624 #if defined(TEST_TEST1)
  625         /* install a "fake hardware INTerrupt" vector */
  626         setidt(XTEST1_OFFSET, Xtest1,
  627                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  628 #endif  /** TEST_TEST1 */
  629 
  630 #endif  /* APIC_IO */
  631 
  632         /* initialize all SMP locks */
  633         init_locks();
  634 
  635         /* start each Application Processor */
  636         start_all_aps(boot_addr);
  637 
  638         /* 
  639          * The init process might be started on a different CPU now,
  640          * and the boot CPU might not call prepare_usermode to get
  641          * cr0 correctly configured. Thus we initialize cr0 here.
  642          */
  643         load_cr0(rcr0() | CR0_WP | CR0_AM);
  644 }
  645 
  646 
  647 /*
  648  * look for the MP spec signature
  649  */
  650 
  651 /* string defined by the Intel MP Spec as identifying the MP table */
  652 #define MP_SIG          0x5f504d5f      /* _MP_ */
  653 #define NEXT(X)         ((X) += 4)
  654 static int
  655 search_for_sig(u_int32_t target, int count)
  656 {
  657         int     x;
  658         u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
  659 
  660         for (x = 0; x < count; NEXT(x))
  661                 if (addr[x] == MP_SIG)
  662                         /* make array index a byte index */
  663                         return (target + (x * sizeof(u_int32_t)));
  664 
  665         return -1;
  666 }
  667 
  668 
  669 static basetable_entry basetable_entry_types[] =
  670 {
  671         {0, 20, "Processor"},
  672         {1, 8, "Bus"},
  673         {2, 8, "I/O APIC"},
  674         {3, 8, "I/O INT"},
  675         {4, 8, "Local INT"}
  676 };
  677 
  678 typedef struct BUSDATA {
  679         u_char  bus_id;
  680         enum busTypes bus_type;
  681 }       bus_datum;
  682 
  683 typedef struct INTDATA {
  684         u_char  int_type;
  685         u_short int_flags;
  686         u_char  src_bus_id;
  687         u_char  src_bus_irq;
  688         u_char  dst_apic_id;
  689         u_char  dst_apic_int;
  690         u_char  int_vector;
  691 }       io_int, local_int;
  692 
  693 typedef struct BUSTYPENAME {
  694         u_char  type;
  695         char    name[7];
  696 }       bus_type_name;
  697 
  698 static bus_type_name bus_type_table[] =
  699 {
  700         {CBUS, "CBUS"},
  701         {CBUSII, "CBUSII"},
  702         {EISA, "EISA"},
  703         {UNKNOWN_BUSTYPE, "---"},
  704         {UNKNOWN_BUSTYPE, "---"},
  705         {ISA, "ISA"},
  706         {UNKNOWN_BUSTYPE, "---"},
  707         {UNKNOWN_BUSTYPE, "---"},
  708         {UNKNOWN_BUSTYPE, "---"},
  709         {UNKNOWN_BUSTYPE, "---"},
  710         {UNKNOWN_BUSTYPE, "---"},
  711         {UNKNOWN_BUSTYPE, "---"},
  712         {PCI, "PCI"},
  713         {UNKNOWN_BUSTYPE, "---"},
  714         {UNKNOWN_BUSTYPE, "---"},
  715         {UNKNOWN_BUSTYPE, "---"},
  716         {UNKNOWN_BUSTYPE, "---"},
  717         {XPRESS, "XPRESS"},
  718         {UNKNOWN_BUSTYPE, "---"}
  719 };
  720 /* from MP spec v1.4, table 5-1 */
  721 static int default_data[7][5] =
  722 {
  723 /*   nbus, id0, type0, id1, type1 */
  724         {1, 0, ISA, 255, 255},
  725         {1, 0, EISA, 255, 255},
  726         {1, 0, EISA, 255, 255},
  727         {0, 255, 255, 255, 255},/* MCA not supported */
  728         {2, 0, ISA, 1, PCI},
  729         {2, 0, EISA, 1, PCI},
  730         {0, 255, 255, 255, 255} /* MCA not supported */
  731 };
  732 
  733 
  734 /* the bus data */
  735 static bus_datum bus_data[NBUS];
  736 
  737 /* the IO INT data, one entry per possible APIC INTerrupt */
  738 static io_int  io_apic_ints[NINTR];
  739 
  740 static int nintrs;
  741 
  742 static int processor_entry      __P((proc_entry_ptr entry, int cpu));
  743 static int bus_entry            __P((bus_entry_ptr entry, int bus));
  744 static int io_apic_entry        __P((io_apic_entry_ptr entry, int apic));
  745 static int int_entry            __P((int_entry_ptr entry, int intr));
  746 static int lookup_bus_type      __P((char *name));
  747 
  748 
  749 /*
  750  * 1st pass on motherboard's Intel MP specification table.
  751  *
  752  * initializes:
  753  *      mp_ncpus = 1
  754  *
  755  * determines:
  756  *      cpu_apic_address (common to all CPUs)
  757  *      io_apic_address[N]
  758  *      mp_naps
  759  *      mp_nbusses
  760  *      mp_napics
  761  *      nintrs
  762  */
  763 static int
  764 mptable_pass1(void)
  765 {
  766         int     x;
  767         mpcth_t cth;
  768         int     totalSize;
  769         void*   position;
  770         int     count;
  771         int     type;
  772         int     mustpanic;
  773 
  774         POSTCODE(MPTABLE_PASS1_POST);
  775 
  776         mustpanic = 0;
  777 
  778         /* clear various tables */
  779         for (x = 0; x < NAPICID; ++x) {
  780                 io_apic_address[x] = ~0;        /* IO APIC address table */
  781         }
  782 
  783         /* init everything to empty */
  784         mp_naps = 0;
  785         mp_nbusses = 0;
  786         mp_napics = 0;
  787         nintrs = 0;
  788 
  789         /* check for use of 'default' configuration */
  790         if (MPFPS_MPFB1 != 0) {
  791                 /* use default addresses */
  792                 cpu_apic_address = DEFAULT_APIC_BASE;
  793                 io_apic_address[0] = DEFAULT_IO_APIC_BASE;
  794 
  795                 /* fill in with defaults */
  796                 mp_naps = 2;            /* includes BSP */
  797                 mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
  798 #if defined(APIC_IO)
  799                 mp_napics = 1;
  800                 nintrs = 16;
  801 #endif  /* APIC_IO */
  802         }
  803         else {
  804                 if ((cth = mpfps->pap) == 0)
  805                         panic("MP Configuration Table Header MISSING!");
  806 
  807                 cpu_apic_address = (vm_offset_t) cth->apic_address;
  808 
  809                 /* walk the table, recording info of interest */
  810                 totalSize = cth->base_table_length - sizeof(struct MPCTH);
  811                 position = (u_char *) cth + sizeof(struct MPCTH);
  812                 count = cth->entry_count;
  813 
  814                 while (count--) {
  815                         switch (type = *(u_char *) position) {
  816                         case 0: /* processor_entry */
  817                                 if (((proc_entry_ptr)position)->cpu_flags
  818                                         & PROCENTRY_FLAG_EN)
  819                                         ++mp_naps;
  820                                 break;
  821                         case 1: /* bus_entry */
  822                                 ++mp_nbusses;
  823                                 break;
  824                         case 2: /* io_apic_entry */
  825                                 if (((io_apic_entry_ptr)position)->apic_flags
  826                                         & IOAPICENTRY_FLAG_EN)
  827                                         io_apic_address[mp_napics++] =
  828                                             (vm_offset_t)((io_apic_entry_ptr)
  829                                                 position)->apic_address;
  830                                 break;
  831                         case 3: /* int_entry */
  832                                 ++nintrs;
  833                                 break;
  834                         case 4: /* int_entry */
  835                                 break;
  836                         default:
  837                                 panic("mpfps Base Table HOSED!");
  838                                 /* NOTREACHED */
  839                         }
  840 
  841                         totalSize -= basetable_entry_types[type].length;
  842                         (u_char*)position += basetable_entry_types[type].length;
  843                 }
  844         }
  845 
  846         /* qualify the numbers */
  847         if (mp_naps > NCPU)
  848 #if 0 /* XXX FIXME: kern/4255 */
  849                 printf("Warning: only using %d of %d available CPUs!\n",
  850                         NCPU, mp_naps);
  851 #else
  852         {
  853                 printf("NCPU cannot be different than actual CPU count.\n");
  854                 printf(" add 'options NCPU=%d' to your kernel config file,\n",
  855                         mp_naps);
  856                 printf(" then rerun config & rebuild your SMP kernel\n");
  857                 mustpanic = 1;
  858         }
  859 #endif /* XXX FIXME: kern/4255 */
  860         if (mp_nbusses > NBUS) {
  861                 printf("found %d busses, increase NBUS\n", mp_nbusses);
  862                 mustpanic = 1;
  863         }
  864         if (mp_napics > NAPIC) {
  865                 printf("found %d apics, increase NAPIC\n", mp_napics);
  866                 mustpanic = 1;
  867         }
  868         if (nintrs > NINTR) {
  869                 printf("found %d intrs, increase NINTR\n", nintrs);
  870                 mustpanic = 1;
  871         }
  872 
  873         /*
  874          * Count the BSP.
  875          * This is also used as a counter while starting the APs.
  876          */
  877         mp_ncpus = 1;
  878 
  879         --mp_naps;      /* subtract the BSP */
  880 
  881         return mustpanic;
  882 }
  883 
  884 
  885 /*
  886  * 2nd pass on motherboard's Intel MP specification table.
  887  *
  888  * sets:
  889  *      boot_cpu_id
  890  *      ID_TO_IO(N), phy APIC ID to log CPU/IO table
  891  *      CPU_TO_ID(N), logical CPU to APIC ID table
  892  *      IO_TO_ID(N), logical IO to APIC ID table
  893  *      bus_data[N]
  894  *      io_apic_ints[N]
  895  */
  896 static int
  897 mptable_pass2(void)
  898 {
  899         int     x;
  900         mpcth_t cth;
  901         int     totalSize;
  902         void*   position;
  903         int     count;
  904         int     type;
  905         int     apic, bus, cpu, intr;
  906 
  907         POSTCODE(MPTABLE_PASS2_POST);
  908 
  909         /* clear various tables */
  910         for (x = 0; x < NAPICID; ++x) {
  911                 ID_TO_IO(x) = -1;       /* phy APIC ID to log CPU/IO table */
  912                 CPU_TO_ID(x) = -1;      /* logical CPU to APIC ID table */
  913                 IO_TO_ID(x) = -1;       /* logical IO to APIC ID table */
  914         }
  915 
  916         /* clear bus data table */
  917         for (x = 0; x < NBUS; ++x)
  918                 bus_data[x].bus_id = 0xff;
  919 
  920         /* clear IO APIC INT table */
  921         for (x = 0; x < NINTR; ++x) {
  922                 io_apic_ints[x].int_type = 0xff;
  923                 io_apic_ints[x].int_vector = 0xff;
  924         }
  925 
  926         /* setup the cpu/apic mapping arrays */
  927         boot_cpu_id = -1;
  928 
  929         /* record whether PIC or virtual-wire mode */
  930         picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
  931 
  932         /* check for use of 'default' configuration */
  933         if (MPFPS_MPFB1 != 0)
  934                 return MPFPS_MPFB1;     /* return default configuration type */
  935 
  936         if ((cth = mpfps->pap) == 0)
  937                 panic("MP Configuration Table Header MISSING!");
  938 
  939         /* walk the table, recording info of interest */
  940         totalSize = cth->base_table_length - sizeof(struct MPCTH);
  941         position = (u_char *) cth + sizeof(struct MPCTH);
  942         count = cth->entry_count;
  943         apic = bus = intr = 0;
  944         cpu = 1;                                /* pre-count the BSP */
  945 
  946         while (count--) {
  947                 switch (type = *(u_char *) position) {
  948                 case 0:
  949                         if (processor_entry(position, cpu))
  950                                 ++cpu;
  951                         break;
  952                 case 1:
  953                         if (bus_entry(position, bus))
  954                                 ++bus;
  955                         break;
  956                 case 2:
  957                         if (io_apic_entry(position, apic))
  958                                 ++apic;
  959                         break;
  960                 case 3:
  961                         if (int_entry(position, intr))
  962                                 ++intr;
  963                         break;
  964                 case 4:
  965                         /* int_entry(position); */
  966                         break;
  967                 default:
  968                         panic("mpfps Base Table HOSED!");
  969                         /* NOTREACHED */
  970                 }
  971 
  972                 totalSize -= basetable_entry_types[type].length;
  973                 (u_char *) position += basetable_entry_types[type].length;
  974         }
  975 
  976         if (boot_cpu_id == -1)
  977                 panic("NO BSP found!");
  978 
  979         /* report fact that its NOT a default configuration */
  980         return 0;
  981 }
  982 
  983 
  984 static void
  985 assign_apic_irq(int apic, int intpin, int irq)
  986 {
  987         int x;
  988         
  989         if (int_to_apicintpin[irq].ioapic != -1)
  990                 panic("assign_apic_irq: inconsistent table");
  991         
  992         int_to_apicintpin[irq].ioapic = apic;
  993         int_to_apicintpin[irq].int_pin = intpin;
  994         int_to_apicintpin[irq].apic_address = ioapic[apic];
  995         int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
  996         
  997         for (x = 0; x < nintrs; x++) {
  998                 if ((io_apic_ints[x].int_type == 0 || 
  999                      io_apic_ints[x].int_type == 3) &&
 1000                     io_apic_ints[x].int_vector == 0xff &&
 1001                     io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
 1002                     io_apic_ints[x].dst_apic_int == intpin)
 1003                         io_apic_ints[x].int_vector = irq;
 1004         }
 1005 }
 1006 
 1007 /*
 1008  * parse an Intel MP specification table
 1009  */
 1010 static void
 1011 fix_mp_table(void)
 1012 {
 1013         int     x;
 1014         int     id;
 1015         int     bus_0 = 0;      /* Stop GCC warning */
 1016         int     bus_pci = 0;    /* Stop GCC warning */
 1017         int     num_pci_bus;
 1018 
 1019         /*
 1020          * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
 1021          * did it wrong.  The MP spec says that when more than 1 PCI bus
 1022          * exists the BIOS must begin with bus entries for the PCI bus and use
 1023          * actual PCI bus numbering.  This implies that when only 1 PCI bus
 1024          * exists the BIOS can choose to ignore this ordering, and indeed many
 1025          * MP motherboards do ignore it.  This causes a problem when the PCI
 1026          * sub-system makes requests of the MP sub-system based on PCI bus
 1027          * numbers.     So here we look for the situation and renumber the
 1028          * busses and associated INTs in an effort to "make it right".
 1029          */
 1030 
 1031         /* find bus 0, PCI bus, count the number of PCI busses */
 1032         for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
 1033                 if (bus_data[x].bus_id == 0) {
 1034                         bus_0 = x;
 1035                 }
 1036                 if (bus_data[x].bus_type == PCI) {
 1037                         ++num_pci_bus;
 1038                         bus_pci = x;
 1039                 }
 1040         }
 1041         /*
 1042          * bus_0 == slot of bus with ID of 0
 1043          * bus_pci == slot of last PCI bus encountered
 1044          */
 1045 
 1046         /* check the 1 PCI bus case for sanity */
 1047         if (num_pci_bus == 1) {
 1048 
 1049                 /* if it is number 0 all is well */
 1050                 if (bus_data[bus_pci].bus_id == 0)
 1051                         return;
 1052 
 1053                 /* mis-numbered, swap with whichever bus uses slot 0 */
 1054 
 1055                 /* swap the bus entry types */
 1056                 bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
 1057                 bus_data[bus_0].bus_type = PCI;
 1058 
 1059                 /* swap each relavant INTerrupt entry */
 1060                 id = bus_data[bus_pci].bus_id;
 1061                 for (x = 0; x < nintrs; ++x) {
 1062                         if (io_apic_ints[x].src_bus_id == id) {
 1063                                 io_apic_ints[x].src_bus_id = 0;
 1064                         }
 1065                         else if (io_apic_ints[x].src_bus_id == 0) {
 1066                                 io_apic_ints[x].src_bus_id = id;
 1067                         }
 1068                 }
 1069         }
 1070 }
 1071 
 1072 
 1073 static void
 1074 setup_apic_irq_mapping(void)
 1075 {
 1076         int     x;
 1077         int     int_vector;
 1078 
 1079         /* Assign low level interrupt handlers */
 1080         for (x = 0; x < APIC_INTMAPSIZE; x++) {
 1081                 int_to_apicintpin[x].ioapic = -1;
 1082                 int_to_apicintpin[x].int_pin = 0;
 1083                 int_to_apicintpin[x].apic_address = NULL;
 1084                 int_to_apicintpin[x].redirindex = 0;
 1085         }
 1086         for (x = 0; x < nintrs; x++) {
 1087                 if (io_apic_ints[x].dst_apic_int < APIC_INTMAPSIZE &&
 1088                     io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
 1089                     io_apic_ints[x].int_vector == 0xff && 
 1090                     (io_apic_ints[x].int_type == 0 ||
 1091                      io_apic_ints[x].int_type == 3)) {
 1092                         assign_apic_irq(0, 
 1093                                         io_apic_ints[x].dst_apic_int,
 1094                                         io_apic_ints[x].dst_apic_int);
 1095                 }
 1096         }
 1097         int_vector = 0;
 1098         while (int_vector < APIC_INTMAPSIZE &&
 1099                int_to_apicintpin[int_vector].ioapic != -1)
 1100                 int_vector++;
 1101         for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
 1102                 if ((io_apic_ints[x].int_type == 0 ||
 1103                      io_apic_ints[x].int_type == 3) &&
 1104                     io_apic_ints[x].int_vector == 0xff) {
 1105                         assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
 1106                                         io_apic_ints[x].dst_apic_int,
 1107                                         int_vector);
 1108                         int_vector++;
 1109                         while (int_vector < APIC_INTMAPSIZE &&
 1110                                int_to_apicintpin[int_vector].ioapic != -1)
 1111                                 int_vector++;
 1112                 }
 1113         }
 1114 }
 1115 
 1116 
 1117 static int
 1118 processor_entry(proc_entry_ptr entry, int cpu)
 1119 {
 1120         /* check for usability */
 1121         if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
 1122                 return 0;
 1123 
 1124         /* check for BSP flag */
 1125         if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
 1126                 boot_cpu_id = entry->apic_id;
 1127                 CPU_TO_ID(0) = entry->apic_id;
 1128                 ID_TO_CPU(entry->apic_id) = 0;
 1129                 return 0;       /* its already been counted */
 1130         }
 1131 
 1132         /* add another AP to list, if less than max number of CPUs */
 1133         else {
 1134                 CPU_TO_ID(cpu) = entry->apic_id;
 1135                 ID_TO_CPU(entry->apic_id) = cpu;
 1136                 return 1;
 1137         }
 1138 }
 1139 
 1140 
 1141 static int
 1142 bus_entry(bus_entry_ptr entry, int bus)
 1143 {
 1144         int     x;
 1145         char    c, name[8];
 1146 
 1147         /* encode the name into an index */
 1148         for (x = 0; x < 6; ++x) {
 1149                 if ((c = entry->bus_type[x]) == ' ')
 1150                         break;
 1151                 name[x] = c;
 1152         }
 1153         name[x] = '\0';
 1154 
 1155         if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
 1156                 panic("unknown bus type: '%s'", name);
 1157 
 1158         bus_data[bus].bus_id = entry->bus_id;
 1159         bus_data[bus].bus_type = x;
 1160 
 1161         return 1;
 1162 }
 1163 
 1164 
 1165 static int
 1166 io_apic_entry(io_apic_entry_ptr entry, int apic)
 1167 {
 1168         if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
 1169                 return 0;
 1170 
 1171         IO_TO_ID(apic) = entry->apic_id;
 1172         ID_TO_IO(entry->apic_id) = apic;
 1173 
 1174         return 1;
 1175 }
 1176 
 1177 
 1178 static int
 1179 lookup_bus_type(char *name)
 1180 {
 1181         int     x;
 1182 
 1183         for (x = 0; x < MAX_BUSTYPE; ++x)
 1184                 if (strcmp(bus_type_table[x].name, name) == 0)
 1185                         return bus_type_table[x].type;
 1186 
 1187         return UNKNOWN_BUSTYPE;
 1188 }
 1189 
 1190 
 1191 static int
 1192 int_entry(int_entry_ptr entry, int intr)
 1193 {
 1194         int apic;
 1195 
 1196         io_apic_ints[intr].int_type = entry->int_type;
 1197         io_apic_ints[intr].int_flags = entry->int_flags;
 1198         io_apic_ints[intr].src_bus_id = entry->src_bus_id;
 1199         io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
 1200         if (entry->dst_apic_id == 255) {
 1201                 /* This signal goes to all IO APICS.  Select an IO APIC
 1202                    with sufficient number of interrupt pins */
 1203                 for (apic = 0; apic < mp_napics; apic++)
 1204                         if (((io_apic_read(apic, IOAPIC_VER) & 
 1205                               IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >= 
 1206                             entry->dst_apic_int)
 1207                                 break;
 1208                 if (apic < mp_napics)
 1209                         io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
 1210                 else
 1211                         io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
 1212         } else
 1213                 io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
 1214         io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
 1215 
 1216         return 1;
 1217 }
 1218 
 1219 
 1220 static int
 1221 apic_int_is_bus_type(int intr, int bus_type)
 1222 {
 1223         int     bus;
 1224 
 1225         for (bus = 0; bus < mp_nbusses; ++bus)
 1226                 if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
 1227                     && ((int) bus_data[bus].bus_type == bus_type))
 1228                         return 1;
 1229 
 1230         return 0;
 1231 }
 1232 
 1233 
 1234 /*
 1235  * Given a traditional ISA INT mask, return an APIC mask.
 1236  */
 1237 u_int
 1238 isa_apic_mask(u_int isa_mask)
 1239 {
 1240         int isa_irq;
 1241         int apic_pin;
 1242 
 1243 #if defined(SKIP_IRQ15_REDIRECT)
 1244         if (isa_mask == (1 << 15)) {
 1245                 printf("skipping ISA IRQ15 redirect\n");
 1246                 return isa_mask;
 1247         }
 1248 #endif  /* SKIP_IRQ15_REDIRECT */
 1249 
 1250         isa_irq = ffs(isa_mask);                /* find its bit position */
 1251         if (isa_irq == 0)                       /* doesn't exist */
 1252                 return 0;
 1253         --isa_irq;                              /* make it zero based */
 1254 
 1255         apic_pin = isa_apic_irq(isa_irq);       /* look for APIC connection */
 1256         if (apic_pin == -1)
 1257                 return 0;
 1258 
 1259         return (1 << apic_pin);                 /* convert pin# to a mask */
 1260 }
 1261 
 1262 
 1263 /*
 1264  * Determine which APIC pin an ISA/EISA INT is attached to.
 1265  */
 1266 #define INTTYPE(I)      (io_apic_ints[(I)].int_type)
 1267 #define INTPIN(I)       (io_apic_ints[(I)].dst_apic_int)
 1268 #define INTIRQ(I)       (io_apic_ints[(I)].int_vector)
 1269 #define INTAPIC(I)      (ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
 1270 
 1271 #define SRCBUSIRQ(I)    (io_apic_ints[(I)].src_bus_irq)
 1272 int
 1273 isa_apic_irq(int isa_irq)
 1274 {
 1275         int     intr;
 1276 
 1277         for (intr = 0; intr < nintrs; ++intr) {         /* check each record */
 1278                 if (INTTYPE(intr) == 0) {               /* standard INT */
 1279                         if (SRCBUSIRQ(intr) == isa_irq) {
 1280                                 if (apic_int_is_bus_type(intr, ISA) ||
 1281                                     apic_int_is_bus_type(intr, EISA))
 1282                                         return INTIRQ(intr);    /* found */
 1283                         }
 1284                 }
 1285         }
 1286         return -1;                                      /* NOT found */
 1287 }
 1288 
 1289 
 1290 /*
 1291  * Determine which APIC pin a PCI INT is attached to.
 1292  */
 1293 #define SRCBUSID(I)     (io_apic_ints[(I)].src_bus_id)
 1294 #define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
 1295 #define SRCBUSLINE(I)   (io_apic_ints[(I)].src_bus_irq & 0x03)
 1296 int
 1297 pci_apic_irq(int pciBus, int pciDevice, int pciInt)
 1298 {
 1299         int     intr;
 1300 
 1301         --pciInt;                                       /* zero based */
 1302 
 1303         for (intr = 0; intr < nintrs; ++intr)           /* check each record */
 1304                 if ((INTTYPE(intr) == 0)                /* standard INT */
 1305                     && (SRCBUSID(intr) == pciBus)
 1306                     && (SRCBUSDEVICE(intr) == pciDevice)
 1307                     && (SRCBUSLINE(intr) == pciInt))    /* a candidate IRQ */
 1308                         if (apic_int_is_bus_type(intr, PCI))
 1309                                 return INTIRQ(intr);    /* exact match */
 1310 
 1311         return -1;                                      /* NOT found */
 1312 }
 1313 
 1314 int
 1315 next_apic_irq(int irq) 
 1316 {
 1317         int intr, ointr;
 1318         int bus, bustype;
 1319 
 1320         bus = 0;
 1321         bustype = 0;
 1322         for (intr = 0; intr < nintrs; intr++) {
 1323                 if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
 1324                         continue;
 1325                 bus = SRCBUSID(intr);
 1326                 bustype = apic_bus_type(bus);
 1327                 if (bustype != ISA &&
 1328                     bustype != EISA &&
 1329                     bustype != PCI)
 1330                         continue;
 1331                 break;
 1332         }
 1333         if (intr >= nintrs) {
 1334                 return -1;
 1335         }
 1336         for (ointr = intr + 1; ointr < nintrs; ointr++) {
 1337                 if (INTTYPE(ointr) != 0)
 1338                         continue;
 1339                 if (bus != SRCBUSID(ointr))
 1340                         continue;
 1341                 if (bustype == PCI) {
 1342                         if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
 1343                                 continue;
 1344                         if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
 1345                                 continue;
 1346                 }
 1347                 if (bustype == ISA || bustype == EISA) {
 1348                         if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
 1349                                 continue;
 1350                 }
 1351                 if (INTPIN(intr) == INTPIN(ointr))
 1352                         continue;
 1353                 break;
 1354         }
 1355         if (ointr >= nintrs) {
 1356                 return -1;
 1357         }
 1358         return INTIRQ(ointr);
 1359 }
 1360 #undef SRCBUSLINE
 1361 #undef SRCBUSDEVICE
 1362 #undef SRCBUSID
 1363 #undef SRCBUSIRQ
 1364 
 1365 #undef INTPIN
 1366 #undef INTIRQ
 1367 #undef INTAPIC
 1368 #undef INTTYPE
 1369 
 1370 
 1371 /*
 1372  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
 1373  *
 1374  * XXX FIXME:
 1375  *  Exactly what this means is unclear at this point.  It is a solution
 1376  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
 1377  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
 1378  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
 1379  *  option.
 1380  */
 1381 int
 1382 undirect_isa_irq(int rirq)
 1383 {
 1384 #if defined(READY)
 1385         if (bootverbose)
 1386             printf("Freeing redirected ISA irq %d.\n", rirq);
 1387         /** FIXME: tickle the MB redirector chip */
 1388         return ???;
 1389 #else
 1390         if (bootverbose)
 1391             printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
 1392         return 0;
 1393 #endif  /* READY */
 1394 }
 1395 
 1396 
 1397 /*
 1398  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
 1399  */
 1400 int
 1401 undirect_pci_irq(int rirq)
 1402 {
 1403 #if defined(READY)
 1404         if (bootverbose)
 1405                 printf("Freeing redirected PCI irq %d.\n", rirq);
 1406 
 1407         /** FIXME: tickle the MB redirector chip */
 1408         return ???;
 1409 #else
 1410         if (bootverbose)
 1411                 printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
 1412                        rirq);
 1413         return 0;
 1414 #endif  /* READY */
 1415 }
 1416 
 1417 
 1418 /*
 1419  * given a bus ID, return:
 1420  *  the bus type if found
 1421  *  -1 if NOT found
 1422  */
 1423 int
 1424 apic_bus_type(int id)
 1425 {
 1426         int     x;
 1427 
 1428         for (x = 0; x < mp_nbusses; ++x)
 1429                 if (bus_data[x].bus_id == id)
 1430                         return bus_data[x].bus_type;
 1431 
 1432         return -1;
 1433 }
 1434 
 1435 
 1436 /*
 1437  * given a LOGICAL APIC# and pin#, return:
 1438  *  the associated src bus ID if found
 1439  *  -1 if NOT found
 1440  */
 1441 int
 1442 apic_src_bus_id(int apic, int pin)
 1443 {
 1444         int     x;
 1445 
 1446         /* search each of the possible INTerrupt sources */
 1447         for (x = 0; x < nintrs; ++x)
 1448                 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
 1449                     (pin == io_apic_ints[x].dst_apic_int))
 1450                         return (io_apic_ints[x].src_bus_id);
 1451 
 1452         return -1;              /* NOT found */
 1453 }
 1454 
 1455 
 1456 /*
 1457  * given a LOGICAL APIC# and pin#, return:
 1458  *  the associated src bus IRQ if found
 1459  *  -1 if NOT found
 1460  */
 1461 int
 1462 apic_src_bus_irq(int apic, int pin)
 1463 {
 1464         int     x;
 1465 
 1466         for (x = 0; x < nintrs; x++)
 1467                 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
 1468                     (pin == io_apic_ints[x].dst_apic_int))
 1469                         return (io_apic_ints[x].src_bus_irq);
 1470 
 1471         return -1;              /* NOT found */
 1472 }
 1473 
 1474 
 1475 /*
 1476  * given a LOGICAL APIC# and pin#, return:
 1477  *  the associated INTerrupt type if found
 1478  *  -1 if NOT found
 1479  */
 1480 int
 1481 apic_int_type(int apic, int pin)
 1482 {
 1483         int     x;
 1484 
 1485         /* search each of the possible INTerrupt sources */
 1486         for (x = 0; x < nintrs; ++x)
 1487                 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
 1488                     (pin == io_apic_ints[x].dst_apic_int))
 1489                         return (io_apic_ints[x].int_type);
 1490 
 1491         return -1;              /* NOT found */
 1492 }
 1493 
 1494 int 
 1495 apic_irq(int apic, int pin)
 1496 {
 1497         int x;
 1498         int res;
 1499 
 1500         for (x = 0; x < nintrs; ++x)
 1501                 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
 1502                     (pin == io_apic_ints[x].dst_apic_int)) {
 1503                         res = io_apic_ints[x].int_vector;
 1504                         if (res == 0xff)
 1505                                 return -1;
 1506                         if (apic != int_to_apicintpin[res].ioapic)
 1507                                 panic("apic_irq: inconsistent table");
 1508                         if (pin != int_to_apicintpin[res].int_pin)
 1509                                 panic("apic_irq inconsistent table (2)");
 1510                         return res;
 1511                 }
 1512         return -1;
 1513 }
 1514 
 1515 
 1516 /*
 1517  * given a LOGICAL APIC# and pin#, return:
 1518  *  the associated trigger mode if found
 1519  *  -1 if NOT found
 1520  */
 1521 int
 1522 apic_trigger(int apic, int pin)
 1523 {
 1524         int     x;
 1525 
 1526         /* search each of the possible INTerrupt sources */
 1527         for (x = 0; x < nintrs; ++x)
 1528                 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
 1529                     (pin == io_apic_ints[x].dst_apic_int))
 1530                         return ((io_apic_ints[x].int_flags >> 2) & 0x03);
 1531 
 1532         return -1;              /* NOT found */
 1533 }
 1534 
 1535 
 1536 /*
 1537  * given a LOGICAL APIC# and pin#, return:
 1538  *  the associated 'active' level if found
 1539  *  -1 if NOT found
 1540  */
 1541 int
 1542 apic_polarity(int apic, int pin)
 1543 {
 1544         int     x;
 1545 
 1546         /* search each of the possible INTerrupt sources */
 1547         for (x = 0; x < nintrs; ++x)
 1548                 if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
 1549                     (pin == io_apic_ints[x].dst_apic_int))
 1550                         return (io_apic_ints[x].int_flags & 0x03);
 1551 
 1552         return -1;              /* NOT found */
 1553 }
 1554 
 1555 
 1556 /*
 1557  * set data according to MP defaults
 1558  * FIXME: probably not complete yet...
 1559  */
 1560 static void
 1561 default_mp_table(int type)
 1562 {
 1563         int     ap_cpu_id;
 1564 #if defined(APIC_IO)
 1565         u_int32_t ux;
 1566         int     io_apic_id;
 1567         int     pin;
 1568 #endif  /* APIC_IO */
 1569 
 1570 #if 0
 1571         printf("  MP default config type: %d\n", type);
 1572         switch (type) {
 1573         case 1:
 1574                 printf("   bus: ISA, APIC: 82489DX\n");
 1575                 break;
 1576         case 2:
 1577                 printf("   bus: EISA, APIC: 82489DX\n");
 1578                 break;
 1579         case 3:
 1580                 printf("   bus: EISA, APIC: 82489DX\n");
 1581                 break;
 1582         case 4:
 1583                 printf("   bus: MCA, APIC: 82489DX\n");
 1584                 break;
 1585         case 5:
 1586                 printf("   bus: ISA+PCI, APIC: Integrated\n");
 1587                 break;
 1588         case 6:
 1589                 printf("   bus: EISA+PCI, APIC: Integrated\n");
 1590                 break;
 1591         case 7:
 1592                 printf("   bus: MCA+PCI, APIC: Integrated\n");
 1593                 break;
 1594         default:
 1595                 printf("   future type\n");
 1596                 break;
 1597                 /* NOTREACHED */
 1598         }
 1599 #endif  /* 0 */
 1600 
 1601         boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
 1602         ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
 1603 
 1604         /* BSP */
 1605         CPU_TO_ID(0) = boot_cpu_id;
 1606         ID_TO_CPU(boot_cpu_id) = 0;
 1607 
 1608         /* one and only AP */
 1609         CPU_TO_ID(1) = ap_cpu_id;
 1610         ID_TO_CPU(ap_cpu_id) = 1;
 1611 
 1612 #if defined(APIC_IO)
 1613         /* one and only IO APIC */
 1614         io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
 1615 
 1616         /*
 1617          * sanity check, refer to MP spec section 3.6.6, last paragraph
 1618          * necessary as some hardware isn't properly setting up the IO APIC
 1619          */
 1620 #if defined(REALLY_ANAL_IOAPICID_VALUE)
 1621         if (io_apic_id != 2) {
 1622 #else
 1623         if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
 1624 #endif  /* REALLY_ANAL_IOAPICID_VALUE */
 1625                 ux = io_apic_read(0, IOAPIC_ID);        /* get current contents */
 1626                 ux &= ~APIC_ID_MASK;    /* clear the ID field */
 1627                 ux |= 0x02000000;       /* set it to '2' */
 1628                 io_apic_write(0, IOAPIC_ID, ux);        /* write new value */
 1629                 ux = io_apic_read(0, IOAPIC_ID);        /* re-read && test */
 1630                 if ((ux & APIC_ID_MASK) != 0x02000000)
 1631                         panic("can't control IO APIC ID, reg: 0x%08x", ux);
 1632                 io_apic_id = 2;
 1633         }
 1634         IO_TO_ID(0) = io_apic_id;
 1635         ID_TO_IO(io_apic_id) = 0;
 1636 #endif  /* APIC_IO */
 1637 
 1638         /* fill out bus entries */
 1639         switch (type) {
 1640         case 1:
 1641         case 2:
 1642         case 3:
 1643         case 5:
 1644         case 6:
 1645                 bus_data[0].bus_id = default_data[type - 1][1];
 1646                 bus_data[0].bus_type = default_data[type - 1][2];
 1647                 bus_data[1].bus_id = default_data[type - 1][3];
 1648                 bus_data[1].bus_type = default_data[type - 1][4];
 1649                 break;
 1650 
 1651         /* case 4: case 7:                 MCA NOT supported */
 1652         default:                /* illegal/reserved */
 1653                 panic("BAD default MP config: %d", type);
 1654                 /* NOTREACHED */
 1655         }
 1656 
 1657 #if defined(APIC_IO)
 1658         /* general cases from MP v1.4, table 5-2 */
 1659         for (pin = 0; pin < 16; ++pin) {
 1660                 io_apic_ints[pin].int_type = 0;
 1661                 io_apic_ints[pin].int_flags = 0x05;     /* edge/active-hi */
 1662                 io_apic_ints[pin].src_bus_id = 0;
 1663                 io_apic_ints[pin].src_bus_irq = pin;    /* IRQ2 caught below */
 1664                 io_apic_ints[pin].dst_apic_id = io_apic_id;
 1665                 io_apic_ints[pin].dst_apic_int = pin;   /* 1-to-1 */
 1666         }
 1667 
 1668         /* special cases from MP v1.4, table 5-2 */
 1669         if (type == 2) {
 1670                 io_apic_ints[2].int_type = 0xff;        /* N/C */
 1671                 io_apic_ints[13].int_type = 0xff;       /* N/C */
 1672 #if !defined(APIC_MIXED_MODE)
 1673                 /** FIXME: ??? */
 1674                 panic("sorry, can't support type 2 default yet");
 1675 #endif  /* APIC_MIXED_MODE */
 1676         }
 1677         else
 1678                 io_apic_ints[2].src_bus_irq = 0;        /* ISA IRQ0 is on APIC INT 2 */
 1679 
 1680         if (type == 7)
 1681                 io_apic_ints[0].int_type = 0xff;        /* N/C */
 1682         else
 1683                 io_apic_ints[0].int_type = 3;   /* vectored 8259 */
 1684 #endif  /* APIC_IO */
 1685 }
 1686 
 1687 
 1688 /*
 1689  * initialize all the SMP locks
 1690  */
 1691 
 1692 /* critical region around IO APIC, apic_imen */
 1693 struct simplelock       imen_lock;
 1694 
 1695 /* critical region around splxx(), cpl, cml, cil, ipending */
 1696 struct simplelock       cpl_lock;
 1697 
 1698 /* Make FAST_INTR() routines sequential */
 1699 struct simplelock       fast_intr_lock;
 1700 
 1701 /* critical region around INTR() routines */
 1702 struct simplelock       intr_lock;
 1703 
 1704 /* lock regions protected in UP kernel via cli/sti */
 1705 struct simplelock       mpintr_lock;
 1706 
 1707 /* lock region used by kernel profiling */
 1708 struct simplelock       mcount_lock;
 1709 
 1710 #ifdef USE_COMLOCK
 1711 /* locks com (tty) data/hardware accesses: a FASTINTR() */
 1712 struct simplelock       com_lock;
 1713 #endif /* USE_COMLOCK */
 1714 
 1715 #ifdef USE_CLOCKLOCK
 1716 /* lock regions around the clock hardware */
 1717 struct simplelock       clock_lock;
 1718 #endif /* USE_CLOCKLOCK */
 1719 
 1720 /* lock around the MP rendezvous */
 1721 static struct simplelock smp_rv_lock;
 1722 
 1723 static void
 1724 init_locks(void)
 1725 {
 1726         /*
 1727          * Get the initial mp_lock with a count of 1 for the BSP.
 1728          * This uses a LOGICAL cpu ID, ie BSP == 0.
 1729          */
 1730         mp_lock = 0x00000001;
 1731 
 1732         /* ISR uses its own "giant lock" */
 1733         isr_lock = FREE_LOCK;
 1734 
 1735 #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
 1736         s_lock_init((struct simplelock*)&apic_itrace_debuglock);
 1737 #endif
 1738 
 1739         s_lock_init((struct simplelock*)&mpintr_lock);
 1740 
 1741         s_lock_init((struct simplelock*)&mcount_lock);
 1742 
 1743         s_lock_init((struct simplelock*)&fast_intr_lock);
 1744         s_lock_init((struct simplelock*)&intr_lock);
 1745         s_lock_init((struct simplelock*)&imen_lock);
 1746         s_lock_init((struct simplelock*)&cpl_lock);
 1747         s_lock_init(&smp_rv_lock);
 1748 
 1749 #ifdef USE_COMLOCK
 1750         s_lock_init((struct simplelock*)&com_lock);
 1751 #endif /* USE_COMLOCK */
 1752 #ifdef USE_CLOCKLOCK
 1753         s_lock_init((struct simplelock*)&clock_lock);
 1754 #endif /* USE_CLOCKLOCK */
 1755 }
 1756 
 1757 
 1758 /*
 1759  * start each AP in our list
 1760  */
 1761 static int
 1762 start_all_aps(u_int boot_addr)
 1763 {
 1764         int     x, i;
 1765         u_char  mpbiosreason;
 1766         u_long  mpbioswarmvec;
 1767         pd_entry_t *newptd;
 1768         pt_entry_t *newpt;
 1769         struct globaldata *gd;
 1770         char *stack;
 1771         pd_entry_t      *myPTD;
 1772 
 1773         POSTCODE(START_ALL_APS_POST);
 1774 
 1775         /* initialize BSP's local APIC */
 1776         apic_initialize();
 1777         bsp_apic_ready = 1;
 1778 
 1779         /* install the AP 1st level boot code */
 1780         install_ap_tramp(boot_addr);
 1781 
 1782 
 1783         /* save the current value of the warm-start vector */
 1784         mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
 1785 #ifndef PC98
 1786         outb(CMOS_REG, BIOS_RESET);
 1787         mpbiosreason = inb(CMOS_DATA);
 1788 #endif
 1789 
 1790         /* record BSP in CPU map */
 1791         all_cpus = 1;
 1792 
 1793         /* start each AP */
 1794         for (x = 1; x <= mp_naps; ++x) {
 1795 
 1796                 /* This is a bit verbose, it will go away soon.  */
 1797 
 1798                 /* alloc new page table directory */
 1799                 newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
 1800 
 1801                 /* Store the virtual PTD address for this CPU */
 1802                 IdlePTDS[x] = newptd;
 1803 
 1804                 /* clone currently active one (ie: IdlePTD) */
 1805                 bcopy(PTD, newptd, PAGE_SIZE);  /* inc prv page pde */
 1806 
 1807                 /* set up 0 -> 4MB P==V mapping for AP boot */
 1808                 newptd[0] = (void *)(uintptr_t)(PG_V | PG_RW |
 1809                     ((uintptr_t)(void *)KPTphys & PG_FRAME));
 1810 
 1811                 /* store PTD for this AP's boot sequence */
 1812                 myPTD = (pd_entry_t *)vtophys(newptd);
 1813 
 1814                 /* alloc new page table page */
 1815                 newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
 1816 
 1817                 /* set the new PTD's private page to point there */
 1818                 newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
 1819 
 1820                 /* install self referential entry */
 1821                 newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
 1822 
 1823                 /* allocate a new private data page */
 1824                 gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
 1825 
 1826                 /* wire it into the private page table page */
 1827                 newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
 1828 
 1829                 /* wire the ptp into itself for access */
 1830                 newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
 1831 
 1832                 /* copy in the pointer to the local apic */
 1833                 newpt[2] = SMP_prvpt[2];
 1834 
 1835                 /* and the IO apic mapping[s] */
 1836                 for (i = 16; i < 32; i++)
 1837                         newpt[i] = SMP_prvpt[i];
 1838 
 1839                 /* allocate and set up an idle stack data page */
 1840                 stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
 1841                 for (i = 0; i < UPAGES; i++)
 1842                         newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
 1843 
 1844                 newpt[3 + UPAGES] = 0;          /* *prv_CMAP1 */
 1845                 newpt[4 + UPAGES] = 0;          /* *prv_CMAP2 */
 1846                 newpt[5 + UPAGES] = 0;          /* *prv_CMAP3 */
 1847                 newpt[6 + UPAGES] = 0;          /* *prv_PMAP1 */
 1848 
 1849                 /* prime data page for it to use */
 1850                 gd->cpuid = x;
 1851                 gd->cpu_lockid = x << 24;
 1852                 gd->my_idlePTD = myPTD;
 1853                 gd->prv_CMAP1 = &newpt[3 + UPAGES];
 1854                 gd->prv_CMAP2 = &newpt[4 + UPAGES];
 1855                 gd->prv_CMAP3 = &newpt[5 + UPAGES];
 1856                 gd->prv_PMAP1 = &newpt[6 + UPAGES];
 1857 
 1858                 /* setup a vector to our boot code */
 1859                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
 1860                 *((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
 1861 #ifndef PC98
 1862                 outb(CMOS_REG, BIOS_RESET);
 1863                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
 1864 #endif
 1865 
 1866                 bootPTD = myPTD;
 1867                 /* attempt to start the Application Processor */
 1868                 CHECK_INIT(99); /* setup checkpoints */
 1869                 if (!start_ap(x, boot_addr)) {
 1870                         printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
 1871                         CHECK_PRINT("trace");   /* show checkpoints */
 1872                         /* better panic as the AP may be running loose */
 1873                         printf("panic y/n? [y] ");
 1874                         if (cngetc() != 'n')
 1875                                 panic("bye-bye");
 1876                 }
 1877                 CHECK_PRINT("trace");           /* show checkpoints */
 1878 
 1879                 /* record its version info */
 1880                 cpu_apic_versions[x] = cpu_apic_versions[0];
 1881 
 1882                 all_cpus |= (1 << x);           /* record AP in CPU map */
 1883         }
 1884 
 1885         /* build our map of 'other' CPUs */
 1886         other_cpus = all_cpus & ~(1 << cpuid);
 1887 
 1888         /* fill in our (BSP) APIC version */
 1889         cpu_apic_versions[0] = lapic.version;
 1890 
 1891         /* restore the warmstart vector */
 1892         *(u_long *) WARMBOOT_OFF = mpbioswarmvec;
 1893 #ifndef PC98
 1894         outb(CMOS_REG, BIOS_RESET);
 1895         outb(CMOS_DATA, mpbiosreason);
 1896 #endif
 1897 
 1898         /*
 1899          * Set up the idle context for the BSP.  Similar to above except
 1900          * that some was done by locore, some by pmap.c and some is implicit
 1901          * because the BSP is cpu#0 and the page is initially zero, and also
 1902          * because we can refer to variables by name on the BSP..
 1903          */
 1904         newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
 1905 
 1906         bcopy(PTD, newptd, PAGE_SIZE);  /* inc prv page pde */
 1907         IdlePTDS[0] = newptd;
 1908 
 1909         /* Point PTD[] to this page instead of IdlePTD's physical page */
 1910         newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
 1911 
 1912         my_idlePTD = (pd_entry_t *)vtophys(newptd);
 1913 
 1914         /* Allocate and setup BSP idle stack */
 1915         stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
 1916         for (i = 0; i < UPAGES; i++)
 1917                 SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
 1918 
 1919         pmap_set_opt_bsp();
 1920 
 1921         for (i = 0; i < mp_ncpus; i++) {
 1922                 bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
 1923         }
 1924 
 1925         /* number of APs actually started */
 1926         return mp_ncpus - 1;
 1927 }
 1928 
 1929 
 1930 /*
 1931  * load the 1st level AP boot code into base memory.
 1932  */
 1933 
 1934 /* targets for relocation */
 1935 extern void bigJump(void);
 1936 extern void bootCodeSeg(void);
 1937 extern void bootDataSeg(void);
 1938 extern void MPentry(void);
 1939 extern u_int MP_GDT;
 1940 extern u_int mp_gdtbase;
 1941 
 1942 static void
 1943 install_ap_tramp(u_int boot_addr)
 1944 {
 1945         int     x;
 1946         int     size = *(int *) ((u_long) & bootMP_size);
 1947         u_char *src = (u_char *) ((u_long) bootMP);
 1948         u_char *dst = (u_char *) boot_addr + KERNBASE;
 1949         u_int   boot_base = (u_int) bootMP;
 1950         u_int8_t *dst8;
 1951         u_int16_t *dst16;
 1952         u_int32_t *dst32;
 1953 
 1954         POSTCODE(INSTALL_AP_TRAMP_POST);
 1955 
 1956         for (x = 0; x < size; ++x)
 1957                 *dst++ = *src++;
 1958 
 1959         /*
 1960          * modify addresses in code we just moved to basemem. unfortunately we
 1961          * need fairly detailed info about mpboot.s for this to work.  changes
 1962          * to mpboot.s might require changes here.
 1963          */
 1964 
 1965         /* boot code is located in KERNEL space */
 1966         dst = (u_char *) boot_addr + KERNBASE;
 1967 
 1968         /* modify the lgdt arg */
 1969         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
 1970         *dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
 1971 
 1972         /* modify the ljmp target for MPentry() */
 1973         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
 1974         *dst32 = ((u_int) MPentry - KERNBASE);
 1975 
 1976         /* modify the target for boot code segment */
 1977         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
 1978         dst8 = (u_int8_t *) (dst16 + 1);
 1979         *dst16 = (u_int) boot_addr & 0xffff;
 1980         *dst8 = ((u_int) boot_addr >> 16) & 0xff;
 1981 
 1982         /* modify the target for boot data segment */
 1983         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
 1984         dst8 = (u_int8_t *) (dst16 + 1);
 1985         *dst16 = (u_int) boot_addr & 0xffff;
 1986         *dst8 = ((u_int) boot_addr >> 16) & 0xff;
 1987 }
 1988 
 1989 
 1990 /*
 1991  * this function starts the AP (application processor) identified
 1992  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
 1993  * to accomplish this.  This is necessary because of the nuances
 1994  * of the different hardware we might encounter.  It ain't pretty,
 1995  * but it seems to work.
 1996  */
 1997 static int
 1998 start_ap(int logical_cpu, u_int boot_addr)
 1999 {
 2000         int     physical_cpu;
 2001         int     vector;
 2002         int     cpus;
 2003         u_long  icr_lo, icr_hi;
 2004 
 2005         POSTCODE(START_AP_POST);
 2006 
 2007         /* get the PHYSICAL APIC ID# */
 2008         physical_cpu = CPU_TO_ID(logical_cpu);
 2009 
 2010         /* calculate the vector */
 2011         vector = (boot_addr >> 12) & 0xff;
 2012 
 2013         /* used as a watchpoint to signal AP startup */
 2014         cpus = mp_ncpus;
 2015 
 2016         /*
 2017          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
 2018          * and running the target CPU. OR this INIT IPI might be latched (P5
 2019          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
 2020          * ignored.
 2021          */
 2022 
 2023         /* setup the address for the target AP */
 2024         icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
 2025         icr_hi |= (physical_cpu << 24);
 2026         lapic.icr_hi = icr_hi;
 2027 
 2028         /* do an INIT IPI: assert RESET */
 2029         icr_lo = lapic.icr_lo & 0xfff00000;
 2030         lapic.icr_lo = icr_lo | 0x0000c500;
 2031 
 2032         /* wait for pending status end */
 2033         while (lapic.icr_lo & APIC_DELSTAT_MASK)
 2034                  /* spin */ ;
 2035 
 2036         /* do an INIT IPI: deassert RESET */
 2037         lapic.icr_lo = icr_lo | 0x00008500;
 2038 
 2039         /* wait for pending status end */
 2040         u_sleep(10000);         /* wait ~10mS */
 2041         while (lapic.icr_lo & APIC_DELSTAT_MASK)
 2042                  /* spin */ ;
 2043 
 2044         /*
 2045          * next we do a STARTUP IPI: the previous INIT IPI might still be
 2046          * latched, (P5 bug) this 1st STARTUP would then terminate
 2047          * immediately, and the previously started INIT IPI would continue. OR
 2048          * the previous INIT IPI has already run. and this STARTUP IPI will
 2049          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 2050          * will run.
 2051          */
 2052 
 2053         /* do a STARTUP IPI */
 2054         lapic.icr_lo = icr_lo | 0x00000600 | vector;
 2055         while (lapic.icr_lo & APIC_DELSTAT_MASK)
 2056                  /* spin */ ;
 2057         u_sleep(200);           /* wait ~200uS */
 2058 
 2059         /*
 2060          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 2061          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 2062          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 2063          * recognized after hardware RESET or INIT IPI.
 2064          */
 2065 
 2066         lapic.icr_lo = icr_lo | 0x00000600 | vector;
 2067         while (lapic.icr_lo & APIC_DELSTAT_MASK)
 2068                  /* spin */ ;
 2069         u_sleep(200);           /* wait ~200uS */
 2070 
 2071         /* wait for it to start */
 2072         set_apic_timer(5000000);/* == 5 seconds */
 2073         while (read_apic_timer())
 2074                 if (mp_ncpus > cpus)
 2075                         return 1;       /* return SUCCESS */
 2076 
 2077         return 0;               /* return FAILURE */
 2078 }
 2079 
 2080 
 2081 /*
 2082  * Flush the TLB on all other CPU's
 2083  *
 2084  * XXX: Needs to handshake and wait for completion before proceding.
 2085  */
 2086 void
 2087 smp_invltlb(void)
 2088 {
 2089 #if defined(APIC_IO)
 2090         if (smp_started && invltlb_ok)
 2091                 all_but_self_ipi(XINVLTLB_OFFSET);
 2092 #endif  /* APIC_IO */
 2093 }
 2094 
 2095 void
 2096 invlpg(u_int addr)
 2097 {
 2098         __asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
 2099 
 2100         /* send a message to the other CPUs */
 2101         smp_invltlb();
 2102 }
 2103 
 2104 void
 2105 invltlb(void)
 2106 {
 2107         u_long  temp;
 2108 
 2109         /*
 2110          * This should be implemented as load_cr3(rcr3()) when load_cr3() is
 2111          * inlined.
 2112          */
 2113         __asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
 2114 
 2115         /* send a message to the other CPUs */
 2116         smp_invltlb();
 2117 }
 2118 
 2119 
 2120 /*
 2121  * When called the executing CPU will send an IPI to all other CPUs
 2122  *  requesting that they halt execution.
 2123  *
 2124  * Usually (but not necessarily) called with 'other_cpus' as its arg.
 2125  *
 2126  *  - Signals all CPUs in map to stop.
 2127  *  - Waits for each to stop.
 2128  *
 2129  * Returns:
 2130  *  -1: error
 2131  *   0: NA
 2132  *   1: ok
 2133  *
 2134  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
 2135  *            from executing at same time.
 2136  */
 2137 int
 2138 stop_cpus(u_int map)
 2139 {
 2140         if (!smp_started)
 2141                 return 0;
 2142 
 2143         /* send the Xcpustop IPI to all CPUs in map */
 2144         selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
 2145         
 2146         while ((stopped_cpus & map) != map)
 2147                 /* spin */ ;
 2148 
 2149         return 1;
 2150 }
 2151 
 2152 
 2153 /*
 2154  * Called by a CPU to restart stopped CPUs. 
 2155  *
 2156  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
 2157  *
 2158  *  - Signals all CPUs in map to restart.
 2159  *  - Waits for each to restart.
 2160  *
 2161  * Returns:
 2162  *  -1: error
 2163  *   0: NA
 2164  *   1: ok
 2165  */
 2166 int
 2167 restart_cpus(u_int map)
 2168 {
 2169         if (!smp_started)
 2170                 return 0;
 2171 
 2172         started_cpus = map;             /* signal other cpus to restart */
 2173 
 2174         while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
 2175                 /* spin */ ;
 2176 
 2177         return 1;
 2178 }
 2179 
 2180 int smp_active = 0;     /* are the APs allowed to run? */
 2181 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
 2182 
 2183 /* XXX maybe should be hw.ncpu */
 2184 static int smp_cpus = 1;        /* how many cpu's running */
 2185 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
 2186 
 2187 int invltlb_ok = 0;     /* throttle smp_invltlb() till safe */
 2188 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
 2189 
 2190 /* Warning: Do not staticize.  Used from swtch.s */
 2191 int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
 2192 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
 2193            &do_page_zero_idle, 0, "");
 2194 
 2195 /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
 2196 int forward_irq_enabled = 1;
 2197 SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
 2198            &forward_irq_enabled, 0, "");
 2199 
 2200 /* Enable forwarding of a signal to a process running on a different CPU */
 2201 static int forward_signal_enabled = 1;
 2202 SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
 2203            &forward_signal_enabled, 0, "");
 2204 
 2205 /* Enable forwarding of roundrobin to all other cpus */
 2206 static int forward_roundrobin_enabled = 1;
 2207 SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
 2208            &forward_roundrobin_enabled, 0, "");
 2209 
 2210 /*
 2211  * This is called once the rest of the system is up and running and we're
 2212  * ready to let the AP's out of the pen.
 2213  */
 2214 void ap_init(void);
 2215 
 2216 void
 2217 ap_init()
 2218 {
 2219         u_int   apic_id;
 2220 
 2221         smp_cpus++;
 2222 
 2223 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2224         lidt(&r_idt);
 2225 #endif
 2226 
 2227         /* Build our map of 'other' CPUs. */
 2228         other_cpus = all_cpus & ~(1 << cpuid);
 2229 
 2230         printf("SMP: AP CPU #%d Launched!\n", cpuid);
 2231 
 2232         /* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
 2233         load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
 2234 
 2235         /* A quick check from sanity claus */
 2236         apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
 2237         if (cpuid != apic_id) {
 2238                 printf("SMP: cpuid = %d\n", cpuid);
 2239                 printf("SMP: apic_id = %d\n", apic_id);
 2240                 printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
 2241                 panic("cpuid mismatch! boom!!");
 2242         }
 2243 
 2244         /* Init local apic for irq's */
 2245         apic_initialize();
 2246 
 2247         /* Set memory range attributes for this CPU to match the BSP */
 2248         mem_range_AP_init();
 2249 
 2250         /*
 2251          * Activate smp_invltlb, although strictly speaking, this isn't
 2252          * quite correct yet.  We should have a bitfield for cpus willing
 2253          * to accept TLB flush IPI's or something and sync them.
 2254          */
 2255         if (smp_cpus == mp_ncpus) {
 2256                 invltlb_ok = 1;
 2257                 smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
 2258                 smp_active = 1;  /* historic */
 2259         }
 2260 
 2261         curproc = NULL;         /* make sure */
 2262 }
 2263 
 2264 #ifdef BETTER_CLOCK
 2265 
 2266 #define CHECKSTATE_USER 0
 2267 #define CHECKSTATE_SYS  1
 2268 #define CHECKSTATE_INTR 2
 2269 
 2270 /* Do not staticize.  Used from apic_vector.s */
 2271 struct proc*    checkstate_curproc[NCPU];
 2272 int             checkstate_cpustate[NCPU];
 2273 u_long          checkstate_pc[NCPU];
 2274 
 2275 extern long     cp_time[CPUSTATES];
 2276 
 2277 #define PC_TO_INDEX(pc, prof)                           \
 2278         ((int)(((u_quad_t)((pc) - (prof)->pr_off) *     \
 2279             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
 2280 
 2281 static void
 2282 addupc_intr_forwarded(struct proc *p, int id, int *astmap)
 2283 {
 2284         int i;
 2285         struct uprof *prof;
 2286         u_long pc;
 2287 
 2288         pc = checkstate_pc[id];
 2289         prof = &p->p_stats->p_prof;
 2290         if (pc >= prof->pr_off &&
 2291             (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
 2292                 if ((p->p_flag & P_OWEUPC) == 0) {
 2293                         prof->pr_addr = pc;
 2294                         prof->pr_ticks = 1;
 2295                         p->p_flag |= P_OWEUPC;
 2296                 }
 2297                 *astmap |= (1 << id);
 2298         }
 2299 }
 2300 
 2301 static void
 2302 forwarded_statclock(int id, int pscnt, int *astmap)
 2303 {
 2304         struct pstats *pstats;
 2305         long rss;
 2306         struct rusage *ru;
 2307         struct vmspace *vm;
 2308         int cpustate;
 2309         struct proc *p;
 2310 #ifdef GPROF
 2311         register struct gmonparam *g;
 2312         int i;
 2313 #endif
 2314 
 2315         p = checkstate_curproc[id];
 2316         cpustate = checkstate_cpustate[id];
 2317 
 2318         switch (cpustate) {
 2319         case CHECKSTATE_USER:
 2320                 if (p->p_flag & P_PROFIL)
 2321                         addupc_intr_forwarded(p, id, astmap);
 2322                 if (pscnt > 1)
 2323                         return;
 2324                 p->p_uticks++;
 2325                 if (p->p_nice > NZERO)
 2326                         cp_time[CP_NICE]++;
 2327                 else
 2328                         cp_time[CP_USER]++;
 2329                 break;
 2330         case CHECKSTATE_SYS:
 2331 #ifdef GPROF
 2332                 /*
 2333                  * Kernel statistics are just like addupc_intr, only easier.
 2334                  */
 2335                 g = &_gmonparam;
 2336                 if (g->state == GMON_PROF_ON) {
 2337                         i = checkstate_pc[id] - g->lowpc;
 2338                         if (i < g->textsize) {
 2339                                 i /= HISTFRACTION * sizeof(*g->kcount);
 2340                                 g->kcount[i]++;
 2341                         }
 2342                 }
 2343 #endif
 2344                 if (pscnt > 1)
 2345                         return;
 2346 
 2347                 if (!p)
 2348                         cp_time[CP_IDLE]++;
 2349                 else {
 2350                         p->p_sticks++;
 2351                         cp_time[CP_SYS]++;
 2352                 }
 2353                 break;
 2354         case CHECKSTATE_INTR:
 2355         default:
 2356 #ifdef GPROF
 2357                 /*
 2358                  * Kernel statistics are just like addupc_intr, only easier.
 2359                  */
 2360                 g = &_gmonparam;
 2361                 if (g->state == GMON_PROF_ON) {
 2362                         i = checkstate_pc[id] - g->lowpc;
 2363                         if (i < g->textsize) {
 2364                                 i /= HISTFRACTION * sizeof(*g->kcount);
 2365                                 g->kcount[i]++;
 2366                         }
 2367                 }
 2368 #endif
 2369                 if (pscnt > 1)
 2370                         return;
 2371                 if (p)
 2372                         p->p_iticks++;
 2373                 cp_time[CP_INTR]++;
 2374         }
 2375         if (p != NULL) {
 2376                 p->p_cpticks++;
 2377                 if (++p->p_estcpu == 0)
 2378                         p->p_estcpu--;
 2379                 if ((p->p_estcpu & 3) == 0) {
 2380                         resetpriority(p);
 2381                         if (p->p_priority >= PUSER)
 2382                                 p->p_priority = p->p_usrpri;
 2383                 }
 2384                 
 2385                 /* Update resource usage integrals and maximums. */
 2386                 if ((pstats = p->p_stats) != NULL &&
 2387                     (ru = &pstats->p_ru) != NULL &&
 2388                     (vm = p->p_vmspace) != NULL) {
 2389                         ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
 2390                         ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
 2391                         ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
 2392                         rss = vm->vm_pmap.pm_stats.resident_count *
 2393                                 PAGE_SIZE / 1024;
 2394                         if (ru->ru_maxrss < rss)
 2395                                 ru->ru_maxrss = rss;
 2396                 }
 2397         }
 2398 }
 2399 
 2400 void
 2401 forward_statclock(int pscnt)
 2402 {
 2403         int map;
 2404         int id;
 2405         int i;
 2406 
 2407         /* Kludge. We don't yet have separate locks for the interrupts
 2408          * and the kernel. This means that we cannot let the other processors
 2409          * handle complex interrupts while inhibiting them from entering
 2410          * the kernel in a non-interrupt context.
 2411          *
 2412          * What we can do, without changing the locking mechanisms yet,
 2413          * is letting the other processors handle a very simple interrupt
 2414          * (wich determines the processor states), and do the main
 2415          * work ourself.
 2416          */
 2417 
 2418         if (!smp_started || !invltlb_ok || cold || panicstr)
 2419                 return;
 2420 
 2421         /* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
 2422         
 2423         map = other_cpus & ~stopped_cpus ;
 2424         checkstate_probed_cpus = 0;
 2425         if (map != 0)
 2426                 selected_apic_ipi(map,
 2427                                   XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
 2428 
 2429         i = 0;
 2430         while (checkstate_probed_cpus != map) {
 2431                 /* spin */
 2432                 i++;
 2433                 if (i == 100000) {
 2434 #ifdef BETTER_CLOCK_DIAGNOSTIC
 2435                         printf("forward_statclock: checkstate %x\n",
 2436                                checkstate_probed_cpus);
 2437 #endif
 2438                         break;
 2439                 }
 2440         }
 2441 
 2442         /*
 2443          * Step 2: walk through other processors processes, update ticks and 
 2444          * profiling info.
 2445          */
 2446         
 2447         map = 0;
 2448         for (id = 0; id < mp_ncpus; id++) {
 2449                 if (id == cpuid)
 2450                         continue;
 2451                 if (((1 << id) & checkstate_probed_cpus) == 0)
 2452                         continue;
 2453                 forwarded_statclock(id, pscnt, &map);
 2454         }
 2455         if (map != 0) {
 2456                 checkstate_need_ast |= map;
 2457                 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
 2458                 i = 0;
 2459                 while ((checkstate_need_ast & map) != 0) {
 2460                         /* spin */
 2461                         i++;
 2462                         if (i > 100000) { 
 2463 #ifdef BETTER_CLOCK_DIAGNOSTIC
 2464                                 printf("forward_statclock: dropped ast 0x%x\n",
 2465                                        checkstate_need_ast & map);
 2466 #endif
 2467                                 break;
 2468                         }
 2469                 }
 2470         }
 2471 }
 2472 
 2473 void 
 2474 forward_hardclock(int pscnt)
 2475 {
 2476         int map;
 2477         int id;
 2478         struct proc *p;
 2479         struct pstats *pstats;
 2480         int i;
 2481 
 2482         /* Kludge. We don't yet have separate locks for the interrupts
 2483          * and the kernel. This means that we cannot let the other processors
 2484          * handle complex interrupts while inhibiting them from entering
 2485          * the kernel in a non-interrupt context.
 2486          *
 2487          * What we can do, without changing the locking mechanisms yet,
 2488          * is letting the other processors handle a very simple interrupt
 2489          * (wich determines the processor states), and do the main
 2490          * work ourself.
 2491          */
 2492 
 2493         if (!smp_started || !invltlb_ok || cold || panicstr)
 2494                 return;
 2495 
 2496         /* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
 2497         
 2498         map = other_cpus & ~stopped_cpus ;
 2499         checkstate_probed_cpus = 0;
 2500         if (map != 0)
 2501                 selected_apic_ipi(map,
 2502                                   XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
 2503         
 2504         i = 0;
 2505         while (checkstate_probed_cpus != map) {
 2506                 /* spin */
 2507                 i++;
 2508                 if (i == 100000) {
 2509 #ifdef BETTER_CLOCK_DIAGNOSTIC
 2510                         printf("forward_hardclock: checkstate %x\n",
 2511                                checkstate_probed_cpus);
 2512 #endif
 2513                         break;
 2514                 }
 2515         }
 2516 
 2517         /*
 2518          * Step 2: walk through other processors processes, update virtual 
 2519          * timer and profiling timer. If stathz == 0, also update ticks and 
 2520          * profiling info.
 2521          */
 2522         
 2523         map = 0;
 2524         for (id = 0; id < mp_ncpus; id++) {
 2525                 if (id == cpuid)
 2526                         continue;
 2527                 if (((1 << id) & checkstate_probed_cpus) == 0)
 2528                         continue;
 2529                 p = checkstate_curproc[id];
 2530                 if (p) {
 2531                         pstats = p->p_stats;
 2532                         if (checkstate_cpustate[id] == CHECKSTATE_USER &&
 2533                             timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
 2534                             itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
 2535                                 psignal(p, SIGVTALRM);
 2536                                 map |= (1 << id);
 2537                         }
 2538                         if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
 2539                             itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
 2540                                 psignal(p, SIGPROF);
 2541                                 map |= (1 << id);
 2542                         }
 2543                 }
 2544                 if (stathz == 0) {
 2545                         forwarded_statclock( id, pscnt, &map);
 2546                 }
 2547         }
 2548         if (map != 0) {
 2549                 checkstate_need_ast |= map;
 2550                 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
 2551                 i = 0;
 2552                 while ((checkstate_need_ast & map) != 0) {
 2553                         /* spin */
 2554                         i++;
 2555                         if (i > 100000) { 
 2556 #ifdef BETTER_CLOCK_DIAGNOSTIC
 2557                                 printf("forward_hardclock: dropped ast 0x%x\n",
 2558                                        checkstate_need_ast & map);
 2559 #endif
 2560                                 break;
 2561                         }
 2562                 }
 2563         }
 2564 }
 2565 
 2566 #endif /* BETTER_CLOCK */
 2567 
 2568 void 
 2569 forward_signal(struct proc *p)
 2570 {
 2571         int map;
 2572         int id;
 2573         int i;
 2574 
 2575         /* Kludge. We don't yet have separate locks for the interrupts
 2576          * and the kernel. This means that we cannot let the other processors
 2577          * handle complex interrupts while inhibiting them from entering
 2578          * the kernel in a non-interrupt context.
 2579          *
 2580          * What we can do, without changing the locking mechanisms yet,
 2581          * is letting the other processors handle a very simple interrupt
 2582          * (wich determines the processor states), and do the main
 2583          * work ourself.
 2584          */
 2585 
 2586         if (!smp_started || !invltlb_ok || cold || panicstr)
 2587                 return;
 2588         if (!forward_signal_enabled)
 2589                 return;
 2590         while (1) {
 2591                 if (p->p_stat != SRUN)
 2592                         return;
 2593                 id = (u_char) p->p_oncpu;
 2594                 if (id == 0xff)
 2595                         return;
 2596                 map = (1<<id);
 2597                 checkstate_need_ast |= map;
 2598                 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
 2599                 i = 0;
 2600                 while ((checkstate_need_ast & map) != 0) {
 2601                         /* spin */
 2602                         i++;
 2603                         if (i > 100000) { 
 2604 #if 0
 2605                                 printf("forward_signal: dropped ast 0x%x\n",
 2606                                        checkstate_need_ast & map);
 2607 #endif
 2608                                 break;
 2609                         }
 2610                 }
 2611                 if (id == (u_char) p->p_oncpu)
 2612                         return;
 2613         }
 2614 }
 2615 
 2616 void
 2617 forward_roundrobin(void)
 2618 {
 2619         u_int map;
 2620         int i;
 2621 
 2622         if (!smp_started || !invltlb_ok || cold || panicstr)
 2623                 return;
 2624         if (!forward_roundrobin_enabled)
 2625                 return;
 2626         resched_cpus |= other_cpus;
 2627         map = other_cpus & ~stopped_cpus ;
 2628 #if 1
 2629         selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
 2630 #else
 2631         (void) all_but_self_ipi(XCPUAST_OFFSET);
 2632 #endif
 2633         i = 0;
 2634         while ((checkstate_need_ast & map) != 0) {
 2635                 /* spin */
 2636                 i++;
 2637                 if (i > 100000) {
 2638 #if 0
 2639                         printf("forward_roundrobin: dropped ast 0x%x\n",
 2640                                checkstate_need_ast & map);
 2641 #endif
 2642                         break;
 2643                 }
 2644         }
 2645 }
 2646 
 2647 
 2648 #ifdef APIC_INTR_REORDER
 2649 /*
 2650  *      Maintain mapping from softintr vector to isr bit in local apic.
 2651  */
 2652 void
 2653 set_lapic_isrloc(int intr, int vector)
 2654 {
 2655         if (intr < 0 || intr > 32)
 2656                 panic("set_apic_isrloc: bad intr argument: %d",intr);
 2657         if (vector < ICU_OFFSET || vector > 255)
 2658                 panic("set_apic_isrloc: bad vector argument: %d",vector);
 2659         apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
 2660         apic_isrbit_location[intr].bit = (1<<(vector & 31));
 2661 }
 2662 #endif
 2663 
 2664 /*
 2665  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function 
 2666  * (if specified), rendezvous, execute the action function (if specified),
 2667  * rendezvous again, execute the teardown function (if specified), and then
 2668  * resume.
 2669  *
 2670  * Note that the supplied external functions _must_ be reentrant and aware
 2671  * that they are running in parallel and in an unknown lock context.
 2672  */
 2673 static void (*smp_rv_setup_func)(void *arg);
 2674 static void (*smp_rv_action_func)(void *arg);
 2675 static void (*smp_rv_teardown_func)(void *arg);
 2676 static void *smp_rv_func_arg;
 2677 static volatile int smp_rv_waiters[2];
 2678 
 2679 void
 2680 smp_rendezvous_action(void)
 2681 {
 2682         /* setup function */
 2683         if (smp_rv_setup_func != NULL)
 2684                 smp_rv_setup_func(smp_rv_func_arg);
 2685         /* spin on entry rendezvous */
 2686         atomic_add_int(&smp_rv_waiters[0], 1);
 2687         while (smp_rv_waiters[0] < mp_ncpus)
 2688                 ;
 2689         /* action function */
 2690         if (smp_rv_action_func != NULL)
 2691                 smp_rv_action_func(smp_rv_func_arg);
 2692         /* spin on exit rendezvous */
 2693         atomic_add_int(&smp_rv_waiters[1], 1);
 2694         while (smp_rv_waiters[1] < mp_ncpus)
 2695                 ;
 2696         /* teardown function */
 2697         if (smp_rv_teardown_func != NULL)
 2698                 smp_rv_teardown_func(smp_rv_func_arg);
 2699 }
 2700 
 2701 void
 2702 smp_rendezvous(void (* setup_func)(void *), 
 2703                void (* action_func)(void *),
 2704                void (* teardown_func)(void *),
 2705                void *arg)
 2706 {
 2707         u_int   efl;
 2708         
 2709         /* obtain rendezvous lock */
 2710         s_lock(&smp_rv_lock);           /* XXX sleep here? NOWAIT flag? */
 2711 
 2712         /* set static function pointers */
 2713         smp_rv_setup_func = setup_func;
 2714         smp_rv_action_func = action_func;
 2715         smp_rv_teardown_func = teardown_func;
 2716         smp_rv_func_arg = arg;
 2717         smp_rv_waiters[0] = 0;
 2718         smp_rv_waiters[1] = 0;
 2719 
 2720         /* disable interrupts on this CPU, save interrupt status */
 2721         efl = read_eflags();
 2722         write_eflags(efl & ~PSL_I);
 2723 
 2724         /* signal other processors, which will enter the IPI with interrupts off */
 2725         all_but_self_ipi(XRENDEZVOUS_OFFSET);
 2726 
 2727         /* call executor function */
 2728         smp_rendezvous_action();
 2729 
 2730         /* restore interrupt flag */
 2731         write_eflags(efl);
 2732 
 2733         /* release lock */
 2734         s_unlock(&smp_rv_lock);
 2735 }

Cache object: fbb8e145f9d0ba1f2cc8b1b052f2b098


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.