The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD$");
   28 
   29 #include "opt_apic.h"
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_mp_watchdog.h"
   33 
   34 #if !defined(lint)
   35 #if !defined(SMP)
   36 #error How did you get here?
   37 #endif
   38 
   39 #if defined(I386_CPU) && !defined(COMPILING_LINT)
   40 #error SMP not supported with I386_CPU
   41 #endif
   42 #ifndef DEV_APIC
   43 #error The apic device is required for SMP, add "device apic" to your config file.
   44 #endif
   45 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
   46 #error SMP not supported with CPU_DISABLE_CMPXCHG
   47 #endif
   48 #endif /* not lint */
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bus.h>
   53 #include <sys/cons.h>   /* cngetc() */
   54 #ifdef GPROF 
   55 #include <sys/gmon.h>
   56 #endif
   57 #include <sys/kernel.h>
   58 #include <sys/ktr.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/memrange.h>
   62 #include <sys/mutex.h>
   63 #include <sys/pcpu.h>
   64 #include <sys/proc.h>
   65 #include <sys/smp.h>
   66 #include <sys/sysctl.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/vm_param.h>
   70 #include <vm/pmap.h>
   71 #include <vm/vm_kern.h>
   72 #include <vm/vm_extern.h>
   73 
   74 #include <machine/apicreg.h>
   75 #include <machine/clock.h>
   76 #include <machine/md_var.h>
   77 #include <machine/mp_watchdog.h>
   78 #include <machine/pcb.h>
   79 #include <machine/smp.h>
   80 #include <machine/smptests.h>   /** COUNT_XINVLTLB_HITS */
   81 #include <machine/specialreg.h>
   82 #include <machine/privatespace.h>
   83 
   84 #define WARMBOOT_TARGET         0
   85 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   86 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   87 
   88 #define CMOS_REG                (0x70)
   89 #define CMOS_DATA               (0x71)
   90 #define BIOS_RESET              (0x0f)
   91 #define BIOS_WARM               (0x0a)
   92 
   93 /*
   94  * this code MUST be enabled here and in mpboot.s.
   95  * it follows the very early stages of AP boot by placing values in CMOS ram.
   96  * it NORMALLY will never be needed and thus the primitive method for enabling.
   97  *
   98 #define CHECK_POINTS
   99  */
  100 
  101 #if defined(CHECK_POINTS) && !defined(PC98)
  102 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  103 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  104 
  105 #define CHECK_INIT(D);                          \
  106         CHECK_WRITE(0x34, (D));                 \
  107         CHECK_WRITE(0x35, (D));                 \
  108         CHECK_WRITE(0x36, (D));                 \
  109         CHECK_WRITE(0x37, (D));                 \
  110         CHECK_WRITE(0x38, (D));                 \
  111         CHECK_WRITE(0x39, (D));
  112 
  113 #define CHECK_PRINT(S);                         \
  114         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  115            (S),                                 \
  116            CHECK_READ(0x34),                    \
  117            CHECK_READ(0x35),                    \
  118            CHECK_READ(0x36),                    \
  119            CHECK_READ(0x37),                    \
  120            CHECK_READ(0x38),                    \
  121            CHECK_READ(0x39));
  122 
  123 #else                           /* CHECK_POINTS */
  124 
  125 #define CHECK_INIT(D)
  126 #define CHECK_PRINT(S)
  127 #define CHECK_WRITE(A, D)
  128 
  129 #endif                          /* CHECK_POINTS */
  130 
  131 /*
  132  * Values to send to the POST hardware.
  133  */
  134 #define MP_BOOTADDRESS_POST     0x10
  135 #define MP_PROBE_POST           0x11
  136 #define MPTABLE_PASS1_POST      0x12
  137 
  138 #define MP_START_POST           0x13
  139 #define MP_ENABLE_POST          0x14
  140 #define MPTABLE_PASS2_POST      0x15
  141 
  142 #define START_ALL_APS_POST      0x16
  143 #define INSTALL_AP_TRAMP_POST   0x17
  144 #define START_AP_POST           0x18
  145 
  146 #define MP_ANNOUNCE_POST        0x19
  147 
  148 /* lock region used by kernel profiling */
  149 int     mcount_lock;
  150 
  151 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
  152 int     current_postcode;
  153 
  154 int     mp_naps;                /* # of Applications processors */
  155 int     boot_cpu_id = -1;       /* designated BSP */
  156 extern  int nkpt;
  157 
  158 /*
  159  * CPU topology map datastructures for HTT.
  160  */
  161 static struct cpu_group mp_groups[MAXCPU];
  162 static struct cpu_top mp_top;
  163 
  164 /* AP uses this during bootstrap.  Do not staticize.  */
  165 char *bootSTK;
  166 static int bootAP;
  167 
  168 /* Hotwire a 0->4MB V==P mapping */
  169 extern pt_entry_t *KPTphys;
  170 
  171 /* SMP page table page */
  172 extern pt_entry_t *SMPpt;
  173 
  174 struct pcb stoppcbs[MAXCPU];
  175 
  176 /* Variables needed for SMP tlb shootdown. */
  177 vm_offset_t smp_tlb_addr1;
  178 vm_offset_t smp_tlb_addr2;
  179 volatile int smp_tlb_wait;
  180 
  181 #ifdef KDB_STOP_NMI
  182 volatile cpumask_t ipi_nmi_pending;
  183 #endif 
  184 
  185 /*
  186  * Local data and functions.
  187  */
  188 
  189 static u_int logical_cpus;
  190 
  191 /* used to hold the AP's until we are ready to release them */
  192 static struct mtx ap_boot_mtx;
  193 
  194 /* Set to 1 once we're ready to let the APs out of the pen. */
  195 static volatile int aps_ready = 0;
  196 
  197 /*
  198  * Store data from cpu_add() until later in the boot when we actually setup
  199  * the APs.
  200  */
  201 struct cpu_info {
  202         int     cpu_present:1;
  203         int     cpu_bsp:1;
  204         int     cpu_disabled:1;
  205 } static cpu_info[MAXCPU];
  206 static int cpu_apic_ids[MAXCPU];
  207 
  208 /* Holds pending bitmap based IPIs per CPU */
  209 static volatile u_int cpu_ipi_pending[MAXCPU];
  210 
  211 static u_int boot_address;
  212 
  213 static void     set_logical_apic_ids(void);
  214 static int      start_all_aps(void);
  215 static void     install_ap_tramp(void);
  216 static int      start_ap(int apic_id);
  217 static void     release_aps(void *dummy);
  218 
  219 static int      hlt_logical_cpus;
  220 static u_int    hyperthreading_cpus;
  221 static cpumask_t        hyperthreading_cpus_mask;
  222 static int      hyperthreading_allowed;
  223 static struct   sysctl_ctx_list logical_cpu_clist;
  224 
  225 static void
  226 mem_range_AP_init(void)
  227 {
  228         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  229                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  230 }
  231 
  232 void
  233 mp_topology(void)
  234 {
  235         struct cpu_group *group;
  236         int logical_cpus;
  237         int apic_id;
  238         int groups;
  239         int cpu;
  240 
  241         /* Build the smp_topology map. */
  242         /* Nothing to do if there is no HTT support. */
  243         if ((cpu_feature & CPUID_HTT) == 0)
  244                 return;
  245         logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  246         if (logical_cpus <= 1)
  247                 return;
  248         group = &mp_groups[0];
  249         groups = 1;
  250         for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
  251                 if (!cpu_info[apic_id].cpu_present)
  252                         continue;
  253                 /*
  254                  * If the current group has members and we're not a logical
  255                  * cpu, create a new group.
  256                  */
  257                 if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
  258                         group++;
  259                         groups++;
  260                 }
  261                 group->cg_count++;
  262                 group->cg_mask |= 1 << cpu;
  263                 cpu++;
  264         }
  265 
  266         mp_top.ct_count = groups;
  267         mp_top.ct_group = mp_groups;
  268         smp_topology = &mp_top;
  269 }
  270 
  271 
  272 /*
  273  * Calculate usable address in base memory for AP trampoline code.
  274  */
  275 u_int
  276 mp_bootaddress(u_int basemem)
  277 {
  278         POSTCODE(MP_BOOTADDRESS_POST);
  279 
  280         boot_address = trunc_page(basemem);     /* round down to 4k boundary */
  281         if ((basemem - boot_address) < bootMP_size)
  282                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  283 
  284         return boot_address;
  285 }
  286 
  287 void
  288 cpu_add(u_int apic_id, char boot_cpu)
  289 {
  290 
  291         if (apic_id >= MAXCPU) {
  292                 printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
  293                     apic_id, MAXCPU - 1);
  294                 return;
  295         }
  296         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  297             apic_id));
  298         cpu_info[apic_id].cpu_present = 1;
  299         if (boot_cpu) {
  300                 KASSERT(boot_cpu_id == -1,
  301                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  302                     boot_cpu_id));
  303                 boot_cpu_id = apic_id;
  304                 cpu_info[apic_id].cpu_bsp = 1;
  305         }
  306         mp_ncpus++;
  307         if (bootverbose)
  308                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  309                     "AP");
  310         
  311 }
  312 
  313 void
  314 cpu_mp_setmaxid(void)
  315 {
  316 
  317         mp_maxid = MAXCPU - 1;
  318 }
  319 
  320 int
  321 cpu_mp_probe(void)
  322 {
  323 
  324         /*
  325          * Always record BSP in CPU map so that the mbuf init code works
  326          * correctly.
  327          */
  328         all_cpus = 1;
  329         if (mp_ncpus == 0) {
  330                 /*
  331                  * No CPUs were found, so this must be a UP system.  Setup
  332                  * the variables to represent a system with a single CPU
  333                  * with an id of 0.
  334                  */
  335                 mp_ncpus = 1;
  336                 return (0);
  337         }
  338 
  339         /* At least one CPU was found. */
  340         if (mp_ncpus == 1) {
  341                 /*
  342                  * One CPU was found, so this must be a UP system with
  343                  * an I/O APIC.
  344                  */
  345                 return (0);
  346         }
  347 
  348         /* At least two CPUs were found. */
  349         return (1);
  350 }
  351 
  352 /*
  353  * Initialize the IPI handlers and start up the AP's.
  354  */
  355 void
  356 cpu_mp_start(void)
  357 {
  358         int i;
  359         u_int threads_per_cache, p[4];
  360 
  361         POSTCODE(MP_START_POST);
  362 
  363         /* Initialize the logical ID to APIC ID table. */
  364         for (i = 0; i < MAXCPU; i++) {
  365                 cpu_apic_ids[i] = -1;
  366                 cpu_ipi_pending[i] = 0;
  367         }
  368 
  369         /* Install an inter-CPU IPI for TLB invalidation */
  370         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  371                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  372         setidt(IPI_INVLPG, IDTVEC(invlpg),
  373                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  374         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  375                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  376         
  377         /* Install an inter-CPU IPI for lazy pmap release */
  378         setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
  379                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  380 
  381         /* Install an inter-CPU IPI for all-CPU rendezvous */
  382         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  383                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  384 
  385         /* Install generic inter-CPU IPI handler */
  386         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  387                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  388 
  389         /* Install an inter-CPU IPI for CPU stop/restart */
  390         setidt(IPI_STOP, IDTVEC(cpustop),
  391                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  392 
  393 
  394         /* Set boot_cpu_id if needed. */
  395         if (boot_cpu_id == -1) {
  396                 boot_cpu_id = PCPU_GET(apic_id);
  397                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  398         } else
  399                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  400                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  401         cpu_apic_ids[0] = boot_cpu_id;
  402 
  403         /* Start each Application Processor */
  404         start_all_aps();
  405 
  406         /* Setup the initial logical CPUs info. */
  407         logical_cpus = logical_cpus_mask = 0;
  408         if (cpu_feature & CPUID_HTT)
  409                 logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  410 
  411         /*
  412          * Work out if hyperthreading is *really* enabled.  This
  413          * is made really ugly by the fact that processors lie: Dual
  414          * core processors claim to be hyperthreaded even when they're
  415          * not, presumably because they want to be treated the same
  416          * way as HTT with respect to per-cpu software licensing.
  417          * At the time of writing (May 12, 2005) the only hyperthreaded
  418          * cpus are from Intel, and Intel's dual-core processors can be
  419          * identified via the "deterministic cache parameters" cpuid
  420          * calls.
  421          */
  422         /*
  423          * First determine if this is an Intel processor which claims
  424          * to have hyperthreading support.
  425          */
  426         if ((cpu_feature & CPUID_HTT) &&
  427             (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
  428                 /*
  429                  * If the "deterministic cache parameters" cpuid calls
  430                  * are available, use them.
  431                  */
  432                 if (cpu_high >= 4) {
  433                         /* Ask the processor about the L1 cache. */
  434                         for (i = 0; i < 1; i++) {
  435                                 cpuid_count(4, i, p);
  436                                 threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
  437                                 if (hyperthreading_cpus < threads_per_cache)
  438                                         hyperthreading_cpus = threads_per_cache;
  439                                 if ((p[0] & 0x1f) == 0)
  440                                         break;
  441                         }
  442                 }
  443 
  444                 /*
  445                  * If the deterministic cache parameters are not
  446                  * available, or if no caches were reported to exist,
  447                  * just accept what the HTT flag indicated.
  448                  */
  449                 if (hyperthreading_cpus == 0)
  450                         hyperthreading_cpus = logical_cpus;
  451         }
  452 
  453         set_logical_apic_ids();
  454 }
  455 
  456 
  457 /*
  458  * Print various information about the SMP system hardware and setup.
  459  */
  460 void
  461 cpu_mp_announce(void)
  462 {
  463         int i, x;
  464 
  465         POSTCODE(MP_ANNOUNCE_POST);
  466 
  467         /* List CPUs */
  468         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  469         for (i = 1, x = 0; x < MAXCPU; x++) {
  470                 if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
  471                         continue;
  472                 if (cpu_info[x].cpu_disabled)
  473                         printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
  474                 else {
  475                         KASSERT(i < mp_ncpus,
  476                             ("mp_ncpus and actual cpus are out of whack"));
  477                         printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
  478                 }
  479         }
  480 }
  481 
  482 /*
  483  * AP CPU's call this to initialize themselves.
  484  */
  485 void
  486 init_secondary(void)
  487 {
  488         int     gsel_tss;
  489         int     x, myid;
  490         u_int   cr0;
  491 
  492         /* bootAP is set in start_ap() to our ID. */
  493         myid = bootAP;
  494         gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
  495         gdt_segs[GPROC0_SEL].ssd_base =
  496                 (int) &SMP_prvspace[myid].pcpu.pc_common_tss;
  497         SMP_prvspace[myid].pcpu.pc_prvspace =
  498                 &SMP_prvspace[myid].pcpu;
  499 
  500         for (x = 0; x < NGDT; x++) {
  501                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  502         }
  503 
  504         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  505         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  506         lgdt(&r_gdt);                   /* does magic intra-segment return */
  507 
  508         lidt(&r_idt);
  509 
  510         lldt(_default_ldt);
  511         PCPU_SET(currentldt, _default_ldt);
  512 
  513         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  514         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  515         PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
  516         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
  517         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
  518         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  519         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  520         ltr(gsel_tss);
  521 
  522         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  523 
  524         /*
  525          * Set to a known state:
  526          * Set by mpboot.s: CR0_PG, CR0_PE
  527          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  528          */
  529         cr0 = rcr0();
  530         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  531         load_cr0(cr0);
  532         CHECK_WRITE(0x38, 5);
  533         
  534         /* Disable local APIC just to be sure. */
  535         lapic_disable();
  536 
  537         /* signal our startup to the BSP. */
  538         mp_naps++;
  539         CHECK_WRITE(0x39, 6);
  540 
  541         /* Spin until the BSP releases the AP's. */
  542         while (!aps_ready)
  543                 ia32_pause();
  544 
  545         /* BSP may have changed PTD while we were waiting */
  546         invltlb();
  547         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
  548 
  549 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  550         lidt(&r_idt);
  551 #endif
  552 
  553         /* set up CPU registers and state */
  554         cpu_setregs();
  555 
  556         /* set up FPU state on the AP */
  557         npxinit(__INITIAL_NPXCW__);
  558 
  559         /* set up SSE registers */
  560         enable_sse();
  561 
  562         /* A quick check from sanity claus */
  563         if (PCPU_GET(apic_id) != lapic_id()) {
  564                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  565                 printf("SMP: actual apic_id = %d\n", lapic_id());
  566                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  567                 printf("PTD[MPPTDI] = %#jx\n", (uintmax_t)PTD[MPPTDI]);
  568                 panic("cpuid mismatch! boom!!");
  569         }
  570 
  571         mtx_lock_spin(&ap_boot_mtx);
  572 
  573         /* Init local apic for irq's */
  574         lapic_setup();
  575 
  576         /* Set memory range attributes for this CPU to match the BSP */
  577         mem_range_AP_init();
  578 
  579         smp_cpus++;
  580 
  581         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  582         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  583 
  584         /* Determine if we are a logical CPU. */
  585         if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
  586                 logical_cpus_mask |= PCPU_GET(cpumask);
  587         
  588         /* Determine if we are a hyperthread. */
  589         if (hyperthreading_cpus > 1 &&
  590             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  591                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  592 
  593         /* Build our map of 'other' CPUs. */
  594         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  595 
  596         if (bootverbose)
  597                 lapic_dump("AP");
  598 
  599         if (smp_cpus == mp_ncpus) {
  600                 /* enable IPI's, tlb shootdown, freezes etc */
  601                 atomic_store_rel_int(&smp_started, 1);
  602                 smp_active = 1;  /* historic */
  603         }
  604 
  605         mtx_unlock_spin(&ap_boot_mtx);
  606 
  607         /* wait until all the AP's are up */
  608         while (smp_started == 0)
  609                 ia32_pause();
  610 
  611         /* ok, now grab sched_lock and enter the scheduler */
  612         mtx_lock_spin(&sched_lock);
  613 
  614         binuptime(PCPU_PTR(switchtime));
  615         PCPU_SET(switchticks, ticks);
  616 
  617         cpu_throw(NULL, choosethread());        /* doesn't return */
  618 
  619         panic("scheduler returned us to %s", __func__);
  620         /* NOTREACHED */
  621 }
  622 
  623 /*******************************************************************
  624  * local functions and data
  625  */
  626 
  627 /*
  628  * Set the APIC logical IDs.
  629  *
  630  * We want to cluster logical CPU's within the same APIC ID cluster.
  631  * Since logical CPU's are aligned simply filling in the clusters in
  632  * APIC ID order works fine.  Note that this does not try to balance
  633  * the number of CPU's in each cluster. (XXX?)
  634  */
  635 static void
  636 set_logical_apic_ids(void)
  637 {
  638         u_int apic_id, cluster, cluster_id;
  639 
  640         /* Force us to allocate cluster 0 at the start. */
  641         cluster = -1;
  642         cluster_id = APIC_MAX_INTRACLUSTER_ID;
  643         for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
  644                 if (!cpu_info[apic_id].cpu_present)
  645                         continue;
  646                 if (cluster_id == APIC_MAX_INTRACLUSTER_ID) {
  647                         cluster = ioapic_next_logical_cluster();
  648                         cluster_id = 0;
  649                 } else
  650                         cluster_id++;
  651                 if (bootverbose)
  652                         printf("APIC ID: physical %u, logical %u:%u\n",
  653                             apic_id, cluster, cluster_id);
  654                 lapic_set_logical_id(apic_id, cluster, cluster_id);
  655         }
  656 }
  657 
  658 /*
  659  * start each AP in our list
  660  */
  661 static int
  662 start_all_aps(void)
  663 {
  664 #ifndef PC98
  665         u_char mpbiosreason;
  666 #endif
  667         u_long mpbioswarmvec;
  668         struct pcpu *pc;
  669         char *stack;
  670         uintptr_t kptbase;
  671         int i, pg, apic_id, cpu;
  672 
  673         POSTCODE(START_ALL_APS_POST);
  674 
  675         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  676 
  677         /* install the AP 1st level boot code */
  678         install_ap_tramp();
  679 
  680         /* save the current value of the warm-start vector */
  681         mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
  682 #ifndef PC98
  683         outb(CMOS_REG, BIOS_RESET);
  684         mpbiosreason = inb(CMOS_DATA);
  685 #endif
  686 
  687         /* set up temporary P==V mapping for AP boot */
  688         /* XXX this is a hack, we should boot the AP on its own stack/PTD */
  689         kptbase = (uintptr_t)(void *)KPTphys;
  690         for (i = 0; i < NKPT; i++)
  691                 PTD[i] = (pd_entry_t)(PG_V | PG_RW |
  692                     ((kptbase + i * PAGE_SIZE) & PG_FRAME));
  693         invltlb();
  694 
  695         /* start each AP */
  696         for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
  697 
  698                 /* Ignore non-existent CPUs and the BSP. */
  699                 if (!cpu_info[apic_id].cpu_present ||
  700                     cpu_info[apic_id].cpu_bsp)
  701                         continue;
  702 
  703                 /* Don't use this CPU if it has been disabled by a tunable. */
  704                 if (resource_disabled("lapic", apic_id)) {
  705                         cpu_info[apic_id].cpu_disabled = 1;
  706                         mp_ncpus--;
  707                         continue;
  708                 }
  709 
  710                 cpu++;
  711 
  712                 /* save APIC ID for this logical ID */
  713                 cpu_apic_ids[cpu] = apic_id;
  714 
  715                 /* first page of AP's private space */
  716                 pg = cpu * i386_btop(sizeof(struct privatespace));
  717 
  718                 /* allocate a new private data page */
  719                 pc = (struct pcpu *)kmem_alloc(kernel_map, PAGE_SIZE);
  720 
  721                 /* wire it into the private page table page */
  722                 SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(pc));
  723 
  724                 /* allocate and set up an idle stack data page */
  725                 stack = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE); /* XXXKSE */
  726                 for (i = 0; i < KSTACK_PAGES; i++)
  727                         SMPpt[pg + 1 + i] = (pt_entry_t)
  728                             (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
  729 
  730                 /* prime data page for it to use */
  731                 pcpu_init(pc, cpu, sizeof(struct pcpu));
  732                 pc->pc_apic_id = apic_id;
  733 
  734                 /* setup a vector to our boot code */
  735                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  736                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  737 #ifndef PC98
  738                 outb(CMOS_REG, BIOS_RESET);
  739                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  740 #endif
  741 
  742                 bootSTK = &SMP_prvspace[cpu].idlekstack[KSTACK_PAGES *
  743                     PAGE_SIZE];
  744                 bootAP = cpu;
  745 
  746                 /* attempt to start the Application Processor */
  747                 CHECK_INIT(99); /* setup checkpoints */
  748                 if (!start_ap(apic_id)) {
  749                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  750                         CHECK_PRINT("trace");   /* show checkpoints */
  751                         /* better panic as the AP may be running loose */
  752                         printf("panic y/n? [y] ");
  753                         if (cngetc() != 'n')
  754                                 panic("bye-bye");
  755                 }
  756                 CHECK_PRINT("trace");           /* show checkpoints */
  757 
  758                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  759         }
  760 
  761         /* build our map of 'other' CPUs */
  762         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  763 
  764         /* restore the warmstart vector */
  765         *(u_long *) WARMBOOT_OFF = mpbioswarmvec;
  766 #ifndef PC98
  767         outb(CMOS_REG, BIOS_RESET);
  768         outb(CMOS_DATA, mpbiosreason);
  769 #endif
  770 
  771         /*
  772          * Set up the idle context for the BSP.  Similar to above except
  773          * that some was done by locore, some by pmap.c and some is implicit
  774          * because the BSP is cpu#0 and the page is initially zero and also
  775          * because we can refer to variables by name on the BSP..
  776          */
  777 
  778         /* Allocate and setup BSP idle stack */
  779         stack = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  780         for (i = 0; i < KSTACK_PAGES; i++)
  781                 SMPpt[1 + i] = (pt_entry_t)
  782                     (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
  783 
  784         for (i = 0; i < NKPT; i++)
  785                 PTD[i] = 0;
  786         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
  787 
  788         /* number of APs actually started */
  789         return mp_naps;
  790 }
  791 
  792 /*
  793  * load the 1st level AP boot code into base memory.
  794  */
  795 
  796 /* targets for relocation */
  797 extern void bigJump(void);
  798 extern void bootCodeSeg(void);
  799 extern void bootDataSeg(void);
  800 extern void MPentry(void);
  801 extern u_int MP_GDT;
  802 extern u_int mp_gdtbase;
  803 
  804 static void
  805 install_ap_tramp(void)
  806 {
  807         int     x;
  808         int     size = *(int *) ((u_long) & bootMP_size);
  809         vm_offset_t va = boot_address + KERNBASE;
  810         u_char *src = (u_char *) ((u_long) bootMP);
  811         u_char *dst = (u_char *) va;
  812         u_int   boot_base = (u_int) bootMP;
  813         u_int8_t *dst8;
  814         u_int16_t *dst16;
  815         u_int32_t *dst32;
  816 
  817         POSTCODE(INSTALL_AP_TRAMP_POST);
  818 
  819         KASSERT (size <= PAGE_SIZE,
  820             ("'size' do not fit into PAGE_SIZE, as expected."));
  821         pmap_kenter(va, boot_address);
  822         pmap_invalidate_page (kernel_pmap, va);
  823         for (x = 0; x < size; ++x)
  824                 *dst++ = *src++;
  825 
  826         /*
  827          * modify addresses in code we just moved to basemem. unfortunately we
  828          * need fairly detailed info about mpboot.s for this to work.  changes
  829          * to mpboot.s might require changes here.
  830          */
  831 
  832         /* boot code is located in KERNEL space */
  833         dst = (u_char *) va;
  834 
  835         /* modify the lgdt arg */
  836         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
  837         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
  838 
  839         /* modify the ljmp target for MPentry() */
  840         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
  841         *dst32 = ((u_int) MPentry - KERNBASE);
  842 
  843         /* modify the target for boot code segment */
  844         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
  845         dst8 = (u_int8_t *) (dst16 + 1);
  846         *dst16 = (u_int) boot_address & 0xffff;
  847         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  848 
  849         /* modify the target for boot data segment */
  850         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
  851         dst8 = (u_int8_t *) (dst16 + 1);
  852         *dst16 = (u_int) boot_address & 0xffff;
  853         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  854 }
  855 
  856 /*
  857  * This function starts the AP (application processor) identified
  858  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  859  * to accomplish this.  This is necessary because of the nuances
  860  * of the different hardware we might encounter.  It isn't pretty,
  861  * but it seems to work.
  862  */
  863 static int
  864 start_ap(int apic_id)
  865 {
  866         int vector, ms;
  867         int cpus;
  868 
  869         POSTCODE(START_AP_POST);
  870 
  871         /* calculate the vector */
  872         vector = (boot_address >> 12) & 0xff;
  873 
  874         /* used as a watchpoint to signal AP startup */
  875         cpus = mp_naps;
  876 
  877         /*
  878          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  879          * and running the target CPU. OR this INIT IPI might be latched (P5
  880          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  881          * ignored.
  882          */
  883 
  884         /* do an INIT IPI: assert RESET */
  885         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  886             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  887 
  888         /* wait for pending status end */
  889         lapic_ipi_wait(-1);
  890 
  891         /* do an INIT IPI: deassert RESET */
  892         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
  893             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
  894 
  895         /* wait for pending status end */
  896         DELAY(10000);           /* wait ~10mS */
  897         lapic_ipi_wait(-1);
  898 
  899         /*
  900          * next we do a STARTUP IPI: the previous INIT IPI might still be
  901          * latched, (P5 bug) this 1st STARTUP would then terminate
  902          * immediately, and the previously started INIT IPI would continue. OR
  903          * the previous INIT IPI has already run. and this STARTUP IPI will
  904          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
  905          * will run.
  906          */
  907 
  908         /* do a STARTUP IPI */
  909         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  910             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  911             vector, apic_id);
  912         lapic_ipi_wait(-1);
  913         DELAY(200);             /* wait ~200uS */
  914 
  915         /*
  916          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
  917          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
  918          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
  919          * recognized after hardware RESET or INIT IPI.
  920          */
  921 
  922         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  923             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  924             vector, apic_id);
  925         lapic_ipi_wait(-1);
  926         DELAY(200);             /* wait ~200uS */
  927 
  928         /* Wait up to 5 seconds for it to start. */
  929         for (ms = 0; ms < 5000; ms++) {
  930                 if (mp_naps > cpus)
  931                         return 1;       /* return SUCCESS */
  932                 DELAY(1000);
  933         }
  934         return 0;               /* return FAILURE */
  935 }
  936 
  937 #ifdef COUNT_XINVLTLB_HITS
  938 u_int xhits_gbl[MAXCPU];
  939 u_int xhits_pg[MAXCPU];
  940 u_int xhits_rng[MAXCPU];
  941 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
  942 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
  943     sizeof(xhits_gbl), "IU", "");
  944 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
  945     sizeof(xhits_pg), "IU", "");
  946 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
  947     sizeof(xhits_rng), "IU", "");
  948 
  949 u_int ipi_global;
  950 u_int ipi_page;
  951 u_int ipi_range;
  952 u_int ipi_range_size;
  953 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
  954 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
  955 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
  956 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
  957     0, "");
  958 
  959 u_int ipi_masked_global;
  960 u_int ipi_masked_page;
  961 u_int ipi_masked_range;
  962 u_int ipi_masked_range_size;
  963 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
  964     &ipi_masked_global, 0, "");
  965 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
  966     &ipi_masked_page, 0, "");
  967 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
  968     &ipi_masked_range, 0, "");
  969 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
  970     &ipi_masked_range_size, 0, "");
  971 #endif /* COUNT_XINVLTLB_HITS */
  972 
  973 /*
  974  * Flush the TLB on all other CPU's
  975  */
  976 static void
  977 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
  978 {
  979         u_int ncpu;
  980 
  981         ncpu = mp_ncpus - 1;    /* does not shootdown self */
  982         if (ncpu < 1)
  983                 return;         /* no other cpus */
  984         mtx_assert(&smp_ipi_mtx, MA_OWNED);
  985         smp_tlb_addr1 = addr1;
  986         smp_tlb_addr2 = addr2;
  987         atomic_store_rel_int(&smp_tlb_wait, 0);
  988         ipi_all_but_self(vector);
  989         /* 
  990          * Enable interrupts here to workaround Opteron Errata 106.
  991          * The while loop runs entirely out of instruction cache,
  992          * which blocks updates to the cache from other CPUs.
  993          * Interrupts break the lock, allowing the write to post.
  994          */
  995         enable_intr();
  996         while (smp_tlb_wait < ncpu)
  997                 ia32_pause();
  998         disable_intr();
  999 }
 1000 
 1001 /*
 1002  * This is about as magic as it gets.  fortune(1) has got similar code
 1003  * for reversing bits in a word.  Who thinks up this stuff??
 1004  *
 1005  * Yes, it does appear to be consistently faster than:
 1006  * while (i = ffs(m)) {
 1007  *      m >>= i;
 1008  *      bits++;
 1009  * }
 1010  * and
 1011  * while (lsb = (m & -m)) {     // This is magic too
 1012  *      m &= ~lsb;              // or: m ^= lsb
 1013  *      bits++;
 1014  * }
 1015  * Both of these latter forms do some very strange things on gcc-3.1 with
 1016  * -mcpu=pentiumpro and/or -march=pentiumpro and/or -O or -O2.
 1017  * There is probably an SSE or MMX popcnt instruction.
 1018  *
 1019  * I wonder if this should be in libkern?
 1020  *
 1021  * XXX Stop the presses!  Another one:
 1022  * static __inline u_int32_t
 1023  * popcnt1(u_int32_t v)
 1024  * {
 1025  *      v -= ((v >> 1) & 0x55555555);
 1026  *      v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 1027  *      v = (v + (v >> 4)) & 0x0F0F0F0F;
 1028  *      return (v * 0x01010101) >> 24;
 1029  * }
 1030  * The downside is that it has a multiply.  With a pentium3 with
 1031  * -mcpu=pentiumpro and -march=pentiumpro then gcc-3.1 will use
 1032  * an imull, and in that case it is faster.  In most other cases
 1033  * it appears slightly slower.
 1034  *
 1035  * Another variant (also from fortune):
 1036  * #define BITCOUNT(x) (((BX_(x)+(BX_(x)>>4)) & 0x0F0F0F0F) % 255)
 1037  * #define  BX_(x)     ((x) - (((x)>>1)&0x77777777)            \
 1038  *                          - (((x)>>2)&0x33333333)            \
 1039  *                          - (((x)>>3)&0x11111111))
 1040  */
 1041 static __inline u_int32_t
 1042 popcnt(u_int32_t m)
 1043 {
 1044 
 1045         m = (m & 0x55555555) + ((m & 0xaaaaaaaa) >> 1);
 1046         m = (m & 0x33333333) + ((m & 0xcccccccc) >> 2);
 1047         m = (m & 0x0f0f0f0f) + ((m & 0xf0f0f0f0) >> 4);
 1048         m = (m & 0x00ff00ff) + ((m & 0xff00ff00) >> 8);
 1049         m = (m & 0x0000ffff) + ((m & 0xffff0000) >> 16);
 1050         return m;
 1051 }
 1052 
 1053 static void
 1054 smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1055 {
 1056         int ncpu, othercpus;
 1057 
 1058         othercpus = mp_ncpus - 1;
 1059         if (mask == (u_int)-1) {
 1060                 ncpu = othercpus;
 1061                 if (ncpu < 1)
 1062                         return;
 1063         } else {
 1064                 mask &= ~PCPU_GET(cpumask);
 1065                 if (mask == 0)
 1066                         return;
 1067                 ncpu = popcnt(mask);
 1068                 if (ncpu > othercpus) {
 1069                         /* XXX this should be a panic offence */
 1070                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1071                             ncpu, othercpus);
 1072                         ncpu = othercpus;
 1073                 }
 1074                 /* XXX should be a panic, implied by mask == 0 above */
 1075                 if (ncpu < 1)
 1076                         return;
 1077         }
 1078         mtx_assert(&smp_ipi_mtx, MA_OWNED);
 1079         smp_tlb_addr1 = addr1;
 1080         smp_tlb_addr2 = addr2;
 1081         atomic_store_rel_int(&smp_tlb_wait, 0);
 1082         if (mask == (u_int)-1)
 1083                 ipi_all_but_self(vector);
 1084         else
 1085                 ipi_selected(mask, vector);
 1086         /* 
 1087          * Enable interrupts here to workaround Opteron Errata 106.
 1088          * The while loop runs entirely out of instruction cache,
 1089          * which blocks updates to the cache from other CPUs.
 1090          * Interrupts break the lock, allowing the write to post.
 1091          */
 1092         enable_intr();
 1093         while (smp_tlb_wait < ncpu)
 1094                 ia32_pause();
 1095         disable_intr();
 1096 }
 1097 
 1098 void
 1099 smp_invltlb(void)
 1100 {
 1101         if (smp_started) {
 1102                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1103 #ifdef COUNT_XINVLTLB_HITS
 1104                 ipi_global++;
 1105 #endif
 1106         }
 1107 }
 1108 
 1109 void
 1110 smp_invlpg(vm_offset_t addr)
 1111 {
 1112         if (smp_started) {
 1113                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1114 #ifdef COUNT_XINVLTLB_HITS
 1115                 ipi_page++;
 1116 #endif
 1117         }
 1118 }
 1119 
 1120 void
 1121 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1122 {
 1123         if (smp_started) {
 1124                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1125 #ifdef COUNT_XINVLTLB_HITS
 1126                 ipi_range++;
 1127                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1128 #endif
 1129         }
 1130 }
 1131 
 1132 void
 1133 smp_masked_invltlb(u_int mask)
 1134 {
 1135         if (smp_started) {
 1136                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1137 #ifdef COUNT_XINVLTLB_HITS
 1138                 ipi_masked_global++;
 1139 #endif
 1140         }
 1141 }
 1142 
 1143 void
 1144 smp_masked_invlpg(u_int mask, vm_offset_t addr)
 1145 {
 1146         if (smp_started) {
 1147                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1148 #ifdef COUNT_XINVLTLB_HITS
 1149                 ipi_masked_page++;
 1150 #endif
 1151         }
 1152 }
 1153 
 1154 void
 1155 smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
 1156 {
 1157         if (smp_started) {
 1158                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1159 #ifdef COUNT_XINVLTLB_HITS
 1160                 ipi_masked_range++;
 1161                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1162 #endif
 1163         }
 1164 }
 1165 
 1166 
 1167 /*
 1168  * For statclock, we send an IPI to all CPU's to have them call this
 1169  * function.
 1170  */
 1171 
 1172 void
 1173 forward_statclock(void)
 1174 {
 1175         int map;
 1176 
 1177         CTR0(KTR_SMP, "forward_statclock");
 1178 
 1179         if (!smp_started || cold || panicstr)
 1180                 return;
 1181 
 1182         map = PCPU_GET(other_cpus) & ~(stopped_cpus|hlt_cpus_mask);
 1183         if (map != 0)
 1184                 ipi_selected(map, IPI_STATCLOCK);
 1185 }
 1186 
 1187 /*
 1188  * For each hardclock(), we send an IPI to all other CPU's to have them
 1189  * execute this function.  It would be nice to reduce contention on
 1190  * sched_lock if we could simply peek at the CPU to determine the user/kernel
 1191  * state and call hardclock_process() on the CPU receiving the clock interrupt
 1192  * and then just use a simple IPI to handle any ast's if needed.
 1193  */
 1194 
 1195 void 
 1196 forward_hardclock(void)
 1197 {
 1198         u_int map;
 1199 
 1200         CTR0(KTR_SMP, "forward_hardclock");
 1201 
 1202         if (!smp_started || cold || panicstr)
 1203                 return;
 1204 
 1205         map = PCPU_GET(other_cpus) & ~(stopped_cpus|hlt_cpus_mask);
 1206         if (map != 0)
 1207                 ipi_selected(map, IPI_HARDCLOCK);
 1208 }
 1209 
 1210 void
 1211 ipi_bitmap_handler(struct clockframe frame)
 1212 {
 1213         int cpu = PCPU_GET(cpuid);
 1214         u_int ipi_bitmap;
 1215         struct thread *td;
 1216 
 1217         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1218 
 1219         critical_enter();
 1220 
 1221         /* Nothing to do for AST */
 1222 
 1223         if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
 1224                 td = curthread; 
 1225                 td->td_intr_nesting_level++;
 1226                 hardclock_process(&frame);
 1227                 td->td_intr_nesting_level--;    
 1228         }
 1229 
 1230         if (ipi_bitmap & (1 << IPI_STATCLOCK)) {
 1231                 CTR0(KTR_SMP, "forwarded_statclock");
 1232 
 1233                 td = curthread;
 1234                 td->td_intr_nesting_level++;
 1235                 if (profprocs != 0)
 1236                         profclock(&frame);
 1237                 if (pscnt == psdiv)
 1238                         statclock(&frame);
 1239                 td->td_intr_nesting_level--;
 1240         }
 1241 
 1242         critical_exit();
 1243 }
 1244 
 1245 /*
 1246  * send an IPI to a set of cpus.
 1247  */
 1248 void
 1249 ipi_selected(u_int32_t cpus, u_int ipi)
 1250 {
 1251         int cpu;
 1252         u_int bitmap = 0;
 1253         u_int old_pending;
 1254         u_int new_pending;
 1255 
 1256         if (IPI_IS_BITMAPED(ipi)) { 
 1257                 bitmap = 1 << ipi;
 1258                 ipi = IPI_BITMAP_VECTOR;
 1259         }
 1260 
 1261         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1262         while ((cpu = ffs(cpus)) != 0) {
 1263                 cpu--;
 1264                 cpus &= ~(1 << cpu);
 1265 
 1266                 KASSERT(cpu_apic_ids[cpu] != -1,
 1267                     ("IPI to non-existent CPU %d", cpu));
 1268 
 1269                 if (bitmap) {
 1270                         do {
 1271                                 old_pending = cpu_ipi_pending[cpu];
 1272                                 new_pending = old_pending | bitmap;
 1273                         } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));  
 1274 
 1275                         if (old_pending)
 1276                                 continue;
 1277                 }
 1278 
 1279                 lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1280         }
 1281 
 1282 }
 1283 
 1284 /*
 1285  * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
 1286  */
 1287 void
 1288 ipi_all(u_int ipi)
 1289 {
 1290 
 1291         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1292         lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
 1293 }
 1294 
 1295 /*
 1296  * send an IPI to all CPUs EXCEPT myself
 1297  */
 1298 void
 1299 ipi_all_but_self(u_int ipi)
 1300 {
 1301 
 1302         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1303         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1304 }
 1305 
 1306 /*
 1307  * send an IPI to myself
 1308  */
 1309 void
 1310 ipi_self(u_int ipi)
 1311 {
 1312 
 1313         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1314         lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
 1315 }
 1316 
 1317 #ifdef KDB_STOP_NMI
 1318 /*
 1319  * send NMI IPI to selected CPUs
 1320  */
 1321 
 1322 #define BEFORE_SPIN     1000000
 1323 
 1324 void
 1325 ipi_nmi_selected(u_int32_t cpus)
 1326 {
 1327 
 1328         int cpu;
 1329         register_t icrlo;
 1330 
 1331         icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT 
 1332                 | APIC_TRIGMOD_EDGE; 
 1333         
 1334         CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
 1335 
 1336 
 1337         atomic_set_int(&ipi_nmi_pending, cpus);
 1338 
 1339 
 1340         while ((cpu = ffs(cpus)) != 0) {
 1341                 cpu--;
 1342                 cpus &= ~(1 << cpu);
 1343 
 1344                 KASSERT(cpu_apic_ids[cpu] != -1,
 1345                     ("IPI NMI to non-existent CPU %d", cpu));
 1346                 
 1347                 /* Wait for an earlier IPI to finish. */
 1348                 if (!lapic_ipi_wait(BEFORE_SPIN))
 1349                         panic("ipi_nmi_selected: previous IPI has not cleared");
 1350 
 1351                 lapic_ipi_raw(icrlo,cpu_apic_ids[cpu]);
 1352         }
 1353 }
 1354 
 1355 
 1356 int
 1357 ipi_nmi_handler()
 1358 {
 1359         int cpu  = PCPU_GET(cpuid);
 1360 
 1361         if(!(atomic_load_acq_int(&ipi_nmi_pending) & (1 << cpu)))
 1362                 return 1;
 1363 
 1364         atomic_clear_int(&ipi_nmi_pending,1 << cpu);
 1365 
 1366         savectx(&stoppcbs[cpu]);
 1367 
 1368         /* Indicate that we are stopped */
 1369         atomic_set_int(&stopped_cpus,1 << cpu);
 1370 
 1371 
 1372         /* Wait for restart */
 1373         while(!(atomic_load_acq_int(&started_cpus) & (1 << cpu)))
 1374             ia32_pause();
 1375 
 1376         atomic_clear_int(&started_cpus,1 << cpu);
 1377         atomic_clear_int(&stopped_cpus,1 << cpu);
 1378 
 1379         if(cpu == 0 && cpustop_restartfunc != NULL)
 1380                 cpustop_restartfunc();
 1381 
 1382         return 0;
 1383 }
 1384      
 1385 #endif /* KDB_STOP_NMI */
 1386 
 1387 /*
 1388  * This is called once the rest of the system is up and running and we're
 1389  * ready to let the AP's out of the pen.
 1390  */
 1391 static void
 1392 release_aps(void *dummy __unused)
 1393 {
 1394 
 1395         if (mp_ncpus == 1) 
 1396                 return;
 1397         mtx_lock_spin(&sched_lock);
 1398         atomic_store_rel_int(&aps_ready, 1);
 1399         while (smp_started == 0)
 1400                 ia32_pause();
 1401         mtx_unlock_spin(&sched_lock);
 1402 }
 1403 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1404 
 1405 static int
 1406 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1407 {
 1408         u_int mask;
 1409         int error;
 1410 
 1411         mask = hlt_cpus_mask;
 1412         error = sysctl_handle_int(oidp, &mask, 0, req);
 1413         if (error || !req->newptr)
 1414                 return (error);
 1415 
 1416         if (logical_cpus_mask != 0 &&
 1417             (mask & logical_cpus_mask) == logical_cpus_mask)
 1418                 hlt_logical_cpus = 1;
 1419         else
 1420                 hlt_logical_cpus = 0;
 1421 
 1422         if (! hyperthreading_allowed)
 1423                 mask |= hyperthreading_cpus_mask;
 1424 
 1425         if ((mask & all_cpus) == all_cpus)
 1426                 mask &= ~(1<<0);
 1427         hlt_cpus_mask = mask;
 1428         return (error);
 1429 }
 1430 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1431     0, 0, sysctl_hlt_cpus, "IU",
 1432     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1433 
 1434 static int
 1435 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1436 {
 1437         int disable, error;
 1438 
 1439         disable = hlt_logical_cpus;
 1440         error = sysctl_handle_int(oidp, &disable, 0, req);
 1441         if (error || !req->newptr)
 1442                 return (error);
 1443 
 1444         if (disable)
 1445                 hlt_cpus_mask |= logical_cpus_mask;
 1446         else
 1447                 hlt_cpus_mask &= ~logical_cpus_mask;
 1448 
 1449         if (! hyperthreading_allowed)
 1450                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1451 
 1452         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1453                 hlt_cpus_mask &= ~(1<<0);
 1454 
 1455         hlt_logical_cpus = disable;
 1456         return (error);
 1457 }
 1458 
 1459 static int
 1460 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1461 {
 1462         int allowed, error;
 1463 
 1464         allowed = hyperthreading_allowed;
 1465         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1466         if (error || !req->newptr)
 1467                 return (error);
 1468 
 1469         if (allowed)
 1470                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1471         else
 1472                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1473 
 1474         if (logical_cpus_mask != 0 &&
 1475             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1476                 hlt_logical_cpus = 1;
 1477         else
 1478                 hlt_logical_cpus = 0;
 1479 
 1480         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1481                 hlt_cpus_mask &= ~(1<<0);
 1482 
 1483         hyperthreading_allowed = allowed;
 1484         return (error);
 1485 }
 1486 
 1487 static void
 1488 cpu_hlt_setup(void *dummy __unused)
 1489 {
 1490 
 1491         if (logical_cpus_mask != 0) {
 1492                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1493                     &hlt_logical_cpus);
 1494                 sysctl_ctx_init(&logical_cpu_clist);
 1495                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1496                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1497                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1498                     sysctl_hlt_logical_cpus, "IU", "");
 1499                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1500                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1501                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1502                     &logical_cpus_mask, 0, "");
 1503 
 1504                 if (hlt_logical_cpus)
 1505                         hlt_cpus_mask |= logical_cpus_mask;
 1506 
 1507                 /*
 1508                  * If necessary for security purposes, force
 1509                  * hyperthreading off, regardless of the value
 1510                  * of hlt_logical_cpus.
 1511                  */
 1512                 if (hyperthreading_cpus_mask) {
 1513                         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
 1514                             &hyperthreading_allowed);
 1515                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1516                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1517                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1518                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1519                         if (! hyperthreading_allowed)
 1520                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1521                 }
 1522         }
 1523 }
 1524 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1525 
 1526 int
 1527 mp_grab_cpu_hlt(void)
 1528 {
 1529         u_int mask = PCPU_GET(cpumask);
 1530 #ifdef MP_WATCHDOG
 1531         u_int cpuid = PCPU_GET(cpuid);
 1532 #endif
 1533         int retval;
 1534 
 1535 #ifdef MP_WATCHDOG
 1536         ap_watchdog(cpuid);
 1537 #endif
 1538 
 1539         retval = mask & hlt_cpus_mask;
 1540         while (mask & hlt_cpus_mask)
 1541                 __asm __volatile("sti; hlt" : : : "memory");
 1542         return (retval);
 1543 }

Cache object: deec121a05ad9ec7f8c57fd4480aeb8e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.