The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD: releng/6.4/sys/i386/i386/mp_machdep.c 181131 2008-08-01 20:31:07Z jhb $");
   28 
   29 #include "opt_apic.h"
   30 #include "opt_cpu.h"
   31 #include "opt_kdb.h"
   32 #include "opt_kstack_pages.h"
   33 #include "opt_mp_watchdog.h"
   34 #include "opt_sched.h"
   35 
   36 #if !defined(lint)
   37 #if !defined(SMP)
   38 #error How did you get here?
   39 #endif
   40 
   41 #ifndef DEV_APIC
   42 #error The apic device is required for SMP, add "device apic" to your config file.
   43 #endif
   44 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
   45 #error SMP not supported with CPU_DISABLE_CMPXCHG
   46 #endif
   47 #endif /* not lint */
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/cons.h>   /* cngetc() */
   53 #ifdef GPROF 
   54 #include <sys/gmon.h>
   55 #endif
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/memrange.h>
   61 #include <sys/mutex.h>
   62 #include <sys/pcpu.h>
   63 #include <sys/proc.h>
   64 #include <sys/smp.h>
   65 #include <sys/sysctl.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/pmap.h>
   70 #include <vm/vm_kern.h>
   71 #include <vm/vm_extern.h>
   72 
   73 #include <machine/apicreg.h>
   74 #include <machine/clock.h>
   75 #include <machine/md_var.h>
   76 #include <machine/mp_watchdog.h>
   77 #include <machine/pcb.h>
   78 #include <machine/psl.h>
   79 #include <machine/smp.h>
   80 #include <machine/smptests.h>   /** COUNT_XINVLTLB_HITS */
   81 #include <machine/specialreg.h>
   82 
   83 #define WARMBOOT_TARGET         0
   84 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   85 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   86 
   87 #define CMOS_REG                (0x70)
   88 #define CMOS_DATA               (0x71)
   89 #define BIOS_RESET              (0x0f)
   90 #define BIOS_WARM               (0x0a)
   91 
   92 /*
   93  * this code MUST be enabled here and in mpboot.s.
   94  * it follows the very early stages of AP boot by placing values in CMOS ram.
   95  * it NORMALLY will never be needed and thus the primitive method for enabling.
   96  *
   97 #define CHECK_POINTS
   98  */
   99 
  100 #if defined(CHECK_POINTS) && !defined(PC98)
  101 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  102 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  103 
  104 #define CHECK_INIT(D);                          \
  105         CHECK_WRITE(0x34, (D));                 \
  106         CHECK_WRITE(0x35, (D));                 \
  107         CHECK_WRITE(0x36, (D));                 \
  108         CHECK_WRITE(0x37, (D));                 \
  109         CHECK_WRITE(0x38, (D));                 \
  110         CHECK_WRITE(0x39, (D));
  111 
  112 #define CHECK_PRINT(S);                         \
  113         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  114            (S),                                 \
  115            CHECK_READ(0x34),                    \
  116            CHECK_READ(0x35),                    \
  117            CHECK_READ(0x36),                    \
  118            CHECK_READ(0x37),                    \
  119            CHECK_READ(0x38),                    \
  120            CHECK_READ(0x39));
  121 
  122 #else                           /* CHECK_POINTS */
  123 
  124 #define CHECK_INIT(D)
  125 #define CHECK_PRINT(S)
  126 #define CHECK_WRITE(A, D)
  127 
  128 #endif                          /* CHECK_POINTS */
  129 
  130 /*
  131  * Values to send to the POST hardware.
  132  */
  133 #define MP_BOOTADDRESS_POST     0x10
  134 #define MP_PROBE_POST           0x11
  135 #define MPTABLE_PASS1_POST      0x12
  136 
  137 #define MP_START_POST           0x13
  138 #define MP_ENABLE_POST          0x14
  139 #define MPTABLE_PASS2_POST      0x15
  140 
  141 #define START_ALL_APS_POST      0x16
  142 #define INSTALL_AP_TRAMP_POST   0x17
  143 #define START_AP_POST           0x18
  144 
  145 #define MP_ANNOUNCE_POST        0x19
  146 
  147 /* lock region used by kernel profiling */
  148 int     mcount_lock;
  149 
  150 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
  151 int     current_postcode;
  152 
  153 int     mp_naps;                /* # of Applications processors */
  154 int     boot_cpu_id = -1;       /* designated BSP */
  155 extern  int nkpt;
  156 
  157 extern  struct pcpu __pcpu[];
  158 
  159 /*
  160  * CPU topology map datastructures for HTT.
  161  */
  162 static struct cpu_group mp_groups[MAXCPU];
  163 static struct cpu_top mp_top;
  164 
  165 /* AP uses this during bootstrap.  Do not staticize.  */
  166 char *bootSTK;
  167 static int bootAP;
  168 
  169 /* Free these after use */
  170 void *bootstacks[MAXCPU];
  171 
  172 /* Hotwire a 0->4MB V==P mapping */
  173 extern pt_entry_t *KPTphys;
  174 
  175 struct pcb stoppcbs[MAXCPU];
  176 
  177 /* Variables needed for SMP tlb shootdown. */
  178 vm_offset_t smp_tlb_addr1;
  179 vm_offset_t smp_tlb_addr2;
  180 volatile int smp_tlb_wait;
  181 
  182 #ifdef KDB_STOP_NMI
  183 volatile cpumask_t ipi_nmi_pending;
  184 #endif 
  185 
  186 #ifdef COUNT_IPIS
  187 /* Interrupt counts. */
  188 #ifdef IPI_PREEMPTION
  189 static u_long *ipi_preempt_counts[MAXCPU];
  190 #endif
  191 static u_long *ipi_ast_counts[MAXCPU];
  192 u_long *ipi_invltlb_counts[MAXCPU];
  193 u_long *ipi_invlrng_counts[MAXCPU];
  194 u_long *ipi_invlpg_counts[MAXCPU];
  195 u_long *ipi_invlcache_counts[MAXCPU];
  196 u_long *ipi_rendezvous_counts[MAXCPU];
  197 u_long *ipi_lazypmap_counts[MAXCPU];
  198 #endif
  199 
  200 /*
  201  * Local data and functions.
  202  */
  203 
  204 static u_int logical_cpus;
  205 
  206 /* used to hold the AP's until we are ready to release them */
  207 static struct mtx ap_boot_mtx;
  208 
  209 /* Set to 1 once we're ready to let the APs out of the pen. */
  210 static volatile int aps_ready = 0;
  211 
  212 /*
  213  * Store data from cpu_add() until later in the boot when we actually setup
  214  * the APs.
  215  */
  216 struct cpu_info {
  217         int     cpu_present:1;
  218         int     cpu_bsp:1;
  219         int     cpu_disabled:1;
  220 } static cpu_info[MAX_APIC_ID + 1];
  221 static int cpu_apic_ids[MAXCPU];
  222 
  223 /* Holds pending bitmap based IPIs per CPU */
  224 static volatile u_int cpu_ipi_pending[MAXCPU];
  225 
  226 static u_int boot_address;
  227 
  228 static void     assign_cpu_ids(void);
  229 static void     install_ap_tramp(void);
  230 static void     set_interrupt_apic_ids(void);
  231 static int      start_all_aps(void);
  232 static int      start_ap(int apic_id);
  233 static void     release_aps(void *dummy);
  234 
  235 static int      hlt_logical_cpus;
  236 static u_int    hyperthreading_cpus;
  237 static cpumask_t        hyperthreading_cpus_mask;
  238 static int      hyperthreading_allowed;
  239 static struct   sysctl_ctx_list logical_cpu_clist;
  240 
  241 static void
  242 mem_range_AP_init(void)
  243 {
  244         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  245                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  246 }
  247 
  248 void
  249 mp_topology(void)
  250 {
  251         struct cpu_group *group;
  252         int logical_cpus;
  253         int apic_id;
  254         int groups;
  255         int cpu;
  256 
  257         /* Build the smp_topology map. */
  258         /* Nothing to do if there is no HTT support. */
  259         if ((cpu_feature & CPUID_HTT) == 0)
  260                 return;
  261         logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  262         if (logical_cpus <= 1)
  263                 return;
  264         group = &mp_groups[0];
  265         groups = 1;
  266         for (cpu = 0, apic_id = 0; apic_id <= MAX_APIC_ID; apic_id++) {
  267                 if (!cpu_info[apic_id].cpu_present)
  268                         continue;
  269                 /*
  270                  * If the current group has members and we're not a logical
  271                  * cpu, create a new group.
  272                  */
  273                 if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
  274                         group++;
  275                         groups++;
  276                 }
  277                 group->cg_count++;
  278                 group->cg_mask |= 1 << cpu;
  279                 cpu++;
  280         }
  281 
  282         mp_top.ct_count = groups;
  283         mp_top.ct_group = mp_groups;
  284         smp_topology = &mp_top;
  285 }
  286 
  287 
  288 /*
  289  * Calculate usable address in base memory for AP trampoline code.
  290  */
  291 u_int
  292 mp_bootaddress(u_int basemem)
  293 {
  294         POSTCODE(MP_BOOTADDRESS_POST);
  295 
  296         boot_address = trunc_page(basemem);     /* round down to 4k boundary */
  297         if ((basemem - boot_address) < bootMP_size)
  298                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  299 
  300         return boot_address;
  301 }
  302 
  303 void
  304 cpu_add(u_int apic_id, char boot_cpu)
  305 {
  306 
  307         if (apic_id > MAX_APIC_ID) {
  308                 panic("SMP: APIC ID %d too high", apic_id);
  309                 return;
  310         }
  311         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  312             apic_id));
  313         cpu_info[apic_id].cpu_present = 1;
  314         if (boot_cpu) {
  315                 KASSERT(boot_cpu_id == -1,
  316                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  317                     boot_cpu_id));
  318                 boot_cpu_id = apic_id;
  319                 cpu_info[apic_id].cpu_bsp = 1;
  320         }
  321         if (mp_ncpus < MAXCPU)
  322                 mp_ncpus++;
  323         if (bootverbose)
  324                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  325                     "AP");
  326 }
  327 
  328 void
  329 cpu_mp_setmaxid(void)
  330 {
  331 
  332         mp_maxid = MAXCPU - 1;
  333 }
  334 
  335 int
  336 cpu_mp_probe(void)
  337 {
  338 
  339         /*
  340          * Always record BSP in CPU map so that the mbuf init code works
  341          * correctly.
  342          */
  343         all_cpus = 1;
  344         if (mp_ncpus == 0) {
  345                 /*
  346                  * No CPUs were found, so this must be a UP system.  Setup
  347                  * the variables to represent a system with a single CPU
  348                  * with an id of 0.
  349                  */
  350                 mp_ncpus = 1;
  351                 return (0);
  352         }
  353 
  354         /* At least one CPU was found. */
  355         if (mp_ncpus == 1) {
  356                 /*
  357                  * One CPU was found, so this must be a UP system with
  358                  * an I/O APIC.
  359                  */
  360                 return (0);
  361         }
  362 
  363         /* At least two CPUs were found. */
  364         return (1);
  365 }
  366 
  367 /*
  368  * Initialize the IPI handlers and start up the AP's.
  369  */
  370 void
  371 cpu_mp_start(void)
  372 {
  373         int i;
  374         u_int threads_per_cache, p[4];
  375 
  376         POSTCODE(MP_START_POST);
  377 
  378         /* Initialize the logical ID to APIC ID table. */
  379         for (i = 0; i < MAXCPU; i++) {
  380                 cpu_apic_ids[i] = -1;
  381                 cpu_ipi_pending[i] = 0;
  382         }
  383 
  384         /* Install an inter-CPU IPI for TLB invalidation */
  385         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  386                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  387         setidt(IPI_INVLPG, IDTVEC(invlpg),
  388                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  389         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  390                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  391 
  392         /* Install an inter-CPU IPI for cache invalidation. */
  393         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  394                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  395 
  396         /* Install an inter-CPU IPI for lazy pmap release */
  397         setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
  398                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  399 
  400         /* Install an inter-CPU IPI for all-CPU rendezvous */
  401         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  402                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  403 
  404         /* Install generic inter-CPU IPI handler */
  405         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  406                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  407 
  408         /* Install an inter-CPU IPI for CPU stop/restart */
  409         setidt(IPI_STOP, IDTVEC(cpustop),
  410                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  411 
  412 
  413         /* Set boot_cpu_id if needed. */
  414         if (boot_cpu_id == -1) {
  415                 boot_cpu_id = PCPU_GET(apic_id);
  416                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  417         } else
  418                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  419                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  420         cpu_apic_ids[0] = boot_cpu_id;
  421 
  422         assign_cpu_ids();
  423 
  424         /* Start each Application Processor */
  425         start_all_aps();
  426 
  427         /* Setup the initial logical CPUs info. */
  428         logical_cpus = logical_cpus_mask = 0;
  429         if (cpu_feature & CPUID_HTT)
  430                 logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  431 
  432         /*
  433          * Work out if hyperthreading is *really* enabled.  This
  434          * is made really ugly by the fact that processors lie: Dual
  435          * core processors claim to be hyperthreaded even when they're
  436          * not, presumably because they want to be treated the same
  437          * way as HTT with respect to per-cpu software licensing.
  438          * At the time of writing (May 12, 2005) the only hyperthreaded
  439          * cpus are from Intel, and Intel's dual-core processors can be
  440          * identified via the "deterministic cache parameters" cpuid
  441          * calls.
  442          */
  443         /*
  444          * First determine if this is an Intel processor which claims
  445          * to have hyperthreading support.
  446          */
  447         if ((cpu_feature & CPUID_HTT) &&
  448             (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
  449                 /*
  450                  * If the "deterministic cache parameters" cpuid calls
  451                  * are available, use them.
  452                  */
  453                 if (cpu_high >= 4) {
  454                         /* Ask the processor about the L1 cache. */
  455                         for (i = 0; i < 1; i++) {
  456                                 cpuid_count(4, i, p);
  457                                 threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
  458                                 if (hyperthreading_cpus < threads_per_cache)
  459                                         hyperthreading_cpus = threads_per_cache;
  460                                 if ((p[0] & 0x1f) == 0)
  461                                         break;
  462                         }
  463                 }
  464 
  465                 /*
  466                  * If the deterministic cache parameters are not
  467                  * available, or if no caches were reported to exist,
  468                  * just accept what the HTT flag indicated.
  469                  */
  470                 if (hyperthreading_cpus == 0)
  471                         hyperthreading_cpus = logical_cpus;
  472         }
  473 
  474         set_interrupt_apic_ids();
  475 }
  476 
  477 
  478 /*
  479  * Print various information about the SMP system hardware and setup.
  480  */
  481 void
  482 cpu_mp_announce(void)
  483 {
  484         int i, x;
  485 
  486         POSTCODE(MP_ANNOUNCE_POST);
  487 
  488         /* List CPUs */
  489         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  490         for (i = 1, x = 0; x <= MAX_APIC_ID; x++) {
  491                 if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
  492                         continue;
  493                 if (cpu_info[x].cpu_disabled)
  494                         printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
  495                 else {
  496                         KASSERT(i < mp_ncpus,
  497                             ("mp_ncpus and actual cpus are out of whack"));
  498                         printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
  499                 }
  500         }
  501 }
  502 
  503 /*
  504  * AP CPU's call this to initialize themselves.
  505  */
  506 void
  507 init_secondary(void)
  508 {
  509         struct pcpu *pc;
  510         vm_offset_t addr;
  511         int     gsel_tss;
  512         int     x, myid;
  513         u_int   cr0;
  514 
  515         /* bootAP is set in start_ap() to our ID. */
  516         myid = bootAP;
  517 
  518         /* Get per-cpu data */
  519         pc = &__pcpu[myid];
  520 
  521         /* prime data page for it to use */
  522         pcpu_init(pc, myid, sizeof(struct pcpu));
  523         pc->pc_apic_id = cpu_apic_ids[myid];
  524         pc->pc_prvspace = pc;
  525         pc->pc_curthread = 0;
  526 
  527         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
  528         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
  529 
  530         for (x = 0; x < NGDT; x++) {
  531                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  532         }
  533 
  534         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  535         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  536         lgdt(&r_gdt);                   /* does magic intra-segment return */
  537 
  538         lidt(&r_idt);
  539 
  540         lldt(_default_ldt);
  541         PCPU_SET(currentldt, _default_ldt);
  542 
  543         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  544         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  545         PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
  546         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
  547         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
  548         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  549         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  550         ltr(gsel_tss);
  551 
  552         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  553 
  554         /*
  555          * Set to a known state:
  556          * Set by mpboot.s: CR0_PG, CR0_PE
  557          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  558          */
  559         cr0 = rcr0();
  560         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  561         load_cr0(cr0);
  562         CHECK_WRITE(0x38, 5);
  563         
  564         /* Disable local APIC just to be sure. */
  565         lapic_disable();
  566 
  567         /* signal our startup to the BSP. */
  568         mp_naps++;
  569         CHECK_WRITE(0x39, 6);
  570 
  571         /* Spin until the BSP releases the AP's. */
  572         while (!aps_ready)
  573                 ia32_pause();
  574 
  575         /* BSP may have changed PTD while we were waiting */
  576         invltlb();
  577         for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
  578                 invlpg(addr);
  579 
  580 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  581         lidt(&r_idt);
  582 #endif
  583 
  584         /* Initialize the PAT MSR if present. */
  585         pmap_init_pat();
  586 
  587         /* set up CPU registers and state */
  588         cpu_setregs();
  589 
  590         /* set up FPU state on the AP */
  591         npxinit(__INITIAL_NPXCW__);
  592 
  593         /* set up SSE registers */
  594         enable_sse();
  595 
  596         /* A quick check from sanity claus */
  597         if (PCPU_GET(apic_id) != lapic_id()) {
  598                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  599                 printf("SMP: actual apic_id = %d\n", lapic_id());
  600                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  601                 panic("cpuid mismatch! boom!!");
  602         }
  603 
  604         /* Initialize curthread. */
  605         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  606         PCPU_SET(curthread, PCPU_GET(idlethread));
  607 
  608         mtx_lock_spin(&ap_boot_mtx);
  609 
  610         /* Init local apic for irq's */
  611         lapic_setup(1);
  612 
  613         /* Set memory range attributes for this CPU to match the BSP */
  614         mem_range_AP_init();
  615 
  616         smp_cpus++;
  617 
  618         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  619         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  620 
  621         /* Determine if we are a logical CPU. */
  622         if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
  623                 logical_cpus_mask |= PCPU_GET(cpumask);
  624         
  625         /* Determine if we are a hyperthread. */
  626         if (hyperthreading_cpus > 1 &&
  627             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  628                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  629 
  630         /* Build our map of 'other' CPUs. */
  631         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  632 
  633         if (bootverbose)
  634                 lapic_dump("AP");
  635 
  636         if (smp_cpus == mp_ncpus) {
  637                 /* enable IPI's, tlb shootdown, freezes etc */
  638                 atomic_store_rel_int(&smp_started, 1);
  639                 smp_active = 1;  /* historic */
  640         }
  641 
  642         mtx_unlock_spin(&ap_boot_mtx);
  643 
  644         /* wait until all the AP's are up */
  645         while (smp_started == 0)
  646                 ia32_pause();
  647 
  648         /* ok, now grab sched_lock and enter the scheduler */
  649         mtx_lock_spin(&sched_lock);
  650 
  651         /*
  652          * Correct spinlock nesting.  The idle thread context that we are
  653          * borrowing was created so that it would start out with a single
  654          * spin lock (sched_lock) held in fork_trampoline().  Since we've
  655          * explicitly acquired locks in this function, the nesting count
  656          * is now 2 rather than 1.  Since we are nested, calling
  657          * spinlock_exit() will simply adjust the counts without allowing
  658          * spin lock using code to interrupt us.
  659          */
  660         spinlock_exit();
  661         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
  662 
  663         binuptime(PCPU_PTR(switchtime));
  664         PCPU_SET(switchticks, ticks);
  665 
  666         cpu_throw(NULL, choosethread());        /* doesn't return */
  667 
  668         panic("scheduler returned us to %s", __func__);
  669         /* NOTREACHED */
  670 }
  671 
  672 /*******************************************************************
  673  * local functions and data
  674  */
  675 
  676 /*
  677  * We tell the I/O APIC code about all the CPUs we want to receive
  678  * interrupts.  If we don't want certain CPUs to receive IRQs we
  679  * can simply not tell the I/O APIC code about them in this function.
  680  * We also do not tell it about the BSP since it tells itself about
  681  * the BSP internally to work with UP kernels and on UP machines.
  682  */
  683 static void
  684 set_interrupt_apic_ids(void)
  685 {
  686         u_int apic_id;
  687 
  688         for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
  689                 if (!cpu_info[apic_id].cpu_present)
  690                         continue;
  691                 if (cpu_info[apic_id].cpu_bsp)
  692                         continue;
  693                 if (cpu_info[apic_id].cpu_disabled)
  694                         continue;
  695 
  696                 /* Don't let hyperthreads service interrupts. */
  697                 if (hyperthreading_cpus > 1 &&
  698                     apic_id % hyperthreading_cpus != 0)
  699                         continue;
  700 
  701                 intr_add_cpu(apic_id);
  702         }
  703 }
  704 
  705 /*
  706  * Assign logical CPU IDs to local APICs.
  707  */
  708 static void
  709 assign_cpu_ids(void)
  710 {
  711         u_int i;
  712 
  713         /* Check for explicitly disabled CPUs. */
  714         for (i = 0; i <= MAX_APIC_ID; i++) {
  715                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  716                         continue;
  717 
  718                 /* Don't use this CPU if it has been disabled by a tunable. */
  719                 if (resource_disabled("lapic", i)) {
  720                         cpu_info[i].cpu_disabled = 1;
  721                         continue;
  722                 }
  723         }
  724 
  725         /*
  726          * Assign CPU IDs to local APIC IDs and disable any CPUs
  727          * beyond MAXCPU.  CPU 0 has already been assigned to the BSP,
  728          * so we only have to assign IDs for APs.
  729          */
  730         mp_ncpus = 1;
  731         for (i = 0; i <= MAX_APIC_ID; i++) {
  732                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  733                     cpu_info[i].cpu_disabled)
  734                         continue;
  735 
  736                 if (mp_ncpus < MAXCPU) {
  737                         cpu_apic_ids[mp_ncpus] = i;
  738                         mp_ncpus++;
  739                 } else
  740                         cpu_info[i].cpu_disabled = 1;
  741         }
  742         KASSERT(mp_maxid >= mp_ncpus - 1,
  743             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  744             mp_ncpus));         
  745 }
  746 
  747 /*
  748  * start each AP in our list
  749  */
  750 static int
  751 start_all_aps(void)
  752 {
  753 #ifndef PC98
  754         u_char mpbiosreason;
  755 #endif
  756         uintptr_t kptbase;
  757         u_int32_t mpbioswarmvec;
  758         int apic_id, cpu, i;
  759 
  760         POSTCODE(START_ALL_APS_POST);
  761 
  762         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  763 
  764         /* install the AP 1st level boot code */
  765         install_ap_tramp();
  766 
  767         /* save the current value of the warm-start vector */
  768         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  769 #ifndef PC98
  770         outb(CMOS_REG, BIOS_RESET);
  771         mpbiosreason = inb(CMOS_DATA);
  772 #endif
  773 
  774         /* set up temporary P==V mapping for AP boot */
  775         /* XXX this is a hack, we should boot the AP on its own stack/PTD */
  776         kptbase = (uintptr_t)(void *)KPTphys;
  777         for (i = 0; i < NKPT; i++)
  778                 PTD[i] = (pd_entry_t)(PG_V | PG_RW |
  779                     ((kptbase + i * PAGE_SIZE) & PG_FRAME));
  780         invltlb();
  781 
  782         /* start each AP */
  783         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  784                 apic_id = cpu_apic_ids[cpu];
  785 
  786                 /* allocate and set up a boot stack data page */
  787                 bootstacks[cpu] = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  788 
  789                 /* setup a vector to our boot code */
  790                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  791                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  792 #ifndef PC98
  793                 outb(CMOS_REG, BIOS_RESET);
  794                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  795 #endif
  796 
  797                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
  798                 bootAP = cpu;
  799 
  800                 /* attempt to start the Application Processor */
  801                 CHECK_INIT(99); /* setup checkpoints */
  802                 if (!start_ap(apic_id)) {
  803                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  804                         CHECK_PRINT("trace");   /* show checkpoints */
  805                         /* better panic as the AP may be running loose */
  806                         printf("panic y/n? [y] ");
  807                         if (cngetc() != 'n')
  808                                 panic("bye-bye");
  809                 }
  810                 CHECK_PRINT("trace");           /* show checkpoints */
  811 
  812                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  813         }
  814 
  815         /* build our map of 'other' CPUs */
  816         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  817 
  818         /* restore the warmstart vector */
  819         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  820 
  821 #ifndef PC98
  822         outb(CMOS_REG, BIOS_RESET);
  823         outb(CMOS_DATA, mpbiosreason);
  824 #endif
  825 
  826         /* Undo V==P hack from above */
  827         for (i = 0; i < NKPT; i++)
  828                 PTD[i] = 0;
  829         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
  830 
  831         /* number of APs actually started */
  832         return mp_naps;
  833 }
  834 
  835 /*
  836  * load the 1st level AP boot code into base memory.
  837  */
  838 
  839 /* targets for relocation */
  840 extern void bigJump(void);
  841 extern void bootCodeSeg(void);
  842 extern void bootDataSeg(void);
  843 extern void MPentry(void);
  844 extern u_int MP_GDT;
  845 extern u_int mp_gdtbase;
  846 
  847 static void
  848 install_ap_tramp(void)
  849 {
  850         int     x;
  851         int     size = *(int *) ((u_long) & bootMP_size);
  852         vm_offset_t va = boot_address + KERNBASE;
  853         u_char *src = (u_char *) ((u_long) bootMP);
  854         u_char *dst = (u_char *) va;
  855         u_int   boot_base = (u_int) bootMP;
  856         u_int8_t *dst8;
  857         u_int16_t *dst16;
  858         u_int32_t *dst32;
  859 
  860         POSTCODE(INSTALL_AP_TRAMP_POST);
  861 
  862         KASSERT (size <= PAGE_SIZE,
  863             ("'size' do not fit into PAGE_SIZE, as expected."));
  864         pmap_kenter(va, boot_address);
  865         pmap_invalidate_page (kernel_pmap, va);
  866         for (x = 0; x < size; ++x)
  867                 *dst++ = *src++;
  868 
  869         /*
  870          * modify addresses in code we just moved to basemem. unfortunately we
  871          * need fairly detailed info about mpboot.s for this to work.  changes
  872          * to mpboot.s might require changes here.
  873          */
  874 
  875         /* boot code is located in KERNEL space */
  876         dst = (u_char *) va;
  877 
  878         /* modify the lgdt arg */
  879         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
  880         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
  881 
  882         /* modify the ljmp target for MPentry() */
  883         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
  884         *dst32 = ((u_int) MPentry - KERNBASE);
  885 
  886         /* modify the target for boot code segment */
  887         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
  888         dst8 = (u_int8_t *) (dst16 + 1);
  889         *dst16 = (u_int) boot_address & 0xffff;
  890         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  891 
  892         /* modify the target for boot data segment */
  893         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
  894         dst8 = (u_int8_t *) (dst16 + 1);
  895         *dst16 = (u_int) boot_address & 0xffff;
  896         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  897 }
  898 
  899 /*
  900  * This function starts the AP (application processor) identified
  901  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  902  * to accomplish this.  This is necessary because of the nuances
  903  * of the different hardware we might encounter.  It isn't pretty,
  904  * but it seems to work.
  905  */
  906 static int
  907 start_ap(int apic_id)
  908 {
  909         int vector, ms;
  910         int cpus;
  911 
  912         POSTCODE(START_AP_POST);
  913 
  914         /* calculate the vector */
  915         vector = (boot_address >> 12) & 0xff;
  916 
  917         /* used as a watchpoint to signal AP startup */
  918         cpus = mp_naps;
  919 
  920         /*
  921          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  922          * and running the target CPU. OR this INIT IPI might be latched (P5
  923          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  924          * ignored.
  925          */
  926 
  927         /* do an INIT IPI: assert RESET */
  928         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  929             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  930 
  931         /* wait for pending status end */
  932         lapic_ipi_wait(-1);
  933 
  934         /* do an INIT IPI: deassert RESET */
  935         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
  936             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
  937 
  938         /* wait for pending status end */
  939         DELAY(10000);           /* wait ~10mS */
  940         lapic_ipi_wait(-1);
  941 
  942         /*
  943          * next we do a STARTUP IPI: the previous INIT IPI might still be
  944          * latched, (P5 bug) this 1st STARTUP would then terminate
  945          * immediately, and the previously started INIT IPI would continue. OR
  946          * the previous INIT IPI has already run. and this STARTUP IPI will
  947          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
  948          * will run.
  949          */
  950 
  951         /* do a STARTUP IPI */
  952         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  953             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  954             vector, apic_id);
  955         lapic_ipi_wait(-1);
  956         DELAY(200);             /* wait ~200uS */
  957 
  958         /*
  959          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
  960          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
  961          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
  962          * recognized after hardware RESET or INIT IPI.
  963          */
  964 
  965         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  966             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  967             vector, apic_id);
  968         lapic_ipi_wait(-1);
  969         DELAY(200);             /* wait ~200uS */
  970 
  971         /* Wait up to 5 seconds for it to start. */
  972         for (ms = 0; ms < 5000; ms++) {
  973                 if (mp_naps > cpus)
  974                         return 1;       /* return SUCCESS */
  975                 DELAY(1000);
  976         }
  977         return 0;               /* return FAILURE */
  978 }
  979 
  980 #ifdef COUNT_XINVLTLB_HITS
  981 u_int xhits_gbl[MAXCPU];
  982 u_int xhits_pg[MAXCPU];
  983 u_int xhits_rng[MAXCPU];
  984 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
  985 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
  986     sizeof(xhits_gbl), "IU", "");
  987 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
  988     sizeof(xhits_pg), "IU", "");
  989 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
  990     sizeof(xhits_rng), "IU", "");
  991 
  992 u_int ipi_global;
  993 u_int ipi_page;
  994 u_int ipi_range;
  995 u_int ipi_range_size;
  996 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
  997 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
  998 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
  999 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
 1000     0, "");
 1001 
 1002 u_int ipi_masked_global;
 1003 u_int ipi_masked_page;
 1004 u_int ipi_masked_range;
 1005 u_int ipi_masked_range_size;
 1006 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1007     &ipi_masked_global, 0, "");
 1008 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1009     &ipi_masked_page, 0, "");
 1010 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1011     &ipi_masked_range, 0, "");
 1012 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1013     &ipi_masked_range_size, 0, "");
 1014 #endif /* COUNT_XINVLTLB_HITS */
 1015 
 1016 /*
 1017  * Flush the TLB on all other CPU's
 1018  */
 1019 static void
 1020 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1021 {
 1022         u_int ncpu;
 1023 
 1024         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1025         if (ncpu < 1)
 1026                 return;         /* no other cpus */
 1027         if (!(read_eflags() & PSL_I))
 1028                 panic("%s: interrupts disabled", __func__);
 1029         mtx_lock_spin(&smp_ipi_mtx);
 1030         smp_tlb_addr1 = addr1;
 1031         smp_tlb_addr2 = addr2;
 1032         atomic_store_rel_int(&smp_tlb_wait, 0);
 1033         ipi_all_but_self(vector);
 1034         while (smp_tlb_wait < ncpu)
 1035                 ia32_pause();
 1036         mtx_unlock_spin(&smp_ipi_mtx);
 1037 }
 1038 
 1039 static void
 1040 smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1041 {
 1042         int ncpu, othercpus;
 1043 
 1044         othercpus = mp_ncpus - 1;
 1045         if (mask == (u_int)-1) {
 1046                 ncpu = othercpus;
 1047                 if (ncpu < 1)
 1048                         return;
 1049         } else {
 1050                 mask &= ~PCPU_GET(cpumask);
 1051                 if (mask == 0)
 1052                         return;
 1053                 ncpu = bitcount32(mask);
 1054                 if (ncpu > othercpus) {
 1055                         /* XXX this should be a panic offence */
 1056                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1057                             ncpu, othercpus);
 1058                         ncpu = othercpus;
 1059                 }
 1060                 /* XXX should be a panic, implied by mask == 0 above */
 1061                 if (ncpu < 1)
 1062                         return;
 1063         }
 1064         if (!(read_eflags() & PSL_I))
 1065                 panic("%s: interrupts disabled", __func__);
 1066         mtx_lock_spin(&smp_ipi_mtx);
 1067         smp_tlb_addr1 = addr1;
 1068         smp_tlb_addr2 = addr2;
 1069         atomic_store_rel_int(&smp_tlb_wait, 0);
 1070         if (mask == (u_int)-1)
 1071                 ipi_all_but_self(vector);
 1072         else
 1073                 ipi_selected(mask, vector);
 1074         while (smp_tlb_wait < ncpu)
 1075                 ia32_pause();
 1076         mtx_unlock_spin(&smp_ipi_mtx);
 1077 }
 1078 
 1079 void
 1080 smp_cache_flush(void)
 1081 {
 1082 
 1083         if (smp_started)
 1084                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1085 }
 1086 
 1087 void
 1088 smp_invltlb(void)
 1089 {
 1090 
 1091         if (smp_started) {
 1092                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1093 #ifdef COUNT_XINVLTLB_HITS
 1094                 ipi_global++;
 1095 #endif
 1096         }
 1097 }
 1098 
 1099 void
 1100 smp_invlpg(vm_offset_t addr)
 1101 {
 1102 
 1103         if (smp_started) {
 1104                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1105 #ifdef COUNT_XINVLTLB_HITS
 1106                 ipi_page++;
 1107 #endif
 1108         }
 1109 }
 1110 
 1111 void
 1112 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1113 {
 1114 
 1115         if (smp_started) {
 1116                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1117 #ifdef COUNT_XINVLTLB_HITS
 1118                 ipi_range++;
 1119                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1120 #endif
 1121         }
 1122 }
 1123 
 1124 void
 1125 smp_masked_invltlb(u_int mask)
 1126 {
 1127 
 1128         if (smp_started) {
 1129                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1130 #ifdef COUNT_XINVLTLB_HITS
 1131                 ipi_masked_global++;
 1132 #endif
 1133         }
 1134 }
 1135 
 1136 void
 1137 smp_masked_invlpg(u_int mask, vm_offset_t addr)
 1138 {
 1139 
 1140         if (smp_started) {
 1141                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1142 #ifdef COUNT_XINVLTLB_HITS
 1143                 ipi_masked_page++;
 1144 #endif
 1145         }
 1146 }
 1147 
 1148 void
 1149 smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
 1150 {
 1151 
 1152         if (smp_started) {
 1153                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1154 #ifdef COUNT_XINVLTLB_HITS
 1155                 ipi_masked_range++;
 1156                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1157 #endif
 1158         }
 1159 }
 1160 
 1161 
 1162 void
 1163 ipi_bitmap_handler(struct clockframe frame)
 1164 {
 1165         int cpu = PCPU_GET(cpuid);
 1166         u_int ipi_bitmap;
 1167 
 1168         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1169 
 1170 #ifdef IPI_PREEMPTION
 1171         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1172 #ifdef COUNT_IPIS
 1173                 *ipi_preempt_counts[cpu]++;
 1174 #endif
 1175                 mtx_lock_spin(&sched_lock);
 1176                 /* Don't preempt the idle thread */
 1177                 if (curthread != PCPU_GET(idlethread)) {
 1178                         struct thread *running_thread = curthread;
 1179                         if (running_thread->td_critnest > 1) 
 1180                                 running_thread->td_owepreempt = 1;
 1181                         else            
 1182                                 mi_switch(SW_INVOL | SW_PREEMPT, NULL);
 1183                 }
 1184                 mtx_unlock_spin(&sched_lock);
 1185         }
 1186 #endif
 1187 
 1188         if (ipi_bitmap & (1 << IPI_AST)) {
 1189 #ifdef COUNT_IPIS
 1190                 *ipi_ast_counts[cpu]++;
 1191 #endif
 1192                 /* Nothing to do for AST */
 1193         }
 1194 }
 1195 
 1196 /*
 1197  * send an IPI to a set of cpus.
 1198  */
 1199 void
 1200 ipi_selected(u_int32_t cpus, u_int ipi)
 1201 {
 1202         int cpu;
 1203         u_int bitmap = 0;
 1204         u_int old_pending;
 1205         u_int new_pending;
 1206 
 1207         if (IPI_IS_BITMAPED(ipi)) { 
 1208                 bitmap = 1 << ipi;
 1209                 ipi = IPI_BITMAP_VECTOR;
 1210         }
 1211 
 1212         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1213         while ((cpu = ffs(cpus)) != 0) {
 1214                 cpu--;
 1215                 cpus &= ~(1 << cpu);
 1216 
 1217                 KASSERT(cpu_apic_ids[cpu] != -1,
 1218                     ("IPI to non-existent CPU %d", cpu));
 1219 
 1220                 if (bitmap) {
 1221                         do {
 1222                                 old_pending = cpu_ipi_pending[cpu];
 1223                                 new_pending = old_pending | bitmap;
 1224                         } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));  
 1225 
 1226                         if (old_pending)
 1227                                 continue;
 1228                 }
 1229 
 1230                 lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1231         }
 1232 
 1233 }
 1234 
 1235 /*
 1236  * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
 1237  */
 1238 void
 1239 ipi_all(u_int ipi)
 1240 {
 1241 
 1242         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1243         lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
 1244 }
 1245 
 1246 /*
 1247  * send an IPI to all CPUs EXCEPT myself
 1248  */
 1249 void
 1250 ipi_all_but_self(u_int ipi)
 1251 {
 1252 
 1253         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1254         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1255 }
 1256 
 1257 /*
 1258  * send an IPI to myself
 1259  */
 1260 void
 1261 ipi_self(u_int ipi)
 1262 {
 1263 
 1264         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1265         lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
 1266 }
 1267 
 1268 #ifdef KDB_STOP_NMI
 1269 /*
 1270  * send NMI IPI to selected CPUs
 1271  */
 1272 
 1273 #define BEFORE_SPIN     1000000
 1274 
 1275 void
 1276 ipi_nmi_selected(u_int32_t cpus)
 1277 {
 1278 
 1279         int cpu;
 1280         register_t icrlo;
 1281 
 1282         icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT 
 1283                 | APIC_TRIGMOD_EDGE; 
 1284         
 1285         CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
 1286 
 1287 
 1288         atomic_set_int(&ipi_nmi_pending, cpus);
 1289 
 1290 
 1291         while ((cpu = ffs(cpus)) != 0) {
 1292                 cpu--;
 1293                 cpus &= ~(1 << cpu);
 1294 
 1295                 KASSERT(cpu_apic_ids[cpu] != -1,
 1296                     ("IPI NMI to non-existent CPU %d", cpu));
 1297                 
 1298                 /* Wait for an earlier IPI to finish. */
 1299                 if (!lapic_ipi_wait(BEFORE_SPIN))
 1300                         panic("ipi_nmi_selected: previous IPI has not cleared");
 1301 
 1302                 lapic_ipi_raw(icrlo,cpu_apic_ids[cpu]);
 1303         }
 1304 }
 1305 
 1306 
 1307 int
 1308 ipi_nmi_handler()
 1309 {
 1310         int cpu  = PCPU_GET(cpuid);
 1311 
 1312         if(!(atomic_load_acq_int(&ipi_nmi_pending) & (1 << cpu)))
 1313                 return 1;
 1314 
 1315         atomic_clear_int(&ipi_nmi_pending,1 << cpu);
 1316 
 1317         savectx(&stoppcbs[cpu]);
 1318 
 1319         /* Indicate that we are stopped */
 1320         atomic_set_int(&stopped_cpus,1 << cpu);
 1321 
 1322 
 1323         /* Wait for restart */
 1324         while(!(atomic_load_acq_int(&started_cpus) & (1 << cpu)))
 1325             ia32_pause();
 1326 
 1327         atomic_clear_int(&started_cpus,1 << cpu);
 1328         atomic_clear_int(&stopped_cpus,1 << cpu);
 1329 
 1330         if(cpu == 0 && cpustop_restartfunc != NULL)
 1331                 cpustop_restartfunc();
 1332 
 1333         return 0;
 1334 }
 1335      
 1336 #endif /* KDB_STOP_NMI */
 1337 
 1338 /*
 1339  * This is called once the rest of the system is up and running and we're
 1340  * ready to let the AP's out of the pen.
 1341  */
 1342 static void
 1343 release_aps(void *dummy __unused)
 1344 {
 1345 
 1346         if (mp_ncpus == 1) 
 1347                 return;
 1348         mtx_lock_spin(&sched_lock);
 1349         atomic_store_rel_int(&aps_ready, 1);
 1350         while (smp_started == 0)
 1351                 ia32_pause();
 1352         mtx_unlock_spin(&sched_lock);
 1353 }
 1354 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1355 
 1356 static int
 1357 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1358 {
 1359         u_int mask;
 1360         int error;
 1361 
 1362         mask = hlt_cpus_mask;
 1363         error = sysctl_handle_int(oidp, &mask, 0, req);
 1364         if (error || !req->newptr)
 1365                 return (error);
 1366 
 1367         if (logical_cpus_mask != 0 &&
 1368             (mask & logical_cpus_mask) == logical_cpus_mask)
 1369                 hlt_logical_cpus = 1;
 1370         else
 1371                 hlt_logical_cpus = 0;
 1372 
 1373         if (! hyperthreading_allowed)
 1374                 mask |= hyperthreading_cpus_mask;
 1375 
 1376         if ((mask & all_cpus) == all_cpus)
 1377                 mask &= ~(1<<0);
 1378         hlt_cpus_mask = mask;
 1379         return (error);
 1380 }
 1381 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1382     0, 0, sysctl_hlt_cpus, "IU",
 1383     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1384 
 1385 static int
 1386 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1387 {
 1388         int disable, error;
 1389 
 1390         disable = hlt_logical_cpus;
 1391         error = sysctl_handle_int(oidp, &disable, 0, req);
 1392         if (error || !req->newptr)
 1393                 return (error);
 1394 
 1395         if (disable)
 1396                 hlt_cpus_mask |= logical_cpus_mask;
 1397         else
 1398                 hlt_cpus_mask &= ~logical_cpus_mask;
 1399 
 1400         if (! hyperthreading_allowed)
 1401                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1402 
 1403         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1404                 hlt_cpus_mask &= ~(1<<0);
 1405 
 1406         hlt_logical_cpus = disable;
 1407         return (error);
 1408 }
 1409 
 1410 static int
 1411 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1412 {
 1413         int allowed, error;
 1414 
 1415         allowed = hyperthreading_allowed;
 1416         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1417         if (error || !req->newptr)
 1418                 return (error);
 1419 
 1420         if (allowed)
 1421                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1422         else
 1423                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1424 
 1425         if (logical_cpus_mask != 0 &&
 1426             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1427                 hlt_logical_cpus = 1;
 1428         else
 1429                 hlt_logical_cpus = 0;
 1430 
 1431         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1432                 hlt_cpus_mask &= ~(1<<0);
 1433 
 1434         hyperthreading_allowed = allowed;
 1435         return (error);
 1436 }
 1437 
 1438 static void
 1439 cpu_hlt_setup(void *dummy __unused)
 1440 {
 1441 
 1442         if (logical_cpus_mask != 0) {
 1443                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1444                     &hlt_logical_cpus);
 1445                 sysctl_ctx_init(&logical_cpu_clist);
 1446                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1447                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1448                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1449                     sysctl_hlt_logical_cpus, "IU", "");
 1450                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1451                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1452                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1453                     &logical_cpus_mask, 0, "");
 1454 
 1455                 if (hlt_logical_cpus)
 1456                         hlt_cpus_mask |= logical_cpus_mask;
 1457 
 1458                 /*
 1459                  * If necessary for security purposes, force
 1460                  * hyperthreading off, regardless of the value
 1461                  * of hlt_logical_cpus.
 1462                  */
 1463                 if (hyperthreading_cpus_mask) {
 1464                         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
 1465                             &hyperthreading_allowed);
 1466                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1467                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1468                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1469                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1470                         if (! hyperthreading_allowed)
 1471                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1472                 }
 1473         }
 1474 }
 1475 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1476 
 1477 int
 1478 mp_grab_cpu_hlt(void)
 1479 {
 1480         u_int mask = PCPU_GET(cpumask);
 1481 #ifdef MP_WATCHDOG
 1482         u_int cpuid = PCPU_GET(cpuid);
 1483 #endif
 1484         int retval;
 1485 
 1486 #ifdef MP_WATCHDOG
 1487         ap_watchdog(cpuid);
 1488 #endif
 1489 
 1490         retval = mask & hlt_cpus_mask;
 1491         while (mask & hlt_cpus_mask)
 1492                 __asm __volatile("sti; hlt" : : : "memory");
 1493         return (retval);
 1494 }
 1495 
 1496 #ifdef COUNT_IPIS
 1497 /*
 1498  * Setup interrupt counters for IPI handlers.
 1499  */
 1500 static void
 1501 mp_ipi_intrcnt(void *dummy)
 1502 {
 1503         char buf[64];
 1504         int i;
 1505 
 1506         for (i = 0; i < mp_maxid; i++) {
 1507                 if (CPU_ABSENT(i))
 1508                         continue;
 1509                 snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
 1510                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1511                 snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
 1512                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1513                 snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
 1514                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1515 #ifdef IPI_PREEMPTION
 1516                 snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
 1517                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1518 #endif
 1519                 snprintf(buf, sizeof(buf), "cpu%d: ast", i);
 1520                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1521                 snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
 1522                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1523                 snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
 1524                 intrcnt_add(buf, &ipi_lazypmap_counts[i]);
 1525         }               
 1526 }
 1527 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL)
 1528 #endif

Cache object: 7c0cc6ddfe9becfae412bbdda787726b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.