The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD$");
   28 
   29 #include "opt_apic.h"
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_mp_watchdog.h"
   33 #include "opt_sched.h"
   34 #include "opt_smp.h"
   35 
   36 #if !defined(lint)
   37 #if !defined(SMP)
   38 #error How did you get here?
   39 #endif
   40 
   41 #ifndef DEV_APIC
   42 #error The apic device is required for SMP, add "device apic" to your config file.
   43 #endif
   44 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
   45 #error SMP not supported with CPU_DISABLE_CMPXCHG
   46 #endif
   47 #endif /* not lint */
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/cons.h>   /* cngetc() */
   53 #ifdef GPROF 
   54 #include <sys/gmon.h>
   55 #endif
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/memrange.h>
   61 #include <sys/mutex.h>
   62 #include <sys/pcpu.h>
   63 #include <sys/proc.h>
   64 #include <sys/sched.h>
   65 #include <sys/smp.h>
   66 #include <sys/sysctl.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/vm_param.h>
   70 #include <vm/pmap.h>
   71 #include <vm/vm_kern.h>
   72 #include <vm/vm_extern.h>
   73 
   74 #include <machine/apicreg.h>
   75 #include <machine/md_var.h>
   76 #include <machine/mp_watchdog.h>
   77 #include <machine/pcb.h>
   78 #include <machine/psl.h>
   79 #include <machine/smp.h>
   80 #include <machine/specialreg.h>
   81 
   82 #define WARMBOOT_TARGET         0
   83 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   84 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   85 
   86 #define CMOS_REG                (0x70)
   87 #define CMOS_DATA               (0x71)
   88 #define BIOS_RESET              (0x0f)
   89 #define BIOS_WARM               (0x0a)
   90 
   91 /*
   92  * this code MUST be enabled here and in mpboot.s.
   93  * it follows the very early stages of AP boot by placing values in CMOS ram.
   94  * it NORMALLY will never be needed and thus the primitive method for enabling.
   95  *
   96 #define CHECK_POINTS
   97  */
   98 
   99 #if defined(CHECK_POINTS) && !defined(PC98)
  100 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  101 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  102 
  103 #define CHECK_INIT(D);                          \
  104         CHECK_WRITE(0x34, (D));                 \
  105         CHECK_WRITE(0x35, (D));                 \
  106         CHECK_WRITE(0x36, (D));                 \
  107         CHECK_WRITE(0x37, (D));                 \
  108         CHECK_WRITE(0x38, (D));                 \
  109         CHECK_WRITE(0x39, (D));
  110 
  111 #define CHECK_PRINT(S);                         \
  112         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  113            (S),                                 \
  114            CHECK_READ(0x34),                    \
  115            CHECK_READ(0x35),                    \
  116            CHECK_READ(0x36),                    \
  117            CHECK_READ(0x37),                    \
  118            CHECK_READ(0x38),                    \
  119            CHECK_READ(0x39));
  120 
  121 #else                           /* CHECK_POINTS */
  122 
  123 #define CHECK_INIT(D)
  124 #define CHECK_PRINT(S)
  125 #define CHECK_WRITE(A, D)
  126 
  127 #endif                          /* CHECK_POINTS */
  128 
  129 /* lock region used by kernel profiling */
  130 int     mcount_lock;
  131 
  132 int     mp_naps;                /* # of Applications processors */
  133 int     boot_cpu_id = -1;       /* designated BSP */
  134 extern  int nkpt;
  135 
  136 extern  struct pcpu __pcpu[];
  137 
  138 /*
  139  * CPU topology map datastructures for HTT.
  140  */
  141 static struct cpu_group mp_groups[MAXCPU];
  142 static struct cpu_top mp_top;
  143 
  144 /* AP uses this during bootstrap.  Do not staticize.  */
  145 char *bootSTK;
  146 static int bootAP;
  147 
  148 /* Free these after use */
  149 void *bootstacks[MAXCPU];
  150 
  151 /* Hotwire a 0->4MB V==P mapping */
  152 extern pt_entry_t *KPTphys;
  153 
  154 struct pcb stoppcbs[MAXCPU];
  155 
  156 /* Variables needed for SMP tlb shootdown. */
  157 vm_offset_t smp_tlb_addr1;
  158 vm_offset_t smp_tlb_addr2;
  159 volatile int smp_tlb_wait;
  160 
  161 #ifdef STOP_NMI
  162 volatile cpumask_t ipi_nmi_pending;
  163 
  164 static void     ipi_nmi_selected(u_int32_t cpus);
  165 #endif 
  166 
  167 #ifdef COUNT_IPIS
  168 /* Interrupt counts. */
  169 static u_long *ipi_preempt_counts[MAXCPU];
  170 static u_long *ipi_ast_counts[MAXCPU];
  171 u_long *ipi_invltlb_counts[MAXCPU];
  172 u_long *ipi_invlrng_counts[MAXCPU];
  173 u_long *ipi_invlpg_counts[MAXCPU];
  174 u_long *ipi_invlcache_counts[MAXCPU];
  175 u_long *ipi_rendezvous_counts[MAXCPU];
  176 u_long *ipi_lazypmap_counts[MAXCPU];
  177 #endif
  178 
  179 /*
  180  * Local data and functions.
  181  */
  182 
  183 #ifdef STOP_NMI
  184 /* 
  185  * Provide an alternate method of stopping other CPUs. If another CPU has
  186  * disabled interrupts the conventional STOP IPI will be blocked. This 
  187  * NMI-based stop should get through in that case.
  188  */
  189 static int stop_cpus_with_nmi = 1;
  190 SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
  191     &stop_cpus_with_nmi, 0, "");
  192 TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
  193 #else
  194 #define stop_cpus_with_nmi      0
  195 #endif
  196 
  197 static u_int logical_cpus;
  198 
  199 /* used to hold the AP's until we are ready to release them */
  200 static struct mtx ap_boot_mtx;
  201 
  202 /* Set to 1 once we're ready to let the APs out of the pen. */
  203 static volatile int aps_ready = 0;
  204 
  205 /*
  206  * Store data from cpu_add() until later in the boot when we actually setup
  207  * the APs.
  208  */
  209 struct cpu_info {
  210         int     cpu_present:1;
  211         int     cpu_bsp:1;
  212         int     cpu_disabled:1;
  213 } static cpu_info[MAX_APIC_ID + 1];
  214 int cpu_apic_ids[MAXCPU];
  215 
  216 /* Holds pending bitmap based IPIs per CPU */
  217 static volatile u_int cpu_ipi_pending[MAXCPU];
  218 
  219 static u_int boot_address;
  220 
  221 static void     assign_cpu_ids(void);
  222 static void     install_ap_tramp(void);
  223 static void     set_interrupt_apic_ids(void);
  224 static int      start_all_aps(void);
  225 static int      start_ap(int apic_id);
  226 static void     release_aps(void *dummy);
  227 
  228 static int      hlt_logical_cpus;
  229 static u_int    hyperthreading_cpus;
  230 static cpumask_t        hyperthreading_cpus_mask;
  231 static int      hyperthreading_allowed = 1;
  232 static struct   sysctl_ctx_list logical_cpu_clist;
  233 
  234 static void
  235 mem_range_AP_init(void)
  236 {
  237         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  238                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  239 }
  240 
  241 void
  242 mp_topology(void)
  243 {
  244         struct cpu_group *group;
  245         int apic_id;
  246         int groups;
  247         int cpu;
  248 
  249         /* Build the smp_topology map. */
  250         /* Nothing to do if there is no HTT support. */
  251         if (hyperthreading_cpus <= 1)
  252                 return;
  253         group = &mp_groups[0];
  254         groups = 1;
  255         for (cpu = 0, apic_id = 0; apic_id <= MAX_APIC_ID; apic_id++) {
  256                 if (!cpu_info[apic_id].cpu_present)
  257                         continue;
  258                 /*
  259                  * If the current group has members and we're not a logical
  260                  * cpu, create a new group.
  261                  */
  262                 if (group->cg_count != 0 &&
  263                     (apic_id % hyperthreading_cpus) == 0) {
  264                         group++;
  265                         groups++;
  266                 }
  267                 group->cg_count++;
  268                 group->cg_mask |= 1 << cpu;
  269                 cpu++;
  270         }
  271 
  272         mp_top.ct_count = groups;
  273         mp_top.ct_group = mp_groups;
  274         smp_topology = &mp_top;
  275 }
  276 
  277 
  278 /*
  279  * Calculate usable address in base memory for AP trampoline code.
  280  */
  281 u_int
  282 mp_bootaddress(u_int basemem)
  283 {
  284 
  285         boot_address = trunc_page(basemem);     /* round down to 4k boundary */
  286         if ((basemem - boot_address) < bootMP_size)
  287                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  288 
  289         return boot_address;
  290 }
  291 
  292 void
  293 cpu_add(u_int apic_id, char boot_cpu)
  294 {
  295 
  296         if (apic_id > MAX_APIC_ID) {
  297                 panic("SMP: APIC ID %d too high", apic_id);
  298                 return;
  299         }
  300         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  301             apic_id));
  302         cpu_info[apic_id].cpu_present = 1;
  303         if (boot_cpu) {
  304                 KASSERT(boot_cpu_id == -1,
  305                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  306                     boot_cpu_id));
  307                 boot_cpu_id = apic_id;
  308                 cpu_info[apic_id].cpu_bsp = 1;
  309         }
  310         if (mp_ncpus < MAXCPU)
  311                 mp_ncpus++;
  312         if (bootverbose)
  313                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  314                     "AP");
  315 }
  316 
  317 void
  318 cpu_mp_setmaxid(void)
  319 {
  320 
  321         mp_maxid = MAXCPU - 1;
  322 }
  323 
  324 int
  325 cpu_mp_probe(void)
  326 {
  327 
  328         /*
  329          * Always record BSP in CPU map so that the mbuf init code works
  330          * correctly.
  331          */
  332         all_cpus = 1;
  333         if (mp_ncpus == 0) {
  334                 /*
  335                  * No CPUs were found, so this must be a UP system.  Setup
  336                  * the variables to represent a system with a single CPU
  337                  * with an id of 0.
  338                  */
  339                 mp_ncpus = 1;
  340                 return (0);
  341         }
  342 
  343         /* At least one CPU was found. */
  344         if (mp_ncpus == 1) {
  345                 /*
  346                  * One CPU was found, so this must be a UP system with
  347                  * an I/O APIC.
  348                  */
  349                 return (0);
  350         }
  351 
  352         /* At least two CPUs were found. */
  353         return (1);
  354 }
  355 
  356 /*
  357  * Initialize the IPI handlers and start up the AP's.
  358  */
  359 void
  360 cpu_mp_start(void)
  361 {
  362         int i;
  363         u_int threads_per_cache, p[4];
  364 
  365         /* Initialize the logical ID to APIC ID table. */
  366         for (i = 0; i < MAXCPU; i++) {
  367                 cpu_apic_ids[i] = -1;
  368                 cpu_ipi_pending[i] = 0;
  369         }
  370 
  371         /* Install an inter-CPU IPI for TLB invalidation */
  372         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  373                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  374         setidt(IPI_INVLPG, IDTVEC(invlpg),
  375                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  376         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  377                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  378 
  379         /* Install an inter-CPU IPI for cache invalidation. */
  380         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  381                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  382 
  383         /* Install an inter-CPU IPI for lazy pmap release */
  384         setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
  385                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  386 
  387         /* Install an inter-CPU IPI for all-CPU rendezvous */
  388         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  389                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  390 
  391         /* Install generic inter-CPU IPI handler */
  392         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  393                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  394 
  395         /* Install an inter-CPU IPI for CPU stop/restart */
  396         setidt(IPI_STOP, IDTVEC(cpustop),
  397                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  398 
  399 
  400         /* Set boot_cpu_id if needed. */
  401         if (boot_cpu_id == -1) {
  402                 boot_cpu_id = PCPU_GET(apic_id);
  403                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  404         } else
  405                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  406                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  407         cpu_apic_ids[0] = boot_cpu_id;
  408 
  409         assign_cpu_ids();
  410 
  411         /* Start each Application Processor */
  412         start_all_aps();
  413 
  414         /* Setup the initial logical CPUs info. */
  415         logical_cpus = logical_cpus_mask = 0;
  416         if (cpu_feature & CPUID_HTT)
  417                 logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  418 
  419         /*
  420          * Work out if hyperthreading is *really* enabled.  This
  421          * is made really ugly by the fact that processors lie: Dual
  422          * core processors claim to be hyperthreaded even when they're
  423          * not, presumably because they want to be treated the same
  424          * way as HTT with respect to per-cpu software licensing.
  425          * At the time of writing (May 12, 2005) the only hyperthreaded
  426          * cpus are from Intel, and Intel's dual-core processors can be
  427          * identified via the "deterministic cache parameters" cpuid
  428          * calls.
  429          */
  430         /*
  431          * First determine if this is an Intel processor which claims
  432          * to have hyperthreading support.
  433          */
  434         if ((cpu_feature & CPUID_HTT) &&
  435             (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
  436                 /*
  437                  * If the "deterministic cache parameters" cpuid calls
  438                  * are available, use them.
  439                  */
  440                 if (cpu_high >= 4) {
  441                         /* Ask the processor about the L1 cache. */
  442                         for (i = 0; i < 1; i++) {
  443                                 cpuid_count(4, i, p);
  444                                 threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
  445                                 if (hyperthreading_cpus < threads_per_cache)
  446                                         hyperthreading_cpus = threads_per_cache;
  447                                 if ((p[0] & 0x1f) == 0)
  448                                         break;
  449                         }
  450                 }
  451 
  452                 /*
  453                  * If the deterministic cache parameters are not
  454                  * available, or if no caches were reported to exist,
  455                  * just accept what the HTT flag indicated.
  456                  */
  457                 if (hyperthreading_cpus == 0)
  458                         hyperthreading_cpus = logical_cpus;
  459         }
  460 
  461         set_interrupt_apic_ids();
  462 
  463         /* Last, setup the cpu topology now that we have probed CPUs */
  464         mp_topology();
  465 }
  466 
  467 
  468 /*
  469  * Print various information about the SMP system hardware and setup.
  470  */
  471 void
  472 cpu_mp_announce(void)
  473 {
  474         int i, x;
  475 
  476         /* List CPUs */
  477         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  478         for (i = 1, x = 0; x <= MAX_APIC_ID; x++) {
  479                 if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
  480                         continue;
  481                 if (cpu_info[x].cpu_disabled)
  482                         printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
  483                 else {
  484                         KASSERT(i < mp_ncpus,
  485                             ("mp_ncpus and actual cpus are out of whack"));
  486                         printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
  487                 }
  488         }
  489 }
  490 
  491 /*
  492  * AP CPU's call this to initialize themselves.
  493  */
  494 void
  495 init_secondary(void)
  496 {
  497         struct pcpu *pc;
  498         vm_offset_t addr;
  499         int     gsel_tss;
  500         int     x, myid;
  501         u_int   cr0;
  502 
  503         /* bootAP is set in start_ap() to our ID. */
  504         myid = bootAP;
  505 
  506         /* Get per-cpu data */
  507         pc = &__pcpu[myid];
  508 
  509         /* prime data page for it to use */
  510         pcpu_init(pc, myid, sizeof(struct pcpu));
  511         pc->pc_apic_id = cpu_apic_ids[myid];
  512         pc->pc_prvspace = pc;
  513         pc->pc_curthread = 0;
  514 
  515         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
  516         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
  517 
  518         for (x = 0; x < NGDT; x++) {
  519                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  520         }
  521 
  522         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  523         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  524         lgdt(&r_gdt);                   /* does magic intra-segment return */
  525 
  526         lidt(&r_idt);
  527 
  528         lldt(_default_ldt);
  529         PCPU_SET(currentldt, _default_ldt);
  530 
  531         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  532         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  533         PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
  534         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
  535         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
  536         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  537         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  538         ltr(gsel_tss);
  539 
  540         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  541 
  542         /*
  543          * Set to a known state:
  544          * Set by mpboot.s: CR0_PG, CR0_PE
  545          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  546          */
  547         cr0 = rcr0();
  548         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  549         load_cr0(cr0);
  550         CHECK_WRITE(0x38, 5);
  551         
  552         /* Disable local APIC just to be sure. */
  553         lapic_disable();
  554 
  555         /* signal our startup to the BSP. */
  556         mp_naps++;
  557         CHECK_WRITE(0x39, 6);
  558 
  559         /* Spin until the BSP releases the AP's. */
  560         while (!aps_ready)
  561                 ia32_pause();
  562 
  563         /* BSP may have changed PTD while we were waiting */
  564         invltlb();
  565         for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
  566                 invlpg(addr);
  567 
  568 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  569         lidt(&r_idt);
  570 #endif
  571 
  572         /* Initialize the PAT MSR if present. */
  573         pmap_init_pat();
  574 
  575         /* set up CPU registers and state */
  576         cpu_setregs();
  577 
  578         /* set up FPU state on the AP */
  579         npxinit(__INITIAL_NPXCW__);
  580 
  581         /* set up SSE registers */
  582         enable_sse();
  583 
  584 #ifdef PAE
  585         /* Enable the PTE no-execute bit. */
  586         if ((amd_feature & AMDID_NX) != 0) {
  587                 uint64_t msr;
  588 
  589                 msr = rdmsr(MSR_EFER) | EFER_NXE;
  590                 wrmsr(MSR_EFER, msr);
  591         }
  592 #endif
  593 
  594         /* A quick check from sanity claus */
  595         if (PCPU_GET(apic_id) != lapic_id()) {
  596                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  597                 printf("SMP: actual apic_id = %d\n", lapic_id());
  598                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  599                 panic("cpuid mismatch! boom!!");
  600         }
  601 
  602         /* Initialize curthread. */
  603         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  604         PCPU_SET(curthread, PCPU_GET(idlethread));
  605 
  606         mtx_lock_spin(&ap_boot_mtx);
  607 
  608         /* Init local apic for irq's */
  609         lapic_setup(1);
  610 
  611         /* Set memory range attributes for this CPU to match the BSP */
  612         mem_range_AP_init();
  613 
  614         smp_cpus++;
  615 
  616         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  617         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  618 
  619         /* Determine if we are a logical CPU. */
  620         if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
  621                 logical_cpus_mask |= PCPU_GET(cpumask);
  622         
  623         /* Determine if we are a hyperthread. */
  624         if (hyperthreading_cpus > 1 &&
  625             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  626                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  627 
  628         /* Build our map of 'other' CPUs. */
  629         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  630 
  631         if (bootverbose)
  632                 lapic_dump("AP");
  633 
  634         if (smp_cpus == mp_ncpus) {
  635                 /* enable IPI's, tlb shootdown, freezes etc */
  636                 atomic_store_rel_int(&smp_started, 1);
  637                 smp_active = 1;  /* historic */
  638         }
  639 
  640         mtx_unlock_spin(&ap_boot_mtx);
  641 
  642         /* wait until all the AP's are up */
  643         while (smp_started == 0)
  644                 ia32_pause();
  645 
  646         /* enter the scheduler */
  647         sched_throw(NULL);
  648 
  649         panic("scheduler returned us to %s", __func__);
  650         /* NOTREACHED */
  651 }
  652 
  653 /*******************************************************************
  654  * local functions and data
  655  */
  656 
  657 /*
  658  * We tell the I/O APIC code about all the CPUs we want to receive
  659  * interrupts.  If we don't want certain CPUs to receive IRQs we
  660  * can simply not tell the I/O APIC code about them in this function.
  661  * We also do not tell it about the BSP since it tells itself about
  662  * the BSP internally to work with UP kernels and on UP machines.
  663  */
  664 static void
  665 set_interrupt_apic_ids(void)
  666 {
  667         u_int i, apic_id;
  668 
  669         for (i = 0; i < MAXCPU; i++) {
  670                 apic_id = cpu_apic_ids[i];
  671                 if (apic_id == -1)
  672                         continue;
  673                 if (cpu_info[apic_id].cpu_bsp)
  674                         continue;
  675                 if (cpu_info[apic_id].cpu_disabled)
  676                         continue;
  677 
  678                 /* Don't let hyperthreads service interrupts. */
  679                 if (hyperthreading_cpus > 1 &&
  680                     apic_id % hyperthreading_cpus != 0)
  681                         continue;
  682 
  683                 intr_add_cpu(i);
  684         }
  685 }
  686 
  687 /*
  688  * Assign logical CPU IDs to local APICs.
  689  */
  690 static void
  691 assign_cpu_ids(void)
  692 {
  693         u_int i;
  694 
  695         /* Check for explicitly disabled CPUs. */
  696         for (i = 0; i <= MAX_APIC_ID; i++) {
  697                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  698                         continue;
  699 
  700                 /* Don't use this CPU if it has been disabled by a tunable. */
  701                 if (resource_disabled("lapic", i)) {
  702                         cpu_info[i].cpu_disabled = 1;
  703                         continue;
  704                 }
  705         }
  706 
  707         /*
  708          * Assign CPU IDs to local APIC IDs and disable any CPUs
  709          * beyond MAXCPU.  CPU 0 has already been assigned to the BSP,
  710          * so we only have to assign IDs for APs.
  711          */
  712         mp_ncpus = 1;
  713         for (i = 0; i <= MAX_APIC_ID; i++) {
  714                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  715                     cpu_info[i].cpu_disabled)
  716                         continue;
  717 
  718                 if (mp_ncpus < MAXCPU) {
  719                         cpu_apic_ids[mp_ncpus] = i;
  720                         mp_ncpus++;
  721                 } else
  722                         cpu_info[i].cpu_disabled = 1;
  723         }
  724         KASSERT(mp_maxid >= mp_ncpus - 1,
  725             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  726             mp_ncpus));         
  727 }
  728 
  729 /*
  730  * start each AP in our list
  731  */
  732 static int
  733 start_all_aps(void)
  734 {
  735 #ifndef PC98
  736         u_char mpbiosreason;
  737 #endif
  738         uintptr_t kptbase;
  739         u_int32_t mpbioswarmvec;
  740         int apic_id, cpu, i;
  741 
  742         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  743 
  744         /* install the AP 1st level boot code */
  745         install_ap_tramp();
  746 
  747         /* save the current value of the warm-start vector */
  748         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  749 #ifndef PC98
  750         outb(CMOS_REG, BIOS_RESET);
  751         mpbiosreason = inb(CMOS_DATA);
  752 #endif
  753 
  754         /* set up temporary P==V mapping for AP boot */
  755         /* XXX this is a hack, we should boot the AP on its own stack/PTD */
  756         kptbase = (uintptr_t)(void *)KPTphys;
  757         for (i = 0; i < NKPT; i++)
  758                 PTD[i] = (pd_entry_t)(PG_V | PG_RW |
  759                     ((kptbase + i * PAGE_SIZE) & PG_FRAME));
  760         invltlb();
  761 
  762         /* start each AP */
  763         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  764                 apic_id = cpu_apic_ids[cpu];
  765 
  766                 /* allocate and set up a boot stack data page */
  767                 bootstacks[cpu] = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  768 
  769                 /* setup a vector to our boot code */
  770                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  771                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  772 #ifndef PC98
  773                 outb(CMOS_REG, BIOS_RESET);
  774                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  775 #endif
  776 
  777                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
  778                 bootAP = cpu;
  779 
  780                 /* attempt to start the Application Processor */
  781                 CHECK_INIT(99); /* setup checkpoints */
  782                 if (!start_ap(apic_id)) {
  783                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  784                         CHECK_PRINT("trace");   /* show checkpoints */
  785                         /* better panic as the AP may be running loose */
  786                         printf("panic y/n? [y] ");
  787                         if (cngetc() != 'n')
  788                                 panic("bye-bye");
  789                 }
  790                 CHECK_PRINT("trace");           /* show checkpoints */
  791 
  792                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  793         }
  794 
  795         /* build our map of 'other' CPUs */
  796         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  797 
  798         /* restore the warmstart vector */
  799         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  800 
  801 #ifndef PC98
  802         outb(CMOS_REG, BIOS_RESET);
  803         outb(CMOS_DATA, mpbiosreason);
  804 #endif
  805 
  806         /* Undo V==P hack from above */
  807         for (i = 0; i < NKPT; i++)
  808                 PTD[i] = 0;
  809         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
  810 
  811         /* number of APs actually started */
  812         return mp_naps;
  813 }
  814 
  815 /*
  816  * load the 1st level AP boot code into base memory.
  817  */
  818 
  819 /* targets for relocation */
  820 extern void bigJump(void);
  821 extern void bootCodeSeg(void);
  822 extern void bootDataSeg(void);
  823 extern void MPentry(void);
  824 extern u_int MP_GDT;
  825 extern u_int mp_gdtbase;
  826 
  827 static void
  828 install_ap_tramp(void)
  829 {
  830         int     x;
  831         int     size = *(int *) ((u_long) & bootMP_size);
  832         vm_offset_t va = boot_address + KERNBASE;
  833         u_char *src = (u_char *) ((u_long) bootMP);
  834         u_char *dst = (u_char *) va;
  835         u_int   boot_base = (u_int) bootMP;
  836         u_int8_t *dst8;
  837         u_int16_t *dst16;
  838         u_int32_t *dst32;
  839 
  840         KASSERT (size <= PAGE_SIZE,
  841             ("'size' do not fit into PAGE_SIZE, as expected."));
  842         pmap_kenter(va, boot_address);
  843         pmap_invalidate_page (kernel_pmap, va);
  844         for (x = 0; x < size; ++x)
  845                 *dst++ = *src++;
  846 
  847         /*
  848          * modify addresses in code we just moved to basemem. unfortunately we
  849          * need fairly detailed info about mpboot.s for this to work.  changes
  850          * to mpboot.s might require changes here.
  851          */
  852 
  853         /* boot code is located in KERNEL space */
  854         dst = (u_char *) va;
  855 
  856         /* modify the lgdt arg */
  857         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
  858         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
  859 
  860         /* modify the ljmp target for MPentry() */
  861         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
  862         *dst32 = ((u_int) MPentry - KERNBASE);
  863 
  864         /* modify the target for boot code segment */
  865         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
  866         dst8 = (u_int8_t *) (dst16 + 1);
  867         *dst16 = (u_int) boot_address & 0xffff;
  868         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  869 
  870         /* modify the target for boot data segment */
  871         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
  872         dst8 = (u_int8_t *) (dst16 + 1);
  873         *dst16 = (u_int) boot_address & 0xffff;
  874         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  875 }
  876 
  877 /*
  878  * This function starts the AP (application processor) identified
  879  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  880  * to accomplish this.  This is necessary because of the nuances
  881  * of the different hardware we might encounter.  It isn't pretty,
  882  * but it seems to work.
  883  */
  884 static int
  885 start_ap(int apic_id)
  886 {
  887         int vector, ms;
  888         int cpus;
  889 
  890         /* calculate the vector */
  891         vector = (boot_address >> 12) & 0xff;
  892 
  893         /* used as a watchpoint to signal AP startup */
  894         cpus = mp_naps;
  895 
  896         /*
  897          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  898          * and running the target CPU. OR this INIT IPI might be latched (P5
  899          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  900          * ignored.
  901          */
  902 
  903         /* do an INIT IPI: assert RESET */
  904         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  905             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  906 
  907         /* wait for pending status end */
  908         lapic_ipi_wait(-1);
  909 
  910         /* do an INIT IPI: deassert RESET */
  911         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
  912             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
  913 
  914         /* wait for pending status end */
  915         DELAY(10000);           /* wait ~10mS */
  916         lapic_ipi_wait(-1);
  917 
  918         /*
  919          * next we do a STARTUP IPI: the previous INIT IPI might still be
  920          * latched, (P5 bug) this 1st STARTUP would then terminate
  921          * immediately, and the previously started INIT IPI would continue. OR
  922          * the previous INIT IPI has already run. and this STARTUP IPI will
  923          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
  924          * will run.
  925          */
  926 
  927         /* do a STARTUP IPI */
  928         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  929             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  930             vector, apic_id);
  931         lapic_ipi_wait(-1);
  932         DELAY(200);             /* wait ~200uS */
  933 
  934         /*
  935          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
  936          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
  937          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
  938          * recognized after hardware RESET or INIT IPI.
  939          */
  940 
  941         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  942             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  943             vector, apic_id);
  944         lapic_ipi_wait(-1);
  945         DELAY(200);             /* wait ~200uS */
  946 
  947         /* Wait up to 5 seconds for it to start. */
  948         for (ms = 0; ms < 5000; ms++) {
  949                 if (mp_naps > cpus)
  950                         return 1;       /* return SUCCESS */
  951                 DELAY(1000);
  952         }
  953         return 0;               /* return FAILURE */
  954 }
  955 
  956 #ifdef COUNT_XINVLTLB_HITS
  957 u_int xhits_gbl[MAXCPU];
  958 u_int xhits_pg[MAXCPU];
  959 u_int xhits_rng[MAXCPU];
  960 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
  961 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
  962     sizeof(xhits_gbl), "IU", "");
  963 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
  964     sizeof(xhits_pg), "IU", "");
  965 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
  966     sizeof(xhits_rng), "IU", "");
  967 
  968 u_int ipi_global;
  969 u_int ipi_page;
  970 u_int ipi_range;
  971 u_int ipi_range_size;
  972 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
  973 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
  974 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
  975 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
  976     0, "");
  977 
  978 u_int ipi_masked_global;
  979 u_int ipi_masked_page;
  980 u_int ipi_masked_range;
  981 u_int ipi_masked_range_size;
  982 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
  983     &ipi_masked_global, 0, "");
  984 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
  985     &ipi_masked_page, 0, "");
  986 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
  987     &ipi_masked_range, 0, "");
  988 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
  989     &ipi_masked_range_size, 0, "");
  990 #endif /* COUNT_XINVLTLB_HITS */
  991 
  992 /*
  993  * Flush the TLB on all other CPU's
  994  */
  995 static void
  996 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
  997 {
  998         u_int ncpu;
  999 
 1000         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1001         if (ncpu < 1)
 1002                 return;         /* no other cpus */
 1003         if (!(read_eflags() & PSL_I))
 1004                 panic("%s: interrupts disabled", __func__);
 1005         mtx_lock_spin(&smp_ipi_mtx);
 1006         smp_tlb_addr1 = addr1;
 1007         smp_tlb_addr2 = addr2;
 1008         atomic_store_rel_int(&smp_tlb_wait, 0);
 1009         ipi_all_but_self(vector);
 1010         while (smp_tlb_wait < ncpu)
 1011                 ia32_pause();
 1012         mtx_unlock_spin(&smp_ipi_mtx);
 1013 }
 1014 
 1015 static void
 1016 smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1017 {
 1018         int ncpu, othercpus;
 1019 
 1020         othercpus = mp_ncpus - 1;
 1021         if (mask == (u_int)-1) {
 1022                 ncpu = othercpus;
 1023                 if (ncpu < 1)
 1024                         return;
 1025         } else {
 1026                 mask &= ~PCPU_GET(cpumask);
 1027                 if (mask == 0)
 1028                         return;
 1029                 ncpu = bitcount32(mask);
 1030                 if (ncpu > othercpus) {
 1031                         /* XXX this should be a panic offence */
 1032                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1033                             ncpu, othercpus);
 1034                         ncpu = othercpus;
 1035                 }
 1036                 /* XXX should be a panic, implied by mask == 0 above */
 1037                 if (ncpu < 1)
 1038                         return;
 1039         }
 1040         if (!(read_eflags() & PSL_I))
 1041                 panic("%s: interrupts disabled", __func__);
 1042         mtx_lock_spin(&smp_ipi_mtx);
 1043         smp_tlb_addr1 = addr1;
 1044         smp_tlb_addr2 = addr2;
 1045         atomic_store_rel_int(&smp_tlb_wait, 0);
 1046         if (mask == (u_int)-1)
 1047                 ipi_all_but_self(vector);
 1048         else
 1049                 ipi_selected(mask, vector);
 1050         while (smp_tlb_wait < ncpu)
 1051                 ia32_pause();
 1052         mtx_unlock_spin(&smp_ipi_mtx);
 1053 }
 1054 
 1055 void
 1056 smp_cache_flush(void)
 1057 {
 1058 
 1059         if (smp_started)
 1060                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1061 }
 1062 
 1063 void
 1064 smp_invltlb(void)
 1065 {
 1066 
 1067         if (smp_started) {
 1068                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1069 #ifdef COUNT_XINVLTLB_HITS
 1070                 ipi_global++;
 1071 #endif
 1072         }
 1073 }
 1074 
 1075 void
 1076 smp_invlpg(vm_offset_t addr)
 1077 {
 1078 
 1079         if (smp_started) {
 1080                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1081 #ifdef COUNT_XINVLTLB_HITS
 1082                 ipi_page++;
 1083 #endif
 1084         }
 1085 }
 1086 
 1087 void
 1088 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1089 {
 1090 
 1091         if (smp_started) {
 1092                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1093 #ifdef COUNT_XINVLTLB_HITS
 1094                 ipi_range++;
 1095                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1096 #endif
 1097         }
 1098 }
 1099 
 1100 void
 1101 smp_masked_invltlb(u_int mask)
 1102 {
 1103 
 1104         if (smp_started) {
 1105                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1106 #ifdef COUNT_XINVLTLB_HITS
 1107                 ipi_masked_global++;
 1108 #endif
 1109         }
 1110 }
 1111 
 1112 void
 1113 smp_masked_invlpg(u_int mask, vm_offset_t addr)
 1114 {
 1115 
 1116         if (smp_started) {
 1117                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1118 #ifdef COUNT_XINVLTLB_HITS
 1119                 ipi_masked_page++;
 1120 #endif
 1121         }
 1122 }
 1123 
 1124 void
 1125 smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
 1126 {
 1127 
 1128         if (smp_started) {
 1129                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1130 #ifdef COUNT_XINVLTLB_HITS
 1131                 ipi_masked_range++;
 1132                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1133 #endif
 1134         }
 1135 }
 1136 
 1137 void
 1138 ipi_bitmap_handler(struct trapframe frame)
 1139 {
 1140         int cpu = PCPU_GET(cpuid);
 1141         u_int ipi_bitmap;
 1142 
 1143         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1144 
 1145         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1146                 struct thread *running_thread = curthread;
 1147 #ifdef COUNT_IPIS
 1148                 (*ipi_preempt_counts[cpu])++;
 1149 #endif
 1150                 thread_lock(running_thread);
 1151                 if (running_thread->td_critnest > 1) 
 1152                         running_thread->td_owepreempt = 1;
 1153                 else            
 1154                         mi_switch(SW_INVOL | SW_PREEMPT, NULL);
 1155                 thread_unlock(running_thread);
 1156         }
 1157 
 1158         if (ipi_bitmap & (1 << IPI_AST)) {
 1159 #ifdef COUNT_IPIS
 1160                 (*ipi_ast_counts[cpu])++;
 1161 #endif
 1162                 /* Nothing to do for AST */
 1163         }
 1164 }
 1165 
 1166 /*
 1167  * send an IPI to a set of cpus.
 1168  */
 1169 void
 1170 ipi_selected(u_int32_t cpus, u_int ipi)
 1171 {
 1172         int cpu;
 1173         u_int bitmap = 0;
 1174         u_int old_pending;
 1175         u_int new_pending;
 1176 
 1177         if (IPI_IS_BITMAPED(ipi)) { 
 1178                 bitmap = 1 << ipi;
 1179                 ipi = IPI_BITMAP_VECTOR;
 1180         }
 1181 
 1182 #ifdef STOP_NMI
 1183         if (ipi == IPI_STOP && stop_cpus_with_nmi) {
 1184                 ipi_nmi_selected(cpus);
 1185                 return;
 1186         }
 1187 #endif
 1188         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1189         while ((cpu = ffs(cpus)) != 0) {
 1190                 cpu--;
 1191                 cpus &= ~(1 << cpu);
 1192 
 1193                 KASSERT(cpu_apic_ids[cpu] != -1,
 1194                     ("IPI to non-existent CPU %d", cpu));
 1195 
 1196                 if (bitmap) {
 1197                         do {
 1198                                 old_pending = cpu_ipi_pending[cpu];
 1199                                 new_pending = old_pending | bitmap;
 1200                         } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));  
 1201 
 1202                         if (old_pending)
 1203                                 continue;
 1204                 }
 1205 
 1206                 lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1207         }
 1208 
 1209 }
 1210 
 1211 /*
 1212  * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
 1213  */
 1214 void
 1215 ipi_all(u_int ipi)
 1216 {
 1217 
 1218         if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
 1219                 ipi_selected(all_cpus, ipi);
 1220                 return;
 1221         }
 1222         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1223         lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
 1224 }
 1225 
 1226 /*
 1227  * send an IPI to all CPUs EXCEPT myself
 1228  */
 1229 void
 1230 ipi_all_but_self(u_int ipi)
 1231 {
 1232 
 1233         if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
 1234                 ipi_selected(PCPU_GET(other_cpus), ipi);
 1235                 return;
 1236         }
 1237         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1238         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1239 }
 1240 
 1241 /*
 1242  * send an IPI to myself
 1243  */
 1244 void
 1245 ipi_self(u_int ipi)
 1246 {
 1247 
 1248         if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
 1249                 ipi_selected(PCPU_GET(cpumask), ipi);
 1250                 return;
 1251         }
 1252         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1253         lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
 1254 }
 1255 
 1256 #ifdef STOP_NMI
 1257 /*
 1258  * send NMI IPI to selected CPUs
 1259  */
 1260 
 1261 #define BEFORE_SPIN     1000000
 1262 
 1263 void
 1264 ipi_nmi_selected(u_int32_t cpus)
 1265 {
 1266         int cpu;
 1267         register_t icrlo;
 1268 
 1269         icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT 
 1270                 | APIC_TRIGMOD_EDGE; 
 1271         
 1272         CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
 1273 
 1274         atomic_set_int(&ipi_nmi_pending, cpus);
 1275 
 1276         while ((cpu = ffs(cpus)) != 0) {
 1277                 cpu--;
 1278                 cpus &= ~(1 << cpu);
 1279 
 1280                 KASSERT(cpu_apic_ids[cpu] != -1,
 1281                     ("IPI NMI to non-existent CPU %d", cpu));
 1282                 
 1283                 /* Wait for an earlier IPI to finish. */
 1284                 if (!lapic_ipi_wait(BEFORE_SPIN))
 1285                         panic("ipi_nmi_selected: previous IPI has not cleared");
 1286 
 1287                 lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
 1288         }
 1289 }
 1290 
 1291 int
 1292 ipi_nmi_handler(void)
 1293 {
 1294         int cpumask = PCPU_GET(cpumask);
 1295 
 1296         if (!(ipi_nmi_pending & cpumask))
 1297                 return 1;
 1298 
 1299         atomic_clear_int(&ipi_nmi_pending, cpumask);
 1300         cpustop_handler();
 1301         return 0;
 1302 }
 1303 
 1304 #endif /* STOP_NMI */
 1305 
 1306 /*
 1307  * Handle an IPI_STOP by saving our current context and spinning until we
 1308  * are resumed.
 1309  */
 1310 void
 1311 cpustop_handler(void)
 1312 {
 1313         int cpu = PCPU_GET(cpuid);
 1314         int cpumask = PCPU_GET(cpumask);
 1315 
 1316         savectx(&stoppcbs[cpu]);
 1317 
 1318         /* Indicate that we are stopped */
 1319         atomic_set_int(&stopped_cpus, cpumask);
 1320 
 1321         /* Wait for restart */
 1322         while (!(started_cpus & cpumask))
 1323             ia32_pause();
 1324 
 1325         atomic_clear_int(&started_cpus, cpumask);
 1326         atomic_clear_int(&stopped_cpus, cpumask);
 1327 
 1328         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1329                 cpustop_restartfunc();
 1330                 cpustop_restartfunc = NULL;
 1331         }
 1332 }
 1333 
 1334 /*
 1335  * This is called once the rest of the system is up and running and we're
 1336  * ready to let the AP's out of the pen.
 1337  */
 1338 static void
 1339 release_aps(void *dummy __unused)
 1340 {
 1341 
 1342         if (mp_ncpus == 1) 
 1343                 return;
 1344         atomic_store_rel_int(&aps_ready, 1);
 1345         while (smp_started == 0)
 1346                 ia32_pause();
 1347 }
 1348 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1349 
 1350 static int
 1351 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1352 {
 1353         u_int mask;
 1354         int error;
 1355 
 1356         mask = hlt_cpus_mask;
 1357         error = sysctl_handle_int(oidp, &mask, 0, req);
 1358         if (error || !req->newptr)
 1359                 return (error);
 1360 
 1361         if (logical_cpus_mask != 0 &&
 1362             (mask & logical_cpus_mask) == logical_cpus_mask)
 1363                 hlt_logical_cpus = 1;
 1364         else
 1365                 hlt_logical_cpus = 0;
 1366 
 1367         if (! hyperthreading_allowed)
 1368                 mask |= hyperthreading_cpus_mask;
 1369 
 1370         if ((mask & all_cpus) == all_cpus)
 1371                 mask &= ~(1<<0);
 1372         hlt_cpus_mask = mask;
 1373         return (error);
 1374 }
 1375 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1376     0, 0, sysctl_hlt_cpus, "IU",
 1377     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1378 
 1379 static int
 1380 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1381 {
 1382         int disable, error;
 1383 
 1384         disable = hlt_logical_cpus;
 1385         error = sysctl_handle_int(oidp, &disable, 0, req);
 1386         if (error || !req->newptr)
 1387                 return (error);
 1388 
 1389         if (disable)
 1390                 hlt_cpus_mask |= logical_cpus_mask;
 1391         else
 1392                 hlt_cpus_mask &= ~logical_cpus_mask;
 1393 
 1394         if (! hyperthreading_allowed)
 1395                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1396 
 1397         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1398                 hlt_cpus_mask &= ~(1<<0);
 1399 
 1400         hlt_logical_cpus = disable;
 1401         return (error);
 1402 }
 1403 
 1404 static int
 1405 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1406 {
 1407         int allowed, error;
 1408 
 1409         allowed = hyperthreading_allowed;
 1410         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1411         if (error || !req->newptr)
 1412                 return (error);
 1413 
 1414         if (allowed)
 1415                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1416         else
 1417                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1418 
 1419         if (logical_cpus_mask != 0 &&
 1420             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1421                 hlt_logical_cpus = 1;
 1422         else
 1423                 hlt_logical_cpus = 0;
 1424 
 1425         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1426                 hlt_cpus_mask &= ~(1<<0);
 1427 
 1428         hyperthreading_allowed = allowed;
 1429         return (error);
 1430 }
 1431 
 1432 static void
 1433 cpu_hlt_setup(void *dummy __unused)
 1434 {
 1435 
 1436         if (logical_cpus_mask != 0) {
 1437                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1438                     &hlt_logical_cpus);
 1439                 sysctl_ctx_init(&logical_cpu_clist);
 1440                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1441                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1442                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1443                     sysctl_hlt_logical_cpus, "IU", "");
 1444                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1445                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1446                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1447                     &logical_cpus_mask, 0, "");
 1448 
 1449                 if (hlt_logical_cpus)
 1450                         hlt_cpus_mask |= logical_cpus_mask;
 1451 
 1452                 /*
 1453                  * If necessary for security purposes, force
 1454                  * hyperthreading off, regardless of the value
 1455                  * of hlt_logical_cpus.
 1456                  */
 1457                 if (hyperthreading_cpus_mask) {
 1458                         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
 1459                             &hyperthreading_allowed);
 1460                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1461                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1462                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1463                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1464                         if (! hyperthreading_allowed)
 1465                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1466                 }
 1467         }
 1468 }
 1469 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1470 
 1471 int
 1472 mp_grab_cpu_hlt(void)
 1473 {
 1474         u_int mask = PCPU_GET(cpumask);
 1475 #ifdef MP_WATCHDOG
 1476         u_int cpuid = PCPU_GET(cpuid);
 1477 #endif
 1478         int retval;
 1479 
 1480 #ifdef MP_WATCHDOG
 1481         ap_watchdog(cpuid);
 1482 #endif
 1483 
 1484         retval = mask & hlt_cpus_mask;
 1485         while (mask & hlt_cpus_mask)
 1486                 __asm __volatile("sti; hlt" : : : "memory");
 1487         return (retval);
 1488 }
 1489 
 1490 #ifdef COUNT_IPIS
 1491 /*
 1492  * Setup interrupt counters for IPI handlers.
 1493  */
 1494 static void
 1495 mp_ipi_intrcnt(void *dummy)
 1496 {
 1497         char buf[64];
 1498         int i;
 1499 
 1500         for (i = 0; i < mp_maxid; i++) {
 1501                 if (CPU_ABSENT(i))
 1502                         continue;
 1503                 snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
 1504                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1505                 snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
 1506                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1507                 snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
 1508                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1509                 snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
 1510                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1511                 snprintf(buf, sizeof(buf), "cpu%d: ast", i);
 1512                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1513                 snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
 1514                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1515                 snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
 1516                 intrcnt_add(buf, &ipi_lazypmap_counts[i]);
 1517         }               
 1518 }
 1519 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1520 #endif

Cache object: 8c26f0e2210b5aece2a5e28e8c88b0a9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.