The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD: releng/8.1/sys/i386/i386/mp_machdep.c 205706 2010-03-26 18:54:25Z jhb $");
   28 
   29 #include "opt_apic.h"
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_mp_watchdog.h"
   33 #include "opt_pmap.h"
   34 #include "opt_sched.h"
   35 #include "opt_smp.h"
   36 
   37 #if !defined(lint)
   38 #if !defined(SMP)
   39 #error How did you get here?
   40 #endif
   41 
   42 #ifndef DEV_APIC
   43 #error The apic device is required for SMP, add "device apic" to your config file.
   44 #endif
   45 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
   46 #error SMP not supported with CPU_DISABLE_CMPXCHG
   47 #endif
   48 #endif /* not lint */
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bus.h>
   53 #include <sys/cons.h>   /* cngetc() */
   54 #ifdef GPROF 
   55 #include <sys/gmon.h>
   56 #endif
   57 #include <sys/kernel.h>
   58 #include <sys/ktr.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/memrange.h>
   62 #include <sys/mutex.h>
   63 #include <sys/pcpu.h>
   64 #include <sys/proc.h>
   65 #include <sys/sched.h>
   66 #include <sys/smp.h>
   67 #include <sys/sysctl.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_kern.h>
   73 #include <vm/vm_extern.h>
   74 
   75 #include <machine/apicreg.h>
   76 #include <machine/clock.h>
   77 #include <machine/cputypes.h>
   78 #include <machine/mca.h>
   79 #include <machine/md_var.h>
   80 #include <machine/mp_watchdog.h>
   81 #include <machine/pcb.h>
   82 #include <machine/psl.h>
   83 #include <machine/smp.h>
   84 #include <machine/specialreg.h>
   85 
   86 #define WARMBOOT_TARGET         0
   87 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   88 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   89 
   90 #define CMOS_REG                (0x70)
   91 #define CMOS_DATA               (0x71)
   92 #define BIOS_RESET              (0x0f)
   93 #define BIOS_WARM               (0x0a)
   94 
   95 /*
   96  * this code MUST be enabled here and in mpboot.s.
   97  * it follows the very early stages of AP boot by placing values in CMOS ram.
   98  * it NORMALLY will never be needed and thus the primitive method for enabling.
   99  *
  100 #define CHECK_POINTS
  101  */
  102 
  103 #if defined(CHECK_POINTS) && !defined(PC98)
  104 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  105 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  106 
  107 #define CHECK_INIT(D);                          \
  108         CHECK_WRITE(0x34, (D));                 \
  109         CHECK_WRITE(0x35, (D));                 \
  110         CHECK_WRITE(0x36, (D));                 \
  111         CHECK_WRITE(0x37, (D));                 \
  112         CHECK_WRITE(0x38, (D));                 \
  113         CHECK_WRITE(0x39, (D));
  114 
  115 #define CHECK_PRINT(S);                         \
  116         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  117            (S),                                 \
  118            CHECK_READ(0x34),                    \
  119            CHECK_READ(0x35),                    \
  120            CHECK_READ(0x36),                    \
  121            CHECK_READ(0x37),                    \
  122            CHECK_READ(0x38),                    \
  123            CHECK_READ(0x39));
  124 
  125 #else                           /* CHECK_POINTS */
  126 
  127 #define CHECK_INIT(D)
  128 #define CHECK_PRINT(S)
  129 #define CHECK_WRITE(A, D)
  130 
  131 #endif                          /* CHECK_POINTS */
  132 
  133 /* lock region used by kernel profiling */
  134 int     mcount_lock;
  135 
  136 int     mp_naps;                /* # of Applications processors */
  137 int     boot_cpu_id = -1;       /* designated BSP */
  138 
  139 extern  struct pcpu __pcpu[];
  140 
  141 /* AP uses this during bootstrap.  Do not staticize.  */
  142 char *bootSTK;
  143 static int bootAP;
  144 
  145 /* Free these after use */
  146 void *bootstacks[MAXCPU];
  147 static void *dpcpu;
  148 
  149 /* Hotwire a 0->4MB V==P mapping */
  150 extern pt_entry_t *KPTphys;
  151 
  152 struct pcb stoppcbs[MAXCPU];
  153 
  154 /* Variables needed for SMP tlb shootdown. */
  155 vm_offset_t smp_tlb_addr1;
  156 vm_offset_t smp_tlb_addr2;
  157 volatile int smp_tlb_wait;
  158 
  159 #ifdef COUNT_IPIS
  160 /* Interrupt counts. */
  161 static u_long *ipi_preempt_counts[MAXCPU];
  162 static u_long *ipi_ast_counts[MAXCPU];
  163 u_long *ipi_invltlb_counts[MAXCPU];
  164 u_long *ipi_invlrng_counts[MAXCPU];
  165 u_long *ipi_invlpg_counts[MAXCPU];
  166 u_long *ipi_invlcache_counts[MAXCPU];
  167 u_long *ipi_rendezvous_counts[MAXCPU];
  168 u_long *ipi_lazypmap_counts[MAXCPU];
  169 #endif
  170 
  171 /*
  172  * Local data and functions.
  173  */
  174 
  175 static u_int logical_cpus;
  176 static volatile cpumask_t ipi_nmi_pending;
  177 
  178 /* used to hold the AP's until we are ready to release them */
  179 static struct mtx ap_boot_mtx;
  180 
  181 /* Set to 1 once we're ready to let the APs out of the pen. */
  182 static volatile int aps_ready = 0;
  183 
  184 /*
  185  * Store data from cpu_add() until later in the boot when we actually setup
  186  * the APs.
  187  */
  188 struct cpu_info {
  189         int     cpu_present:1;
  190         int     cpu_bsp:1;
  191         int     cpu_disabled:1;
  192         int     cpu_hyperthread:1;
  193 } static cpu_info[MAX_APIC_ID + 1];
  194 int cpu_apic_ids[MAXCPU];
  195 int apic_cpuids[MAX_APIC_ID + 1];
  196 
  197 /* Holds pending bitmap based IPIs per CPU */
  198 static volatile u_int cpu_ipi_pending[MAXCPU];
  199 
  200 static u_int boot_address;
  201 static int cpu_logical;
  202 static int cpu_cores;
  203 
  204 static void     assign_cpu_ids(void);
  205 static void     install_ap_tramp(void);
  206 static void     set_interrupt_apic_ids(void);
  207 static int      start_all_aps(void);
  208 static int      start_ap(int apic_id);
  209 static void     release_aps(void *dummy);
  210 
  211 static int      hlt_logical_cpus;
  212 static u_int    hyperthreading_cpus;
  213 static cpumask_t        hyperthreading_cpus_mask;
  214 static int      hyperthreading_allowed = 1;
  215 static struct   sysctl_ctx_list logical_cpu_clist;
  216 
  217 static void
  218 mem_range_AP_init(void)
  219 {
  220         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  221                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  222 }
  223 
  224 static void
  225 topo_probe_0xb(void)
  226 {
  227         int logical;
  228         int p[4];
  229         int bits;
  230         int type;
  231         int cnt;
  232         int i;
  233         int x;
  234 
  235         /* We only support two levels for now. */
  236         for (i = 0; i < 3; i++) {
  237                 cpuid_count(0x0B, i, p);
  238                 bits = p[0] & 0x1f;
  239                 logical = p[1] &= 0xffff;
  240                 type = (p[2] >> 8) & 0xff;
  241                 if (type == 0 || logical == 0)
  242                         break;
  243                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  244                         if (!cpu_info[x].cpu_present ||
  245                             cpu_info[x].cpu_disabled)
  246                                 continue;
  247                         if (x >> bits == boot_cpu_id >> bits)
  248                                 cnt++;
  249                 }
  250                 if (type == CPUID_TYPE_SMT)
  251                         cpu_logical = cnt;
  252                 else if (type == CPUID_TYPE_CORE)
  253                         cpu_cores = cnt;
  254         }
  255         if (cpu_logical == 0)
  256                 cpu_logical = 1;
  257         cpu_cores /= cpu_logical;
  258 }
  259 
  260 static void
  261 topo_probe_0x4(void)
  262 {
  263         u_int threads_per_cache, p[4];
  264         u_int htt, cmp;
  265         int i;
  266 
  267         htt = cmp = 1;
  268         /*
  269          * If this CPU supports HTT or CMP then mention the
  270          * number of physical/logical cores it contains.
  271          */
  272         if (cpu_feature & CPUID_HTT)
  273                 htt = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  274         if (cpu_vendor_id == CPU_VENDOR_AMD && (amd_feature2 & AMDID2_CMP))
  275                 cmp = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  276         else if (cpu_vendor_id == CPU_VENDOR_INTEL && (cpu_high >= 4)) {
  277                 cpuid_count(4, 0, p);
  278                 if ((p[0] & 0x1f) != 0)
  279                         cmp = ((p[0] >> 26) & 0x3f) + 1;
  280         }
  281         cpu_cores = cmp;
  282         cpu_logical = htt / cmp;
  283 
  284         /* Setup the initial logical CPUs info. */
  285         if (cpu_feature & CPUID_HTT)
  286                 logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  287 
  288         /*
  289          * Work out if hyperthreading is *really* enabled.  This
  290          * is made really ugly by the fact that processors lie: Dual
  291          * core processors claim to be hyperthreaded even when they're
  292          * not, presumably because they want to be treated the same
  293          * way as HTT with respect to per-cpu software licensing.
  294          * At the time of writing (May 12, 2005) the only hyperthreaded
  295          * cpus are from Intel, and Intel's dual-core processors can be
  296          * identified via the "deterministic cache parameters" cpuid
  297          * calls.
  298          */
  299         /*
  300          * First determine if this is an Intel processor which claims
  301          * to have hyperthreading support.
  302          */
  303         if ((cpu_feature & CPUID_HTT) && cpu_vendor_id == CPU_VENDOR_INTEL) {
  304                 /*
  305                  * If the "deterministic cache parameters" cpuid calls
  306                  * are available, use them.
  307                  */
  308                 if (cpu_high >= 4) {
  309                         /* Ask the processor about the L1 cache. */
  310                         for (i = 0; i < 1; i++) {
  311                                 cpuid_count(4, i, p);
  312                                 threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
  313                                 if (hyperthreading_cpus < threads_per_cache)
  314                                         hyperthreading_cpus = threads_per_cache;
  315                                 if ((p[0] & 0x1f) == 0)
  316                                         break;
  317                         }
  318                 }
  319 
  320                 /*
  321                  * If the deterministic cache parameters are not
  322                  * available, or if no caches were reported to exist,
  323                  * just accept what the HTT flag indicated.
  324                  */
  325                 if (hyperthreading_cpus == 0)
  326                         hyperthreading_cpus = logical_cpus;
  327         }
  328 }
  329 
  330 static void
  331 topo_probe(void)
  332 {
  333         static int cpu_topo_probed = 0;
  334 
  335         if (cpu_topo_probed)
  336                 return;
  337 
  338         logical_cpus = logical_cpus_mask = 0;
  339         if (cpu_high >= 0xb)
  340                 topo_probe_0xb();
  341         else if (cpu_high)
  342                 topo_probe_0x4();
  343         if (cpu_cores == 0)
  344                 cpu_cores = mp_ncpus > 0 ? mp_ncpus : 1;
  345         if (cpu_logical == 0)
  346                 cpu_logical = 1;
  347         cpu_topo_probed = 1;
  348 }
  349 
  350 struct cpu_group *
  351 cpu_topo(void)
  352 {
  353         int cg_flags;
  354 
  355         /*
  356          * Determine whether any threading flags are
  357          * necessry.
  358          */
  359         topo_probe();
  360         if (cpu_logical > 1 && hyperthreading_cpus)
  361                 cg_flags = CG_FLAG_HTT;
  362         else if (cpu_logical > 1)
  363                 cg_flags = CG_FLAG_SMT;
  364         else
  365                 cg_flags = 0;
  366         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  367                 printf("WARNING: Non-uniform processors.\n");
  368                 printf("WARNING: Using suboptimal topology.\n");
  369                 return (smp_topo_none());
  370         }
  371         /*
  372          * No multi-core or hyper-threaded.
  373          */
  374         if (cpu_logical * cpu_cores == 1)
  375                 return (smp_topo_none());
  376         /*
  377          * Only HTT no multi-core.
  378          */
  379         if (cpu_logical > 1 && cpu_cores == 1)
  380                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  381         /*
  382          * Only multi-core no HTT.
  383          */
  384         if (cpu_cores > 1 && cpu_logical == 1)
  385                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  386         /*
  387          * Both HTT and multi-core.
  388          */
  389         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  390             CG_SHARE_L1, cpu_logical, cg_flags));
  391 }
  392 
  393 
  394 /*
  395  * Calculate usable address in base memory for AP trampoline code.
  396  */
  397 u_int
  398 mp_bootaddress(u_int basemem)
  399 {
  400 
  401         boot_address = trunc_page(basemem);     /* round down to 4k boundary */
  402         if ((basemem - boot_address) < bootMP_size)
  403                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  404 
  405         return boot_address;
  406 }
  407 
  408 void
  409 cpu_add(u_int apic_id, char boot_cpu)
  410 {
  411 
  412         if (apic_id > MAX_APIC_ID) {
  413                 panic("SMP: APIC ID %d too high", apic_id);
  414                 return;
  415         }
  416         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  417             apic_id));
  418         cpu_info[apic_id].cpu_present = 1;
  419         if (boot_cpu) {
  420                 KASSERT(boot_cpu_id == -1,
  421                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  422                     boot_cpu_id));
  423                 boot_cpu_id = apic_id;
  424                 cpu_info[apic_id].cpu_bsp = 1;
  425         }
  426         if (mp_ncpus < MAXCPU)
  427                 mp_ncpus++;
  428         if (bootverbose)
  429                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  430                     "AP");
  431 }
  432 
  433 void
  434 cpu_mp_setmaxid(void)
  435 {
  436 
  437         mp_maxid = MAXCPU - 1;
  438 }
  439 
  440 int
  441 cpu_mp_probe(void)
  442 {
  443 
  444         /*
  445          * Always record BSP in CPU map so that the mbuf init code works
  446          * correctly.
  447          */
  448         all_cpus = 1;
  449         if (mp_ncpus == 0) {
  450                 /*
  451                  * No CPUs were found, so this must be a UP system.  Setup
  452                  * the variables to represent a system with a single CPU
  453                  * with an id of 0.
  454                  */
  455                 mp_ncpus = 1;
  456                 return (0);
  457         }
  458 
  459         /* At least one CPU was found. */
  460         if (mp_ncpus == 1) {
  461                 /*
  462                  * One CPU was found, so this must be a UP system with
  463                  * an I/O APIC.
  464                  */
  465                 return (0);
  466         }
  467 
  468         /* At least two CPUs were found. */
  469         return (1);
  470 }
  471 
  472 /*
  473  * Initialize the IPI handlers and start up the AP's.
  474  */
  475 void
  476 cpu_mp_start(void)
  477 {
  478         int i;
  479 
  480         /* Initialize the logical ID to APIC ID table. */
  481         for (i = 0; i < MAXCPU; i++) {
  482                 cpu_apic_ids[i] = -1;
  483                 cpu_ipi_pending[i] = 0;
  484         }
  485 
  486         /* Install an inter-CPU IPI for TLB invalidation */
  487         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  488                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  489         setidt(IPI_INVLPG, IDTVEC(invlpg),
  490                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  491         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  492                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  493 
  494         /* Install an inter-CPU IPI for cache invalidation. */
  495         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  496                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  497 
  498         /* Install an inter-CPU IPI for lazy pmap release */
  499         setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
  500                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  501 
  502         /* Install an inter-CPU IPI for all-CPU rendezvous */
  503         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  504                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  505 
  506         /* Install generic inter-CPU IPI handler */
  507         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  508                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  509 
  510         /* Install an inter-CPU IPI for CPU stop/restart */
  511         setidt(IPI_STOP, IDTVEC(cpustop),
  512                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  513 
  514 
  515         /* Set boot_cpu_id if needed. */
  516         if (boot_cpu_id == -1) {
  517                 boot_cpu_id = PCPU_GET(apic_id);
  518                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  519         } else
  520                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  521                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  522 
  523         /* Probe logical/physical core configuration. */
  524         topo_probe();
  525 
  526         assign_cpu_ids();
  527 
  528         /* Start each Application Processor */
  529         start_all_aps();
  530 
  531         set_interrupt_apic_ids();
  532 }
  533 
  534 
  535 /*
  536  * Print various information about the SMP system hardware and setup.
  537  */
  538 void
  539 cpu_mp_announce(void)
  540 {
  541         const char *hyperthread;
  542         int i;
  543 
  544         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  545             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  546         if (hyperthreading_cpus > 1)
  547             printf(" x %d HTT threads", cpu_logical);
  548         else if (cpu_logical > 1)
  549             printf(" x %d SMT threads", cpu_logical);
  550         printf("\n");
  551 
  552         /* List active CPUs first. */
  553         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  554         for (i = 1; i < mp_ncpus; i++) {
  555                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  556                         hyperthread = "/HT";
  557                 else
  558                         hyperthread = "";
  559                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  560                     cpu_apic_ids[i]);
  561         }
  562 
  563         /* List disabled CPUs last. */
  564         for (i = 0; i <= MAX_APIC_ID; i++) {
  565                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  566                         continue;
  567                 if (cpu_info[i].cpu_hyperthread)
  568                         hyperthread = "/HT";
  569                 else
  570                         hyperthread = "";
  571                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  572                     i);
  573         }
  574 }
  575 
  576 /*
  577  * AP CPU's call this to initialize themselves.
  578  */
  579 void
  580 init_secondary(void)
  581 {
  582         struct pcpu *pc;
  583         vm_offset_t addr;
  584         int     gsel_tss;
  585         int     x, myid;
  586         u_int   cr0;
  587 
  588         /* bootAP is set in start_ap() to our ID. */
  589         myid = bootAP;
  590 
  591         /* Get per-cpu data */
  592         pc = &__pcpu[myid];
  593 
  594         /* prime data page for it to use */
  595         pcpu_init(pc, myid, sizeof(struct pcpu));
  596         dpcpu_init(dpcpu, myid);
  597         pc->pc_apic_id = cpu_apic_ids[myid];
  598         pc->pc_prvspace = pc;
  599         pc->pc_curthread = 0;
  600 
  601         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
  602         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
  603 
  604         for (x = 0; x < NGDT; x++) {
  605                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  606         }
  607 
  608         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  609         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  610         lgdt(&r_gdt);                   /* does magic intra-segment return */
  611 
  612         lidt(&r_idt);
  613 
  614         lldt(_default_ldt);
  615         PCPU_SET(currentldt, _default_ldt);
  616 
  617         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  618         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  619         PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
  620         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
  621         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
  622         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  623         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  624         ltr(gsel_tss);
  625 
  626         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  627 
  628         /*
  629          * Set to a known state:
  630          * Set by mpboot.s: CR0_PG, CR0_PE
  631          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  632          */
  633         cr0 = rcr0();
  634         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  635         load_cr0(cr0);
  636         CHECK_WRITE(0x38, 5);
  637         
  638         /* Disable local APIC just to be sure. */
  639         lapic_disable();
  640 
  641         /* signal our startup to the BSP. */
  642         mp_naps++;
  643         CHECK_WRITE(0x39, 6);
  644 
  645         /* Spin until the BSP releases the AP's. */
  646         while (!aps_ready)
  647                 ia32_pause();
  648 
  649         /* BSP may have changed PTD while we were waiting */
  650         invltlb();
  651         for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
  652                 invlpg(addr);
  653 
  654 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  655         lidt(&r_idt);
  656 #endif
  657 
  658         /* Initialize the PAT MSR if present. */
  659         pmap_init_pat();
  660 
  661         /* set up CPU registers and state */
  662         cpu_setregs();
  663 
  664         /* set up FPU state on the AP */
  665         npxinit();
  666 
  667         /* set up SSE registers */
  668         enable_sse();
  669 
  670 #ifdef PAE
  671         /* Enable the PTE no-execute bit. */
  672         if ((amd_feature & AMDID_NX) != 0) {
  673                 uint64_t msr;
  674 
  675                 msr = rdmsr(MSR_EFER) | EFER_NXE;
  676                 wrmsr(MSR_EFER, msr);
  677         }
  678 #endif
  679 
  680         /* A quick check from sanity claus */
  681         if (PCPU_GET(apic_id) != lapic_id()) {
  682                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  683                 printf("SMP: actual apic_id = %d\n", lapic_id());
  684                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  685                 panic("cpuid mismatch! boom!!");
  686         }
  687 
  688         /* Initialize curthread. */
  689         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  690         PCPU_SET(curthread, PCPU_GET(idlethread));
  691 
  692         mca_init();
  693 
  694         mtx_lock_spin(&ap_boot_mtx);
  695 
  696         /* Init local apic for irq's */
  697         lapic_setup(1);
  698 
  699         /* Set memory range attributes for this CPU to match the BSP */
  700         mem_range_AP_init();
  701 
  702         smp_cpus++;
  703 
  704         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  705         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  706 
  707         /* Determine if we are a logical CPU. */
  708         if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
  709                 logical_cpus_mask |= PCPU_GET(cpumask);
  710         
  711         /* Determine if we are a hyperthread. */
  712         if (hyperthreading_cpus > 1 &&
  713             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  714                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  715 
  716         /* Build our map of 'other' CPUs. */
  717         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  718 
  719         if (bootverbose)
  720                 lapic_dump("AP");
  721 
  722         if (smp_cpus == mp_ncpus) {
  723                 /* enable IPI's, tlb shootdown, freezes etc */
  724                 atomic_store_rel_int(&smp_started, 1);
  725                 smp_active = 1;  /* historic */
  726         }
  727 
  728         mtx_unlock_spin(&ap_boot_mtx);
  729 
  730         /* wait until all the AP's are up */
  731         while (smp_started == 0)
  732                 ia32_pause();
  733 
  734         /* enter the scheduler */
  735         sched_throw(NULL);
  736 
  737         panic("scheduler returned us to %s", __func__);
  738         /* NOTREACHED */
  739 }
  740 
  741 /*******************************************************************
  742  * local functions and data
  743  */
  744 
  745 /*
  746  * We tell the I/O APIC code about all the CPUs we want to receive
  747  * interrupts.  If we don't want certain CPUs to receive IRQs we
  748  * can simply not tell the I/O APIC code about them in this function.
  749  * We also do not tell it about the BSP since it tells itself about
  750  * the BSP internally to work with UP kernels and on UP machines.
  751  */
  752 static void
  753 set_interrupt_apic_ids(void)
  754 {
  755         u_int i, apic_id;
  756 
  757         for (i = 0; i < MAXCPU; i++) {
  758                 apic_id = cpu_apic_ids[i];
  759                 if (apic_id == -1)
  760                         continue;
  761                 if (cpu_info[apic_id].cpu_bsp)
  762                         continue;
  763                 if (cpu_info[apic_id].cpu_disabled)
  764                         continue;
  765 
  766                 /* Don't let hyperthreads service interrupts. */
  767                 if (hyperthreading_cpus > 1 &&
  768                     apic_id % hyperthreading_cpus != 0)
  769                         continue;
  770 
  771                 intr_add_cpu(i);
  772         }
  773 }
  774 
  775 /*
  776  * Assign logical CPU IDs to local APICs.
  777  */
  778 static void
  779 assign_cpu_ids(void)
  780 {
  781         u_int i;
  782 
  783         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  784             &hyperthreading_allowed);
  785 
  786         /* Check for explicitly disabled CPUs. */
  787         for (i = 0; i <= MAX_APIC_ID; i++) {
  788                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  789                         continue;
  790 
  791                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  792                         cpu_info[i].cpu_hyperthread = 1;
  793 #if defined(SCHED_ULE)
  794                         /*
  795                          * Don't use HT CPU if it has been disabled by a
  796                          * tunable.
  797                          */
  798                         if (hyperthreading_allowed == 0) {
  799                                 cpu_info[i].cpu_disabled = 1;
  800                                 continue;
  801                         }
  802 #endif
  803                 }
  804 
  805                 /* Don't use this CPU if it has been disabled by a tunable. */
  806                 if (resource_disabled("lapic", i)) {
  807                         cpu_info[i].cpu_disabled = 1;
  808                         continue;
  809                 }
  810         }
  811 
  812         /*
  813          * Assign CPU IDs to local APIC IDs and disable any CPUs
  814          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  815          *
  816          * To minimize confusion for userland, we attempt to number
  817          * CPUs such that all threads and cores in a package are
  818          * grouped together.  For now we assume that the BSP is always
  819          * the first thread in a package and just start adding APs
  820          * starting with the BSP's APIC ID.
  821          */
  822         mp_ncpus = 1;
  823         cpu_apic_ids[0] = boot_cpu_id;
  824         apic_cpuids[boot_cpu_id] = 0;
  825         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  826              i == MAX_APIC_ID ? i = 0 : i++) {
  827                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  828                     cpu_info[i].cpu_disabled)
  829                         continue;
  830 
  831                 if (mp_ncpus < MAXCPU) {
  832                         cpu_apic_ids[mp_ncpus] = i;
  833                         apic_cpuids[i] = mp_ncpus;
  834                         mp_ncpus++;
  835                 } else
  836                         cpu_info[i].cpu_disabled = 1;
  837         }
  838         KASSERT(mp_maxid >= mp_ncpus - 1,
  839             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  840             mp_ncpus));         
  841 }
  842 
  843 /*
  844  * start each AP in our list
  845  */
  846 /* Lowest 1MB is already mapped: don't touch*/
  847 #define TMPMAP_START 1
  848 static int
  849 start_all_aps(void)
  850 {
  851 #ifndef PC98
  852         u_char mpbiosreason;
  853 #endif
  854         uintptr_t kptbase;
  855         u_int32_t mpbioswarmvec;
  856         int apic_id, cpu, i;
  857 
  858         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  859 
  860         /* install the AP 1st level boot code */
  861         install_ap_tramp();
  862 
  863         /* save the current value of the warm-start vector */
  864         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  865 #ifndef PC98
  866         outb(CMOS_REG, BIOS_RESET);
  867         mpbiosreason = inb(CMOS_DATA);
  868 #endif
  869 
  870         /* set up temporary P==V mapping for AP boot */
  871         /* XXX this is a hack, we should boot the AP on its own stack/PTD */
  872 
  873         kptbase = (uintptr_t)(void *)KPTphys;
  874         for (i = TMPMAP_START; i < NKPT; i++)
  875                 PTD[i] = (pd_entry_t)(PG_V | PG_RW |
  876                     ((kptbase + i * PAGE_SIZE) & PG_FRAME));
  877         invltlb();
  878 
  879         /* start each AP */
  880         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  881                 apic_id = cpu_apic_ids[cpu];
  882 
  883                 /* allocate and set up a boot stack data page */
  884                 bootstacks[cpu] =
  885                     (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  886                 dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
  887                 /* setup a vector to our boot code */
  888                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  889                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  890 #ifndef PC98
  891                 outb(CMOS_REG, BIOS_RESET);
  892                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  893 #endif
  894 
  895                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
  896                 bootAP = cpu;
  897 
  898                 /* attempt to start the Application Processor */
  899                 CHECK_INIT(99); /* setup checkpoints */
  900                 if (!start_ap(apic_id)) {
  901                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  902                         CHECK_PRINT("trace");   /* show checkpoints */
  903                         /* better panic as the AP may be running loose */
  904                         printf("panic y/n? [y] ");
  905                         if (cngetc() != 'n')
  906                                 panic("bye-bye");
  907                 }
  908                 CHECK_PRINT("trace");           /* show checkpoints */
  909 
  910                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  911         }
  912 
  913         /* build our map of 'other' CPUs */
  914         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  915 
  916         /* restore the warmstart vector */
  917         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  918 
  919 #ifndef PC98
  920         outb(CMOS_REG, BIOS_RESET);
  921         outb(CMOS_DATA, mpbiosreason);
  922 #endif
  923 
  924         /* Undo V==P hack from above */
  925         for (i = TMPMAP_START; i < NKPT; i++)
  926                 PTD[i] = 0;
  927         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
  928 
  929         /* number of APs actually started */
  930         return mp_naps;
  931 }
  932 
  933 /*
  934  * load the 1st level AP boot code into base memory.
  935  */
  936 
  937 /* targets for relocation */
  938 extern void bigJump(void);
  939 extern void bootCodeSeg(void);
  940 extern void bootDataSeg(void);
  941 extern void MPentry(void);
  942 extern u_int MP_GDT;
  943 extern u_int mp_gdtbase;
  944 
  945 static void
  946 install_ap_tramp(void)
  947 {
  948         int     x;
  949         int     size = *(int *) ((u_long) & bootMP_size);
  950         vm_offset_t va = boot_address + KERNBASE;
  951         u_char *src = (u_char *) ((u_long) bootMP);
  952         u_char *dst = (u_char *) va;
  953         u_int   boot_base = (u_int) bootMP;
  954         u_int8_t *dst8;
  955         u_int16_t *dst16;
  956         u_int32_t *dst32;
  957 
  958         KASSERT (size <= PAGE_SIZE,
  959             ("'size' do not fit into PAGE_SIZE, as expected."));
  960         pmap_kenter(va, boot_address);
  961         pmap_invalidate_page (kernel_pmap, va);
  962         for (x = 0; x < size; ++x)
  963                 *dst++ = *src++;
  964 
  965         /*
  966          * modify addresses in code we just moved to basemem. unfortunately we
  967          * need fairly detailed info about mpboot.s for this to work.  changes
  968          * to mpboot.s might require changes here.
  969          */
  970 
  971         /* boot code is located in KERNEL space */
  972         dst = (u_char *) va;
  973 
  974         /* modify the lgdt arg */
  975         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
  976         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
  977 
  978         /* modify the ljmp target for MPentry() */
  979         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
  980         *dst32 = ((u_int) MPentry - KERNBASE);
  981 
  982         /* modify the target for boot code segment */
  983         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
  984         dst8 = (u_int8_t *) (dst16 + 1);
  985         *dst16 = (u_int) boot_address & 0xffff;
  986         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  987 
  988         /* modify the target for boot data segment */
  989         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
  990         dst8 = (u_int8_t *) (dst16 + 1);
  991         *dst16 = (u_int) boot_address & 0xffff;
  992         *dst8 = ((u_int) boot_address >> 16) & 0xff;
  993 }
  994 
  995 /*
  996  * This function starts the AP (application processor) identified
  997  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  998  * to accomplish this.  This is necessary because of the nuances
  999  * of the different hardware we might encounter.  It isn't pretty,
 1000  * but it seems to work.
 1001  */
 1002 static int
 1003 start_ap(int apic_id)
 1004 {
 1005         int vector, ms;
 1006         int cpus;
 1007 
 1008         /* calculate the vector */
 1009         vector = (boot_address >> 12) & 0xff;
 1010 
 1011         /* used as a watchpoint to signal AP startup */
 1012         cpus = mp_naps;
 1013 
 1014         /*
 1015          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
 1016          * and running the target CPU. OR this INIT IPI might be latched (P5
 1017          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
 1018          * ignored.
 1019          */
 1020 
 1021         /* do an INIT IPI: assert RESET */
 1022         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1023             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
 1024 
 1025         /* wait for pending status end */
 1026         lapic_ipi_wait(-1);
 1027 
 1028         /* do an INIT IPI: deassert RESET */
 1029         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
 1030             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
 1031 
 1032         /* wait for pending status end */
 1033         DELAY(10000);           /* wait ~10mS */
 1034         lapic_ipi_wait(-1);
 1035 
 1036         /*
 1037          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1038          * latched, (P5 bug) this 1st STARTUP would then terminate
 1039          * immediately, and the previously started INIT IPI would continue. OR
 1040          * the previous INIT IPI has already run. and this STARTUP IPI will
 1041          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1042          * will run.
 1043          */
 1044 
 1045         /* do a STARTUP IPI */
 1046         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1047             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1048             vector, apic_id);
 1049         lapic_ipi_wait(-1);
 1050         DELAY(200);             /* wait ~200uS */
 1051 
 1052         /*
 1053          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1054          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1055          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1056          * recognized after hardware RESET or INIT IPI.
 1057          */
 1058 
 1059         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1060             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1061             vector, apic_id);
 1062         lapic_ipi_wait(-1);
 1063         DELAY(200);             /* wait ~200uS */
 1064 
 1065         /* Wait up to 5 seconds for it to start. */
 1066         for (ms = 0; ms < 5000; ms++) {
 1067                 if (mp_naps > cpus)
 1068                         return 1;       /* return SUCCESS */
 1069                 DELAY(1000);
 1070         }
 1071         return 0;               /* return FAILURE */
 1072 }
 1073 
 1074 #ifdef COUNT_XINVLTLB_HITS
 1075 u_int xhits_gbl[MAXCPU];
 1076 u_int xhits_pg[MAXCPU];
 1077 u_int xhits_rng[MAXCPU];
 1078 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1079 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1080     sizeof(xhits_gbl), "IU", "");
 1081 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1082     sizeof(xhits_pg), "IU", "");
 1083 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1084     sizeof(xhits_rng), "IU", "");
 1085 
 1086 u_int ipi_global;
 1087 u_int ipi_page;
 1088 u_int ipi_range;
 1089 u_int ipi_range_size;
 1090 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1091 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1092 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1093 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
 1094     0, "");
 1095 
 1096 u_int ipi_masked_global;
 1097 u_int ipi_masked_page;
 1098 u_int ipi_masked_range;
 1099 u_int ipi_masked_range_size;
 1100 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1101     &ipi_masked_global, 0, "");
 1102 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1103     &ipi_masked_page, 0, "");
 1104 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1105     &ipi_masked_range, 0, "");
 1106 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1107     &ipi_masked_range_size, 0, "");
 1108 #endif /* COUNT_XINVLTLB_HITS */
 1109 
 1110 /*
 1111  * Flush the TLB on all other CPU's
 1112  */
 1113 static void
 1114 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1115 {
 1116         u_int ncpu;
 1117 
 1118         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1119         if (ncpu < 1)
 1120                 return;         /* no other cpus */
 1121         if (!(read_eflags() & PSL_I))
 1122                 panic("%s: interrupts disabled", __func__);
 1123         mtx_lock_spin(&smp_ipi_mtx);
 1124         smp_tlb_addr1 = addr1;
 1125         smp_tlb_addr2 = addr2;
 1126         atomic_store_rel_int(&smp_tlb_wait, 0);
 1127         ipi_all_but_self(vector);
 1128         while (smp_tlb_wait < ncpu)
 1129                 ia32_pause();
 1130         mtx_unlock_spin(&smp_ipi_mtx);
 1131 }
 1132 
 1133 static void
 1134 smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1135 {
 1136         int ncpu, othercpus;
 1137 
 1138         othercpus = mp_ncpus - 1;
 1139         if (mask == (u_int)-1) {
 1140                 ncpu = othercpus;
 1141                 if (ncpu < 1)
 1142                         return;
 1143         } else {
 1144                 mask &= ~PCPU_GET(cpumask);
 1145                 if (mask == 0)
 1146                         return;
 1147                 ncpu = bitcount32(mask);
 1148                 if (ncpu > othercpus) {
 1149                         /* XXX this should be a panic offence */
 1150                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1151                             ncpu, othercpus);
 1152                         ncpu = othercpus;
 1153                 }
 1154                 /* XXX should be a panic, implied by mask == 0 above */
 1155                 if (ncpu < 1)
 1156                         return;
 1157         }
 1158         if (!(read_eflags() & PSL_I))
 1159                 panic("%s: interrupts disabled", __func__);
 1160         mtx_lock_spin(&smp_ipi_mtx);
 1161         smp_tlb_addr1 = addr1;
 1162         smp_tlb_addr2 = addr2;
 1163         atomic_store_rel_int(&smp_tlb_wait, 0);
 1164         if (mask == (u_int)-1)
 1165                 ipi_all_but_self(vector);
 1166         else
 1167                 ipi_selected(mask, vector);
 1168         while (smp_tlb_wait < ncpu)
 1169                 ia32_pause();
 1170         mtx_unlock_spin(&smp_ipi_mtx);
 1171 }
 1172 
 1173 void
 1174 smp_cache_flush(void)
 1175 {
 1176 
 1177         if (smp_started)
 1178                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1179 }
 1180 
 1181 void
 1182 smp_invltlb(void)
 1183 {
 1184 
 1185         if (smp_started) {
 1186                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1187 #ifdef COUNT_XINVLTLB_HITS
 1188                 ipi_global++;
 1189 #endif
 1190         }
 1191 }
 1192 
 1193 void
 1194 smp_invlpg(vm_offset_t addr)
 1195 {
 1196 
 1197         if (smp_started) {
 1198                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1199 #ifdef COUNT_XINVLTLB_HITS
 1200                 ipi_page++;
 1201 #endif
 1202         }
 1203 }
 1204 
 1205 void
 1206 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1207 {
 1208 
 1209         if (smp_started) {
 1210                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1211 #ifdef COUNT_XINVLTLB_HITS
 1212                 ipi_range++;
 1213                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1214 #endif
 1215         }
 1216 }
 1217 
 1218 void
 1219 smp_masked_invltlb(cpumask_t mask)
 1220 {
 1221 
 1222         if (smp_started) {
 1223                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1224 #ifdef COUNT_XINVLTLB_HITS
 1225                 ipi_masked_global++;
 1226 #endif
 1227         }
 1228 }
 1229 
 1230 void
 1231 smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
 1232 {
 1233 
 1234         if (smp_started) {
 1235                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1236 #ifdef COUNT_XINVLTLB_HITS
 1237                 ipi_masked_page++;
 1238 #endif
 1239         }
 1240 }
 1241 
 1242 void
 1243 smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1244 {
 1245 
 1246         if (smp_started) {
 1247                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1248 #ifdef COUNT_XINVLTLB_HITS
 1249                 ipi_masked_range++;
 1250                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1251 #endif
 1252         }
 1253 }
 1254 
 1255 void
 1256 ipi_bitmap_handler(struct trapframe frame)
 1257 {
 1258         int cpu = PCPU_GET(cpuid);
 1259         u_int ipi_bitmap;
 1260 
 1261         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1262 
 1263         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1264 #ifdef COUNT_IPIS
 1265                 (*ipi_preempt_counts[cpu])++;
 1266 #endif
 1267                 sched_preempt(curthread);
 1268         }
 1269 
 1270         if (ipi_bitmap & (1 << IPI_AST)) {
 1271 #ifdef COUNT_IPIS
 1272                 (*ipi_ast_counts[cpu])++;
 1273 #endif
 1274                 /* Nothing to do for AST */
 1275         }
 1276 
 1277         if (ipi_bitmap & (1 << IPI_HARDCLOCK))
 1278                 hardclockintr(&frame); 
 1279 
 1280         if (ipi_bitmap & (1 << IPI_STATCLOCK))
 1281                 statclockintr(&frame); 
 1282 
 1283         if (ipi_bitmap & (1 << IPI_PROFCLOCK))
 1284                 profclockintr(&frame);
 1285 }
 1286 
 1287 /*
 1288  * send an IPI to a set of cpus.
 1289  */
 1290 void
 1291 ipi_selected(cpumask_t cpus, u_int ipi)
 1292 {
 1293         int cpu;
 1294         u_int bitmap = 0;
 1295         u_int old_pending;
 1296         u_int new_pending;
 1297 
 1298         if (IPI_IS_BITMAPED(ipi)) { 
 1299                 bitmap = 1 << ipi;
 1300                 ipi = IPI_BITMAP_VECTOR;
 1301         }
 1302 
 1303         /*
 1304          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1305          * of help in order to understand what is the source.
 1306          * Set the mask of receiving CPUs for this purpose.
 1307          */
 1308         if (ipi == IPI_STOP_HARD)
 1309                 atomic_set_int(&ipi_nmi_pending, cpus);
 1310 
 1311         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1312         while ((cpu = ffs(cpus)) != 0) {
 1313                 cpu--;
 1314                 cpus &= ~(1 << cpu);
 1315 
 1316                 KASSERT(cpu_apic_ids[cpu] != -1,
 1317                     ("IPI to non-existent CPU %d", cpu));
 1318 
 1319                 if (bitmap) {
 1320                         do {
 1321                                 old_pending = cpu_ipi_pending[cpu];
 1322                                 new_pending = old_pending | bitmap;
 1323                         } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));  
 1324 
 1325                         if (old_pending)
 1326                                 continue;
 1327                 }
 1328 
 1329                 lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1330         }
 1331 
 1332 }
 1333 
 1334 /*
 1335  * send an IPI to all CPUs EXCEPT myself
 1336  */
 1337 void
 1338 ipi_all_but_self(u_int ipi)
 1339 {
 1340 
 1341         if (IPI_IS_BITMAPED(ipi)) {
 1342                 ipi_selected(PCPU_GET(other_cpus), ipi);
 1343                 return;
 1344         }
 1345 
 1346         /*
 1347          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1348          * of help in order to understand what is the source.
 1349          * Set the mask of receiving CPUs for this purpose.
 1350          */
 1351         if (ipi == IPI_STOP_HARD)
 1352                 atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
 1353         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1354         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1355 }
 1356 
 1357 int
 1358 ipi_nmi_handler()
 1359 {
 1360         cpumask_t cpumask;
 1361 
 1362         /*
 1363          * As long as there is not a simple way to know about a NMI's
 1364          * source, if the bitmask for the current CPU is present in
 1365          * the global pending bitword an IPI_STOP_HARD has been issued
 1366          * and should be handled.
 1367          */
 1368         cpumask = PCPU_GET(cpumask);
 1369         if ((ipi_nmi_pending & cpumask) == 0)
 1370                 return (1);
 1371 
 1372         atomic_clear_int(&ipi_nmi_pending, cpumask);
 1373         cpustop_handler();
 1374         return (0);
 1375 }
 1376 
 1377 /*
 1378  * Handle an IPI_STOP by saving our current context and spinning until we
 1379  * are resumed.
 1380  */
 1381 void
 1382 cpustop_handler(void)
 1383 {
 1384         int cpu = PCPU_GET(cpuid);
 1385         int cpumask = PCPU_GET(cpumask);
 1386 
 1387         savectx(&stoppcbs[cpu]);
 1388 
 1389         /* Indicate that we are stopped */
 1390         atomic_set_int(&stopped_cpus, cpumask);
 1391 
 1392         /* Wait for restart */
 1393         while (!(started_cpus & cpumask))
 1394             ia32_pause();
 1395 
 1396         atomic_clear_int(&started_cpus, cpumask);
 1397         atomic_clear_int(&stopped_cpus, cpumask);
 1398 
 1399         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1400                 cpustop_restartfunc();
 1401                 cpustop_restartfunc = NULL;
 1402         }
 1403 }
 1404 
 1405 /*
 1406  * This is called once the rest of the system is up and running and we're
 1407  * ready to let the AP's out of the pen.
 1408  */
 1409 static void
 1410 release_aps(void *dummy __unused)
 1411 {
 1412 
 1413         if (mp_ncpus == 1) 
 1414                 return;
 1415         atomic_store_rel_int(&aps_ready, 1);
 1416         while (smp_started == 0)
 1417                 ia32_pause();
 1418 }
 1419 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1420 
 1421 static int
 1422 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1423 {
 1424         cpumask_t mask;
 1425         int error;
 1426 
 1427         mask = hlt_cpus_mask;
 1428         error = sysctl_handle_int(oidp, &mask, 0, req);
 1429         if (error || !req->newptr)
 1430                 return (error);
 1431 
 1432         if (logical_cpus_mask != 0 &&
 1433             (mask & logical_cpus_mask) == logical_cpus_mask)
 1434                 hlt_logical_cpus = 1;
 1435         else
 1436                 hlt_logical_cpus = 0;
 1437 
 1438         if (! hyperthreading_allowed)
 1439                 mask |= hyperthreading_cpus_mask;
 1440 
 1441         if ((mask & all_cpus) == all_cpus)
 1442                 mask &= ~(1<<0);
 1443         hlt_cpus_mask = mask;
 1444         return (error);
 1445 }
 1446 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1447     0, 0, sysctl_hlt_cpus, "IU",
 1448     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1449 
 1450 static int
 1451 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1452 {
 1453         int disable, error;
 1454 
 1455         disable = hlt_logical_cpus;
 1456         error = sysctl_handle_int(oidp, &disable, 0, req);
 1457         if (error || !req->newptr)
 1458                 return (error);
 1459 
 1460         if (disable)
 1461                 hlt_cpus_mask |= logical_cpus_mask;
 1462         else
 1463                 hlt_cpus_mask &= ~logical_cpus_mask;
 1464 
 1465         if (! hyperthreading_allowed)
 1466                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1467 
 1468         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1469                 hlt_cpus_mask &= ~(1<<0);
 1470 
 1471         hlt_logical_cpus = disable;
 1472         return (error);
 1473 }
 1474 
 1475 static int
 1476 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1477 {
 1478         int allowed, error;
 1479 
 1480         allowed = hyperthreading_allowed;
 1481         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1482         if (error || !req->newptr)
 1483                 return (error);
 1484 
 1485 #ifdef SCHED_ULE
 1486         /*
 1487          * SCHED_ULE doesn't allow enabling/disabling HT cores at
 1488          * run-time.
 1489          */
 1490         if (allowed != hyperthreading_allowed)
 1491                 return (ENOTSUP);
 1492         return (error);
 1493 #endif
 1494 
 1495         if (allowed)
 1496                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1497         else
 1498                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1499 
 1500         if (logical_cpus_mask != 0 &&
 1501             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1502                 hlt_logical_cpus = 1;
 1503         else
 1504                 hlt_logical_cpus = 0;
 1505 
 1506         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1507                 hlt_cpus_mask &= ~(1<<0);
 1508 
 1509         hyperthreading_allowed = allowed;
 1510         return (error);
 1511 }
 1512 
 1513 static void
 1514 cpu_hlt_setup(void *dummy __unused)
 1515 {
 1516 
 1517         if (logical_cpus_mask != 0) {
 1518                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1519                     &hlt_logical_cpus);
 1520                 sysctl_ctx_init(&logical_cpu_clist);
 1521                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1522                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1523                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1524                     sysctl_hlt_logical_cpus, "IU", "");
 1525                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1526                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1527                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1528                     &logical_cpus_mask, 0, "");
 1529 
 1530                 if (hlt_logical_cpus)
 1531                         hlt_cpus_mask |= logical_cpus_mask;
 1532 
 1533                 /*
 1534                  * If necessary for security purposes, force
 1535                  * hyperthreading off, regardless of the value
 1536                  * of hlt_logical_cpus.
 1537                  */
 1538                 if (hyperthreading_cpus_mask) {
 1539                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1540                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1541                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1542                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1543                         if (! hyperthreading_allowed)
 1544                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1545                 }
 1546         }
 1547 }
 1548 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1549 
 1550 int
 1551 mp_grab_cpu_hlt(void)
 1552 {
 1553         u_int mask = PCPU_GET(cpumask);
 1554 #ifdef MP_WATCHDOG
 1555         u_int cpuid = PCPU_GET(cpuid);
 1556 #endif
 1557         int retval;
 1558 
 1559 #ifdef MP_WATCHDOG
 1560         ap_watchdog(cpuid);
 1561 #endif
 1562 
 1563         retval = mask & hlt_cpus_mask;
 1564         while (mask & hlt_cpus_mask)
 1565                 __asm __volatile("sti; hlt" : : : "memory");
 1566         return (retval);
 1567 }
 1568 
 1569 #ifdef COUNT_IPIS
 1570 /*
 1571  * Setup interrupt counters for IPI handlers.
 1572  */
 1573 static void
 1574 mp_ipi_intrcnt(void *dummy)
 1575 {
 1576         char buf[64];
 1577         int i;
 1578 
 1579         for (i = 0; i < mp_maxid; i++) {
 1580                 if (CPU_ABSENT(i))
 1581                         continue;
 1582                 snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
 1583                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1584                 snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
 1585                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1586                 snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
 1587                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1588                 snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
 1589                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1590                 snprintf(buf, sizeof(buf), "cpu%d: ast", i);
 1591                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1592                 snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
 1593                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1594                 snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
 1595                 intrcnt_add(buf, &ipi_lazypmap_counts[i]);
 1596         }               
 1597 }
 1598 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1599 #endif

Cache object: 4950541b6a3ccf31cbb23c3dc576db3b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.