The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the developer may NOT be used to endorse or promote products
   11  *    derived from this software without specific prior written permission.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD: releng/8.2/sys/i386/i386/mp_machdep.c 215141 2010-11-11 19:39:38Z jhb $");
   28 
   29 #include "opt_apic.h"
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_mp_watchdog.h"
   33 #include "opt_pmap.h"
   34 #include "opt_sched.h"
   35 #include "opt_smp.h"
   36 
   37 #if !defined(lint)
   38 #if !defined(SMP)
   39 #error How did you get here?
   40 #endif
   41 
   42 #ifndef DEV_APIC
   43 #error The apic device is required for SMP, add "device apic" to your config file.
   44 #endif
   45 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
   46 #error SMP not supported with CPU_DISABLE_CMPXCHG
   47 #endif
   48 #endif /* not lint */
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bus.h>
   53 #include <sys/cons.h>   /* cngetc() */
   54 #ifdef GPROF 
   55 #include <sys/gmon.h>
   56 #endif
   57 #include <sys/kernel.h>
   58 #include <sys/ktr.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/memrange.h>
   62 #include <sys/mutex.h>
   63 #include <sys/pcpu.h>
   64 #include <sys/proc.h>
   65 #include <sys/sched.h>
   66 #include <sys/smp.h>
   67 #include <sys/sysctl.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_kern.h>
   73 #include <vm/vm_extern.h>
   74 
   75 #include <machine/apicreg.h>
   76 #include <machine/clock.h>
   77 #include <machine/cputypes.h>
   78 #include <machine/mca.h>
   79 #include <machine/md_var.h>
   80 #include <machine/mp_watchdog.h>
   81 #include <machine/pcb.h>
   82 #include <machine/psl.h>
   83 #include <machine/smp.h>
   84 #include <machine/specialreg.h>
   85 
   86 #define WARMBOOT_TARGET         0
   87 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   88 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   89 
   90 #define CMOS_REG                (0x70)
   91 #define CMOS_DATA               (0x71)
   92 #define BIOS_RESET              (0x0f)
   93 #define BIOS_WARM               (0x0a)
   94 
   95 /*
   96  * this code MUST be enabled here and in mpboot.s.
   97  * it follows the very early stages of AP boot by placing values in CMOS ram.
   98  * it NORMALLY will never be needed and thus the primitive method for enabling.
   99  *
  100 #define CHECK_POINTS
  101  */
  102 
  103 #if defined(CHECK_POINTS) && !defined(PC98)
  104 #define CHECK_READ(A)    (outb(CMOS_REG, (A)), inb(CMOS_DATA))
  105 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
  106 
  107 #define CHECK_INIT(D);                          \
  108         CHECK_WRITE(0x34, (D));                 \
  109         CHECK_WRITE(0x35, (D));                 \
  110         CHECK_WRITE(0x36, (D));                 \
  111         CHECK_WRITE(0x37, (D));                 \
  112         CHECK_WRITE(0x38, (D));                 \
  113         CHECK_WRITE(0x39, (D));
  114 
  115 #define CHECK_PRINT(S);                         \
  116         printf("%s: %d, %d, %d, %d, %d, %d\n",  \
  117            (S),                                 \
  118            CHECK_READ(0x34),                    \
  119            CHECK_READ(0x35),                    \
  120            CHECK_READ(0x36),                    \
  121            CHECK_READ(0x37),                    \
  122            CHECK_READ(0x38),                    \
  123            CHECK_READ(0x39));
  124 
  125 #else                           /* CHECK_POINTS */
  126 
  127 #define CHECK_INIT(D)
  128 #define CHECK_PRINT(S)
  129 #define CHECK_WRITE(A, D)
  130 
  131 #endif                          /* CHECK_POINTS */
  132 
  133 /* lock region used by kernel profiling */
  134 int     mcount_lock;
  135 
  136 int     mp_naps;                /* # of Applications processors */
  137 int     boot_cpu_id = -1;       /* designated BSP */
  138 
  139 extern  struct pcpu __pcpu[];
  140 
  141 /* AP uses this during bootstrap.  Do not staticize.  */
  142 char *bootSTK;
  143 static int bootAP;
  144 
  145 /* Free these after use */
  146 void *bootstacks[MAXCPU];
  147 static void *dpcpu;
  148 
  149 /* Hotwire a 0->4MB V==P mapping */
  150 extern pt_entry_t *KPTphys;
  151 
  152 struct pcb stoppcbs[MAXCPU];
  153 
  154 /* Variables needed for SMP tlb shootdown. */
  155 vm_offset_t smp_tlb_addr1;
  156 vm_offset_t smp_tlb_addr2;
  157 volatile int smp_tlb_wait;
  158 
  159 #ifdef COUNT_IPIS
  160 /* Interrupt counts. */
  161 static u_long *ipi_preempt_counts[MAXCPU];
  162 static u_long *ipi_ast_counts[MAXCPU];
  163 u_long *ipi_invltlb_counts[MAXCPU];
  164 u_long *ipi_invlrng_counts[MAXCPU];
  165 u_long *ipi_invlpg_counts[MAXCPU];
  166 u_long *ipi_invlcache_counts[MAXCPU];
  167 u_long *ipi_rendezvous_counts[MAXCPU];
  168 u_long *ipi_lazypmap_counts[MAXCPU];
  169 #endif
  170 
  171 /*
  172  * Local data and functions.
  173  */
  174 
  175 static volatile cpumask_t ipi_nmi_pending;
  176 
  177 /* used to hold the AP's until we are ready to release them */
  178 static struct mtx ap_boot_mtx;
  179 
  180 /* Set to 1 once we're ready to let the APs out of the pen. */
  181 static volatile int aps_ready = 0;
  182 
  183 /*
  184  * Store data from cpu_add() until later in the boot when we actually setup
  185  * the APs.
  186  */
  187 struct cpu_info {
  188         int     cpu_present:1;
  189         int     cpu_bsp:1;
  190         int     cpu_disabled:1;
  191         int     cpu_hyperthread:1;
  192 } static cpu_info[MAX_APIC_ID + 1];
  193 int cpu_apic_ids[MAXCPU];
  194 int apic_cpuids[MAX_APIC_ID + 1];
  195 
  196 /* Holds pending bitmap based IPIs per CPU */
  197 static volatile u_int cpu_ipi_pending[MAXCPU];
  198 
  199 static u_int boot_address;
  200 static int cpu_logical;                 /* logical cpus per core */
  201 static int cpu_cores;                   /* cores per package */
  202 
  203 static void     assign_cpu_ids(void);
  204 static void     install_ap_tramp(void);
  205 static void     set_interrupt_apic_ids(void);
  206 static int      start_all_aps(void);
  207 static int      start_ap(int apic_id);
  208 static void     release_aps(void *dummy);
  209 
  210 static int      hlt_logical_cpus;
  211 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  212 static cpumask_t        hyperthreading_cpus_mask;
  213 static int      hyperthreading_allowed = 1;
  214 static struct   sysctl_ctx_list logical_cpu_clist;
  215 
  216 static void
  217 mem_range_AP_init(void)
  218 {
  219         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  220                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  221 }
  222 
  223 static void
  224 topo_probe_amd(void)
  225 {
  226 
  227         /* AMD processors do not support HTT. */
  228         cpu_cores = (amd_feature2 & AMDID2_CMP) != 0 ?
  229             (cpu_procinfo2 & AMDID_CMP_CORES) + 1 : 1;
  230         cpu_logical = 1;
  231 }
  232 
  233 /*
  234  * Round up to the next power of two, if necessary, and then
  235  * take log2.
  236  * Returns -1 if argument is zero.
  237  */
  238 static __inline int
  239 mask_width(u_int x)
  240 {
  241 
  242         return (fls(x << (1 - powerof2(x))) - 1);
  243 }
  244 
  245 static void
  246 topo_probe_0x4(void)
  247 {
  248         u_int p[4];
  249         int pkg_id_bits;
  250         int core_id_bits;
  251         int max_cores;
  252         int max_logical;
  253         int id;
  254 
  255         /* Both zero and one here mean one logical processor per package. */
  256         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  257             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  258         if (max_logical <= 1)
  259                 return;
  260 
  261         /*
  262          * Because of uniformity assumption we examine only
  263          * those logical processors that belong to the same
  264          * package as BSP.  Further, we count number of
  265          * logical processors that belong to the same core
  266          * as BSP thus deducing number of threads per core.
  267          */
  268         cpuid_count(0x04, 0, p);
  269         max_cores = ((p[0] >> 26) & 0x3f) + 1;
  270         core_id_bits = mask_width(max_logical/max_cores);
  271         if (core_id_bits < 0)
  272                 return;
  273         pkg_id_bits = core_id_bits + mask_width(max_cores);
  274 
  275         for (id = 0; id <= MAX_APIC_ID; id++) {
  276                 /* Check logical CPU availability. */
  277                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  278                         continue;
  279                 /* Check if logical CPU has the same package ID. */
  280                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  281                         continue;
  282                 cpu_cores++;
  283                 /* Check if logical CPU has the same package and core IDs. */
  284                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  285                         cpu_logical++;
  286         }
  287 
  288         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  289             ("topo_probe_0x4 couldn't find BSP"));
  290 
  291         cpu_cores /= cpu_logical;
  292         hyperthreading_cpus = cpu_logical;
  293 }
  294 
  295 static void
  296 topo_probe_0xb(void)
  297 {
  298         u_int p[4];
  299         int bits;
  300         int cnt;
  301         int i;
  302         int logical;
  303         int type;
  304         int x;
  305 
  306         /* We only support three levels for now. */
  307         for (i = 0; i < 3; i++) {
  308                 cpuid_count(0x0b, i, p);
  309 
  310                 /* Fall back if CPU leaf 11 doesn't really exist. */
  311                 if (i == 0 && p[1] == 0) {
  312                         topo_probe_0x4();
  313                         return;
  314                 }
  315 
  316                 bits = p[0] & 0x1f;
  317                 logical = p[1] &= 0xffff;
  318                 type = (p[2] >> 8) & 0xff;
  319                 if (type == 0 || logical == 0)
  320                         break;
  321                 /*
  322                  * Because of uniformity assumption we examine only
  323                  * those logical processors that belong to the same
  324                  * package as BSP.
  325                  */
  326                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  327                         if (!cpu_info[x].cpu_present ||
  328                             cpu_info[x].cpu_disabled)
  329                                 continue;
  330                         if (x >> bits == boot_cpu_id >> bits)
  331                                 cnt++;
  332                 }
  333                 if (type == CPUID_TYPE_SMT)
  334                         cpu_logical = cnt;
  335                 else if (type == CPUID_TYPE_CORE)
  336                         cpu_cores = cnt;
  337         }
  338         if (cpu_logical == 0)
  339                 cpu_logical = 1;
  340         cpu_cores /= cpu_logical;
  341 }
  342 
  343 /*
  344  * Both topology discovery code and code that consumes topology
  345  * information assume top-down uniformity of the topology.
  346  * That is, all physical packages must be identical and each
  347  * core in a package must have the same number of threads.
  348  * Topology information is queried only on BSP, on which this
  349  * code runs and for which it can query CPUID information.
  350  * Then topology is extrapolated on all packages using the
  351  * uniformity assumption.
  352  */
  353 static void
  354 topo_probe(void)
  355 {
  356         static int cpu_topo_probed = 0;
  357 
  358         if (cpu_topo_probed)
  359                 return;
  360 
  361         logical_cpus_mask = 0;
  362         if (mp_ncpus <= 1)
  363                 cpu_cores = cpu_logical = 1;
  364         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  365                 topo_probe_amd();
  366         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  367                 /*
  368                  * See Intel(R) 64 Architecture Processor
  369                  * Topology Enumeration article for details.
  370                  *
  371                  * Note that 0x1 <= cpu_high < 4 case should be
  372                  * compatible with topo_probe_0x4() logic when
  373                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  374                  * or it should trigger the fallback otherwise.
  375                  */
  376                 if (cpu_high >= 0xb)
  377                         topo_probe_0xb();
  378                 else if (cpu_high >= 0x1)
  379                         topo_probe_0x4();
  380         }
  381 
  382         /*
  383          * Fallback: assume each logical CPU is in separate
  384          * physical package.  That is, no multi-core, no SMT.
  385          */
  386         if (cpu_cores == 0 || cpu_logical == 0)
  387                 cpu_cores = cpu_logical = 1;
  388         cpu_topo_probed = 1;
  389 }
  390 
  391 struct cpu_group *
  392 cpu_topo(void)
  393 {
  394         int cg_flags;
  395 
  396         /*
  397          * Determine whether any threading flags are
  398          * necessry.
  399          */
  400         topo_probe();
  401         if (cpu_logical > 1 && hyperthreading_cpus)
  402                 cg_flags = CG_FLAG_HTT;
  403         else if (cpu_logical > 1)
  404                 cg_flags = CG_FLAG_SMT;
  405         else
  406                 cg_flags = 0;
  407         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  408                 printf("WARNING: Non-uniform processors.\n");
  409                 printf("WARNING: Using suboptimal topology.\n");
  410                 return (smp_topo_none());
  411         }
  412         /*
  413          * No multi-core or hyper-threaded.
  414          */
  415         if (cpu_logical * cpu_cores == 1)
  416                 return (smp_topo_none());
  417         /*
  418          * Only HTT no multi-core.
  419          */
  420         if (cpu_logical > 1 && cpu_cores == 1)
  421                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  422         /*
  423          * Only multi-core no HTT.
  424          */
  425         if (cpu_cores > 1 && cpu_logical == 1)
  426                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  427         /*
  428          * Both HTT and multi-core.
  429          */
  430         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  431             CG_SHARE_L1, cpu_logical, cg_flags));
  432 }
  433 
  434 
  435 /*
  436  * Calculate usable address in base memory for AP trampoline code.
  437  */
  438 u_int
  439 mp_bootaddress(u_int basemem)
  440 {
  441 
  442         boot_address = trunc_page(basemem);     /* round down to 4k boundary */
  443         if ((basemem - boot_address) < bootMP_size)
  444                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  445 
  446         return boot_address;
  447 }
  448 
  449 void
  450 cpu_add(u_int apic_id, char boot_cpu)
  451 {
  452 
  453         if (apic_id > MAX_APIC_ID) {
  454                 panic("SMP: APIC ID %d too high", apic_id);
  455                 return;
  456         }
  457         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  458             apic_id));
  459         cpu_info[apic_id].cpu_present = 1;
  460         if (boot_cpu) {
  461                 KASSERT(boot_cpu_id == -1,
  462                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  463                     boot_cpu_id));
  464                 boot_cpu_id = apic_id;
  465                 cpu_info[apic_id].cpu_bsp = 1;
  466         }
  467         if (mp_ncpus < MAXCPU)
  468                 mp_ncpus++;
  469         if (bootverbose)
  470                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  471                     "AP");
  472 }
  473 
  474 void
  475 cpu_mp_setmaxid(void)
  476 {
  477 
  478         mp_maxid = MAXCPU - 1;
  479 }
  480 
  481 int
  482 cpu_mp_probe(void)
  483 {
  484 
  485         /*
  486          * Always record BSP in CPU map so that the mbuf init code works
  487          * correctly.
  488          */
  489         all_cpus = 1;
  490         if (mp_ncpus == 0) {
  491                 /*
  492                  * No CPUs were found, so this must be a UP system.  Setup
  493                  * the variables to represent a system with a single CPU
  494                  * with an id of 0.
  495                  */
  496                 mp_ncpus = 1;
  497                 return (0);
  498         }
  499 
  500         /* At least one CPU was found. */
  501         if (mp_ncpus == 1) {
  502                 /*
  503                  * One CPU was found, so this must be a UP system with
  504                  * an I/O APIC.
  505                  */
  506                 return (0);
  507         }
  508 
  509         /* At least two CPUs were found. */
  510         return (1);
  511 }
  512 
  513 /*
  514  * Initialize the IPI handlers and start up the AP's.
  515  */
  516 void
  517 cpu_mp_start(void)
  518 {
  519         int i;
  520 
  521         /* Initialize the logical ID to APIC ID table. */
  522         for (i = 0; i < MAXCPU; i++) {
  523                 cpu_apic_ids[i] = -1;
  524                 cpu_ipi_pending[i] = 0;
  525         }
  526 
  527         /* Install an inter-CPU IPI for TLB invalidation */
  528         setidt(IPI_INVLTLB, IDTVEC(invltlb),
  529                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  530         setidt(IPI_INVLPG, IDTVEC(invlpg),
  531                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  532         setidt(IPI_INVLRNG, IDTVEC(invlrng),
  533                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  534 
  535         /* Install an inter-CPU IPI for cache invalidation. */
  536         setidt(IPI_INVLCACHE, IDTVEC(invlcache),
  537                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  538 
  539         /* Install an inter-CPU IPI for lazy pmap release */
  540         setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
  541                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  542 
  543         /* Install an inter-CPU IPI for all-CPU rendezvous */
  544         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
  545                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  546 
  547         /* Install generic inter-CPU IPI handler */
  548         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  549                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  550 
  551         /* Install an inter-CPU IPI for CPU stop/restart */
  552         setidt(IPI_STOP, IDTVEC(cpustop),
  553                SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
  554 
  555 
  556         /* Set boot_cpu_id if needed. */
  557         if (boot_cpu_id == -1) {
  558                 boot_cpu_id = PCPU_GET(apic_id);
  559                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  560         } else
  561                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  562                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  563 
  564         /* Probe logical/physical core configuration. */
  565         topo_probe();
  566 
  567         assign_cpu_ids();
  568 
  569         /* Start each Application Processor */
  570         start_all_aps();
  571 
  572         set_interrupt_apic_ids();
  573 }
  574 
  575 
  576 /*
  577  * Print various information about the SMP system hardware and setup.
  578  */
  579 void
  580 cpu_mp_announce(void)
  581 {
  582         const char *hyperthread;
  583         int i;
  584 
  585         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  586             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  587         if (hyperthreading_cpus > 1)
  588             printf(" x %d HTT threads", cpu_logical);
  589         else if (cpu_logical > 1)
  590             printf(" x %d SMT threads", cpu_logical);
  591         printf("\n");
  592 
  593         /* List active CPUs first. */
  594         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  595         for (i = 1; i < mp_ncpus; i++) {
  596                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  597                         hyperthread = "/HT";
  598                 else
  599                         hyperthread = "";
  600                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  601                     cpu_apic_ids[i]);
  602         }
  603 
  604         /* List disabled CPUs last. */
  605         for (i = 0; i <= MAX_APIC_ID; i++) {
  606                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  607                         continue;
  608                 if (cpu_info[i].cpu_hyperthread)
  609                         hyperthread = "/HT";
  610                 else
  611                         hyperthread = "";
  612                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  613                     i);
  614         }
  615 }
  616 
  617 /*
  618  * AP CPU's call this to initialize themselves.
  619  */
  620 void
  621 init_secondary(void)
  622 {
  623         struct pcpu *pc;
  624         vm_offset_t addr;
  625         int     gsel_tss;
  626         int     x, myid;
  627         u_int   cr0;
  628 
  629         /* bootAP is set in start_ap() to our ID. */
  630         myid = bootAP;
  631 
  632         /* Get per-cpu data */
  633         pc = &__pcpu[myid];
  634 
  635         /* prime data page for it to use */
  636         pcpu_init(pc, myid, sizeof(struct pcpu));
  637         dpcpu_init(dpcpu, myid);
  638         pc->pc_apic_id = cpu_apic_ids[myid];
  639         pc->pc_prvspace = pc;
  640         pc->pc_curthread = 0;
  641 
  642         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
  643         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
  644 
  645         for (x = 0; x < NGDT; x++) {
  646                 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
  647         }
  648 
  649         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  650         r_gdt.rd_base = (int) &gdt[myid * NGDT];
  651         lgdt(&r_gdt);                   /* does magic intra-segment return */
  652 
  653         lidt(&r_idt);
  654 
  655         lldt(_default_ldt);
  656         PCPU_SET(currentldt, _default_ldt);
  657 
  658         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  659         gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
  660         PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
  661         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
  662         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
  663         PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
  664         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
  665         ltr(gsel_tss);
  666 
  667         PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
  668 
  669         /*
  670          * Set to a known state:
  671          * Set by mpboot.s: CR0_PG, CR0_PE
  672          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  673          */
  674         cr0 = rcr0();
  675         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  676         load_cr0(cr0);
  677         CHECK_WRITE(0x38, 5);
  678         
  679         /* Disable local APIC just to be sure. */
  680         lapic_disable();
  681 
  682         /* signal our startup to the BSP. */
  683         mp_naps++;
  684         CHECK_WRITE(0x39, 6);
  685 
  686         /* Spin until the BSP releases the AP's. */
  687         while (!aps_ready)
  688                 ia32_pause();
  689 
  690         /* BSP may have changed PTD while we were waiting */
  691         invltlb();
  692         for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
  693                 invlpg(addr);
  694 
  695 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
  696         lidt(&r_idt);
  697 #endif
  698 
  699         /* Initialize the PAT MSR if present. */
  700         pmap_init_pat();
  701 
  702         /* set up CPU registers and state */
  703         cpu_setregs();
  704 
  705         /* set up FPU state on the AP */
  706         npxinit();
  707 
  708         /* set up SSE registers */
  709         enable_sse();
  710 
  711 #ifdef PAE
  712         /* Enable the PTE no-execute bit. */
  713         if ((amd_feature & AMDID_NX) != 0) {
  714                 uint64_t msr;
  715 
  716                 msr = rdmsr(MSR_EFER) | EFER_NXE;
  717                 wrmsr(MSR_EFER, msr);
  718         }
  719 #endif
  720 
  721         /* A quick check from sanity claus */
  722         if (PCPU_GET(apic_id) != lapic_id()) {
  723                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  724                 printf("SMP: actual apic_id = %d\n", lapic_id());
  725                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  726                 panic("cpuid mismatch! boom!!");
  727         }
  728 
  729         /* Initialize curthread. */
  730         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  731         PCPU_SET(curthread, PCPU_GET(idlethread));
  732 
  733         mca_init();
  734 
  735         mtx_lock_spin(&ap_boot_mtx);
  736 
  737         /* Init local apic for irq's */
  738         lapic_setup(1);
  739 
  740         /* Set memory range attributes for this CPU to match the BSP */
  741         mem_range_AP_init();
  742 
  743         smp_cpus++;
  744 
  745         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  746         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  747 
  748         /* Determine if we are a logical CPU. */
  749         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  750         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  751                 logical_cpus_mask |= PCPU_GET(cpumask);
  752         
  753         /* Determine if we are a hyperthread. */
  754         if (hyperthreading_cpus > 1 &&
  755             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  756                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  757 
  758         /* Build our map of 'other' CPUs. */
  759         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  760 
  761         if (bootverbose)
  762                 lapic_dump("AP");
  763 
  764         if (smp_cpus == mp_ncpus) {
  765                 /* enable IPI's, tlb shootdown, freezes etc */
  766                 atomic_store_rel_int(&smp_started, 1);
  767                 smp_active = 1;  /* historic */
  768         }
  769 
  770         mtx_unlock_spin(&ap_boot_mtx);
  771 
  772         /* wait until all the AP's are up */
  773         while (smp_started == 0)
  774                 ia32_pause();
  775 
  776         /* enter the scheduler */
  777         sched_throw(NULL);
  778 
  779         panic("scheduler returned us to %s", __func__);
  780         /* NOTREACHED */
  781 }
  782 
  783 /*******************************************************************
  784  * local functions and data
  785  */
  786 
  787 /*
  788  * We tell the I/O APIC code about all the CPUs we want to receive
  789  * interrupts.  If we don't want certain CPUs to receive IRQs we
  790  * can simply not tell the I/O APIC code about them in this function.
  791  * We also do not tell it about the BSP since it tells itself about
  792  * the BSP internally to work with UP kernels and on UP machines.
  793  */
  794 static void
  795 set_interrupt_apic_ids(void)
  796 {
  797         u_int i, apic_id;
  798 
  799         for (i = 0; i < MAXCPU; i++) {
  800                 apic_id = cpu_apic_ids[i];
  801                 if (apic_id == -1)
  802                         continue;
  803                 if (cpu_info[apic_id].cpu_bsp)
  804                         continue;
  805                 if (cpu_info[apic_id].cpu_disabled)
  806                         continue;
  807 
  808                 /* Don't let hyperthreads service interrupts. */
  809                 if (hyperthreading_cpus > 1 &&
  810                     apic_id % hyperthreading_cpus != 0)
  811                         continue;
  812 
  813                 intr_add_cpu(i);
  814         }
  815 }
  816 
  817 /*
  818  * Assign logical CPU IDs to local APICs.
  819  */
  820 static void
  821 assign_cpu_ids(void)
  822 {
  823         u_int i;
  824 
  825         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  826             &hyperthreading_allowed);
  827 
  828         /* Check for explicitly disabled CPUs. */
  829         for (i = 0; i <= MAX_APIC_ID; i++) {
  830                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  831                         continue;
  832 
  833                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  834                         cpu_info[i].cpu_hyperthread = 1;
  835 #if defined(SCHED_ULE)
  836                         /*
  837                          * Don't use HT CPU if it has been disabled by a
  838                          * tunable.
  839                          */
  840                         if (hyperthreading_allowed == 0) {
  841                                 cpu_info[i].cpu_disabled = 1;
  842                                 continue;
  843                         }
  844 #endif
  845                 }
  846 
  847                 /* Don't use this CPU if it has been disabled by a tunable. */
  848                 if (resource_disabled("lapic", i)) {
  849                         cpu_info[i].cpu_disabled = 1;
  850                         continue;
  851                 }
  852         }
  853 
  854         /*
  855          * Assign CPU IDs to local APIC IDs and disable any CPUs
  856          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  857          *
  858          * To minimize confusion for userland, we attempt to number
  859          * CPUs such that all threads and cores in a package are
  860          * grouped together.  For now we assume that the BSP is always
  861          * the first thread in a package and just start adding APs
  862          * starting with the BSP's APIC ID.
  863          */
  864         mp_ncpus = 1;
  865         cpu_apic_ids[0] = boot_cpu_id;
  866         apic_cpuids[boot_cpu_id] = 0;
  867         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  868              i == MAX_APIC_ID ? i = 0 : i++) {
  869                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  870                     cpu_info[i].cpu_disabled)
  871                         continue;
  872 
  873                 if (mp_ncpus < MAXCPU) {
  874                         cpu_apic_ids[mp_ncpus] = i;
  875                         apic_cpuids[i] = mp_ncpus;
  876                         mp_ncpus++;
  877                 } else
  878                         cpu_info[i].cpu_disabled = 1;
  879         }
  880         KASSERT(mp_maxid >= mp_ncpus - 1,
  881             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  882             mp_ncpus));         
  883 }
  884 
  885 /*
  886  * start each AP in our list
  887  */
  888 /* Lowest 1MB is already mapped: don't touch*/
  889 #define TMPMAP_START 1
  890 static int
  891 start_all_aps(void)
  892 {
  893 #ifndef PC98
  894         u_char mpbiosreason;
  895 #endif
  896         uintptr_t kptbase;
  897         u_int32_t mpbioswarmvec;
  898         int apic_id, cpu, i;
  899 
  900         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  901 
  902         /* install the AP 1st level boot code */
  903         install_ap_tramp();
  904 
  905         /* save the current value of the warm-start vector */
  906         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  907 #ifndef PC98
  908         outb(CMOS_REG, BIOS_RESET);
  909         mpbiosreason = inb(CMOS_DATA);
  910 #endif
  911 
  912         /* set up temporary P==V mapping for AP boot */
  913         /* XXX this is a hack, we should boot the AP on its own stack/PTD */
  914 
  915         kptbase = (uintptr_t)(void *)KPTphys;
  916         for (i = TMPMAP_START; i < NKPT; i++)
  917                 PTD[i] = (pd_entry_t)(PG_V | PG_RW |
  918                     ((kptbase + i * PAGE_SIZE) & PG_FRAME));
  919         invltlb();
  920 
  921         /* start each AP */
  922         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  923                 apic_id = cpu_apic_ids[cpu];
  924 
  925                 /* allocate and set up a boot stack data page */
  926                 bootstacks[cpu] =
  927                     (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  928                 dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
  929                 /* setup a vector to our boot code */
  930                 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  931                 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  932 #ifndef PC98
  933                 outb(CMOS_REG, BIOS_RESET);
  934                 outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  935 #endif
  936 
  937                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
  938                 bootAP = cpu;
  939 
  940                 /* attempt to start the Application Processor */
  941                 CHECK_INIT(99); /* setup checkpoints */
  942                 if (!start_ap(apic_id)) {
  943                         printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
  944                         CHECK_PRINT("trace");   /* show checkpoints */
  945                         /* better panic as the AP may be running loose */
  946                         printf("panic y/n? [y] ");
  947                         if (cngetc() != 'n')
  948                                 panic("bye-bye");
  949                 }
  950                 CHECK_PRINT("trace");           /* show checkpoints */
  951 
  952                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  953         }
  954 
  955         /* build our map of 'other' CPUs */
  956         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  957 
  958         /* restore the warmstart vector */
  959         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  960 
  961 #ifndef PC98
  962         outb(CMOS_REG, BIOS_RESET);
  963         outb(CMOS_DATA, mpbiosreason);
  964 #endif
  965 
  966         /* Undo V==P hack from above */
  967         for (i = TMPMAP_START; i < NKPT; i++)
  968                 PTD[i] = 0;
  969         pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
  970 
  971         /* number of APs actually started */
  972         return mp_naps;
  973 }
  974 
  975 /*
  976  * load the 1st level AP boot code into base memory.
  977  */
  978 
  979 /* targets for relocation */
  980 extern void bigJump(void);
  981 extern void bootCodeSeg(void);
  982 extern void bootDataSeg(void);
  983 extern void MPentry(void);
  984 extern u_int MP_GDT;
  985 extern u_int mp_gdtbase;
  986 
  987 static void
  988 install_ap_tramp(void)
  989 {
  990         int     x;
  991         int     size = *(int *) ((u_long) & bootMP_size);
  992         vm_offset_t va = boot_address + KERNBASE;
  993         u_char *src = (u_char *) ((u_long) bootMP);
  994         u_char *dst = (u_char *) va;
  995         u_int   boot_base = (u_int) bootMP;
  996         u_int8_t *dst8;
  997         u_int16_t *dst16;
  998         u_int32_t *dst32;
  999 
 1000         KASSERT (size <= PAGE_SIZE,
 1001             ("'size' do not fit into PAGE_SIZE, as expected."));
 1002         pmap_kenter(va, boot_address);
 1003         pmap_invalidate_page (kernel_pmap, va);
 1004         for (x = 0; x < size; ++x)
 1005                 *dst++ = *src++;
 1006 
 1007         /*
 1008          * modify addresses in code we just moved to basemem. unfortunately we
 1009          * need fairly detailed info about mpboot.s for this to work.  changes
 1010          * to mpboot.s might require changes here.
 1011          */
 1012 
 1013         /* boot code is located in KERNEL space */
 1014         dst = (u_char *) va;
 1015 
 1016         /* modify the lgdt arg */
 1017         dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
 1018         *dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
 1019 
 1020         /* modify the ljmp target for MPentry() */
 1021         dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
 1022         *dst32 = ((u_int) MPentry - KERNBASE);
 1023 
 1024         /* modify the target for boot code segment */
 1025         dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
 1026         dst8 = (u_int8_t *) (dst16 + 1);
 1027         *dst16 = (u_int) boot_address & 0xffff;
 1028         *dst8 = ((u_int) boot_address >> 16) & 0xff;
 1029 
 1030         /* modify the target for boot data segment */
 1031         dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
 1032         dst8 = (u_int8_t *) (dst16 + 1);
 1033         *dst16 = (u_int) boot_address & 0xffff;
 1034         *dst8 = ((u_int) boot_address >> 16) & 0xff;
 1035 }
 1036 
 1037 /*
 1038  * This function starts the AP (application processor) identified
 1039  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
 1040  * to accomplish this.  This is necessary because of the nuances
 1041  * of the different hardware we might encounter.  It isn't pretty,
 1042  * but it seems to work.
 1043  */
 1044 static int
 1045 start_ap(int apic_id)
 1046 {
 1047         int vector, ms;
 1048         int cpus;
 1049 
 1050         /* calculate the vector */
 1051         vector = (boot_address >> 12) & 0xff;
 1052 
 1053         /* used as a watchpoint to signal AP startup */
 1054         cpus = mp_naps;
 1055 
 1056         /*
 1057          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
 1058          * and running the target CPU. OR this INIT IPI might be latched (P5
 1059          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
 1060          * ignored.
 1061          */
 1062 
 1063         /* do an INIT IPI: assert RESET */
 1064         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1065             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
 1066 
 1067         /* wait for pending status end */
 1068         lapic_ipi_wait(-1);
 1069 
 1070         /* do an INIT IPI: deassert RESET */
 1071         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
 1072             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
 1073 
 1074         /* wait for pending status end */
 1075         DELAY(10000);           /* wait ~10mS */
 1076         lapic_ipi_wait(-1);
 1077 
 1078         /*
 1079          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1080          * latched, (P5 bug) this 1st STARTUP would then terminate
 1081          * immediately, and the previously started INIT IPI would continue. OR
 1082          * the previous INIT IPI has already run. and this STARTUP IPI will
 1083          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1084          * will run.
 1085          */
 1086 
 1087         /* do a STARTUP IPI */
 1088         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1089             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1090             vector, apic_id);
 1091         lapic_ipi_wait(-1);
 1092         DELAY(200);             /* wait ~200uS */
 1093 
 1094         /*
 1095          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1096          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1097          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1098          * recognized after hardware RESET or INIT IPI.
 1099          */
 1100 
 1101         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1102             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1103             vector, apic_id);
 1104         lapic_ipi_wait(-1);
 1105         DELAY(200);             /* wait ~200uS */
 1106 
 1107         /* Wait up to 5 seconds for it to start. */
 1108         for (ms = 0; ms < 5000; ms++) {
 1109                 if (mp_naps > cpus)
 1110                         return 1;       /* return SUCCESS */
 1111                 DELAY(1000);
 1112         }
 1113         return 0;               /* return FAILURE */
 1114 }
 1115 
 1116 #ifdef COUNT_XINVLTLB_HITS
 1117 u_int xhits_gbl[MAXCPU];
 1118 u_int xhits_pg[MAXCPU];
 1119 u_int xhits_rng[MAXCPU];
 1120 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1121 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1122     sizeof(xhits_gbl), "IU", "");
 1123 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1124     sizeof(xhits_pg), "IU", "");
 1125 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1126     sizeof(xhits_rng), "IU", "");
 1127 
 1128 u_int ipi_global;
 1129 u_int ipi_page;
 1130 u_int ipi_range;
 1131 u_int ipi_range_size;
 1132 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1133 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1134 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1135 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
 1136     0, "");
 1137 
 1138 u_int ipi_masked_global;
 1139 u_int ipi_masked_page;
 1140 u_int ipi_masked_range;
 1141 u_int ipi_masked_range_size;
 1142 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1143     &ipi_masked_global, 0, "");
 1144 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1145     &ipi_masked_page, 0, "");
 1146 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1147     &ipi_masked_range, 0, "");
 1148 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1149     &ipi_masked_range_size, 0, "");
 1150 #endif /* COUNT_XINVLTLB_HITS */
 1151 
 1152 /*
 1153  * Flush the TLB on all other CPU's
 1154  */
 1155 static void
 1156 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1157 {
 1158         u_int ncpu;
 1159 
 1160         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1161         if (ncpu < 1)
 1162                 return;         /* no other cpus */
 1163         if (!(read_eflags() & PSL_I))
 1164                 panic("%s: interrupts disabled", __func__);
 1165         mtx_lock_spin(&smp_ipi_mtx);
 1166         smp_tlb_addr1 = addr1;
 1167         smp_tlb_addr2 = addr2;
 1168         atomic_store_rel_int(&smp_tlb_wait, 0);
 1169         ipi_all_but_self(vector);
 1170         while (smp_tlb_wait < ncpu)
 1171                 ia32_pause();
 1172         mtx_unlock_spin(&smp_ipi_mtx);
 1173 }
 1174 
 1175 static void
 1176 smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1177 {
 1178         int ncpu, othercpus;
 1179 
 1180         othercpus = mp_ncpus - 1;
 1181         if (mask == (u_int)-1) {
 1182                 ncpu = othercpus;
 1183                 if (ncpu < 1)
 1184                         return;
 1185         } else {
 1186                 mask &= ~PCPU_GET(cpumask);
 1187                 if (mask == 0)
 1188                         return;
 1189                 ncpu = bitcount32(mask);
 1190                 if (ncpu > othercpus) {
 1191                         /* XXX this should be a panic offence */
 1192                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1193                             ncpu, othercpus);
 1194                         ncpu = othercpus;
 1195                 }
 1196                 /* XXX should be a panic, implied by mask == 0 above */
 1197                 if (ncpu < 1)
 1198                         return;
 1199         }
 1200         if (!(read_eflags() & PSL_I))
 1201                 panic("%s: interrupts disabled", __func__);
 1202         mtx_lock_spin(&smp_ipi_mtx);
 1203         smp_tlb_addr1 = addr1;
 1204         smp_tlb_addr2 = addr2;
 1205         atomic_store_rel_int(&smp_tlb_wait, 0);
 1206         if (mask == (u_int)-1)
 1207                 ipi_all_but_self(vector);
 1208         else
 1209                 ipi_selected(mask, vector);
 1210         while (smp_tlb_wait < ncpu)
 1211                 ia32_pause();
 1212         mtx_unlock_spin(&smp_ipi_mtx);
 1213 }
 1214 
 1215 /*
 1216  * Send an IPI to specified CPU handling the bitmap logic.
 1217  */
 1218 static void
 1219 ipi_send_cpu(int cpu, u_int ipi)
 1220 {
 1221         u_int bitmap, old_pending, new_pending;
 1222 
 1223         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1224 
 1225         if (IPI_IS_BITMAPED(ipi)) {
 1226                 bitmap = 1 << ipi;
 1227                 ipi = IPI_BITMAP_VECTOR;
 1228                 do {
 1229                         old_pending = cpu_ipi_pending[cpu];
 1230                         new_pending = old_pending | bitmap;
 1231                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1232                     old_pending, new_pending)); 
 1233                 if (old_pending)
 1234                         return;
 1235         }
 1236         lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1237 }
 1238 
 1239 void
 1240 smp_cache_flush(void)
 1241 {
 1242 
 1243         if (smp_started)
 1244                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1245 }
 1246 
 1247 void
 1248 smp_invltlb(void)
 1249 {
 1250 
 1251         if (smp_started) {
 1252                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1253 #ifdef COUNT_XINVLTLB_HITS
 1254                 ipi_global++;
 1255 #endif
 1256         }
 1257 }
 1258 
 1259 void
 1260 smp_invlpg(vm_offset_t addr)
 1261 {
 1262 
 1263         if (smp_started) {
 1264                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1265 #ifdef COUNT_XINVLTLB_HITS
 1266                 ipi_page++;
 1267 #endif
 1268         }
 1269 }
 1270 
 1271 void
 1272 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1273 {
 1274 
 1275         if (smp_started) {
 1276                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1277 #ifdef COUNT_XINVLTLB_HITS
 1278                 ipi_range++;
 1279                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1280 #endif
 1281         }
 1282 }
 1283 
 1284 void
 1285 smp_masked_invltlb(cpumask_t mask)
 1286 {
 1287 
 1288         if (smp_started) {
 1289                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1290 #ifdef COUNT_XINVLTLB_HITS
 1291                 ipi_masked_global++;
 1292 #endif
 1293         }
 1294 }
 1295 
 1296 void
 1297 smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
 1298 {
 1299 
 1300         if (smp_started) {
 1301                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1302 #ifdef COUNT_XINVLTLB_HITS
 1303                 ipi_masked_page++;
 1304 #endif
 1305         }
 1306 }
 1307 
 1308 void
 1309 smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1310 {
 1311 
 1312         if (smp_started) {
 1313                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1314 #ifdef COUNT_XINVLTLB_HITS
 1315                 ipi_masked_range++;
 1316                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1317 #endif
 1318         }
 1319 }
 1320 
 1321 void
 1322 ipi_bitmap_handler(struct trapframe frame)
 1323 {
 1324         int cpu = PCPU_GET(cpuid);
 1325         u_int ipi_bitmap;
 1326 
 1327         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1328 
 1329         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1330 #ifdef COUNT_IPIS
 1331                 (*ipi_preempt_counts[cpu])++;
 1332 #endif
 1333                 sched_preempt(curthread);
 1334         }
 1335 
 1336         if (ipi_bitmap & (1 << IPI_AST)) {
 1337 #ifdef COUNT_IPIS
 1338                 (*ipi_ast_counts[cpu])++;
 1339 #endif
 1340                 /* Nothing to do for AST */
 1341         }
 1342 
 1343         if (ipi_bitmap & (1 << IPI_HARDCLOCK))
 1344                 hardclockintr(&frame); 
 1345 
 1346         if (ipi_bitmap & (1 << IPI_STATCLOCK))
 1347                 statclockintr(&frame); 
 1348 
 1349         if (ipi_bitmap & (1 << IPI_PROFCLOCK))
 1350                 profclockintr(&frame);
 1351 }
 1352 
 1353 /*
 1354  * send an IPI to a set of cpus.
 1355  */
 1356 void
 1357 ipi_selected(cpumask_t cpus, u_int ipi)
 1358 {
 1359         int cpu;
 1360 
 1361         /*
 1362          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1363          * of help in order to understand what is the source.
 1364          * Set the mask of receiving CPUs for this purpose.
 1365          */
 1366         if (ipi == IPI_STOP_HARD)
 1367                 atomic_set_int(&ipi_nmi_pending, cpus);
 1368 
 1369         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1370         while ((cpu = ffs(cpus)) != 0) {
 1371                 cpu--;
 1372                 cpus &= ~(1 << cpu);
 1373                 ipi_send_cpu(cpu, ipi);
 1374         }
 1375 }
 1376 
 1377 /*
 1378  * send an IPI to a specific CPU.
 1379  */
 1380 void
 1381 ipi_cpu(int cpu, u_int ipi)
 1382 {
 1383 
 1384         /*
 1385          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1386          * of help in order to understand what is the source.
 1387          * Set the mask of receiving CPUs for this purpose.
 1388          */
 1389         if (ipi == IPI_STOP_HARD)
 1390                 atomic_set_int(&ipi_nmi_pending, 1 << cpu);
 1391 
 1392         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1393         ipi_send_cpu(cpu, ipi);
 1394 }
 1395 
 1396 /*
 1397  * send an IPI to all CPUs EXCEPT myself
 1398  */
 1399 void
 1400 ipi_all_but_self(u_int ipi)
 1401 {
 1402 
 1403         if (IPI_IS_BITMAPED(ipi)) {
 1404                 ipi_selected(PCPU_GET(other_cpus), ipi);
 1405                 return;
 1406         }
 1407 
 1408         /*
 1409          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1410          * of help in order to understand what is the source.
 1411          * Set the mask of receiving CPUs for this purpose.
 1412          */
 1413         if (ipi == IPI_STOP_HARD)
 1414                 atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
 1415         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1416         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1417 }
 1418 
 1419 int
 1420 ipi_nmi_handler()
 1421 {
 1422         cpumask_t cpumask;
 1423 
 1424         /*
 1425          * As long as there is not a simple way to know about a NMI's
 1426          * source, if the bitmask for the current CPU is present in
 1427          * the global pending bitword an IPI_STOP_HARD has been issued
 1428          * and should be handled.
 1429          */
 1430         cpumask = PCPU_GET(cpumask);
 1431         if ((ipi_nmi_pending & cpumask) == 0)
 1432                 return (1);
 1433 
 1434         atomic_clear_int(&ipi_nmi_pending, cpumask);
 1435         cpustop_handler();
 1436         return (0);
 1437 }
 1438 
 1439 /*
 1440  * Handle an IPI_STOP by saving our current context and spinning until we
 1441  * are resumed.
 1442  */
 1443 void
 1444 cpustop_handler(void)
 1445 {
 1446         cpumask_t cpumask;
 1447         u_int cpu;
 1448 
 1449         cpu = PCPU_GET(cpuid);
 1450         cpumask = PCPU_GET(cpumask);
 1451 
 1452         savectx(&stoppcbs[cpu]);
 1453 
 1454         /* Indicate that we are stopped */
 1455         atomic_set_int(&stopped_cpus, cpumask);
 1456 
 1457         /* Wait for restart */
 1458         while (!(started_cpus & cpumask))
 1459             ia32_pause();
 1460 
 1461         atomic_clear_int(&started_cpus, cpumask);
 1462         atomic_clear_int(&stopped_cpus, cpumask);
 1463 
 1464         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1465                 cpustop_restartfunc();
 1466                 cpustop_restartfunc = NULL;
 1467         }
 1468 }
 1469 
 1470 /*
 1471  * This is called once the rest of the system is up and running and we're
 1472  * ready to let the AP's out of the pen.
 1473  */
 1474 static void
 1475 release_aps(void *dummy __unused)
 1476 {
 1477 
 1478         if (mp_ncpus == 1) 
 1479                 return;
 1480         atomic_store_rel_int(&aps_ready, 1);
 1481         while (smp_started == 0)
 1482                 ia32_pause();
 1483 }
 1484 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1485 
 1486 static int
 1487 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1488 {
 1489         cpumask_t mask;
 1490         int error;
 1491 
 1492         mask = hlt_cpus_mask;
 1493         error = sysctl_handle_int(oidp, &mask, 0, req);
 1494         if (error || !req->newptr)
 1495                 return (error);
 1496 
 1497         if (logical_cpus_mask != 0 &&
 1498             (mask & logical_cpus_mask) == logical_cpus_mask)
 1499                 hlt_logical_cpus = 1;
 1500         else
 1501                 hlt_logical_cpus = 0;
 1502 
 1503         if (! hyperthreading_allowed)
 1504                 mask |= hyperthreading_cpus_mask;
 1505 
 1506         if ((mask & all_cpus) == all_cpus)
 1507                 mask &= ~(1<<0);
 1508         hlt_cpus_mask = mask;
 1509         return (error);
 1510 }
 1511 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1512     0, 0, sysctl_hlt_cpus, "IU",
 1513     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1514 
 1515 static int
 1516 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1517 {
 1518         int disable, error;
 1519 
 1520         disable = hlt_logical_cpus;
 1521         error = sysctl_handle_int(oidp, &disable, 0, req);
 1522         if (error || !req->newptr)
 1523                 return (error);
 1524 
 1525         if (disable)
 1526                 hlt_cpus_mask |= logical_cpus_mask;
 1527         else
 1528                 hlt_cpus_mask &= ~logical_cpus_mask;
 1529 
 1530         if (! hyperthreading_allowed)
 1531                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1532 
 1533         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1534                 hlt_cpus_mask &= ~(1<<0);
 1535 
 1536         hlt_logical_cpus = disable;
 1537         return (error);
 1538 }
 1539 
 1540 static int
 1541 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1542 {
 1543         int allowed, error;
 1544 
 1545         allowed = hyperthreading_allowed;
 1546         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1547         if (error || !req->newptr)
 1548                 return (error);
 1549 
 1550 #ifdef SCHED_ULE
 1551         /*
 1552          * SCHED_ULE doesn't allow enabling/disabling HT cores at
 1553          * run-time.
 1554          */
 1555         if (allowed != hyperthreading_allowed)
 1556                 return (ENOTSUP);
 1557         return (error);
 1558 #endif
 1559 
 1560         if (allowed)
 1561                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1562         else
 1563                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1564 
 1565         if (logical_cpus_mask != 0 &&
 1566             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1567                 hlt_logical_cpus = 1;
 1568         else
 1569                 hlt_logical_cpus = 0;
 1570 
 1571         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1572                 hlt_cpus_mask &= ~(1<<0);
 1573 
 1574         hyperthreading_allowed = allowed;
 1575         return (error);
 1576 }
 1577 
 1578 static void
 1579 cpu_hlt_setup(void *dummy __unused)
 1580 {
 1581 
 1582         if (logical_cpus_mask != 0) {
 1583                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1584                     &hlt_logical_cpus);
 1585                 sysctl_ctx_init(&logical_cpu_clist);
 1586                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1587                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1588                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1589                     sysctl_hlt_logical_cpus, "IU", "");
 1590                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1591                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1592                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1593                     &logical_cpus_mask, 0, "");
 1594 
 1595                 if (hlt_logical_cpus)
 1596                         hlt_cpus_mask |= logical_cpus_mask;
 1597 
 1598                 /*
 1599                  * If necessary for security purposes, force
 1600                  * hyperthreading off, regardless of the value
 1601                  * of hlt_logical_cpus.
 1602                  */
 1603                 if (hyperthreading_cpus_mask) {
 1604                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1605                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1606                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1607                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1608                         if (! hyperthreading_allowed)
 1609                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1610                 }
 1611         }
 1612 }
 1613 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1614 
 1615 int
 1616 mp_grab_cpu_hlt(void)
 1617 {
 1618         cpumask_t mask;
 1619 #ifdef MP_WATCHDOG
 1620         u_int cpuid;
 1621 #endif
 1622         int retval;
 1623 
 1624         mask = PCPU_GET(cpumask);
 1625 #ifdef MP_WATCHDOG
 1626         cpuid = PCPU_GET(cpuid);
 1627         ap_watchdog(cpuid);
 1628 #endif
 1629 
 1630         retval = 0;
 1631         while (mask & hlt_cpus_mask) {
 1632                 retval = 1;
 1633                 __asm __volatile("sti; hlt" : : : "memory");
 1634         }
 1635         return (retval);
 1636 }
 1637 
 1638 #ifdef COUNT_IPIS
 1639 /*
 1640  * Setup interrupt counters for IPI handlers.
 1641  */
 1642 static void
 1643 mp_ipi_intrcnt(void *dummy)
 1644 {
 1645         char buf[64];
 1646         int i;
 1647 
 1648         for (i = 0; i < mp_maxid; i++) {
 1649                 if (CPU_ABSENT(i))
 1650                         continue;
 1651                 snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
 1652                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1653                 snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
 1654                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1655                 snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
 1656                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1657                 snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
 1658                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1659                 snprintf(buf, sizeof(buf), "cpu%d: ast", i);
 1660                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1661                 snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
 1662                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1663                 snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
 1664                 intrcnt_add(buf, &ipi_lazypmap_counts[i]);
 1665         }               
 1666 }
 1667 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1668 #endif

Cache object: 2ee6cd93e2d04565d38b0d8cc39c560b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.