The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 #include <vm/uma.h>
   59 
   60 #include <machine/asmacros.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/frame.h>
   63 #include <machine/md_var.h>
   64 #include <machine/pcb.h>
   65 #include <machine/psl.h>
   66 #include <machine/resource.h>
   67 #include <machine/specialreg.h>
   68 #include <machine/segments.h>
   69 #include <machine/ucontext.h>
   70 #include <x86/ifunc.h>
   71 
   72 #include <machine/intr_machdep.h>
   73 
   74 #ifdef DEV_ISA
   75 #include <isa/isavar.h>
   76 #endif
   77 
   78 /*
   79  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   80  */
   81 
   82 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   83 #define fnclex()                __asm __volatile("fnclex")
   84 #define fninit()                __asm __volatile("fninit")
   85 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   86 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   87 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   88 #define fp_divide_by_0()        __asm __volatile( \
   89                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   90 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
   91 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   92 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   93 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   94 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   95 
   96 static __inline void
   97 xrstor(char *addr, uint64_t mask)
   98 {
   99         uint32_t low, hi;
  100 
  101         low = mask;
  102         hi = mask >> 32;
  103         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
  104 }
  105 
  106 static __inline void
  107 xsave(char *addr, uint64_t mask)
  108 {
  109         uint32_t low, hi;
  110 
  111         low = mask;
  112         hi = mask >> 32;
  113         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  114             "memory");
  115 }
  116 
  117 static __inline void
  118 xsaveopt(char *addr, uint64_t mask)
  119 {
  120         uint32_t low, hi;
  121 
  122         low = mask;
  123         hi = mask >> 32;
  124         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  125             "memory");
  126 }
  127 
  128 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  129 #define stop_emulating()        clts()
  130 
  131 #define GET_FPU_CW(thread) \
  132         (cpu_fxsr ? \
  133                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  134                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  135 #define GET_FPU_SW(thread) \
  136         (cpu_fxsr ? \
  137                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  138                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  139 #define SET_FPU_CW(savefpu, value) do { \
  140         if (cpu_fxsr) \
  141                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  142         else \
  143                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  144 } while (0)
  145 
  146 CTASSERT(sizeof(union savefpu) == 512);
  147 CTASSERT(sizeof(struct xstate_hdr) == 64);
  148 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  149 
  150 /*
  151  * This requirement is to make it easier for asm code to calculate
  152  * offset of the fpu save area from the pcb address. FPU save area
  153  * must be 64-byte aligned.
  154  */
  155 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  156 
  157 /*
  158  * Ensure the copy of XCR0 saved in a core is contained in the padding
  159  * area.
  160  */
  161 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
  162     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
  163 
  164 static  void    fpu_clean_state(void);
  165 
  166 static  void    fpurstor(union savefpu *);
  167 
  168 int     hw_float;
  169 
  170 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  171     &hw_float, 0, "Floating point instructions executed in hardware");
  172 
  173 int lazy_fpu_switch = 0;
  174 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
  175     &lazy_fpu_switch, 0,
  176     "Lazily load FPU context after context switch");
  177 
  178 int use_xsave;
  179 uint64_t xsave_mask;
  180 static  uma_zone_t fpu_save_area_zone;
  181 static  union savefpu *npx_initialstate;
  182 
  183 static struct xsave_area_elm_descr {
  184         u_int   offset;
  185         u_int   size;
  186 } *xsave_area_desc;
  187 
  188 static  volatile u_int          npx_traps_while_probing;
  189 
  190 alias_for_inthand_t probetrap;
  191 __asm("                                                         \n\
  192         .text                                                   \n\
  193         .p2align 2,0x90                                         \n\
  194         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  195 " __XSTRING(CNAME(probetrap)) ":                                \n\
  196         ss                                                      \n\
  197         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  198         fnclex                                                  \n\
  199         iret                                                    \n\
  200 ");
  201 
  202 /*
  203  * Determine if an FPU is present and how to use it.
  204  */
  205 static int
  206 npx_probe(void)
  207 {
  208         struct gate_descriptor save_idt_npxtrap;
  209         u_short control, status;
  210 
  211         /*
  212          * Modern CPUs all have an FPU that uses the INT16 interface
  213          * and provide a simple way to verify that, so handle the
  214          * common case right away.
  215          */
  216         if (cpu_feature & CPUID_FPU) {
  217                 hw_float = 1;
  218                 return (1);
  219         }
  220 
  221         save_idt_npxtrap = idt[IDT_MF];
  222         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  223             GSEL(GCODE_SEL, SEL_KPL));
  224 
  225         /*
  226          * Don't trap while we're probing.
  227          */
  228         stop_emulating();
  229 
  230         /*
  231          * Finish resetting the coprocessor, if any.  If there is an error
  232          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  233          * it OK.  Bogus halts have never been observed, but we enabled
  234          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  235          */
  236         fninit();
  237 
  238         /*
  239          * Don't use fwait here because it might hang.
  240          * Don't use fnop here because it usually hangs if there is no FPU.
  241          */
  242         DELAY(1000);            /* wait for any IRQ13 */
  243 #ifdef DIAGNOSTIC
  244         if (npx_traps_while_probing != 0)
  245                 printf("fninit caused %u bogus npx trap(s)\n",
  246                        npx_traps_while_probing);
  247 #endif
  248         /*
  249          * Check for a status of mostly zero.
  250          */
  251         status = 0x5a5a;
  252         fnstsw(&status);
  253         if ((status & 0xb8ff) == 0) {
  254                 /*
  255                  * Good, now check for a proper control word.
  256                  */
  257                 control = 0x5a5a;
  258                 fnstcw(&control);
  259                 if ((control & 0x1f3f) == 0x033f) {
  260                         /*
  261                          * We have an npx, now divide by 0 to see if exception
  262                          * 16 works.
  263                          */
  264                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  265                         fldcw(control);
  266                         npx_traps_while_probing = 0;
  267                         fp_divide_by_0();
  268                         if (npx_traps_while_probing != 0) {
  269                                 /*
  270                                  * Good, exception 16 works.
  271                                  */
  272                                 hw_float = 1;
  273                                 goto cleanup;
  274                         }
  275                         printf(
  276         "FPU does not use exception 16 for error reporting\n");
  277                         goto cleanup;
  278                 }
  279         }
  280 
  281         /*
  282          * Probe failed.  Floating point simply won't work.
  283          * Notify user and disable FPU/MMX/SSE instruction execution.
  284          */
  285         printf("WARNING: no FPU!\n");
  286         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  287             "n" (CR0_EM | CR0_MP) : "ax");
  288 
  289 cleanup:
  290         idt[IDT_MF] = save_idt_npxtrap;
  291         return (hw_float);
  292 }
  293 
  294 static void
  295 fpusave_xsaveopt(union savefpu *addr)
  296 {
  297 
  298         xsaveopt((char *)addr, xsave_mask);
  299 }
  300 
  301 static void
  302 fpusave_xsave(union savefpu *addr)
  303 {
  304 
  305         xsave((char *)addr, xsave_mask);
  306 }
  307 
  308 static void
  309 fpusave_fxsave(union savefpu *addr)
  310 {
  311 
  312         fxsave((char *)addr);
  313 }
  314 
  315 static void
  316 fpusave_fnsave(union savefpu *addr)
  317 {
  318 
  319         fnsave((char *)addr);
  320 }
  321 
  322 static void
  323 init_xsave(void)
  324 {
  325 
  326         if (use_xsave)
  327                 return;
  328         if (!cpu_fxsr || (cpu_feature2 & CPUID2_XSAVE) == 0)
  329                 return;
  330         use_xsave = 1;
  331         TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  332 }
  333 
  334 DEFINE_IFUNC(, void, fpusave, (union savefpu *))
  335 {
  336 
  337         init_xsave();
  338         if (use_xsave)
  339                 return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
  340                     fpusave_xsaveopt : fpusave_xsave);
  341         if (cpu_fxsr)
  342                 return (fpusave_fxsave);
  343         return (fpusave_fnsave);
  344 }
  345 
  346 /*
  347  * Enable XSAVE if supported and allowed by user.
  348  * Calculate the xsave_mask.
  349  */
  350 static void
  351 npxinit_bsp1(void)
  352 {
  353         u_int cp[4];
  354         uint64_t xsave_mask_user;
  355 
  356         TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
  357         if (!use_xsave)
  358                 return;
  359         cpuid_count(0xd, 0x0, cp);
  360         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  361         if ((cp[0] & xsave_mask) != xsave_mask)
  362                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  363         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  364         xsave_mask_user = xsave_mask;
  365         TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
  366         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  367         xsave_mask &= xsave_mask_user;
  368         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  369                 xsave_mask &= ~XFEATURE_AVX512;
  370         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  371                 xsave_mask &= ~XFEATURE_MPX;
  372 }
  373 
  374 /*
  375  * Calculate the fpu save area size.
  376  */
  377 static void
  378 npxinit_bsp2(void)
  379 {
  380         u_int cp[4];
  381 
  382         if (use_xsave) {
  383                 cpuid_count(0xd, 0x0, cp);
  384                 cpu_max_ext_state_size = cp[1];
  385 
  386                 /*
  387                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  388                  */
  389                 do_cpuid(1, cp);
  390                 cpu_feature2 = cp[2];
  391         } else
  392                 cpu_max_ext_state_size = sizeof(union savefpu);
  393 }
  394 
  395 /*
  396  * Initialize floating point unit.
  397  */
  398 void
  399 npxinit(bool bsp)
  400 {
  401         static union savefpu dummy;
  402         register_t saveintr;
  403         u_int mxcsr;
  404         u_short control;
  405 
  406         if (bsp) {
  407                 if (!npx_probe())
  408                         return;
  409                 npxinit_bsp1();
  410         }
  411 
  412         if (use_xsave) {
  413                 load_cr4(rcr4() | CR4_XSAVE);
  414                 load_xcr(XCR0, xsave_mask);
  415         }
  416 
  417         /*
  418          * XCR0 shall be set up before CPU can report the save area size.
  419          */
  420         if (bsp)
  421                 npxinit_bsp2();
  422 
  423         /*
  424          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  425          * fnsave to throw away any junk in the fpu.  fpusave() initializes
  426          * the fpu.
  427          *
  428          * It is too early for critical_enter() to work on AP.
  429          */
  430         saveintr = intr_disable();
  431         stop_emulating();
  432         if (cpu_fxsr)
  433                 fninit();
  434         else
  435                 fnsave(&dummy);
  436         control = __INITIAL_NPXCW__;
  437         fldcw(control);
  438         if (cpu_fxsr) {
  439                 mxcsr = __INITIAL_MXCSR__;
  440                 ldmxcsr(mxcsr);
  441         }
  442         start_emulating();
  443         intr_restore(saveintr);
  444 }
  445 
  446 /*
  447  * On the boot CPU we generate a clean state that is used to
  448  * initialize the floating point unit when it is first used by a
  449  * process.
  450  */
  451 static void
  452 npxinitstate(void *arg __unused)
  453 {
  454         uint64_t *xstate_bv;
  455         register_t saveintr;
  456         int cp[4], i, max_ext_n;
  457 
  458         if (!hw_float)
  459                 return;
  460 
  461         /* Do potentially blocking operations before disabling interrupts. */
  462         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  463             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  464             XSAVE_AREA_ALIGN - 1, 0);
  465         npx_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
  466         if (use_xsave) {
  467                 if (xsave_mask >> 32 != 0)
  468                         max_ext_n = fls(xsave_mask >> 32) + 32;
  469                 else
  470                         max_ext_n = fls(xsave_mask);
  471                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  472                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  473         }
  474 
  475         saveintr = intr_disable();
  476         stop_emulating();
  477 
  478         if (cpu_fxsr)
  479                 fpusave_fxsave(npx_initialstate);
  480         else
  481                 fpusave_fnsave(npx_initialstate);
  482         if (cpu_fxsr) {
  483                 if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
  484                         cpu_mxcsr_mask = 
  485                             npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
  486                 else
  487                         cpu_mxcsr_mask = 0xFFBF;
  488 
  489                 /*
  490                  * The fninit instruction does not modify XMM
  491                  * registers or x87 registers (MM/ST).  The fpusave
  492                  * call dumped the garbage contained in the registers
  493                  * after reset to the initial state saved.  Clear XMM
  494                  * and x87 registers file image to make the startup
  495                  * program state and signal handler XMM/x87 register
  496                  * content predictable.
  497                  */
  498                 bzero(npx_initialstate->sv_xmm.sv_fp,
  499                     sizeof(npx_initialstate->sv_xmm.sv_fp));
  500                 bzero(npx_initialstate->sv_xmm.sv_xmm,
  501                     sizeof(npx_initialstate->sv_xmm.sv_xmm));
  502 
  503         } else
  504                 bzero(npx_initialstate->sv_87.sv_ac,
  505                     sizeof(npx_initialstate->sv_87.sv_ac));
  506 
  507         /*
  508          * Create a table describing the layout of the CPU Extended
  509          * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
  510          * Region of an XSAVE Area" for the source of offsets/sizes.
  511          * Note that 32bit XSAVE does not use %xmm8-%xmm15, see
  512          * 10.5.1.2 and 13.5.2 "SSE State".
  513          */
  514         if (use_xsave) {
  515                 xstate_bv = (uint64_t *)((char *)(npx_initialstate + 1) +
  516                     offsetof(struct xstate_hdr, xstate_bv));
  517                 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  518 
  519                 /* x87 state */
  520                 xsave_area_desc[0].offset = 0;
  521                 xsave_area_desc[0].size = 160;
  522                 /* XMM */
  523                 xsave_area_desc[1].offset = 160;
  524                 xsave_area_desc[1].size = 288 - 160;
  525 
  526                 for (i = 2; i < max_ext_n; i++) {
  527                         cpuid_count(0xd, i, cp);
  528                         xsave_area_desc[i].offset = cp[1];
  529                         xsave_area_desc[i].size = cp[0];
  530                 }
  531         }
  532 
  533         start_emulating();
  534         intr_restore(saveintr);
  535 }
  536 SYSINIT(npxinitstate, SI_SUB_CPU, SI_ORDER_ANY, npxinitstate, NULL);
  537 
  538 /*
  539  * Free coprocessor (if we have it).
  540  */
  541 void
  542 npxexit(struct thread *td)
  543 {
  544 
  545         critical_enter();
  546         if (curthread == PCPU_GET(fpcurthread)) {
  547                 stop_emulating();
  548                 fpusave(curpcb->pcb_save);
  549                 start_emulating();
  550                 PCPU_SET(fpcurthread, NULL);
  551         }
  552         critical_exit();
  553 #ifdef NPX_DEBUG
  554         if (hw_float) {
  555                 u_int   masked_exceptions;
  556 
  557                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  558                 /*
  559                  * Log exceptions that would have trapped with the old
  560                  * control word (overflow, divide by 0, and invalid operand).
  561                  */
  562                 if (masked_exceptions & 0x0d)
  563                         log(LOG_ERR,
  564         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  565                             td->td_proc->p_pid, td->td_proc->p_comm,
  566                             masked_exceptions);
  567         }
  568 #endif
  569 }
  570 
  571 int
  572 npxformat(void)
  573 {
  574 
  575         if (!hw_float)
  576                 return (_MC_FPFMT_NODEV);
  577         if (cpu_fxsr)
  578                 return (_MC_FPFMT_XMM);
  579         return (_MC_FPFMT_387);
  580 }
  581 
  582 /*
  583  * The following mechanism is used to ensure that the FPE_... value
  584  * that is passed as a trapcode to the signal handler of the user
  585  * process does not have more than one bit set.
  586  *
  587  * Multiple bits may be set if the user process modifies the control
  588  * word while a status word bit is already set.  While this is a sign
  589  * of bad coding, we have no choice than to narrow them down to one
  590  * bit, since we must not send a trapcode that is not exactly one of
  591  * the FPE_ macros.
  592  *
  593  * The mechanism has a static table with 127 entries.  Each combination
  594  * of the 7 FPU status word exception bits directly translates to a
  595  * position in this table, where a single FPE_... value is stored.
  596  * This FPE_... value stored there is considered the "most important"
  597  * of the exception bits and will be sent as the signal code.  The
  598  * precedence of the bits is based upon Intel Document "Numerical
  599  * Applications", Chapter "Special Computational Situations".
  600  *
  601  * The macro to choose one of these values does these steps: 1) Throw
  602  * away status word bits that cannot be masked.  2) Throw away the bits
  603  * currently masked in the control word, assuming the user isn't
  604  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  605  * fault) if it is set, which cannot be masked but must be presered.
  606  * 4) Use the remaining bits to point into the trapcode table.
  607  *
  608  * The 6 maskable bits in order of their preference, as stated in the
  609  * above referenced Intel manual:
  610  * 1  Invalid operation (FP_X_INV)
  611  * 1a   Stack underflow
  612  * 1b   Stack overflow
  613  * 1c   Operand of unsupported format
  614  * 1d   SNaN operand.
  615  * 2  QNaN operand (not an exception, irrelavant here)
  616  * 3  Any other invalid-operation not mentioned above or zero divide
  617  *      (FP_X_INV, FP_X_DZ)
  618  * 4  Denormal operand (FP_X_DNML)
  619  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  620  * 6  Inexact result (FP_X_IMP) 
  621  */
  622 static char fpetable[128] = {
  623         0,
  624         FPE_FLTINV,     /*  1 - INV */
  625         FPE_FLTUND,     /*  2 - DNML */
  626         FPE_FLTINV,     /*  3 - INV | DNML */
  627         FPE_FLTDIV,     /*  4 - DZ */
  628         FPE_FLTINV,     /*  5 - INV | DZ */
  629         FPE_FLTDIV,     /*  6 - DNML | DZ */
  630         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  631         FPE_FLTOVF,     /*  8 - OFL */
  632         FPE_FLTINV,     /*  9 - INV | OFL */
  633         FPE_FLTUND,     /*  A - DNML | OFL */
  634         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  635         FPE_FLTDIV,     /*  C - DZ | OFL */
  636         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  637         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  638         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  639         FPE_FLTUND,     /* 10 - UFL */
  640         FPE_FLTINV,     /* 11 - INV | UFL */
  641         FPE_FLTUND,     /* 12 - DNML | UFL */
  642         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  643         FPE_FLTDIV,     /* 14 - DZ | UFL */
  644         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  645         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  646         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  647         FPE_FLTOVF,     /* 18 - OFL | UFL */
  648         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  649         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  650         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  651         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  652         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  653         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  654         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  655         FPE_FLTRES,     /* 20 - IMP */
  656         FPE_FLTINV,     /* 21 - INV | IMP */
  657         FPE_FLTUND,     /* 22 - DNML | IMP */
  658         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  659         FPE_FLTDIV,     /* 24 - DZ | IMP */
  660         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  661         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  662         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  663         FPE_FLTOVF,     /* 28 - OFL | IMP */
  664         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  665         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  666         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  667         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  668         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  669         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  670         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  671         FPE_FLTUND,     /* 30 - UFL | IMP */
  672         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  673         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  674         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  675         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  676         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  677         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  678         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  679         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  680         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  681         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  682         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  683         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  684         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  685         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  686         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  687         FPE_FLTSUB,     /* 40 - STK */
  688         FPE_FLTSUB,     /* 41 - INV | STK */
  689         FPE_FLTUND,     /* 42 - DNML | STK */
  690         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  691         FPE_FLTDIV,     /* 44 - DZ | STK */
  692         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  693         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  694         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  695         FPE_FLTOVF,     /* 48 - OFL | STK */
  696         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  697         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  698         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  699         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  700         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  701         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  702         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  703         FPE_FLTUND,     /* 50 - UFL | STK */
  704         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  705         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  706         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  707         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  708         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  709         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  710         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  711         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  712         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  713         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  714         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  715         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  716         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  717         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  718         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  719         FPE_FLTRES,     /* 60 - IMP | STK */
  720         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  721         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  722         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  723         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  724         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  725         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  726         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  727         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  728         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  729         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  730         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  731         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  732         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  733         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  734         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  735         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  736         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  737         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  738         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  739         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  740         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  741         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  742         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  743         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  744         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  745         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  746         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  747         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  748         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  749         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  750         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  751 };
  752 
  753 /*
  754  * Read the FP status and control words, then generate si_code value
  755  * for SIGFPE.  The error code chosen will be one of the
  756  * FPE_... macros.  It will be sent as the second argument to old
  757  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  758  * argument) to SA_SIGINFO signal handlers.
  759  *
  760  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  761  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  762  * usermode code which understands the FPU hardware enough to enable
  763  * the exceptions, can also handle clearing the exception state in the
  764  * handler.  The only consequence of not clearing the exception is the
  765  * rethrow of the SIGFPE on return from the signal handler and
  766  * reexecution of the corresponding instruction.
  767  *
  768  * For XMM traps, the exceptions were never cleared.
  769  */
  770 int
  771 npxtrap_x87(void)
  772 {
  773         u_short control, status;
  774 
  775         if (!hw_float) {
  776                 printf(
  777         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  778                        PCPU_GET(fpcurthread), curthread, hw_float);
  779                 panic("npxtrap from nowhere");
  780         }
  781         critical_enter();
  782 
  783         /*
  784          * Interrupt handling (for another interrupt) may have pushed the
  785          * state to memory.  Fetch the relevant parts of the state from
  786          * wherever they are.
  787          */
  788         if (PCPU_GET(fpcurthread) != curthread) {
  789                 control = GET_FPU_CW(curthread);
  790                 status = GET_FPU_SW(curthread);
  791         } else {
  792                 fnstcw(&control);
  793                 fnstsw(&status);
  794         }
  795         critical_exit();
  796         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  797 }
  798 
  799 int
  800 npxtrap_sse(void)
  801 {
  802         u_int mxcsr;
  803 
  804         if (!hw_float) {
  805                 printf(
  806         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  807                        PCPU_GET(fpcurthread), curthread, hw_float);
  808                 panic("npxtrap from nowhere");
  809         }
  810         critical_enter();
  811         if (PCPU_GET(fpcurthread) != curthread)
  812                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  813         else
  814                 stmxcsr(&mxcsr);
  815         critical_exit();
  816         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  817 }
  818 
  819 static void
  820 restore_npx_curthread(struct thread *td, struct pcb *pcb)
  821 {
  822 
  823         /*
  824          * Record new context early in case frstor causes a trap.
  825          */
  826         PCPU_SET(fpcurthread, td);
  827 
  828         stop_emulating();
  829         if (cpu_fxsr)
  830                 fpu_clean_state();
  831 
  832         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  833                 /*
  834                  * This is the first time this thread has used the FPU or
  835                  * the PCB doesn't contain a clean FPU state.  Explicitly
  836                  * load an initial state.
  837                  *
  838                  * We prefer to restore the state from the actual save
  839                  * area in PCB instead of directly loading from
  840                  * npx_initialstate, to ignite the XSAVEOPT
  841                  * tracking engine.
  842                  */
  843                 bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
  844                 fpurstor(pcb->pcb_save);
  845                 if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  846                         fldcw(pcb->pcb_initial_npxcw);
  847                 pcb->pcb_flags |= PCB_NPXINITDONE;
  848                 if (PCB_USER_FPU(pcb))
  849                         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
  850         } else {
  851                 fpurstor(pcb->pcb_save);
  852         }
  853 }
  854 
  855 /*
  856  * Implement device not available (DNA) exception
  857  *
  858  * It would be better to switch FP context here (if curthread != fpcurthread)
  859  * and not necessarily for every context switch, but it is too hard to
  860  * access foreign pcb's.
  861  */
  862 int
  863 npxdna(void)
  864 {
  865         struct thread *td;
  866 
  867         if (!hw_float)
  868                 return (0);
  869         td = curthread;
  870         critical_enter();
  871 
  872         KASSERT((curpcb->pcb_flags & PCB_NPXNOSAVE) == 0,
  873             ("npxdna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
  874         if (__predict_false(PCPU_GET(fpcurthread) == td)) {
  875                 /*
  876                  * Some virtual machines seems to set %cr0.TS at
  877                  * arbitrary moments.  Silently clear the TS bit
  878                  * regardless of the eager/lazy FPU context switch
  879                  * mode.
  880                  */
  881                 stop_emulating();
  882         } else {
  883                 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
  884                         printf(
  885                     "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  886                             PCPU_GET(fpcurthread),
  887                             PCPU_GET(fpcurthread)->td_proc->p_pid,
  888                             td, td->td_proc->p_pid);
  889                         panic("npxdna");
  890                 }
  891                 restore_npx_curthread(td, td->td_pcb);
  892         }
  893         critical_exit();
  894         return (1);
  895 }
  896 
  897 /*
  898  * Wrapper for fpusave() called from context switch routines.
  899  *
  900  * npxsave() must be called with interrupts disabled, so that it clears
  901  * fpcurthread atomically with saving the state.  We require callers to do the
  902  * disabling, since most callers need to disable interrupts anyway to call
  903  * npxsave() atomically with checking fpcurthread.
  904  */
  905 void
  906 npxsave(union savefpu *addr)
  907 {
  908 
  909         stop_emulating();
  910         fpusave(addr);
  911 }
  912 
  913 void npxswitch(struct thread *td, struct pcb *pcb);
  914 void
  915 npxswitch(struct thread *td, struct pcb *pcb)
  916 {
  917 
  918         if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
  919             !PCB_USER_FPU(pcb)) {
  920                 start_emulating();
  921                 PCPU_SET(fpcurthread, NULL);
  922         } else if (PCPU_GET(fpcurthread) != td) {
  923                 restore_npx_curthread(td, pcb);
  924         }
  925 }
  926 
  927 /*
  928  * Unconditionally save the current co-processor state across suspend and
  929  * resume.
  930  */
  931 void
  932 npxsuspend(union savefpu *addr)
  933 {
  934         register_t cr0;
  935 
  936         if (!hw_float)
  937                 return;
  938         if (PCPU_GET(fpcurthread) == NULL) {
  939                 bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
  940                 return;
  941         }
  942         cr0 = rcr0();
  943         stop_emulating();
  944         fpusave(addr);
  945         load_cr0(cr0);
  946 }
  947 
  948 void
  949 npxresume(union savefpu *addr)
  950 {
  951         register_t cr0;
  952 
  953         if (!hw_float)
  954                 return;
  955 
  956         cr0 = rcr0();
  957         npxinit(false);
  958         stop_emulating();
  959         fpurstor(addr);
  960         load_cr0(cr0);
  961 }
  962 
  963 void
  964 npxdrop(void)
  965 {
  966         struct thread *td;
  967 
  968         /*
  969          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
  970          * ones don't cause a panic on the next frstor.
  971          */
  972         if (!cpu_fxsr)
  973                 fnclex();
  974 
  975         td = PCPU_GET(fpcurthread);
  976         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  977         CRITICAL_ASSERT(td);
  978         PCPU_SET(fpcurthread, NULL);
  979         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
  980         start_emulating();
  981 }
  982 
  983 /*
  984  * Get the user state of the FPU into pcb->pcb_user_save without
  985  * dropping ownership (if possible).  It returns the FPU ownership
  986  * status.
  987  */
  988 int
  989 npxgetregs(struct thread *td)
  990 {
  991         struct pcb *pcb;
  992         uint64_t *xstate_bv, bit;
  993         char *sa;
  994         int max_ext_n, i;
  995         int owned;
  996 
  997         if (!hw_float)
  998                 return (_MC_FPOWNED_NONE);
  999 
 1000         pcb = td->td_pcb;
 1001         critical_enter();
 1002         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
 1003                 bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
 1004                     cpu_max_ext_state_size);
 1005                 SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
 1006                 npxuserinited(td);
 1007                 critical_exit();
 1008                 return (_MC_FPOWNED_PCB);
 1009         }
 1010         if (td == PCPU_GET(fpcurthread)) {
 1011                 fpusave(get_pcb_user_save_pcb(pcb));
 1012                 if (!cpu_fxsr)
 1013                         /*
 1014                          * fnsave initializes the FPU and destroys whatever
 1015                          * context it contains.  Make sure the FPU owner
 1016                          * starts with a clean state next time.
 1017                          */
 1018                         npxdrop();
 1019                 owned = _MC_FPOWNED_FPU;
 1020         } else {
 1021                 owned = _MC_FPOWNED_PCB;
 1022         }
 1023         if (use_xsave) {
 1024                 /*
 1025                  * Handle partially saved state.
 1026                  */
 1027                 sa = (char *)get_pcb_user_save_pcb(pcb);
 1028                 xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
 1029                     offsetof(struct xstate_hdr, xstate_bv));
 1030                 if (xsave_mask >> 32 != 0)
 1031                         max_ext_n = fls(xsave_mask >> 32) + 32;
 1032                 else
 1033                         max_ext_n = fls(xsave_mask);
 1034                 for (i = 0; i < max_ext_n; i++) {
 1035                         bit = 1ULL << i;
 1036                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
 1037                                 continue;
 1038                         bcopy((char *)npx_initialstate +
 1039                             xsave_area_desc[i].offset,
 1040                             sa + xsave_area_desc[i].offset,
 1041                             xsave_area_desc[i].size);
 1042                         *xstate_bv |= bit;
 1043                 }
 1044         }
 1045         critical_exit();
 1046         return (owned);
 1047 }
 1048 
 1049 void
 1050 npxuserinited(struct thread *td)
 1051 {
 1052         struct pcb *pcb;
 1053 
 1054         CRITICAL_ASSERT(td);
 1055         pcb = td->td_pcb;
 1056         if (PCB_USER_FPU(pcb))
 1057                 pcb->pcb_flags |= PCB_NPXINITDONE;
 1058         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
 1059 }
 1060 
 1061 int
 1062 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
 1063 {
 1064         struct xstate_hdr *hdr, *ehdr;
 1065         size_t len, max_len;
 1066         uint64_t bv;
 1067 
 1068         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
 1069         if (xfpustate == NULL)
 1070                 return (0);
 1071         if (!use_xsave)
 1072                 return (EOPNOTSUPP);
 1073 
 1074         len = xfpustate_size;
 1075         if (len < sizeof(struct xstate_hdr))
 1076                 return (EINVAL);
 1077         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 1078         if (len > max_len)
 1079                 return (EINVAL);
 1080 
 1081         ehdr = (struct xstate_hdr *)xfpustate;
 1082         bv = ehdr->xstate_bv;
 1083 
 1084         /*
 1085          * Avoid #gp.
 1086          */
 1087         if (bv & ~xsave_mask)
 1088                 return (EINVAL);
 1089 
 1090         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
 1091 
 1092         hdr->xstate_bv = bv;
 1093         bcopy(xfpustate + sizeof(struct xstate_hdr),
 1094             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
 1095 
 1096         return (0);
 1097 }
 1098 
 1099 int
 1100 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
 1101         size_t xfpustate_size)
 1102 {
 1103         struct pcb *pcb;
 1104         int error;
 1105 
 1106         if (!hw_float)
 1107                 return (ENXIO);
 1108 
 1109         if (cpu_fxsr)
 1110                 addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1111         pcb = td->td_pcb;
 1112         error = 0;
 1113         critical_enter();
 1114         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
 1115                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1116                 if (error == 0) {
 1117                         if (!cpu_fxsr)
 1118                                 fnclex();       /* As in npxdrop(). */
 1119                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1120                         fpurstor(get_pcb_user_save_td(td));
 1121                         pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
 1122                 }
 1123         } else {
 1124                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1125                 if (error == 0) {
 1126                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1127                         npxuserinited(td);
 1128                 }
 1129         }
 1130         critical_exit();
 1131         return (error);
 1132 }
 1133 
 1134 static void
 1135 npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
 1136 {
 1137         struct env87 *penv_87;
 1138         struct envxmm *penv_xmm;
 1139         struct fpacc87 *fx_reg;
 1140         int i, st;
 1141         uint64_t mantissa;
 1142         uint16_t tw, exp;
 1143         uint8_t ab_tw;
 1144 
 1145         penv_87 = &sv_87->sv_env;
 1146         penv_xmm = &sv_xmm->sv_env;
 1147 
 1148         /* FPU control/status */
 1149         penv_87->en_cw = penv_xmm->en_cw;
 1150         penv_87->en_sw = penv_xmm->en_sw;
 1151         penv_87->en_fip = penv_xmm->en_fip;
 1152         penv_87->en_fcs = penv_xmm->en_fcs;
 1153         penv_87->en_opcode = penv_xmm->en_opcode;
 1154         penv_87->en_foo = penv_xmm->en_foo;
 1155         penv_87->en_fos = penv_xmm->en_fos;
 1156 
 1157         /*
 1158          * FPU registers and tags.
 1159          * For ST(i), i = fpu_reg - top; we start with fpu_reg=7.
 1160          */
 1161         st = 7 - ((penv_xmm->en_sw >> 11) & 7);
 1162         ab_tw = penv_xmm->en_tw;
 1163         tw = 0;
 1164         for (i = 0x80; i != 0; i >>= 1) {
 1165                 sv_87->sv_ac[st] = sv_xmm->sv_fp[st].fp_acc;
 1166                 tw <<= 2;
 1167                 if (ab_tw & i) {
 1168                         /* Non-empty - we need to check ST(i) */
 1169                         fx_reg = &sv_xmm->sv_fp[st].fp_acc;
 1170                         /* The first 64 bits contain the mantissa. */
 1171                         mantissa = *((uint64_t *)fx_reg->fp_bytes);
 1172                         /*
 1173                          * The final 16 bits contain the sign bit and the exponent.
 1174                          * Mask the sign bit since it is of no consequence to these
 1175                          * tests.
 1176                          */
 1177                         exp = *((uint16_t *)&fx_reg->fp_bytes[8]) & 0x7fff;
 1178                         if (exp == 0) {
 1179                                 if (mantissa == 0)
 1180                                         tw |= 1; /* Zero */
 1181                                 else
 1182                                         tw |= 2; /* Denormal */
 1183                         } else if (exp == 0x7fff)
 1184                                 tw |= 2; /* Infinity or NaN */
 1185                 } else
 1186                         tw |= 3; /* Empty */
 1187                 st = (st - 1) & 7;
 1188         }
 1189         penv_87->en_tw = tw;
 1190 }
 1191 
 1192 void
 1193 npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
 1194 {
 1195 
 1196         bzero(sv_87, sizeof(*sv_87));
 1197         npx_fill_fpregs_xmm1(sv_xmm, sv_87);
 1198 }
 1199 
 1200 void
 1201 npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
 1202 {
 1203         struct env87 *penv_87;
 1204         struct envxmm *penv_xmm;
 1205         int i;
 1206 
 1207         penv_87 = &sv_87->sv_env;
 1208         penv_xmm = &sv_xmm->sv_env;
 1209 
 1210         /* FPU control/status */
 1211         penv_xmm->en_cw = penv_87->en_cw;
 1212         penv_xmm->en_sw = penv_87->en_sw;
 1213         penv_xmm->en_fip = penv_87->en_fip;
 1214         penv_xmm->en_fcs = penv_87->en_fcs;
 1215         penv_xmm->en_opcode = penv_87->en_opcode;
 1216         penv_xmm->en_foo = penv_87->en_foo;
 1217         penv_xmm->en_fos = penv_87->en_fos;
 1218 
 1219         /*
 1220          * FPU registers and tags.
 1221          * Abridged  /  Full translation (values in binary), see FXSAVE spec.
 1222          * 0            11
 1223          * 1            00, 01, 10
 1224          */
 1225         penv_xmm->en_tw = 0;
 1226         for (i = 0; i < 8; ++i) {
 1227                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 1228                 if ((penv_87->en_tw & (3 << i * 2)) != (3 << i * 2))
 1229                         penv_xmm->en_tw |= 1 << i;
 1230         }
 1231 }
 1232 
 1233 void
 1234 npx_get_fsave(void *addr)
 1235 {
 1236         struct thread *td;
 1237         union savefpu *sv;
 1238 
 1239         td = curthread;
 1240         npxgetregs(td);
 1241         sv = get_pcb_user_save_td(td);
 1242         if (cpu_fxsr)
 1243                 npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
 1244         else
 1245                 bcopy(sv, addr, sizeof(struct env87) +
 1246                     sizeof(struct fpacc87[8]));
 1247 }
 1248 
 1249 int
 1250 npx_set_fsave(void *addr)
 1251 {
 1252         union savefpu sv;
 1253         int error;
 1254 
 1255         bzero(&sv, sizeof(sv));
 1256         if (cpu_fxsr)
 1257                 npx_set_fpregs_xmm(addr, &sv.sv_xmm);
 1258         else
 1259                 bcopy(addr, &sv, sizeof(struct env87) +
 1260                     sizeof(struct fpacc87[8]));
 1261         error = npxsetregs(curthread, &sv, NULL, 0);
 1262         return (error);
 1263 }
 1264 
 1265 /*
 1266  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1267  * the x87's stored last instruction pointer, last data pointer, and last
 1268  * opcode values, except in the rare case in which the exception summary
 1269  * (ES) bit in the x87 status word is set to 1.
 1270  *
 1271  * In order to avoid leaking this information across processes, we clean
 1272  * these values by performing a dummy load before executing fxrstor().
 1273  */
 1274 static void
 1275 fpu_clean_state(void)
 1276 {
 1277         static float dummy_variable = 0.0;
 1278         u_short status;
 1279 
 1280         /*
 1281          * Clear the ES bit in the x87 status word if it is currently
 1282          * set, in order to avoid causing a fault in the upcoming load.
 1283          */
 1284         fnstsw(&status);
 1285         if (status & 0x80)
 1286                 fnclex();
 1287 
 1288         /*
 1289          * Load the dummy variable into the x87 stack.  This mangles
 1290          * the x87 stack, but we don't care since we're about to call
 1291          * fxrstor() anyway.
 1292          */
 1293         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1294 }
 1295 
 1296 static void
 1297 fpurstor(union savefpu *addr)
 1298 {
 1299 
 1300         if (use_xsave)
 1301                 xrstor((char *)addr, xsave_mask);
 1302         else if (cpu_fxsr)
 1303                 fxrstor(addr);
 1304         else
 1305                 frstor(addr);
 1306 }
 1307 
 1308 #ifdef DEV_ISA
 1309 /*
 1310  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1311  */
 1312 static struct isa_pnp_id npxisa_ids[] = {
 1313         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1314         { 0 }
 1315 };
 1316 
 1317 static int
 1318 npxisa_probe(device_t dev)
 1319 {
 1320         int result;
 1321         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
 1322                 device_quiet(dev);
 1323         }
 1324         return(result);
 1325 }
 1326 
 1327 static int
 1328 npxisa_attach(device_t dev)
 1329 {
 1330         return (0);
 1331 }
 1332 
 1333 static device_method_t npxisa_methods[] = {
 1334         /* Device interface */
 1335         DEVMETHOD(device_probe,         npxisa_probe),
 1336         DEVMETHOD(device_attach,        npxisa_attach),
 1337         DEVMETHOD(device_detach,        bus_generic_detach),
 1338         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1339         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1340         DEVMETHOD(device_resume,        bus_generic_resume),
 1341         { 0, 0 }
 1342 };
 1343 
 1344 static driver_t npxisa_driver = {
 1345         "npxisa",
 1346         npxisa_methods,
 1347         1,                      /* no softc */
 1348 };
 1349 
 1350 DRIVER_MODULE(npxisa, isa, npxisa_driver, 0, 0);
 1351 DRIVER_MODULE(npxisa, acpi, npxisa_driver, 0, 0);
 1352 ISA_PNP_INFO(npxisa_ids);
 1353 #endif /* DEV_ISA */
 1354 
 1355 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1356     "Kernel contexts for FPU state");
 1357 
 1358 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1359 #define FPU_KERN_CTX_DUMMY       0x02
 1360 #define FPU_KERN_CTX_INUSE       0x04
 1361 
 1362 struct fpu_kern_ctx {
 1363         union savefpu *prev;
 1364         uint32_t flags;
 1365         char hwstate1[];
 1366 };
 1367 
 1368 struct fpu_kern_ctx *
 1369 fpu_kern_alloc_ctx(u_int flags)
 1370 {
 1371         struct fpu_kern_ctx *res;
 1372         size_t sz;
 1373 
 1374         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1375             cpu_max_ext_state_size;
 1376         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1377             M_NOWAIT : M_WAITOK) | M_ZERO);
 1378         return (res);
 1379 }
 1380 
 1381 void
 1382 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1383 {
 1384 
 1385         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
 1386         /* XXXKIB clear the memory ? */
 1387         free(ctx, M_FPUKERN_CTX);
 1388 }
 1389 
 1390 static union savefpu *
 1391 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1392 {
 1393         vm_offset_t p;
 1394 
 1395         p = (vm_offset_t)&ctx->hwstate1;
 1396         p = roundup2(p, XSAVE_AREA_ALIGN);
 1397         return ((union savefpu *)p);
 1398 }
 1399 
 1400 void
 1401 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1402 {
 1403         struct pcb *pcb;
 1404 
 1405         pcb = td->td_pcb;
 1406         KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
 1407             ("ctx is required when !FPU_KERN_NOCTX"));
 1408         KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
 1409             ("using inuse ctx"));
 1410         KASSERT((pcb->pcb_flags & PCB_NPXNOSAVE) == 0,
 1411             ("recursive fpu_kern_enter while in PCB_NPXNOSAVE state"));
 1412 
 1413         if ((flags & FPU_KERN_NOCTX) != 0) {
 1414                 critical_enter();
 1415                 stop_emulating();
 1416                 if (curthread == PCPU_GET(fpcurthread)) {
 1417                         fpusave(curpcb->pcb_save);
 1418                         PCPU_SET(fpcurthread, NULL);
 1419                 } else {
 1420                         KASSERT(PCPU_GET(fpcurthread) == NULL,
 1421                             ("invalid fpcurthread"));
 1422                 }
 1423 
 1424                 /*
 1425                  * This breaks XSAVEOPT tracker, but
 1426                  * PCB_NPXNOSAVE state is supposed to never need to
 1427                  * save FPU context at all.
 1428                  */
 1429                 fpurstor(npx_initialstate);
 1430                 pcb->pcb_flags |= PCB_KERNNPX | PCB_NPXNOSAVE | PCB_NPXINITDONE;
 1431                 return;
 1432         }
 1433         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1434                 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
 1435                 return;
 1436         }
 1437         pcb = td->td_pcb;
 1438         critical_enter();
 1439         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1440             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1441         ctx->flags = FPU_KERN_CTX_INUSE;
 1442         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1443                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1444         npxexit(td);
 1445         ctx->prev = pcb->pcb_save;
 1446         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1447         pcb->pcb_flags |= PCB_KERNNPX;
 1448         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1449         critical_exit();
 1450 }
 1451 
 1452 int
 1453 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1454 {
 1455         struct pcb *pcb;
 1456 
 1457         pcb = td->td_pcb;
 1458 
 1459         if ((pcb->pcb_flags & PCB_NPXNOSAVE) != 0) {
 1460                 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
 1461                 KASSERT(PCPU_GET(fpcurthread) == NULL,
 1462                     ("non-NULL fpcurthread for PCB_NPXNOSAVE"));
 1463                 CRITICAL_ASSERT(td);
 1464 
 1465                 pcb->pcb_flags &= ~(PCB_NPXNOSAVE | PCB_NPXINITDONE);
 1466                 start_emulating();
 1467         } else {
 1468                 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
 1469                     ("leaving not inuse ctx"));
 1470                 ctx->flags &= ~FPU_KERN_CTX_INUSE;
 1471 
 1472                 if (is_fpu_kern_thread(0) &&
 1473                     (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1474                         return (0);
 1475                 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
 1476                     ("dummy ctx"));
 1477                 critical_enter();
 1478                 if (curthread == PCPU_GET(fpcurthread))
 1479                         npxdrop();
 1480                 pcb->pcb_save = ctx->prev;
 1481         }
 1482 
 1483         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1484                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0) {
 1485                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1486                         if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
 1487                                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1488                 } else if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
 1489                         pcb->pcb_flags &= ~(PCB_NPXINITDONE | PCB_KERNNPX);
 1490         } else {
 1491                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1492                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1493                 else
 1494                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1495                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1496         }
 1497         critical_exit();
 1498         return (0);
 1499 }
 1500 
 1501 int
 1502 fpu_kern_thread(u_int flags)
 1503 {
 1504 
 1505         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1506             ("Only kthread may use fpu_kern_thread"));
 1507         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1508             ("mangled pcb_save"));
 1509         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1510 
 1511         curpcb->pcb_flags |= PCB_KERNNPX | PCB_KERNNPX_THR;
 1512         return (0);
 1513 }
 1514 
 1515 int
 1516 is_fpu_kern_thread(u_int flags)
 1517 {
 1518 
 1519         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1520                 return (0);
 1521         return ((curpcb->pcb_flags & PCB_KERNNPX_THR) != 0);
 1522 }
 1523 
 1524 /*
 1525  * FPU save area alloc/free/init utility routines
 1526  */
 1527 union savefpu *
 1528 fpu_save_area_alloc(void)
 1529 {
 1530 
 1531         return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
 1532 }
 1533 
 1534 void
 1535 fpu_save_area_free(union savefpu *fsa)
 1536 {
 1537 
 1538         uma_zfree(fpu_save_area_zone, fsa);
 1539 }
 1540 
 1541 void
 1542 fpu_save_area_reset(union savefpu *fsa)
 1543 {
 1544 
 1545         bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
 1546 }

Cache object: a4ffae0c42405371b715a41f1998908d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.