The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/12.0/sys/i386/i386/npx.c 338803 2018-09-19 16:37:43Z kib $");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 #include <vm/uma.h>
   59 
   60 #include <machine/asmacros.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/frame.h>
   63 #include <machine/md_var.h>
   64 #include <machine/pcb.h>
   65 #include <machine/psl.h>
   66 #include <machine/resource.h>
   67 #include <machine/specialreg.h>
   68 #include <machine/segments.h>
   69 #include <machine/ucontext.h>
   70 #include <x86/ifunc.h>
   71 
   72 #include <machine/intr_machdep.h>
   73 
   74 #ifdef DEV_ISA
   75 #include <isa/isavar.h>
   76 #endif
   77 
   78 /*
   79  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   80  */
   81 
   82 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   83 
   84 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   85 #define fnclex()                __asm __volatile("fnclex")
   86 #define fninit()                __asm __volatile("fninit")
   87 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   88 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   89 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   90 #define fp_divide_by_0()        __asm __volatile( \
   91                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   92 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
   93 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   94 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   95 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   96 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   97 
   98 static __inline void
   99 xrstor(char *addr, uint64_t mask)
  100 {
  101         uint32_t low, hi;
  102 
  103         low = mask;
  104         hi = mask >> 32;
  105         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
  106 }
  107 
  108 static __inline void
  109 xsave(char *addr, uint64_t mask)
  110 {
  111         uint32_t low, hi;
  112 
  113         low = mask;
  114         hi = mask >> 32;
  115         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  116             "memory");
  117 }
  118 
  119 static __inline void
  120 xsaveopt(char *addr, uint64_t mask)
  121 {
  122         uint32_t low, hi;
  123 
  124         low = mask;
  125         hi = mask >> 32;
  126         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  127             "memory");
  128 }
  129 #else   /* !(__GNUCLIKE_ASM && !lint) */
  130 
  131 void    fldcw(u_short cw);
  132 void    fnclex(void);
  133 void    fninit(void);
  134 void    fnsave(caddr_t addr);
  135 void    fnstcw(caddr_t addr);
  136 void    fnstsw(caddr_t addr);
  137 void    fp_divide_by_0(void);
  138 void    frstor(caddr_t addr);
  139 void    fxsave(caddr_t addr);
  140 void    fxrstor(caddr_t addr);
  141 void    ldmxcsr(u_int csr);
  142 void    stmxcsr(u_int *csr);
  143 void    xrstor(char *addr, uint64_t mask);
  144 void    xsave(char *addr, uint64_t mask);
  145 void    xsaveopt(char *addr, uint64_t mask);
  146 
  147 #endif  /* __GNUCLIKE_ASM && !lint */
  148 
  149 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  150 #define stop_emulating()        clts()
  151 
  152 #define GET_FPU_CW(thread) \
  153         (cpu_fxsr ? \
  154                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  155                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  156 #define GET_FPU_SW(thread) \
  157         (cpu_fxsr ? \
  158                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  159                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  160 #define SET_FPU_CW(savefpu, value) do { \
  161         if (cpu_fxsr) \
  162                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  163         else \
  164                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  165 } while (0)
  166 
  167 CTASSERT(sizeof(union savefpu) == 512);
  168 CTASSERT(sizeof(struct xstate_hdr) == 64);
  169 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  170 
  171 /*
  172  * This requirement is to make it easier for asm code to calculate
  173  * offset of the fpu save area from the pcb address. FPU save area
  174  * must be 64-byte aligned.
  175  */
  176 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  177 
  178 /*
  179  * Ensure the copy of XCR0 saved in a core is contained in the padding
  180  * area.
  181  */
  182 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
  183     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
  184 
  185 static  void    fpu_clean_state(void);
  186 
  187 static  void    fpurstor(union savefpu *);
  188 
  189 int     hw_float;
  190 
  191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  192     &hw_float, 0, "Floating point instructions executed in hardware");
  193 
  194 int lazy_fpu_switch = 0;
  195 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
  196     &lazy_fpu_switch, 0,
  197     "Lazily load FPU context after context switch");
  198 
  199 int use_xsave;
  200 uint64_t xsave_mask;
  201 static  uma_zone_t fpu_save_area_zone;
  202 static  union savefpu *npx_initialstate;
  203 
  204 struct xsave_area_elm_descr {
  205         u_int   offset;
  206         u_int   size;
  207 } *xsave_area_desc;
  208 
  209 static  volatile u_int          npx_traps_while_probing;
  210 
  211 alias_for_inthand_t probetrap;
  212 __asm("                                                         \n\
  213         .text                                                   \n\
  214         .p2align 2,0x90                                         \n\
  215         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  216 " __XSTRING(CNAME(probetrap)) ":                                \n\
  217         ss                                                      \n\
  218         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  219         fnclex                                                  \n\
  220         iret                                                    \n\
  221 ");
  222 
  223 /*
  224  * Determine if an FPU is present and how to use it.
  225  */
  226 static int
  227 npx_probe(void)
  228 {
  229         struct gate_descriptor save_idt_npxtrap;
  230         u_short control, status;
  231 
  232         /*
  233          * Modern CPUs all have an FPU that uses the INT16 interface
  234          * and provide a simple way to verify that, so handle the
  235          * common case right away.
  236          */
  237         if (cpu_feature & CPUID_FPU) {
  238                 hw_float = 1;
  239                 return (1);
  240         }
  241 
  242         save_idt_npxtrap = idt[IDT_MF];
  243         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  244             GSEL(GCODE_SEL, SEL_KPL));
  245 
  246         /*
  247          * Don't trap while we're probing.
  248          */
  249         stop_emulating();
  250 
  251         /*
  252          * Finish resetting the coprocessor, if any.  If there is an error
  253          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  254          * it OK.  Bogus halts have never been observed, but we enabled
  255          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  256          */
  257         fninit();
  258 
  259         /*
  260          * Don't use fwait here because it might hang.
  261          * Don't use fnop here because it usually hangs if there is no FPU.
  262          */
  263         DELAY(1000);            /* wait for any IRQ13 */
  264 #ifdef DIAGNOSTIC
  265         if (npx_traps_while_probing != 0)
  266                 printf("fninit caused %u bogus npx trap(s)\n",
  267                        npx_traps_while_probing);
  268 #endif
  269         /*
  270          * Check for a status of mostly zero.
  271          */
  272         status = 0x5a5a;
  273         fnstsw(&status);
  274         if ((status & 0xb8ff) == 0) {
  275                 /*
  276                  * Good, now check for a proper control word.
  277                  */
  278                 control = 0x5a5a;
  279                 fnstcw(&control);
  280                 if ((control & 0x1f3f) == 0x033f) {
  281                         /*
  282                          * We have an npx, now divide by 0 to see if exception
  283                          * 16 works.
  284                          */
  285                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  286                         fldcw(control);
  287                         npx_traps_while_probing = 0;
  288                         fp_divide_by_0();
  289                         if (npx_traps_while_probing != 0) {
  290                                 /*
  291                                  * Good, exception 16 works.
  292                                  */
  293                                 hw_float = 1;
  294                                 goto cleanup;
  295                         }
  296                         printf(
  297         "FPU does not use exception 16 for error reporting\n");
  298                         goto cleanup;
  299                 }
  300         }
  301 
  302         /*
  303          * Probe failed.  Floating point simply won't work.
  304          * Notify user and disable FPU/MMX/SSE instruction execution.
  305          */
  306         printf("WARNING: no FPU!\n");
  307         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  308             "n" (CR0_EM | CR0_MP) : "ax");
  309 
  310 cleanup:
  311         idt[IDT_MF] = save_idt_npxtrap;
  312         return (hw_float);
  313 }
  314 
  315 static void
  316 npxsave_xsaveopt(union savefpu *addr)
  317 {
  318 
  319         xsaveopt((char *)addr, xsave_mask);
  320 }
  321 
  322 static void
  323 fpusave_xsave(union savefpu *addr)
  324 {
  325 
  326         xsave((char *)addr, xsave_mask);
  327 }
  328 
  329 static void
  330 fpusave_fxsave(union savefpu *addr)
  331 {
  332 
  333         fxsave((char *)addr);
  334 }
  335 
  336 static void
  337 fpusave_fnsave(union savefpu *addr)
  338 {
  339 
  340         fnsave((char *)addr);
  341 }
  342 
  343 static void
  344 init_xsave(void)
  345 {
  346 
  347         if (use_xsave)
  348                 return;
  349         if (!cpu_fxsr || (cpu_feature2 & CPUID2_XSAVE) == 0)
  350                 return;
  351         use_xsave = 1;
  352         TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  353 }
  354 
  355 DEFINE_IFUNC(, void, npxsave_core, (union savefpu *), static)
  356 {
  357 
  358         init_xsave();
  359         if (use_xsave)
  360                 return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
  361                     npxsave_xsaveopt : fpusave_xsave);
  362         if (cpu_fxsr)
  363                 return (fpusave_fxsave);
  364         return (fpusave_fnsave);
  365 }
  366 
  367 DEFINE_IFUNC(, void, fpusave, (union savefpu *), static)
  368 {
  369 
  370         init_xsave();
  371         if (use_xsave)
  372                 return (fpusave_xsave);
  373         if (cpu_fxsr)
  374                 return (fpusave_fxsave);
  375         return (fpusave_fnsave);
  376 }
  377 
  378 /*
  379  * Enable XSAVE if supported and allowed by user.
  380  * Calculate the xsave_mask.
  381  */
  382 static void
  383 npxinit_bsp1(void)
  384 {
  385         u_int cp[4];
  386         uint64_t xsave_mask_user;
  387 
  388         TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
  389         if (!use_xsave)
  390                 return;
  391         cpuid_count(0xd, 0x0, cp);
  392         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  393         if ((cp[0] & xsave_mask) != xsave_mask)
  394                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  395         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  396         xsave_mask_user = xsave_mask;
  397         TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
  398         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  399         xsave_mask &= xsave_mask_user;
  400         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  401                 xsave_mask &= ~XFEATURE_AVX512;
  402         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  403                 xsave_mask &= ~XFEATURE_MPX;
  404 }
  405 
  406 /*
  407  * Calculate the fpu save area size.
  408  */
  409 static void
  410 npxinit_bsp2(void)
  411 {
  412         u_int cp[4];
  413 
  414         if (use_xsave) {
  415                 cpuid_count(0xd, 0x0, cp);
  416                 cpu_max_ext_state_size = cp[1];
  417 
  418                 /*
  419                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  420                  */
  421                 do_cpuid(1, cp);
  422                 cpu_feature2 = cp[2];
  423         } else
  424                 cpu_max_ext_state_size = sizeof(union savefpu);
  425 }
  426 
  427 /*
  428  * Initialize floating point unit.
  429  */
  430 void
  431 npxinit(bool bsp)
  432 {
  433         static union savefpu dummy;
  434         register_t saveintr;
  435         u_int mxcsr;
  436         u_short control;
  437 
  438         if (bsp) {
  439                 if (!npx_probe())
  440                         return;
  441                 npxinit_bsp1();
  442         }
  443 
  444         if (use_xsave) {
  445                 load_cr4(rcr4() | CR4_XSAVE);
  446                 load_xcr(XCR0, xsave_mask);
  447         }
  448 
  449         /*
  450          * XCR0 shall be set up before CPU can report the save area size.
  451          */
  452         if (bsp)
  453                 npxinit_bsp2();
  454         
  455         /*
  456          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  457          * fnsave to throw away any junk in the fpu.  fpusave() initializes
  458          * the fpu.
  459          *
  460          * It is too early for critical_enter() to work on AP.
  461          */
  462         saveintr = intr_disable();
  463         stop_emulating();
  464         if (cpu_fxsr)
  465                 fninit();
  466         else
  467                 fnsave(&dummy);
  468         control = __INITIAL_NPXCW__;
  469         fldcw(control);
  470         if (cpu_fxsr) {
  471                 mxcsr = __INITIAL_MXCSR__;
  472                 ldmxcsr(mxcsr);
  473         }
  474         start_emulating();
  475         intr_restore(saveintr);
  476 }
  477 
  478 /*
  479  * On the boot CPU we generate a clean state that is used to
  480  * initialize the floating point unit when it is first used by a
  481  * process.
  482  */
  483 static void
  484 npxinitstate(void *arg __unused)
  485 {
  486         register_t saveintr;
  487         int cp[4], i, max_ext_n;
  488 
  489         if (!hw_float)
  490                 return;
  491 
  492         npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  493             M_WAITOK | M_ZERO);
  494         saveintr = intr_disable();
  495         stop_emulating();
  496 
  497         fpusave(npx_initialstate);
  498         if (cpu_fxsr) {
  499                 if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
  500                         cpu_mxcsr_mask = 
  501                             npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
  502                 else
  503                         cpu_mxcsr_mask = 0xFFBF;
  504 
  505                 /*
  506                  * The fninit instruction does not modify XMM
  507                  * registers or x87 registers (MM/ST).  The fpusave
  508                  * call dumped the garbage contained in the registers
  509                  * after reset to the initial state saved.  Clear XMM
  510                  * and x87 registers file image to make the startup
  511                  * program state and signal handler XMM/x87 register
  512                  * content predictable.
  513                  */
  514                 bzero(npx_initialstate->sv_xmm.sv_fp,
  515                     sizeof(npx_initialstate->sv_xmm.sv_fp));
  516                 bzero(npx_initialstate->sv_xmm.sv_xmm,
  517                     sizeof(npx_initialstate->sv_xmm.sv_xmm));
  518         } else
  519                 bzero(npx_initialstate->sv_87.sv_ac,
  520                     sizeof(npx_initialstate->sv_87.sv_ac));
  521 
  522         /*
  523          * Create a table describing the layout of the CPU Extended
  524          * Save Area.
  525          */
  526         if (use_xsave) {
  527                 if (xsave_mask >> 32 != 0)
  528                         max_ext_n = fls(xsave_mask >> 32) + 32;
  529                 else
  530                         max_ext_n = fls(xsave_mask);
  531                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  532                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  533                 /* x87 state */
  534                 xsave_area_desc[0].offset = 0;
  535                 xsave_area_desc[0].size = 160;
  536                 /* XMM */
  537                 xsave_area_desc[1].offset = 160;
  538                 xsave_area_desc[1].size = 288 - 160;
  539 
  540                 for (i = 2; i < max_ext_n; i++) {
  541                         cpuid_count(0xd, i, cp);
  542                         xsave_area_desc[i].offset = cp[1];
  543                         xsave_area_desc[i].size = cp[0];
  544                 }
  545         }
  546 
  547         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  548             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  549             XSAVE_AREA_ALIGN - 1, 0);
  550 
  551         start_emulating();
  552         intr_restore(saveintr);
  553 }
  554 SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
  555 
  556 /*
  557  * Free coprocessor (if we have it).
  558  */
  559 void
  560 npxexit(struct thread *td)
  561 {
  562 
  563         critical_enter();
  564         if (curthread == PCPU_GET(fpcurthread)) {
  565                 stop_emulating();
  566                 fpusave(curpcb->pcb_save);
  567                 start_emulating();
  568                 PCPU_SET(fpcurthread, NULL);
  569         }
  570         critical_exit();
  571 #ifdef NPX_DEBUG
  572         if (hw_float) {
  573                 u_int   masked_exceptions;
  574 
  575                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  576                 /*
  577                  * Log exceptions that would have trapped with the old
  578                  * control word (overflow, divide by 0, and invalid operand).
  579                  */
  580                 if (masked_exceptions & 0x0d)
  581                         log(LOG_ERR,
  582         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  583                             td->td_proc->p_pid, td->td_proc->p_comm,
  584                             masked_exceptions);
  585         }
  586 #endif
  587 }
  588 
  589 int
  590 npxformat(void)
  591 {
  592 
  593         if (!hw_float)
  594                 return (_MC_FPFMT_NODEV);
  595         if (cpu_fxsr)
  596                 return (_MC_FPFMT_XMM);
  597         return (_MC_FPFMT_387);
  598 }
  599 
  600 /* 
  601  * The following mechanism is used to ensure that the FPE_... value
  602  * that is passed as a trapcode to the signal handler of the user
  603  * process does not have more than one bit set.
  604  * 
  605  * Multiple bits may be set if the user process modifies the control
  606  * word while a status word bit is already set.  While this is a sign
  607  * of bad coding, we have no choise than to narrow them down to one
  608  * bit, since we must not send a trapcode that is not exactly one of
  609  * the FPE_ macros.
  610  *
  611  * The mechanism has a static table with 127 entries.  Each combination
  612  * of the 7 FPU status word exception bits directly translates to a
  613  * position in this table, where a single FPE_... value is stored.
  614  * This FPE_... value stored there is considered the "most important"
  615  * of the exception bits and will be sent as the signal code.  The
  616  * precedence of the bits is based upon Intel Document "Numerical
  617  * Applications", Chapter "Special Computational Situations".
  618  *
  619  * The macro to choose one of these values does these steps: 1) Throw
  620  * away status word bits that cannot be masked.  2) Throw away the bits
  621  * currently masked in the control word, assuming the user isn't
  622  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  623  * fault) if it is set, which cannot be masked but must be presered.
  624  * 4) Use the remaining bits to point into the trapcode table.
  625  *
  626  * The 6 maskable bits in order of their preference, as stated in the
  627  * above referenced Intel manual:
  628  * 1  Invalid operation (FP_X_INV)
  629  * 1a   Stack underflow
  630  * 1b   Stack overflow
  631  * 1c   Operand of unsupported format
  632  * 1d   SNaN operand.
  633  * 2  QNaN operand (not an exception, irrelavant here)
  634  * 3  Any other invalid-operation not mentioned above or zero divide
  635  *      (FP_X_INV, FP_X_DZ)
  636  * 4  Denormal operand (FP_X_DNML)
  637  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  638  * 6  Inexact result (FP_X_IMP) 
  639  */
  640 static char fpetable[128] = {
  641         0,
  642         FPE_FLTINV,     /*  1 - INV */
  643         FPE_FLTUND,     /*  2 - DNML */
  644         FPE_FLTINV,     /*  3 - INV | DNML */
  645         FPE_FLTDIV,     /*  4 - DZ */
  646         FPE_FLTINV,     /*  5 - INV | DZ */
  647         FPE_FLTDIV,     /*  6 - DNML | DZ */
  648         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  649         FPE_FLTOVF,     /*  8 - OFL */
  650         FPE_FLTINV,     /*  9 - INV | OFL */
  651         FPE_FLTUND,     /*  A - DNML | OFL */
  652         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  653         FPE_FLTDIV,     /*  C - DZ | OFL */
  654         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  655         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  656         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  657         FPE_FLTUND,     /* 10 - UFL */
  658         FPE_FLTINV,     /* 11 - INV | UFL */
  659         FPE_FLTUND,     /* 12 - DNML | UFL */
  660         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  661         FPE_FLTDIV,     /* 14 - DZ | UFL */
  662         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  663         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  664         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  665         FPE_FLTOVF,     /* 18 - OFL | UFL */
  666         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  667         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  668         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  669         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  670         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  671         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  672         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  673         FPE_FLTRES,     /* 20 - IMP */
  674         FPE_FLTINV,     /* 21 - INV | IMP */
  675         FPE_FLTUND,     /* 22 - DNML | IMP */
  676         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  677         FPE_FLTDIV,     /* 24 - DZ | IMP */
  678         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  679         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  680         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  681         FPE_FLTOVF,     /* 28 - OFL | IMP */
  682         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  683         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  684         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  685         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  686         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  687         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  688         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  689         FPE_FLTUND,     /* 30 - UFL | IMP */
  690         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  691         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  692         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  693         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  694         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  695         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  696         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  697         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  698         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  699         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  700         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  701         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  702         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  703         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  704         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  705         FPE_FLTSUB,     /* 40 - STK */
  706         FPE_FLTSUB,     /* 41 - INV | STK */
  707         FPE_FLTUND,     /* 42 - DNML | STK */
  708         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  709         FPE_FLTDIV,     /* 44 - DZ | STK */
  710         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  711         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  712         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  713         FPE_FLTOVF,     /* 48 - OFL | STK */
  714         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  715         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  716         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  717         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  718         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  719         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  720         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  721         FPE_FLTUND,     /* 50 - UFL | STK */
  722         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  723         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  724         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  725         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  726         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  727         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  728         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  729         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  730         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  731         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  732         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  733         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  734         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  735         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  736         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  737         FPE_FLTRES,     /* 60 - IMP | STK */
  738         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  739         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  740         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  741         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  742         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  743         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  744         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  745         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  746         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  747         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  748         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  749         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  750         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  751         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  752         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  753         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  754         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  755         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  756         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  757         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  758         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  759         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  760         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  761         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  762         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  763         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  764         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  765         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  766         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  767         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  768         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  769 };
  770 
  771 /*
  772  * Read the FP status and control words, then generate si_code value
  773  * for SIGFPE.  The error code chosen will be one of the
  774  * FPE_... macros.  It will be sent as the second argument to old
  775  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  776  * argument) to SA_SIGINFO signal handlers.
  777  *
  778  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  779  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  780  * usermode code which understands the FPU hardware enough to enable
  781  * the exceptions, can also handle clearing the exception state in the
  782  * handler.  The only consequence of not clearing the exception is the
  783  * rethrow of the SIGFPE on return from the signal handler and
  784  * reexecution of the corresponding instruction.
  785  *
  786  * For XMM traps, the exceptions were never cleared.
  787  */
  788 int
  789 npxtrap_x87(void)
  790 {
  791         u_short control, status;
  792 
  793         if (!hw_float) {
  794                 printf(
  795         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  796                        PCPU_GET(fpcurthread), curthread, hw_float);
  797                 panic("npxtrap from nowhere");
  798         }
  799         critical_enter();
  800 
  801         /*
  802          * Interrupt handling (for another interrupt) may have pushed the
  803          * state to memory.  Fetch the relevant parts of the state from
  804          * wherever they are.
  805          */
  806         if (PCPU_GET(fpcurthread) != curthread) {
  807                 control = GET_FPU_CW(curthread);
  808                 status = GET_FPU_SW(curthread);
  809         } else {
  810                 fnstcw(&control);
  811                 fnstsw(&status);
  812         }
  813         critical_exit();
  814         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  815 }
  816 
  817 int
  818 npxtrap_sse(void)
  819 {
  820         u_int mxcsr;
  821 
  822         if (!hw_float) {
  823                 printf(
  824         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  825                        PCPU_GET(fpcurthread), curthread, hw_float);
  826                 panic("npxtrap from nowhere");
  827         }
  828         critical_enter();
  829         if (PCPU_GET(fpcurthread) != curthread)
  830                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  831         else
  832                 stmxcsr(&mxcsr);
  833         critical_exit();
  834         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  835 }
  836 
  837 static void
  838 restore_npx_curthread(struct thread *td, struct pcb *pcb)
  839 {
  840 
  841         /*
  842          * Record new context early in case frstor causes a trap.
  843          */
  844         PCPU_SET(fpcurthread, td);
  845 
  846         stop_emulating();
  847         if (cpu_fxsr)
  848                 fpu_clean_state();
  849 
  850         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  851                 /*
  852                  * This is the first time this thread has used the FPU or
  853                  * the PCB doesn't contain a clean FPU state.  Explicitly
  854                  * load an initial state.
  855                  *
  856                  * We prefer to restore the state from the actual save
  857                  * area in PCB instead of directly loading from
  858                  * npx_initialstate, to ignite the XSAVEOPT
  859                  * tracking engine.
  860                  */
  861                 bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
  862                 fpurstor(pcb->pcb_save);
  863                 if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  864                         fldcw(pcb->pcb_initial_npxcw);
  865                 pcb->pcb_flags |= PCB_NPXINITDONE;
  866                 if (PCB_USER_FPU(pcb))
  867                         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
  868         } else {
  869                 fpurstor(pcb->pcb_save);
  870         }
  871 }
  872 
  873 /*
  874  * Implement device not available (DNA) exception
  875  *
  876  * It would be better to switch FP context here (if curthread != fpcurthread)
  877  * and not necessarily for every context switch, but it is too hard to
  878  * access foreign pcb's.
  879  */
  880 int
  881 npxdna(void)
  882 {
  883         struct thread *td;
  884 
  885         if (!hw_float)
  886                 return (0);
  887         td = curthread;
  888         critical_enter();
  889         if (__predict_false(PCPU_GET(fpcurthread) == td)) {
  890                 /*
  891                  * Some virtual machines seems to set %cr0.TS at
  892                  * arbitrary moments.  Silently clear the TS bit
  893                  * regardless of the eager/lazy FPU context switch
  894                  * mode.
  895                  */
  896                 stop_emulating();
  897         } else {
  898                 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
  899                         printf(
  900                     "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  901                             PCPU_GET(fpcurthread),
  902                             PCPU_GET(fpcurthread)->td_proc->p_pid,
  903                             td, td->td_proc->p_pid);
  904                         panic("npxdna");
  905                 }
  906                 restore_npx_curthread(td, td->td_pcb);
  907         }
  908         critical_exit();
  909         return (1);
  910 }
  911 
  912 /*
  913  * Wrapper for fpusave() called from context switch routines.
  914  *
  915  * npxsave() must be called with interrupts disabled, so that it clears
  916  * fpcurthread atomically with saving the state.  We require callers to do the
  917  * disabling, since most callers need to disable interrupts anyway to call
  918  * npxsave() atomically with checking fpcurthread.
  919  */
  920 void
  921 npxsave(union savefpu *addr)
  922 {
  923 
  924         stop_emulating();
  925         npxsave_core(addr);
  926 }
  927 
  928 void npxswitch(struct thread *td, struct pcb *pcb);
  929 void
  930 npxswitch(struct thread *td, struct pcb *pcb)
  931 {
  932 
  933         if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
  934             !PCB_USER_FPU(pcb)) {
  935                 start_emulating();
  936                 PCPU_SET(fpcurthread, NULL);
  937         } else if (PCPU_GET(fpcurthread) != td) {
  938                 restore_npx_curthread(td, pcb);
  939         }
  940 }
  941 
  942 /*
  943  * Unconditionally save the current co-processor state across suspend and
  944  * resume.
  945  */
  946 void
  947 npxsuspend(union savefpu *addr)
  948 {
  949         register_t cr0;
  950 
  951         if (!hw_float)
  952                 return;
  953         if (PCPU_GET(fpcurthread) == NULL) {
  954                 bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
  955                 return;
  956         }
  957         cr0 = rcr0();
  958         stop_emulating();
  959         fpusave(addr);
  960         load_cr0(cr0);
  961 }
  962 
  963 void
  964 npxresume(union savefpu *addr)
  965 {
  966         register_t cr0;
  967 
  968         if (!hw_float)
  969                 return;
  970 
  971         cr0 = rcr0();
  972         npxinit(false);
  973         stop_emulating();
  974         fpurstor(addr);
  975         load_cr0(cr0);
  976 }
  977 
  978 void
  979 npxdrop(void)
  980 {
  981         struct thread *td;
  982 
  983         /*
  984          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
  985          * ones don't cause a panic on the next frstor.
  986          */
  987         if (!cpu_fxsr)
  988                 fnclex();
  989 
  990         td = PCPU_GET(fpcurthread);
  991         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  992         CRITICAL_ASSERT(td);
  993         PCPU_SET(fpcurthread, NULL);
  994         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
  995         start_emulating();
  996 }
  997 
  998 /*
  999  * Get the user state of the FPU into pcb->pcb_user_save without
 1000  * dropping ownership (if possible).  It returns the FPU ownership
 1001  * status.
 1002  */
 1003 int
 1004 npxgetregs(struct thread *td)
 1005 {
 1006         struct pcb *pcb;
 1007         uint64_t *xstate_bv, bit;
 1008         char *sa;
 1009         int max_ext_n, i;
 1010         int owned;
 1011 
 1012         if (!hw_float)
 1013                 return (_MC_FPOWNED_NONE);
 1014 
 1015         pcb = td->td_pcb;
 1016         critical_enter();
 1017         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
 1018                 bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
 1019                     cpu_max_ext_state_size);
 1020                 SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
 1021                 npxuserinited(td);
 1022                 critical_exit();
 1023                 return (_MC_FPOWNED_PCB);
 1024         }
 1025         if (td == PCPU_GET(fpcurthread)) {
 1026                 fpusave(get_pcb_user_save_pcb(pcb));
 1027                 if (!cpu_fxsr)
 1028                         /*
 1029                          * fnsave initializes the FPU and destroys whatever
 1030                          * context it contains.  Make sure the FPU owner
 1031                          * starts with a clean state next time.
 1032                          */
 1033                         npxdrop();
 1034                 owned = _MC_FPOWNED_FPU;
 1035         } else {
 1036                 owned = _MC_FPOWNED_PCB;
 1037         }
 1038         if (use_xsave) {
 1039                 /*
 1040                  * Handle partially saved state.
 1041                  */
 1042                 sa = (char *)get_pcb_user_save_pcb(pcb);
 1043                 xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
 1044                     offsetof(struct xstate_hdr, xstate_bv));
 1045                 if (xsave_mask >> 32 != 0)
 1046                         max_ext_n = fls(xsave_mask >> 32) + 32;
 1047                 else
 1048                         max_ext_n = fls(xsave_mask);
 1049                 for (i = 0; i < max_ext_n; i++) {
 1050                         bit = 1ULL << i;
 1051                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
 1052                                 continue;
 1053                         bcopy((char *)npx_initialstate +
 1054                             xsave_area_desc[i].offset,
 1055                             sa + xsave_area_desc[i].offset,
 1056                             xsave_area_desc[i].size);
 1057                         *xstate_bv |= bit;
 1058                 }
 1059         }
 1060         critical_exit();
 1061         return (owned);
 1062 }
 1063 
 1064 void
 1065 npxuserinited(struct thread *td)
 1066 {
 1067         struct pcb *pcb;
 1068 
 1069         CRITICAL_ASSERT(td);
 1070         pcb = td->td_pcb;
 1071         if (PCB_USER_FPU(pcb))
 1072                 pcb->pcb_flags |= PCB_NPXINITDONE;
 1073         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
 1074 }
 1075 
 1076 int
 1077 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
 1078 {
 1079         struct xstate_hdr *hdr, *ehdr;
 1080         size_t len, max_len;
 1081         uint64_t bv;
 1082 
 1083         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
 1084         if (xfpustate == NULL)
 1085                 return (0);
 1086         if (!use_xsave)
 1087                 return (EOPNOTSUPP);
 1088 
 1089         len = xfpustate_size;
 1090         if (len < sizeof(struct xstate_hdr))
 1091                 return (EINVAL);
 1092         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 1093         if (len > max_len)
 1094                 return (EINVAL);
 1095 
 1096         ehdr = (struct xstate_hdr *)xfpustate;
 1097         bv = ehdr->xstate_bv;
 1098 
 1099         /*
 1100          * Avoid #gp.
 1101          */
 1102         if (bv & ~xsave_mask)
 1103                 return (EINVAL);
 1104 
 1105         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
 1106 
 1107         hdr->xstate_bv = bv;
 1108         bcopy(xfpustate + sizeof(struct xstate_hdr),
 1109             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
 1110 
 1111         return (0);
 1112 }
 1113 
 1114 int
 1115 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
 1116         size_t xfpustate_size)
 1117 {
 1118         struct pcb *pcb;
 1119         int error;
 1120 
 1121         if (!hw_float)
 1122                 return (ENXIO);
 1123 
 1124         if (cpu_fxsr)
 1125                 addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1126         pcb = td->td_pcb;
 1127         error = 0;
 1128         critical_enter();
 1129         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
 1130                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1131                 if (error == 0) {
 1132                         if (!cpu_fxsr)
 1133                                 fnclex();       /* As in npxdrop(). */
 1134                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1135                         fpurstor(get_pcb_user_save_td(td));
 1136                         pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
 1137                 }
 1138         } else {
 1139                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1140                 if (error == 0) {
 1141                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1142                         npxuserinited(td);
 1143                 }
 1144         }
 1145         critical_exit();
 1146         return (error);
 1147 }
 1148 
 1149 static void
 1150 npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
 1151 {
 1152         struct env87 *penv_87;
 1153         struct envxmm *penv_xmm;
 1154         int i;
 1155 
 1156         penv_87 = &sv_87->sv_env;
 1157         penv_xmm = &sv_xmm->sv_env;
 1158 
 1159         /* FPU control/status */
 1160         penv_87->en_cw = penv_xmm->en_cw;
 1161         penv_87->en_sw = penv_xmm->en_sw;
 1162         penv_87->en_fip = penv_xmm->en_fip;
 1163         penv_87->en_fcs = penv_xmm->en_fcs;
 1164         penv_87->en_opcode = penv_xmm->en_opcode;
 1165         penv_87->en_foo = penv_xmm->en_foo;
 1166         penv_87->en_fos = penv_xmm->en_fos;
 1167 
 1168         /* FPU registers and tags */
 1169         penv_87->en_tw = 0xffff;
 1170         for (i = 0; i < 8; ++i) {
 1171                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 1172                 if ((penv_xmm->en_tw & (1 << i)) != 0)
 1173                         /* zero and special are set as valid */
 1174                         penv_87->en_tw &= ~(3 << i * 2);
 1175         }
 1176 }
 1177 
 1178 void
 1179 npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
 1180 {
 1181 
 1182         bzero(sv_87, sizeof(*sv_87));
 1183         npx_fill_fpregs_xmm1(sv_xmm, sv_87);
 1184 }
 1185 
 1186 void
 1187 npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
 1188 {
 1189         struct env87 *penv_87;
 1190         struct envxmm *penv_xmm;
 1191         int i;
 1192 
 1193         penv_87 = &sv_87->sv_env;
 1194         penv_xmm = &sv_xmm->sv_env;
 1195 
 1196         /* FPU control/status */
 1197         penv_xmm->en_cw = penv_87->en_cw;
 1198         penv_xmm->en_sw = penv_87->en_sw;
 1199         penv_xmm->en_fip = penv_87->en_fip;
 1200         penv_xmm->en_fcs = penv_87->en_fcs;
 1201         penv_xmm->en_opcode = penv_87->en_opcode;
 1202         penv_xmm->en_foo = penv_87->en_foo;
 1203         penv_xmm->en_fos = penv_87->en_fos;
 1204 
 1205         /*
 1206          * FPU registers and tags.
 1207          * Abridged  /  Full translation (values in binary), see FXSAVE spec.
 1208          * 0            11
 1209          * 1            00, 01, 10
 1210          */
 1211         penv_xmm->en_tw = 0;
 1212         for (i = 0; i < 8; ++i) {
 1213                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 1214                 if ((penv_87->en_tw & (3 << i * 2)) != (3 << i * 2))
 1215                         penv_xmm->en_tw |= 1 << i;
 1216         }
 1217 }
 1218 
 1219 void
 1220 npx_get_fsave(void *addr)
 1221 {
 1222         struct thread *td;
 1223         union savefpu *sv;
 1224 
 1225         td = curthread;
 1226         npxgetregs(td);
 1227         sv = get_pcb_user_save_td(td);
 1228         if (cpu_fxsr)
 1229                 npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
 1230         else
 1231                 bcopy(sv, addr, sizeof(struct env87) +
 1232                     sizeof(struct fpacc87[8]));
 1233 }
 1234 
 1235 int
 1236 npx_set_fsave(void *addr)
 1237 {
 1238         union savefpu sv;
 1239         int error;
 1240 
 1241         bzero(&sv, sizeof(sv));
 1242         if (cpu_fxsr)
 1243                 npx_set_fpregs_xmm(addr, &sv.sv_xmm);
 1244         else
 1245                 bcopy(addr, &sv, sizeof(struct env87) +
 1246                     sizeof(struct fpacc87[8]));
 1247         error = npxsetregs(curthread, &sv, NULL, 0);
 1248         return (error);
 1249 }
 1250 
 1251 /*
 1252  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1253  * the x87's stored last instruction pointer, last data pointer, and last
 1254  * opcode values, except in the rare case in which the exception summary
 1255  * (ES) bit in the x87 status word is set to 1.
 1256  *
 1257  * In order to avoid leaking this information across processes, we clean
 1258  * these values by performing a dummy load before executing fxrstor().
 1259  */
 1260 static void
 1261 fpu_clean_state(void)
 1262 {
 1263         static float dummy_variable = 0.0;
 1264         u_short status;
 1265 
 1266         /*
 1267          * Clear the ES bit in the x87 status word if it is currently
 1268          * set, in order to avoid causing a fault in the upcoming load.
 1269          */
 1270         fnstsw(&status);
 1271         if (status & 0x80)
 1272                 fnclex();
 1273 
 1274         /*
 1275          * Load the dummy variable into the x87 stack.  This mangles
 1276          * the x87 stack, but we don't care since we're about to call
 1277          * fxrstor() anyway.
 1278          */
 1279         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1280 }
 1281 
 1282 static void
 1283 fpurstor(union savefpu *addr)
 1284 {
 1285 
 1286         if (use_xsave)
 1287                 xrstor((char *)addr, xsave_mask);
 1288         else if (cpu_fxsr)
 1289                 fxrstor(addr);
 1290         else
 1291                 frstor(addr);
 1292 }
 1293 
 1294 #ifdef DEV_ISA
 1295 /*
 1296  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1297  */
 1298 static struct isa_pnp_id npxisa_ids[] = {
 1299         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1300         { 0 }
 1301 };
 1302 
 1303 static int
 1304 npxisa_probe(device_t dev)
 1305 {
 1306         int result;
 1307         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
 1308                 device_quiet(dev);
 1309         }
 1310         return(result);
 1311 }
 1312 
 1313 static int
 1314 npxisa_attach(device_t dev)
 1315 {
 1316         return (0);
 1317 }
 1318 
 1319 static device_method_t npxisa_methods[] = {
 1320         /* Device interface */
 1321         DEVMETHOD(device_probe,         npxisa_probe),
 1322         DEVMETHOD(device_attach,        npxisa_attach),
 1323         DEVMETHOD(device_detach,        bus_generic_detach),
 1324         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1325         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1326         DEVMETHOD(device_resume,        bus_generic_resume),
 1327         
 1328         { 0, 0 }
 1329 };
 1330 
 1331 static driver_t npxisa_driver = {
 1332         "npxisa",
 1333         npxisa_methods,
 1334         1,                      /* no softc */
 1335 };
 1336 
 1337 static devclass_t npxisa_devclass;
 1338 
 1339 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
 1340 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
 1341 ISA_PNP_INFO(npxisa_ids);
 1342 #endif /* DEV_ISA */
 1343 
 1344 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1345     "Kernel contexts for FPU state");
 1346 
 1347 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1348 #define FPU_KERN_CTX_DUMMY       0x02
 1349 #define FPU_KERN_CTX_INUSE       0x04
 1350 
 1351 struct fpu_kern_ctx {
 1352         union savefpu *prev;
 1353         uint32_t flags;
 1354         char hwstate1[];
 1355 };
 1356 
 1357 struct fpu_kern_ctx *
 1358 fpu_kern_alloc_ctx(u_int flags)
 1359 {
 1360         struct fpu_kern_ctx *res;
 1361         size_t sz;
 1362 
 1363         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1364             cpu_max_ext_state_size;
 1365         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1366             M_NOWAIT : M_WAITOK) | M_ZERO);
 1367         return (res);
 1368 }
 1369 
 1370 void
 1371 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1372 {
 1373 
 1374         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
 1375         /* XXXKIB clear the memory ? */
 1376         free(ctx, M_FPUKERN_CTX);
 1377 }
 1378 
 1379 static union savefpu *
 1380 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1381 {
 1382         vm_offset_t p;
 1383 
 1384         p = (vm_offset_t)&ctx->hwstate1;
 1385         p = roundup2(p, XSAVE_AREA_ALIGN);
 1386         return ((union savefpu *)p);
 1387 }
 1388 
 1389 void
 1390 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1391 {
 1392         struct pcb *pcb;
 1393 
 1394         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("using inuse ctx"));
 1395 
 1396         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1397                 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
 1398                 return;
 1399         }
 1400         pcb = td->td_pcb;
 1401         critical_enter();
 1402         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1403             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1404         ctx->flags = FPU_KERN_CTX_INUSE;
 1405         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1406                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1407         npxexit(td);
 1408         ctx->prev = pcb->pcb_save;
 1409         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1410         pcb->pcb_flags |= PCB_KERNNPX;
 1411         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1412         critical_exit();
 1413 }
 1414 
 1415 int
 1416 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1417 {
 1418         struct pcb *pcb;
 1419 
 1420         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
 1421             ("leaving not inuse ctx"));
 1422         ctx->flags &= ~FPU_KERN_CTX_INUSE;
 1423 
 1424         if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1425                 return (0);
 1426         pcb = td->td_pcb;
 1427         critical_enter();
 1428         if (curthread == PCPU_GET(fpcurthread))
 1429                 npxdrop();
 1430         pcb->pcb_save = ctx->prev;
 1431         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1432                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
 1433                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1434                 else
 1435                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1436                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1437         } else {
 1438                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1439                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1440                 else
 1441                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1442                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1443         }
 1444         critical_exit();
 1445         return (0);
 1446 }
 1447 
 1448 int
 1449 fpu_kern_thread(u_int flags)
 1450 {
 1451 
 1452         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1453             ("Only kthread may use fpu_kern_thread"));
 1454         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1455             ("mangled pcb_save"));
 1456         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1457 
 1458         curpcb->pcb_flags |= PCB_KERNNPX;
 1459         return (0);
 1460 }
 1461 
 1462 int
 1463 is_fpu_kern_thread(u_int flags)
 1464 {
 1465 
 1466         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1467                 return (0);
 1468         return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
 1469 }
 1470 
 1471 /*
 1472  * FPU save area alloc/free/init utility routines
 1473  */
 1474 union savefpu *
 1475 fpu_save_area_alloc(void)
 1476 {
 1477 
 1478         return (uma_zalloc(fpu_save_area_zone, 0));
 1479 }
 1480 
 1481 void
 1482 fpu_save_area_free(union savefpu *fsa)
 1483 {
 1484 
 1485         uma_zfree(fpu_save_area_zone, fsa);
 1486 }
 1487 
 1488 void
 1489 fpu_save_area_reset(union savefpu *fsa)
 1490 {
 1491 
 1492         bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
 1493 }

Cache object: 4d514b8c8c5cfa13a3a46927a955a1c3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.