The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 #include <vm/uma.h>
   59 
   60 #include <machine/asmacros.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/frame.h>
   63 #include <machine/md_var.h>
   64 #include <machine/pcb.h>
   65 #include <machine/psl.h>
   66 #include <machine/resource.h>
   67 #include <machine/specialreg.h>
   68 #include <machine/segments.h>
   69 #include <machine/ucontext.h>
   70 #include <x86/ifunc.h>
   71 
   72 #include <machine/intr_machdep.h>
   73 
   74 #ifdef DEV_ISA
   75 #include <isa/isavar.h>
   76 #endif
   77 
   78 /*
   79  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   80  */
   81 
   82 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   83 
   84 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   85 #define fnclex()                __asm __volatile("fnclex")
   86 #define fninit()                __asm __volatile("fninit")
   87 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   88 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   89 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   90 #define fp_divide_by_0()        __asm __volatile( \
   91                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   92 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
   93 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   94 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   95 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   96 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   97 
   98 static __inline void
   99 xrstor(char *addr, uint64_t mask)
  100 {
  101         uint32_t low, hi;
  102 
  103         low = mask;
  104         hi = mask >> 32;
  105         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
  106 }
  107 
  108 static __inline void
  109 xsave(char *addr, uint64_t mask)
  110 {
  111         uint32_t low, hi;
  112 
  113         low = mask;
  114         hi = mask >> 32;
  115         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  116             "memory");
  117 }
  118 
  119 static __inline void
  120 xsaveopt(char *addr, uint64_t mask)
  121 {
  122         uint32_t low, hi;
  123 
  124         low = mask;
  125         hi = mask >> 32;
  126         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  127             "memory");
  128 }
  129 #else   /* !(__GNUCLIKE_ASM && !lint) */
  130 
  131 void    fldcw(u_short cw);
  132 void    fnclex(void);
  133 void    fninit(void);
  134 void    fnsave(caddr_t addr);
  135 void    fnstcw(caddr_t addr);
  136 void    fnstsw(caddr_t addr);
  137 void    fp_divide_by_0(void);
  138 void    frstor(caddr_t addr);
  139 void    fxsave(caddr_t addr);
  140 void    fxrstor(caddr_t addr);
  141 void    ldmxcsr(u_int csr);
  142 void    stmxcsr(u_int *csr);
  143 void    xrstor(char *addr, uint64_t mask);
  144 void    xsave(char *addr, uint64_t mask);
  145 void    xsaveopt(char *addr, uint64_t mask);
  146 
  147 #endif  /* __GNUCLIKE_ASM && !lint */
  148 
  149 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  150 #define stop_emulating()        clts()
  151 
  152 #define GET_FPU_CW(thread) \
  153         (cpu_fxsr ? \
  154                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  155                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  156 #define GET_FPU_SW(thread) \
  157         (cpu_fxsr ? \
  158                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  159                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  160 #define SET_FPU_CW(savefpu, value) do { \
  161         if (cpu_fxsr) \
  162                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  163         else \
  164                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  165 } while (0)
  166 
  167 CTASSERT(sizeof(union savefpu) == 512);
  168 CTASSERT(sizeof(struct xstate_hdr) == 64);
  169 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  170 
  171 /*
  172  * This requirement is to make it easier for asm code to calculate
  173  * offset of the fpu save area from the pcb address. FPU save area
  174  * must be 64-byte aligned.
  175  */
  176 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  177 
  178 /*
  179  * Ensure the copy of XCR0 saved in a core is contained in the padding
  180  * area.
  181  */
  182 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
  183     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
  184 
  185 static  void    fpu_clean_state(void);
  186 
  187 static  void    fpurstor(union savefpu *);
  188 
  189 int     hw_float;
  190 
  191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  192     &hw_float, 0, "Floating point instructions executed in hardware");
  193 
  194 int lazy_fpu_switch = 0;
  195 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
  196     &lazy_fpu_switch, 0,
  197     "Lazily load FPU context after context switch");
  198 
  199 int use_xsave;
  200 uint64_t xsave_mask;
  201 static  uma_zone_t fpu_save_area_zone;
  202 static  union savefpu *npx_initialstate;
  203 
  204 static struct xsave_area_elm_descr {
  205         u_int   offset;
  206         u_int   size;
  207 } *xsave_area_desc;
  208 
  209 static  volatile u_int          npx_traps_while_probing;
  210 
  211 alias_for_inthand_t probetrap;
  212 __asm("                                                         \n\
  213         .text                                                   \n\
  214         .p2align 2,0x90                                         \n\
  215         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  216 " __XSTRING(CNAME(probetrap)) ":                                \n\
  217         ss                                                      \n\
  218         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  219         fnclex                                                  \n\
  220         iret                                                    \n\
  221 ");
  222 
  223 /*
  224  * Determine if an FPU is present and how to use it.
  225  */
  226 static int
  227 npx_probe(void)
  228 {
  229         struct gate_descriptor save_idt_npxtrap;
  230         u_short control, status;
  231 
  232         /*
  233          * Modern CPUs all have an FPU that uses the INT16 interface
  234          * and provide a simple way to verify that, so handle the
  235          * common case right away.
  236          */
  237         if (cpu_feature & CPUID_FPU) {
  238                 hw_float = 1;
  239                 return (1);
  240         }
  241 
  242         save_idt_npxtrap = idt[IDT_MF];
  243         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  244             GSEL(GCODE_SEL, SEL_KPL));
  245 
  246         /*
  247          * Don't trap while we're probing.
  248          */
  249         stop_emulating();
  250 
  251         /*
  252          * Finish resetting the coprocessor, if any.  If there is an error
  253          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  254          * it OK.  Bogus halts have never been observed, but we enabled
  255          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  256          */
  257         fninit();
  258 
  259         /*
  260          * Don't use fwait here because it might hang.
  261          * Don't use fnop here because it usually hangs if there is no FPU.
  262          */
  263         DELAY(1000);            /* wait for any IRQ13 */
  264 #ifdef DIAGNOSTIC
  265         if (npx_traps_while_probing != 0)
  266                 printf("fninit caused %u bogus npx trap(s)\n",
  267                        npx_traps_while_probing);
  268 #endif
  269         /*
  270          * Check for a status of mostly zero.
  271          */
  272         status = 0x5a5a;
  273         fnstsw(&status);
  274         if ((status & 0xb8ff) == 0) {
  275                 /*
  276                  * Good, now check for a proper control word.
  277                  */
  278                 control = 0x5a5a;
  279                 fnstcw(&control);
  280                 if ((control & 0x1f3f) == 0x033f) {
  281                         /*
  282                          * We have an npx, now divide by 0 to see if exception
  283                          * 16 works.
  284                          */
  285                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  286                         fldcw(control);
  287                         npx_traps_while_probing = 0;
  288                         fp_divide_by_0();
  289                         if (npx_traps_while_probing != 0) {
  290                                 /*
  291                                  * Good, exception 16 works.
  292                                  */
  293                                 hw_float = 1;
  294                                 goto cleanup;
  295                         }
  296                         printf(
  297         "FPU does not use exception 16 for error reporting\n");
  298                         goto cleanup;
  299                 }
  300         }
  301 
  302         /*
  303          * Probe failed.  Floating point simply won't work.
  304          * Notify user and disable FPU/MMX/SSE instruction execution.
  305          */
  306         printf("WARNING: no FPU!\n");
  307         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  308             "n" (CR0_EM | CR0_MP) : "ax");
  309 
  310 cleanup:
  311         idt[IDT_MF] = save_idt_npxtrap;
  312         return (hw_float);
  313 }
  314 
  315 static void
  316 fpusave_xsaveopt(union savefpu *addr)
  317 {
  318 
  319         xsaveopt((char *)addr, xsave_mask);
  320 }
  321 
  322 static void
  323 fpusave_xsave(union savefpu *addr)
  324 {
  325 
  326         xsave((char *)addr, xsave_mask);
  327 }
  328 
  329 static void
  330 fpusave_fxsave(union savefpu *addr)
  331 {
  332 
  333         fxsave((char *)addr);
  334 }
  335 
  336 static void
  337 fpusave_fnsave(union savefpu *addr)
  338 {
  339 
  340         fnsave((char *)addr);
  341 }
  342 
  343 static void
  344 init_xsave(void)
  345 {
  346 
  347         if (use_xsave)
  348                 return;
  349         if (!cpu_fxsr || (cpu_feature2 & CPUID2_XSAVE) == 0)
  350                 return;
  351         use_xsave = 1;
  352         TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  353 }
  354 
  355 DEFINE_IFUNC(, void, fpusave, (union savefpu *))
  356 {
  357 
  358         init_xsave();
  359         if (use_xsave)
  360                 return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
  361                     fpusave_xsaveopt : fpusave_xsave);
  362         if (cpu_fxsr)
  363                 return (fpusave_fxsave);
  364         return (fpusave_fnsave);
  365 }
  366 
  367 /*
  368  * Enable XSAVE if supported and allowed by user.
  369  * Calculate the xsave_mask.
  370  */
  371 static void
  372 npxinit_bsp1(void)
  373 {
  374         u_int cp[4];
  375         uint64_t xsave_mask_user;
  376 
  377         TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
  378         if (!use_xsave)
  379                 return;
  380         cpuid_count(0xd, 0x0, cp);
  381         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  382         if ((cp[0] & xsave_mask) != xsave_mask)
  383                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  384         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  385         xsave_mask_user = xsave_mask;
  386         TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
  387         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  388         xsave_mask &= xsave_mask_user;
  389         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  390                 xsave_mask &= ~XFEATURE_AVX512;
  391         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  392                 xsave_mask &= ~XFEATURE_MPX;
  393 }
  394 
  395 /*
  396  * Calculate the fpu save area size.
  397  */
  398 static void
  399 npxinit_bsp2(void)
  400 {
  401         u_int cp[4];
  402 
  403         if (use_xsave) {
  404                 cpuid_count(0xd, 0x0, cp);
  405                 cpu_max_ext_state_size = cp[1];
  406 
  407                 /*
  408                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  409                  */
  410                 do_cpuid(1, cp);
  411                 cpu_feature2 = cp[2];
  412         } else
  413                 cpu_max_ext_state_size = sizeof(union savefpu);
  414 }
  415 
  416 /*
  417  * Initialize floating point unit.
  418  */
  419 void
  420 npxinit(bool bsp)
  421 {
  422         static union savefpu dummy;
  423         register_t saveintr;
  424         u_int mxcsr;
  425         u_short control;
  426 
  427         if (bsp) {
  428                 if (!npx_probe())
  429                         return;
  430                 npxinit_bsp1();
  431         }
  432 
  433         if (use_xsave) {
  434                 load_cr4(rcr4() | CR4_XSAVE);
  435                 load_xcr(XCR0, xsave_mask);
  436         }
  437 
  438         /*
  439          * XCR0 shall be set up before CPU can report the save area size.
  440          */
  441         if (bsp)
  442                 npxinit_bsp2();
  443 
  444         /*
  445          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  446          * fnsave to throw away any junk in the fpu.  fpusave() initializes
  447          * the fpu.
  448          *
  449          * It is too early for critical_enter() to work on AP.
  450          */
  451         saveintr = intr_disable();
  452         stop_emulating();
  453         if (cpu_fxsr)
  454                 fninit();
  455         else
  456                 fnsave(&dummy);
  457         control = __INITIAL_NPXCW__;
  458         fldcw(control);
  459         if (cpu_fxsr) {
  460                 mxcsr = __INITIAL_MXCSR__;
  461                 ldmxcsr(mxcsr);
  462         }
  463         start_emulating();
  464         intr_restore(saveintr);
  465 }
  466 
  467 /*
  468  * On the boot CPU we generate a clean state that is used to
  469  * initialize the floating point unit when it is first used by a
  470  * process.
  471  */
  472 static void
  473 npxinitstate(void *arg __unused)
  474 {
  475         uint64_t *xstate_bv;
  476         register_t saveintr;
  477         int cp[4], i, max_ext_n;
  478 
  479         if (!hw_float)
  480                 return;
  481 
  482         /* Do potentially blocking operations before disabling interrupts. */
  483         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  484             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  485             XSAVE_AREA_ALIGN - 1, 0);
  486         npx_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
  487         if (use_xsave) {
  488                 if (xsave_mask >> 32 != 0)
  489                         max_ext_n = fls(xsave_mask >> 32) + 32;
  490                 else
  491                         max_ext_n = fls(xsave_mask);
  492                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  493                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  494         }
  495 
  496         saveintr = intr_disable();
  497         stop_emulating();
  498 
  499         if (cpu_fxsr)
  500                 fpusave_fxsave(npx_initialstate);
  501         else
  502                 fpusave_fnsave(npx_initialstate);
  503         if (cpu_fxsr) {
  504                 if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
  505                         cpu_mxcsr_mask = 
  506                             npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
  507                 else
  508                         cpu_mxcsr_mask = 0xFFBF;
  509 
  510                 /*
  511                  * The fninit instruction does not modify XMM
  512                  * registers or x87 registers (MM/ST).  The fpusave
  513                  * call dumped the garbage contained in the registers
  514                  * after reset to the initial state saved.  Clear XMM
  515                  * and x87 registers file image to make the startup
  516                  * program state and signal handler XMM/x87 register
  517                  * content predictable.
  518                  */
  519                 bzero(npx_initialstate->sv_xmm.sv_fp,
  520                     sizeof(npx_initialstate->sv_xmm.sv_fp));
  521                 bzero(npx_initialstate->sv_xmm.sv_xmm,
  522                     sizeof(npx_initialstate->sv_xmm.sv_xmm));
  523 
  524         } else
  525                 bzero(npx_initialstate->sv_87.sv_ac,
  526                     sizeof(npx_initialstate->sv_87.sv_ac));
  527 
  528         /*
  529          * Create a table describing the layout of the CPU Extended
  530          * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
  531          * Region of an XSAVE Area" for the source of offsets/sizes.
  532          * Note that 32bit XSAVE does not use %xmm8-%xmm15, see
  533          * 10.5.1.2 and 13.5.2 "SSE State".
  534          */
  535         if (use_xsave) {
  536                 xstate_bv = (uint64_t *)((char *)(npx_initialstate + 1) +
  537                     offsetof(struct xstate_hdr, xstate_bv));
  538                 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  539 
  540                 /* x87 state */
  541                 xsave_area_desc[0].offset = 0;
  542                 xsave_area_desc[0].size = 160;
  543                 /* XMM */
  544                 xsave_area_desc[1].offset = 160;
  545                 xsave_area_desc[1].size = 288 - 160;
  546 
  547                 for (i = 2; i < max_ext_n; i++) {
  548                         cpuid_count(0xd, i, cp);
  549                         xsave_area_desc[i].offset = cp[1];
  550                         xsave_area_desc[i].size = cp[0];
  551                 }
  552         }
  553 
  554         start_emulating();
  555         intr_restore(saveintr);
  556 }
  557 SYSINIT(npxinitstate, SI_SUB_CPU, SI_ORDER_ANY, npxinitstate, NULL);
  558 
  559 /*
  560  * Free coprocessor (if we have it).
  561  */
  562 void
  563 npxexit(struct thread *td)
  564 {
  565 
  566         critical_enter();
  567         if (curthread == PCPU_GET(fpcurthread)) {
  568                 stop_emulating();
  569                 fpusave(curpcb->pcb_save);
  570                 start_emulating();
  571                 PCPU_SET(fpcurthread, NULL);
  572         }
  573         critical_exit();
  574 #ifdef NPX_DEBUG
  575         if (hw_float) {
  576                 u_int   masked_exceptions;
  577 
  578                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  579                 /*
  580                  * Log exceptions that would have trapped with the old
  581                  * control word (overflow, divide by 0, and invalid operand).
  582                  */
  583                 if (masked_exceptions & 0x0d)
  584                         log(LOG_ERR,
  585         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  586                             td->td_proc->p_pid, td->td_proc->p_comm,
  587                             masked_exceptions);
  588         }
  589 #endif
  590 }
  591 
  592 int
  593 npxformat(void)
  594 {
  595 
  596         if (!hw_float)
  597                 return (_MC_FPFMT_NODEV);
  598         if (cpu_fxsr)
  599                 return (_MC_FPFMT_XMM);
  600         return (_MC_FPFMT_387);
  601 }
  602 
  603 /*
  604  * The following mechanism is used to ensure that the FPE_... value
  605  * that is passed as a trapcode to the signal handler of the user
  606  * process does not have more than one bit set.
  607  *
  608  * Multiple bits may be set if the user process modifies the control
  609  * word while a status word bit is already set.  While this is a sign
  610  * of bad coding, we have no choice than to narrow them down to one
  611  * bit, since we must not send a trapcode that is not exactly one of
  612  * the FPE_ macros.
  613  *
  614  * The mechanism has a static table with 127 entries.  Each combination
  615  * of the 7 FPU status word exception bits directly translates to a
  616  * position in this table, where a single FPE_... value is stored.
  617  * This FPE_... value stored there is considered the "most important"
  618  * of the exception bits and will be sent as the signal code.  The
  619  * precedence of the bits is based upon Intel Document "Numerical
  620  * Applications", Chapter "Special Computational Situations".
  621  *
  622  * The macro to choose one of these values does these steps: 1) Throw
  623  * away status word bits that cannot be masked.  2) Throw away the bits
  624  * currently masked in the control word, assuming the user isn't
  625  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  626  * fault) if it is set, which cannot be masked but must be presered.
  627  * 4) Use the remaining bits to point into the trapcode table.
  628  *
  629  * The 6 maskable bits in order of their preference, as stated in the
  630  * above referenced Intel manual:
  631  * 1  Invalid operation (FP_X_INV)
  632  * 1a   Stack underflow
  633  * 1b   Stack overflow
  634  * 1c   Operand of unsupported format
  635  * 1d   SNaN operand.
  636  * 2  QNaN operand (not an exception, irrelavant here)
  637  * 3  Any other invalid-operation not mentioned above or zero divide
  638  *      (FP_X_INV, FP_X_DZ)
  639  * 4  Denormal operand (FP_X_DNML)
  640  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  641  * 6  Inexact result (FP_X_IMP) 
  642  */
  643 static char fpetable[128] = {
  644         0,
  645         FPE_FLTINV,     /*  1 - INV */
  646         FPE_FLTUND,     /*  2 - DNML */
  647         FPE_FLTINV,     /*  3 - INV | DNML */
  648         FPE_FLTDIV,     /*  4 - DZ */
  649         FPE_FLTINV,     /*  5 - INV | DZ */
  650         FPE_FLTDIV,     /*  6 - DNML | DZ */
  651         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  652         FPE_FLTOVF,     /*  8 - OFL */
  653         FPE_FLTINV,     /*  9 - INV | OFL */
  654         FPE_FLTUND,     /*  A - DNML | OFL */
  655         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  656         FPE_FLTDIV,     /*  C - DZ | OFL */
  657         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  658         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  659         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  660         FPE_FLTUND,     /* 10 - UFL */
  661         FPE_FLTINV,     /* 11 - INV | UFL */
  662         FPE_FLTUND,     /* 12 - DNML | UFL */
  663         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  664         FPE_FLTDIV,     /* 14 - DZ | UFL */
  665         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  666         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  667         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  668         FPE_FLTOVF,     /* 18 - OFL | UFL */
  669         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  670         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  671         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  672         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  673         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  674         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  675         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  676         FPE_FLTRES,     /* 20 - IMP */
  677         FPE_FLTINV,     /* 21 - INV | IMP */
  678         FPE_FLTUND,     /* 22 - DNML | IMP */
  679         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  680         FPE_FLTDIV,     /* 24 - DZ | IMP */
  681         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  682         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  683         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  684         FPE_FLTOVF,     /* 28 - OFL | IMP */
  685         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  686         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  687         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  688         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  689         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  690         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  691         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  692         FPE_FLTUND,     /* 30 - UFL | IMP */
  693         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  694         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  695         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  696         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  697         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  698         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  699         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  700         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  701         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  702         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  703         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  704         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  705         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  706         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  707         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  708         FPE_FLTSUB,     /* 40 - STK */
  709         FPE_FLTSUB,     /* 41 - INV | STK */
  710         FPE_FLTUND,     /* 42 - DNML | STK */
  711         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  712         FPE_FLTDIV,     /* 44 - DZ | STK */
  713         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  714         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  715         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  716         FPE_FLTOVF,     /* 48 - OFL | STK */
  717         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  718         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  719         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  720         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  721         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  722         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  723         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  724         FPE_FLTUND,     /* 50 - UFL | STK */
  725         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  726         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  727         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  728         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  729         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  730         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  731         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  732         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  733         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  734         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  735         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  736         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  737         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  738         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  739         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  740         FPE_FLTRES,     /* 60 - IMP | STK */
  741         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  742         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  743         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  744         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  745         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  746         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  747         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  748         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  749         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  750         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  751         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  752         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  753         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  754         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  755         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  756         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  757         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  758         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  759         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  760         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  761         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  762         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  763         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  764         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  765         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  766         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  767         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  768         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  769         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  770         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  771         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  772 };
  773 
  774 /*
  775  * Read the FP status and control words, then generate si_code value
  776  * for SIGFPE.  The error code chosen will be one of the
  777  * FPE_... macros.  It will be sent as the second argument to old
  778  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  779  * argument) to SA_SIGINFO signal handlers.
  780  *
  781  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  782  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  783  * usermode code which understands the FPU hardware enough to enable
  784  * the exceptions, can also handle clearing the exception state in the
  785  * handler.  The only consequence of not clearing the exception is the
  786  * rethrow of the SIGFPE on return from the signal handler and
  787  * reexecution of the corresponding instruction.
  788  *
  789  * For XMM traps, the exceptions were never cleared.
  790  */
  791 int
  792 npxtrap_x87(void)
  793 {
  794         u_short control, status;
  795 
  796         if (!hw_float) {
  797                 printf(
  798         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  799                        PCPU_GET(fpcurthread), curthread, hw_float);
  800                 panic("npxtrap from nowhere");
  801         }
  802         critical_enter();
  803 
  804         /*
  805          * Interrupt handling (for another interrupt) may have pushed the
  806          * state to memory.  Fetch the relevant parts of the state from
  807          * wherever they are.
  808          */
  809         if (PCPU_GET(fpcurthread) != curthread) {
  810                 control = GET_FPU_CW(curthread);
  811                 status = GET_FPU_SW(curthread);
  812         } else {
  813                 fnstcw(&control);
  814                 fnstsw(&status);
  815         }
  816         critical_exit();
  817         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  818 }
  819 
  820 int
  821 npxtrap_sse(void)
  822 {
  823         u_int mxcsr;
  824 
  825         if (!hw_float) {
  826                 printf(
  827         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  828                        PCPU_GET(fpcurthread), curthread, hw_float);
  829                 panic("npxtrap from nowhere");
  830         }
  831         critical_enter();
  832         if (PCPU_GET(fpcurthread) != curthread)
  833                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  834         else
  835                 stmxcsr(&mxcsr);
  836         critical_exit();
  837         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  838 }
  839 
  840 static void
  841 restore_npx_curthread(struct thread *td, struct pcb *pcb)
  842 {
  843 
  844         /*
  845          * Record new context early in case frstor causes a trap.
  846          */
  847         PCPU_SET(fpcurthread, td);
  848 
  849         stop_emulating();
  850         if (cpu_fxsr)
  851                 fpu_clean_state();
  852 
  853         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  854                 /*
  855                  * This is the first time this thread has used the FPU or
  856                  * the PCB doesn't contain a clean FPU state.  Explicitly
  857                  * load an initial state.
  858                  *
  859                  * We prefer to restore the state from the actual save
  860                  * area in PCB instead of directly loading from
  861                  * npx_initialstate, to ignite the XSAVEOPT
  862                  * tracking engine.
  863                  */
  864                 bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
  865                 fpurstor(pcb->pcb_save);
  866                 if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  867                         fldcw(pcb->pcb_initial_npxcw);
  868                 pcb->pcb_flags |= PCB_NPXINITDONE;
  869                 if (PCB_USER_FPU(pcb))
  870                         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
  871         } else {
  872                 fpurstor(pcb->pcb_save);
  873         }
  874 }
  875 
  876 /*
  877  * Implement device not available (DNA) exception
  878  *
  879  * It would be better to switch FP context here (if curthread != fpcurthread)
  880  * and not necessarily for every context switch, but it is too hard to
  881  * access foreign pcb's.
  882  */
  883 int
  884 npxdna(void)
  885 {
  886         struct thread *td;
  887 
  888         if (!hw_float)
  889                 return (0);
  890         td = curthread;
  891         critical_enter();
  892 
  893         KASSERT((curpcb->pcb_flags & PCB_NPXNOSAVE) == 0,
  894             ("npxdna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
  895         if (__predict_false(PCPU_GET(fpcurthread) == td)) {
  896                 /*
  897                  * Some virtual machines seems to set %cr0.TS at
  898                  * arbitrary moments.  Silently clear the TS bit
  899                  * regardless of the eager/lazy FPU context switch
  900                  * mode.
  901                  */
  902                 stop_emulating();
  903         } else {
  904                 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
  905                         printf(
  906                     "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  907                             PCPU_GET(fpcurthread),
  908                             PCPU_GET(fpcurthread)->td_proc->p_pid,
  909                             td, td->td_proc->p_pid);
  910                         panic("npxdna");
  911                 }
  912                 restore_npx_curthread(td, td->td_pcb);
  913         }
  914         critical_exit();
  915         return (1);
  916 }
  917 
  918 /*
  919  * Wrapper for fpusave() called from context switch routines.
  920  *
  921  * npxsave() must be called with interrupts disabled, so that it clears
  922  * fpcurthread atomically with saving the state.  We require callers to do the
  923  * disabling, since most callers need to disable interrupts anyway to call
  924  * npxsave() atomically with checking fpcurthread.
  925  */
  926 void
  927 npxsave(union savefpu *addr)
  928 {
  929 
  930         stop_emulating();
  931         fpusave(addr);
  932 }
  933 
  934 void npxswitch(struct thread *td, struct pcb *pcb);
  935 void
  936 npxswitch(struct thread *td, struct pcb *pcb)
  937 {
  938 
  939         if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
  940             !PCB_USER_FPU(pcb)) {
  941                 start_emulating();
  942                 PCPU_SET(fpcurthread, NULL);
  943         } else if (PCPU_GET(fpcurthread) != td) {
  944                 restore_npx_curthread(td, pcb);
  945         }
  946 }
  947 
  948 /*
  949  * Unconditionally save the current co-processor state across suspend and
  950  * resume.
  951  */
  952 void
  953 npxsuspend(union savefpu *addr)
  954 {
  955         register_t cr0;
  956 
  957         if (!hw_float)
  958                 return;
  959         if (PCPU_GET(fpcurthread) == NULL) {
  960                 bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
  961                 return;
  962         }
  963         cr0 = rcr0();
  964         stop_emulating();
  965         fpusave(addr);
  966         load_cr0(cr0);
  967 }
  968 
  969 void
  970 npxresume(union savefpu *addr)
  971 {
  972         register_t cr0;
  973 
  974         if (!hw_float)
  975                 return;
  976 
  977         cr0 = rcr0();
  978         npxinit(false);
  979         stop_emulating();
  980         fpurstor(addr);
  981         load_cr0(cr0);
  982 }
  983 
  984 void
  985 npxdrop(void)
  986 {
  987         struct thread *td;
  988 
  989         /*
  990          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
  991          * ones don't cause a panic on the next frstor.
  992          */
  993         if (!cpu_fxsr)
  994                 fnclex();
  995 
  996         td = PCPU_GET(fpcurthread);
  997         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  998         CRITICAL_ASSERT(td);
  999         PCPU_SET(fpcurthread, NULL);
 1000         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1001         start_emulating();
 1002 }
 1003 
 1004 /*
 1005  * Get the user state of the FPU into pcb->pcb_user_save without
 1006  * dropping ownership (if possible).  It returns the FPU ownership
 1007  * status.
 1008  */
 1009 int
 1010 npxgetregs(struct thread *td)
 1011 {
 1012         struct pcb *pcb;
 1013         uint64_t *xstate_bv, bit;
 1014         char *sa;
 1015         int max_ext_n, i;
 1016         int owned;
 1017 
 1018         if (!hw_float)
 1019                 return (_MC_FPOWNED_NONE);
 1020 
 1021         pcb = td->td_pcb;
 1022         critical_enter();
 1023         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
 1024                 bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
 1025                     cpu_max_ext_state_size);
 1026                 SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
 1027                 npxuserinited(td);
 1028                 critical_exit();
 1029                 return (_MC_FPOWNED_PCB);
 1030         }
 1031         if (td == PCPU_GET(fpcurthread)) {
 1032                 fpusave(get_pcb_user_save_pcb(pcb));
 1033                 if (!cpu_fxsr)
 1034                         /*
 1035                          * fnsave initializes the FPU and destroys whatever
 1036                          * context it contains.  Make sure the FPU owner
 1037                          * starts with a clean state next time.
 1038                          */
 1039                         npxdrop();
 1040                 owned = _MC_FPOWNED_FPU;
 1041         } else {
 1042                 owned = _MC_FPOWNED_PCB;
 1043         }
 1044         if (use_xsave) {
 1045                 /*
 1046                  * Handle partially saved state.
 1047                  */
 1048                 sa = (char *)get_pcb_user_save_pcb(pcb);
 1049                 xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
 1050                     offsetof(struct xstate_hdr, xstate_bv));
 1051                 if (xsave_mask >> 32 != 0)
 1052                         max_ext_n = fls(xsave_mask >> 32) + 32;
 1053                 else
 1054                         max_ext_n = fls(xsave_mask);
 1055                 for (i = 0; i < max_ext_n; i++) {
 1056                         bit = 1ULL << i;
 1057                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
 1058                                 continue;
 1059                         bcopy((char *)npx_initialstate +
 1060                             xsave_area_desc[i].offset,
 1061                             sa + xsave_area_desc[i].offset,
 1062                             xsave_area_desc[i].size);
 1063                         *xstate_bv |= bit;
 1064                 }
 1065         }
 1066         critical_exit();
 1067         return (owned);
 1068 }
 1069 
 1070 void
 1071 npxuserinited(struct thread *td)
 1072 {
 1073         struct pcb *pcb;
 1074 
 1075         CRITICAL_ASSERT(td);
 1076         pcb = td->td_pcb;
 1077         if (PCB_USER_FPU(pcb))
 1078                 pcb->pcb_flags |= PCB_NPXINITDONE;
 1079         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
 1080 }
 1081 
 1082 int
 1083 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
 1084 {
 1085         struct xstate_hdr *hdr, *ehdr;
 1086         size_t len, max_len;
 1087         uint64_t bv;
 1088 
 1089         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
 1090         if (xfpustate == NULL)
 1091                 return (0);
 1092         if (!use_xsave)
 1093                 return (EOPNOTSUPP);
 1094 
 1095         len = xfpustate_size;
 1096         if (len < sizeof(struct xstate_hdr))
 1097                 return (EINVAL);
 1098         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 1099         if (len > max_len)
 1100                 return (EINVAL);
 1101 
 1102         ehdr = (struct xstate_hdr *)xfpustate;
 1103         bv = ehdr->xstate_bv;
 1104 
 1105         /*
 1106          * Avoid #gp.
 1107          */
 1108         if (bv & ~xsave_mask)
 1109                 return (EINVAL);
 1110 
 1111         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
 1112 
 1113         hdr->xstate_bv = bv;
 1114         bcopy(xfpustate + sizeof(struct xstate_hdr),
 1115             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
 1116 
 1117         return (0);
 1118 }
 1119 
 1120 int
 1121 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
 1122         size_t xfpustate_size)
 1123 {
 1124         struct pcb *pcb;
 1125         int error;
 1126 
 1127         if (!hw_float)
 1128                 return (ENXIO);
 1129 
 1130         if (cpu_fxsr)
 1131                 addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1132         pcb = td->td_pcb;
 1133         error = 0;
 1134         critical_enter();
 1135         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
 1136                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1137                 if (error == 0) {
 1138                         if (!cpu_fxsr)
 1139                                 fnclex();       /* As in npxdrop(). */
 1140                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1141                         fpurstor(get_pcb_user_save_td(td));
 1142                         pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
 1143                 }
 1144         } else {
 1145                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1146                 if (error == 0) {
 1147                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1148                         npxuserinited(td);
 1149                 }
 1150         }
 1151         critical_exit();
 1152         return (error);
 1153 }
 1154 
 1155 static void
 1156 npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
 1157 {
 1158         struct env87 *penv_87;
 1159         struct envxmm *penv_xmm;
 1160         struct fpacc87 *fx_reg;
 1161         int i, st;
 1162         uint64_t mantissa;
 1163         uint16_t tw, exp;
 1164         uint8_t ab_tw;
 1165 
 1166         penv_87 = &sv_87->sv_env;
 1167         penv_xmm = &sv_xmm->sv_env;
 1168 
 1169         /* FPU control/status */
 1170         penv_87->en_cw = penv_xmm->en_cw;
 1171         penv_87->en_sw = penv_xmm->en_sw;
 1172         penv_87->en_fip = penv_xmm->en_fip;
 1173         penv_87->en_fcs = penv_xmm->en_fcs;
 1174         penv_87->en_opcode = penv_xmm->en_opcode;
 1175         penv_87->en_foo = penv_xmm->en_foo;
 1176         penv_87->en_fos = penv_xmm->en_fos;
 1177 
 1178         /*
 1179          * FPU registers and tags.
 1180          * For ST(i), i = fpu_reg - top; we start with fpu_reg=7.
 1181          */
 1182         st = 7 - ((penv_xmm->en_sw >> 11) & 7);
 1183         ab_tw = penv_xmm->en_tw;
 1184         tw = 0;
 1185         for (i = 0x80; i != 0; i >>= 1) {
 1186                 sv_87->sv_ac[st] = sv_xmm->sv_fp[st].fp_acc;
 1187                 tw <<= 2;
 1188                 if (ab_tw & i) {
 1189                         /* Non-empty - we need to check ST(i) */
 1190                         fx_reg = &sv_xmm->sv_fp[st].fp_acc;
 1191                         /* The first 64 bits contain the mantissa. */
 1192                         mantissa = *((uint64_t *)fx_reg->fp_bytes);
 1193                         /*
 1194                          * The final 16 bits contain the sign bit and the exponent.
 1195                          * Mask the sign bit since it is of no consequence to these
 1196                          * tests.
 1197                          */
 1198                         exp = *((uint16_t *)&fx_reg->fp_bytes[8]) & 0x7fff;
 1199                         if (exp == 0) {
 1200                                 if (mantissa == 0)
 1201                                         tw |= 1; /* Zero */
 1202                                 else
 1203                                         tw |= 2; /* Denormal */
 1204                         } else if (exp == 0x7fff)
 1205                                 tw |= 2; /* Infinity or NaN */
 1206                 } else
 1207                         tw |= 3; /* Empty */
 1208                 st = (st - 1) & 7;
 1209         }
 1210         penv_87->en_tw = tw;
 1211 }
 1212 
 1213 void
 1214 npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
 1215 {
 1216 
 1217         bzero(sv_87, sizeof(*sv_87));
 1218         npx_fill_fpregs_xmm1(sv_xmm, sv_87);
 1219 }
 1220 
 1221 void
 1222 npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
 1223 {
 1224         struct env87 *penv_87;
 1225         struct envxmm *penv_xmm;
 1226         int i;
 1227 
 1228         penv_87 = &sv_87->sv_env;
 1229         penv_xmm = &sv_xmm->sv_env;
 1230 
 1231         /* FPU control/status */
 1232         penv_xmm->en_cw = penv_87->en_cw;
 1233         penv_xmm->en_sw = penv_87->en_sw;
 1234         penv_xmm->en_fip = penv_87->en_fip;
 1235         penv_xmm->en_fcs = penv_87->en_fcs;
 1236         penv_xmm->en_opcode = penv_87->en_opcode;
 1237         penv_xmm->en_foo = penv_87->en_foo;
 1238         penv_xmm->en_fos = penv_87->en_fos;
 1239 
 1240         /*
 1241          * FPU registers and tags.
 1242          * Abridged  /  Full translation (values in binary), see FXSAVE spec.
 1243          * 0            11
 1244          * 1            00, 01, 10
 1245          */
 1246         penv_xmm->en_tw = 0;
 1247         for (i = 0; i < 8; ++i) {
 1248                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 1249                 if ((penv_87->en_tw & (3 << i * 2)) != (3 << i * 2))
 1250                         penv_xmm->en_tw |= 1 << i;
 1251         }
 1252 }
 1253 
 1254 void
 1255 npx_get_fsave(void *addr)
 1256 {
 1257         struct thread *td;
 1258         union savefpu *sv;
 1259 
 1260         td = curthread;
 1261         npxgetregs(td);
 1262         sv = get_pcb_user_save_td(td);
 1263         if (cpu_fxsr)
 1264                 npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
 1265         else
 1266                 bcopy(sv, addr, sizeof(struct env87) +
 1267                     sizeof(struct fpacc87[8]));
 1268 }
 1269 
 1270 int
 1271 npx_set_fsave(void *addr)
 1272 {
 1273         union savefpu sv;
 1274         int error;
 1275 
 1276         bzero(&sv, sizeof(sv));
 1277         if (cpu_fxsr)
 1278                 npx_set_fpregs_xmm(addr, &sv.sv_xmm);
 1279         else
 1280                 bcopy(addr, &sv, sizeof(struct env87) +
 1281                     sizeof(struct fpacc87[8]));
 1282         error = npxsetregs(curthread, &sv, NULL, 0);
 1283         return (error);
 1284 }
 1285 
 1286 /*
 1287  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1288  * the x87's stored last instruction pointer, last data pointer, and last
 1289  * opcode values, except in the rare case in which the exception summary
 1290  * (ES) bit in the x87 status word is set to 1.
 1291  *
 1292  * In order to avoid leaking this information across processes, we clean
 1293  * these values by performing a dummy load before executing fxrstor().
 1294  */
 1295 static void
 1296 fpu_clean_state(void)
 1297 {
 1298         static float dummy_variable = 0.0;
 1299         u_short status;
 1300 
 1301         /*
 1302          * Clear the ES bit in the x87 status word if it is currently
 1303          * set, in order to avoid causing a fault in the upcoming load.
 1304          */
 1305         fnstsw(&status);
 1306         if (status & 0x80)
 1307                 fnclex();
 1308 
 1309         /*
 1310          * Load the dummy variable into the x87 stack.  This mangles
 1311          * the x87 stack, but we don't care since we're about to call
 1312          * fxrstor() anyway.
 1313          */
 1314         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1315 }
 1316 
 1317 static void
 1318 fpurstor(union savefpu *addr)
 1319 {
 1320 
 1321         if (use_xsave)
 1322                 xrstor((char *)addr, xsave_mask);
 1323         else if (cpu_fxsr)
 1324                 fxrstor(addr);
 1325         else
 1326                 frstor(addr);
 1327 }
 1328 
 1329 #ifdef DEV_ISA
 1330 /*
 1331  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1332  */
 1333 static struct isa_pnp_id npxisa_ids[] = {
 1334         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1335         { 0 }
 1336 };
 1337 
 1338 static int
 1339 npxisa_probe(device_t dev)
 1340 {
 1341         int result;
 1342         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
 1343                 device_quiet(dev);
 1344         }
 1345         return(result);
 1346 }
 1347 
 1348 static int
 1349 npxisa_attach(device_t dev)
 1350 {
 1351         return (0);
 1352 }
 1353 
 1354 static device_method_t npxisa_methods[] = {
 1355         /* Device interface */
 1356         DEVMETHOD(device_probe,         npxisa_probe),
 1357         DEVMETHOD(device_attach,        npxisa_attach),
 1358         DEVMETHOD(device_detach,        bus_generic_detach),
 1359         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1360         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1361         DEVMETHOD(device_resume,        bus_generic_resume),
 1362         { 0, 0 }
 1363 };
 1364 
 1365 static driver_t npxisa_driver = {
 1366         "npxisa",
 1367         npxisa_methods,
 1368         1,                      /* no softc */
 1369 };
 1370 
 1371 static devclass_t npxisa_devclass;
 1372 
 1373 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
 1374 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
 1375 ISA_PNP_INFO(npxisa_ids);
 1376 #endif /* DEV_ISA */
 1377 
 1378 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1379     "Kernel contexts for FPU state");
 1380 
 1381 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1382 #define FPU_KERN_CTX_DUMMY       0x02
 1383 #define FPU_KERN_CTX_INUSE       0x04
 1384 
 1385 struct fpu_kern_ctx {
 1386         union savefpu *prev;
 1387         uint32_t flags;
 1388         char hwstate1[];
 1389 };
 1390 
 1391 struct fpu_kern_ctx *
 1392 fpu_kern_alloc_ctx(u_int flags)
 1393 {
 1394         struct fpu_kern_ctx *res;
 1395         size_t sz;
 1396 
 1397         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1398             cpu_max_ext_state_size;
 1399         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1400             M_NOWAIT : M_WAITOK) | M_ZERO);
 1401         return (res);
 1402 }
 1403 
 1404 void
 1405 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1406 {
 1407 
 1408         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
 1409         /* XXXKIB clear the memory ? */
 1410         free(ctx, M_FPUKERN_CTX);
 1411 }
 1412 
 1413 static union savefpu *
 1414 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1415 {
 1416         vm_offset_t p;
 1417 
 1418         p = (vm_offset_t)&ctx->hwstate1;
 1419         p = roundup2(p, XSAVE_AREA_ALIGN);
 1420         return ((union savefpu *)p);
 1421 }
 1422 
 1423 void
 1424 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1425 {
 1426         struct pcb *pcb;
 1427 
 1428         pcb = td->td_pcb;
 1429         KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
 1430             ("ctx is required when !FPU_KERN_NOCTX"));
 1431         KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
 1432             ("using inuse ctx"));
 1433         KASSERT((pcb->pcb_flags & PCB_NPXNOSAVE) == 0,
 1434             ("recursive fpu_kern_enter while in PCB_NPXNOSAVE state"));
 1435 
 1436         if ((flags & FPU_KERN_NOCTX) != 0) {
 1437                 critical_enter();
 1438                 stop_emulating();
 1439                 if (curthread == PCPU_GET(fpcurthread)) {
 1440                         fpusave(curpcb->pcb_save);
 1441                         PCPU_SET(fpcurthread, NULL);
 1442                 } else {
 1443                         KASSERT(PCPU_GET(fpcurthread) == NULL,
 1444                             ("invalid fpcurthread"));
 1445                 }
 1446 
 1447                 /*
 1448                  * This breaks XSAVEOPT tracker, but
 1449                  * PCB_NPXNOSAVE state is supposed to never need to
 1450                  * save FPU context at all.
 1451                  */
 1452                 fpurstor(npx_initialstate);
 1453                 pcb->pcb_flags |= PCB_KERNNPX | PCB_NPXNOSAVE | PCB_NPXINITDONE;
 1454                 return;
 1455         }
 1456         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1457                 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
 1458                 return;
 1459         }
 1460         pcb = td->td_pcb;
 1461         critical_enter();
 1462         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1463             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1464         ctx->flags = FPU_KERN_CTX_INUSE;
 1465         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1466                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1467         npxexit(td);
 1468         ctx->prev = pcb->pcb_save;
 1469         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1470         pcb->pcb_flags |= PCB_KERNNPX;
 1471         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1472         critical_exit();
 1473 }
 1474 
 1475 int
 1476 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1477 {
 1478         struct pcb *pcb;
 1479 
 1480         pcb = td->td_pcb;
 1481 
 1482         if ((pcb->pcb_flags & PCB_NPXNOSAVE) != 0) {
 1483                 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
 1484                 KASSERT(PCPU_GET(fpcurthread) == NULL,
 1485                     ("non-NULL fpcurthread for PCB_NPXNOSAVE"));
 1486                 CRITICAL_ASSERT(td);
 1487 
 1488                 pcb->pcb_flags &= ~(PCB_NPXNOSAVE | PCB_NPXINITDONE);
 1489                 start_emulating();
 1490         } else {
 1491                 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
 1492                     ("leaving not inuse ctx"));
 1493                 ctx->flags &= ~FPU_KERN_CTX_INUSE;
 1494 
 1495                 if (is_fpu_kern_thread(0) &&
 1496                     (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1497                         return (0);
 1498                 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
 1499                     ("dummy ctx"));
 1500                 critical_enter();
 1501                 if (curthread == PCPU_GET(fpcurthread))
 1502                         npxdrop();
 1503                 pcb->pcb_save = ctx->prev;
 1504         }
 1505 
 1506         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1507                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0) {
 1508                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1509                         if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
 1510                                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1511                 } else if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
 1512                         pcb->pcb_flags &= ~(PCB_NPXINITDONE | PCB_KERNNPX);
 1513         } else {
 1514                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1515                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1516                 else
 1517                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1518                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1519         }
 1520         critical_exit();
 1521         return (0);
 1522 }
 1523 
 1524 int
 1525 fpu_kern_thread(u_int flags)
 1526 {
 1527 
 1528         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1529             ("Only kthread may use fpu_kern_thread"));
 1530         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1531             ("mangled pcb_save"));
 1532         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1533 
 1534         curpcb->pcb_flags |= PCB_KERNNPX | PCB_KERNNPX_THR;
 1535         return (0);
 1536 }
 1537 
 1538 int
 1539 is_fpu_kern_thread(u_int flags)
 1540 {
 1541 
 1542         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1543                 return (0);
 1544         return ((curpcb->pcb_flags & PCB_KERNNPX_THR) != 0);
 1545 }
 1546 
 1547 /*
 1548  * FPU save area alloc/free/init utility routines
 1549  */
 1550 union savefpu *
 1551 fpu_save_area_alloc(void)
 1552 {
 1553 
 1554         return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
 1555 }
 1556 
 1557 void
 1558 fpu_save_area_free(union savefpu *fsa)
 1559 {
 1560 
 1561         uma_zfree(fpu_save_area_zone, fsa);
 1562 }
 1563 
 1564 void
 1565 fpu_save_area_reset(union savefpu *fsa)
 1566 {
 1567 
 1568         bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
 1569 }

Cache object: 9b75ce0392ecc5c5ee63e56c4c384328


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.