The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/10.0/sys/i386/i386/pmap.c 255724 2013-09-20 04:30:18Z alc $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      Since the information managed by this module is
   84  *      also stored by the logical address mapping module,
   85  *      this module may throw away valid virtual-to-physical
   86  *      mappings at almost any time.  However, invalidations
   87  *      of virtual-to-physical mappings must be done as
   88  *      requested.
   89  *
   90  *      In order to cope with hardware architectures which
   91  *      make virtual-to-physical map invalidates expensive,
   92  *      this module may delay invalidate or reduced protection
   93  *      operations until such time as they are actually
   94  *      necessary.  This module is given full information as
   95  *      to which processors are currently using which maps,
   96  *      and to when physical maps must be made correct.
   97  */
   98 
   99 #include "opt_apic.h"
  100 #include "opt_cpu.h"
  101 #include "opt_pmap.h"
  102 #include "opt_smp.h"
  103 #include "opt_xbox.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/kernel.h>
  108 #include <sys/ktr.h>
  109 #include <sys/lock.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mman.h>
  112 #include <sys/msgbuf.h>
  113 #include <sys/mutex.h>
  114 #include <sys/proc.h>
  115 #include <sys/rwlock.h>
  116 #include <sys/sf_buf.h>
  117 #include <sys/sx.h>
  118 #include <sys/vmmeter.h>
  119 #include <sys/sched.h>
  120 #include <sys/sysctl.h>
  121 #ifdef SMP
  122 #include <sys/smp.h>
  123 #else
  124 #include <sys/cpuset.h>
  125 #endif
  126 
  127 #include <vm/vm.h>
  128 #include <vm/vm_param.h>
  129 #include <vm/vm_kern.h>
  130 #include <vm/vm_page.h>
  131 #include <vm/vm_map.h>
  132 #include <vm/vm_object.h>
  133 #include <vm/vm_extern.h>
  134 #include <vm/vm_pageout.h>
  135 #include <vm/vm_pager.h>
  136 #include <vm/vm_radix.h>
  137 #include <vm/vm_reserv.h>
  138 #include <vm/uma.h>
  139 
  140 #ifdef DEV_APIC
  141 #include <sys/bus.h>
  142 #include <machine/intr_machdep.h>
  143 #include <machine/apicvar.h>
  144 #endif
  145 #include <machine/cpu.h>
  146 #include <machine/cputypes.h>
  147 #include <machine/md_var.h>
  148 #include <machine/pcb.h>
  149 #include <machine/specialreg.h>
  150 #ifdef SMP
  151 #include <machine/smp.h>
  152 #endif
  153 
  154 #ifdef XBOX
  155 #include <machine/xbox.h>
  156 #endif
  157 
  158 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  159 #define CPU_ENABLE_SSE
  160 #endif
  161 
  162 #ifndef PMAP_SHPGPERPROC
  163 #define PMAP_SHPGPERPROC 200
  164 #endif
  165 
  166 #if !defined(DIAGNOSTIC)
  167 #ifdef __GNUC_GNU_INLINE__
  168 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  169 #else
  170 #define PMAP_INLINE     extern inline
  171 #endif
  172 #else
  173 #define PMAP_INLINE
  174 #endif
  175 
  176 #ifdef PV_STATS
  177 #define PV_STAT(x)      do { x ; } while (0)
  178 #else
  179 #define PV_STAT(x)      do { } while (0)
  180 #endif
  181 
  182 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  183 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  184 
  185 /*
  186  * Get PDEs and PTEs for user/kernel address space
  187  */
  188 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  189 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  190 
  191 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  192 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  193 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  194 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  195 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  196 
  197 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  198     atomic_clear_int((u_int *)(pte), PG_W))
  199 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  200 
  201 struct pmap kernel_pmap_store;
  202 LIST_HEAD(pmaplist, pmap);
  203 static struct pmaplist allpmaps;
  204 static struct mtx allpmaps_lock;
  205 
  206 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  207 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  208 int pgeflag = 0;                /* PG_G or-in */
  209 int pseflag = 0;                /* PG_PS or-in */
  210 
  211 static int nkpt = NKPT;
  212 vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
  213 extern u_int32_t KERNend;
  214 extern u_int32_t KPTphys;
  215 
  216 #ifdef PAE
  217 pt_entry_t pg_nx;
  218 static uma_zone_t pdptzone;
  219 #endif
  220 
  221 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  222 
  223 static int pat_works = 1;
  224 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
  225     "Is page attribute table fully functional?");
  226 
  227 static int pg_ps_enabled = 1;
  228 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
  229     "Are large page mappings enabled?");
  230 
  231 #define PAT_INDEX_SIZE  8
  232 static int pat_index[PAT_INDEX_SIZE];   /* cache mode to PAT index conversion */
  233 
  234 static struct rwlock_padalign pvh_global_lock;
  235 
  236 /*
  237  * Data for the pv entry allocation mechanism
  238  */
  239 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  240 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  241 static struct md_page *pv_table;
  242 static int shpgperproc = PMAP_SHPGPERPROC;
  243 
  244 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  245 int pv_maxchunks;                       /* How many chunks we have KVA for */
  246 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  247 
  248 /*
  249  * All those kernel PT submaps that BSD is so fond of
  250  */
  251 struct sysmaps {
  252         struct  mtx lock;
  253         pt_entry_t *CMAP1;
  254         pt_entry_t *CMAP2;
  255         caddr_t CADDR1;
  256         caddr_t CADDR2;
  257 };
  258 static struct sysmaps sysmaps_pcpu[MAXCPU];
  259 pt_entry_t *CMAP1 = 0;
  260 static pt_entry_t *CMAP3;
  261 static pd_entry_t *KPTD;
  262 caddr_t CADDR1 = 0, ptvmmap = 0;
  263 static caddr_t CADDR3;
  264 struct msgbuf *msgbufp = 0;
  265 
  266 /*
  267  * Crashdump maps.
  268  */
  269 static caddr_t crashdumpmap;
  270 
  271 static pt_entry_t *PMAP1 = 0, *PMAP2;
  272 static pt_entry_t *PADDR1 = 0, *PADDR2;
  273 #ifdef SMP
  274 static int PMAP1cpu;
  275 static int PMAP1changedcpu;
  276 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  277            &PMAP1changedcpu, 0,
  278            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  279 #endif
  280 static int PMAP1changed;
  281 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  282            &PMAP1changed, 0,
  283            "Number of times pmap_pte_quick changed PMAP1");
  284 static int PMAP1unchanged;
  285 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  286            &PMAP1unchanged, 0,
  287            "Number of times pmap_pte_quick didn't change PMAP1");
  288 static struct mtx PMAP2mutex;
  289 
  290 static void     free_pv_chunk(struct pv_chunk *pc);
  291 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  292 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  293 static void     pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  294 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  295 static void     pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  296 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  297 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  298                     vm_offset_t va);
  299 static int      pmap_pvh_wired_mappings(struct md_page *pvh, int count);
  300 
  301 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  302 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
  303     vm_prot_t prot);
  304 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  305     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  306 static void pmap_flush_page(vm_page_t m);
  307 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
  308 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
  309 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
  310 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
  311 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  312 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
  313 static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
  314 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
  315 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  316 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
  317     vm_prot_t prot);
  318 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
  319 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
  320     struct spglist *free);
  321 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  322     struct spglist *free);
  323 static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
  324 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  325     struct spglist *free);
  326 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  327                                         vm_offset_t va);
  328 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  329 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  330     vm_page_t m);
  331 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
  332     pd_entry_t newpde);
  333 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
  334 
  335 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  336 
  337 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
  338 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
  339 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  340 static void pmap_pte_release(pt_entry_t *pte);
  341 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
  342 #ifdef PAE
  343 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  344 #endif
  345 static void pmap_set_pg(void);
  346 
  347 static __inline void pagezero(void *page);
  348 
  349 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  350 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  351 
  352 /*
  353  * If you get an error here, then you set KVA_PAGES wrong! See the
  354  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  355  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  356  */
  357 CTASSERT(KERNBASE % (1 << 24) == 0);
  358 
  359 /*
  360  *      Bootstrap the system enough to run with virtual memory.
  361  *
  362  *      On the i386 this is called after mapping has already been enabled
  363  *      and just syncs the pmap module with what has already been done.
  364  *      [We can't call it easily with mapping off since the kernel is not
  365  *      mapped with PA == VA, hence we would have to relocate every address
  366  *      from the linked base (virtual) address "KERNBASE" to the actual
  367  *      (physical) address starting relative to 0]
  368  */
  369 void
  370 pmap_bootstrap(vm_paddr_t firstaddr)
  371 {
  372         vm_offset_t va;
  373         pt_entry_t *pte, *unused;
  374         struct sysmaps *sysmaps;
  375         int i;
  376 
  377         /*
  378          * Initialize the first available kernel virtual address.  However,
  379          * using "firstaddr" may waste a few pages of the kernel virtual
  380          * address space, because locore may not have mapped every physical
  381          * page that it allocated.  Preferably, locore would provide a first
  382          * unused virtual address in addition to "firstaddr".
  383          */
  384         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  385 
  386         virtual_end = VM_MAX_KERNEL_ADDRESS;
  387 
  388         /*
  389          * Initialize the kernel pmap (which is statically allocated).
  390          */
  391         PMAP_LOCK_INIT(kernel_pmap);
  392         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  393 #ifdef PAE
  394         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  395 #endif
  396         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  397         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  398 
  399         /*
  400          * Initialize the global pv list lock.
  401          */
  402         rw_init(&pvh_global_lock, "pmap pv global");
  403 
  404         LIST_INIT(&allpmaps);
  405 
  406         /*
  407          * Request a spin mutex so that changes to allpmaps cannot be
  408          * preempted by smp_rendezvous_cpus().  Otherwise,
  409          * pmap_update_pde_kernel() could access allpmaps while it is
  410          * being changed.
  411          */
  412         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  413         mtx_lock_spin(&allpmaps_lock);
  414         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  415         mtx_unlock_spin(&allpmaps_lock);
  416 
  417         /*
  418          * Reserve some special page table entries/VA space for temporary
  419          * mapping of pages.
  420          */
  421 #define SYSMAP(c, p, v, n)      \
  422         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  423 
  424         va = virtual_avail;
  425         pte = vtopte(va);
  426 
  427         /*
  428          * CMAP1/CMAP2 are used for zeroing and copying pages.
  429          * CMAP3 is used for the idle process page zeroing.
  430          */
  431         for (i = 0; i < MAXCPU; i++) {
  432                 sysmaps = &sysmaps_pcpu[i];
  433                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  434                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  435                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  436         }
  437         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  438         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  439 
  440         /*
  441          * Crashdump maps.
  442          */
  443         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  444 
  445         /*
  446          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  447          */
  448         SYSMAP(caddr_t, unused, ptvmmap, 1)
  449 
  450         /*
  451          * msgbufp is used to map the system message buffer.
  452          */
  453         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  454 
  455         /*
  456          * KPTmap is used by pmap_kextract().
  457          *
  458          * KPTmap is first initialized by locore.  However, that initial
  459          * KPTmap can only support NKPT page table pages.  Here, a larger
  460          * KPTmap is created that can support KVA_PAGES page table pages.
  461          */
  462         SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
  463 
  464         for (i = 0; i < NKPT; i++)
  465                 KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
  466 
  467         /*
  468          * Adjust the start of the KPTD and KPTmap so that the implementation
  469          * of pmap_kextract() and pmap_growkernel() can be made simpler.
  470          */
  471         KPTD -= KPTDI;
  472         KPTmap -= i386_btop(KPTDI << PDRSHIFT);
  473 
  474         /*
  475          * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
  476          * respectively.
  477          */
  478         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  479         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  480 
  481         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  482 
  483         virtual_avail = va;
  484 
  485         /*
  486          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  487          * physical memory region that is used by the ACPI wakeup code.  This
  488          * mapping must not have PG_G set. 
  489          */
  490 #ifdef XBOX
  491         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  492          * an early stadium, we cannot yet neatly map video memory ... :-(
  493          * Better fixes are very welcome! */
  494         if (!arch_i386_is_xbox)
  495 #endif
  496         for (i = 1; i < NKPT; i++)
  497                 PTD[i] = 0;
  498 
  499         /* Initialize the PAT MSR if present. */
  500         pmap_init_pat();
  501 
  502         /* Turn on PG_G on kernel page(s) */
  503         pmap_set_pg();
  504 }
  505 
  506 /*
  507  * Setup the PAT MSR.
  508  */
  509 void
  510 pmap_init_pat(void)
  511 {
  512         int pat_table[PAT_INDEX_SIZE];
  513         uint64_t pat_msr;
  514         u_long cr0, cr4;
  515         int i;
  516 
  517         /* Set default PAT index table. */
  518         for (i = 0; i < PAT_INDEX_SIZE; i++)
  519                 pat_table[i] = -1;
  520         pat_table[PAT_WRITE_BACK] = 0;
  521         pat_table[PAT_WRITE_THROUGH] = 1;
  522         pat_table[PAT_UNCACHEABLE] = 3;
  523         pat_table[PAT_WRITE_COMBINING] = 3;
  524         pat_table[PAT_WRITE_PROTECTED] = 3;
  525         pat_table[PAT_UNCACHED] = 3;
  526 
  527         /* Bail if this CPU doesn't implement PAT. */
  528         if ((cpu_feature & CPUID_PAT) == 0) {
  529                 for (i = 0; i < PAT_INDEX_SIZE; i++)
  530                         pat_index[i] = pat_table[i];
  531                 pat_works = 0;
  532                 return;
  533         }
  534 
  535         /*
  536          * Due to some Intel errata, we can only safely use the lower 4
  537          * PAT entries.
  538          *
  539          *   Intel Pentium III Processor Specification Update
  540          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  541          * or Mode C Paging)
  542          *
  543          *   Intel Pentium IV  Processor Specification Update
  544          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  545          */
  546         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  547             !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
  548                 pat_works = 0;
  549 
  550         /* Initialize default PAT entries. */
  551         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
  552             PAT_VALUE(1, PAT_WRITE_THROUGH) |
  553             PAT_VALUE(2, PAT_UNCACHED) |
  554             PAT_VALUE(3, PAT_UNCACHEABLE) |
  555             PAT_VALUE(4, PAT_WRITE_BACK) |
  556             PAT_VALUE(5, PAT_WRITE_THROUGH) |
  557             PAT_VALUE(6, PAT_UNCACHED) |
  558             PAT_VALUE(7, PAT_UNCACHEABLE);
  559 
  560         if (pat_works) {
  561                 /*
  562                  * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
  563                  * Program 5 and 6 as WP and WC.
  564                  * Leave 4 and 7 as WB and UC.
  565                  */
  566                 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
  567                 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
  568                     PAT_VALUE(6, PAT_WRITE_COMBINING);
  569                 pat_table[PAT_UNCACHED] = 2;
  570                 pat_table[PAT_WRITE_PROTECTED] = 5;
  571                 pat_table[PAT_WRITE_COMBINING] = 6;
  572         } else {
  573                 /*
  574                  * Just replace PAT Index 2 with WC instead of UC-.
  575                  */
  576                 pat_msr &= ~PAT_MASK(2);
  577                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  578                 pat_table[PAT_WRITE_COMBINING] = 2;
  579         }
  580 
  581         /* Disable PGE. */
  582         cr4 = rcr4();
  583         load_cr4(cr4 & ~CR4_PGE);
  584 
  585         /* Disable caches (CD = 1, NW = 0). */
  586         cr0 = rcr0();
  587         load_cr0((cr0 & ~CR0_NW) | CR0_CD);
  588 
  589         /* Flushes caches and TLBs. */
  590         wbinvd();
  591         invltlb();
  592 
  593         /* Update PAT and index table. */
  594         wrmsr(MSR_PAT, pat_msr);
  595         for (i = 0; i < PAT_INDEX_SIZE; i++)
  596                 pat_index[i] = pat_table[i];
  597 
  598         /* Flush caches and TLBs again. */
  599         wbinvd();
  600         invltlb();
  601 
  602         /* Restore caches and PGE. */
  603         load_cr0(cr0);
  604         load_cr4(cr4);
  605 }
  606 
  607 /*
  608  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  609  */
  610 static void
  611 pmap_set_pg(void)
  612 {
  613         pt_entry_t *pte;
  614         vm_offset_t va, endva;
  615 
  616         if (pgeflag == 0)
  617                 return;
  618 
  619         endva = KERNBASE + KERNend;
  620 
  621         if (pseflag) {
  622                 va = KERNBASE + KERNLOAD;
  623                 while (va  < endva) {
  624                         pdir_pde(PTD, va) |= pgeflag;
  625                         invltlb();      /* Play it safe, invltlb() every time */
  626                         va += NBPDR;
  627                 }
  628         } else {
  629                 va = (vm_offset_t)btext;
  630                 while (va < endva) {
  631                         pte = vtopte(va);
  632                         if (*pte)
  633                                 *pte |= pgeflag;
  634                         invltlb();      /* Play it safe, invltlb() every time */
  635                         va += PAGE_SIZE;
  636                 }
  637         }
  638 }
  639 
  640 /*
  641  * Initialize a vm_page's machine-dependent fields.
  642  */
  643 void
  644 pmap_page_init(vm_page_t m)
  645 {
  646 
  647         TAILQ_INIT(&m->md.pv_list);
  648         m->md.pat_mode = PAT_WRITE_BACK;
  649 }
  650 
  651 #ifdef PAE
  652 static void *
  653 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  654 {
  655 
  656         /* Inform UMA that this allocator uses kernel_map/object. */
  657         *flags = UMA_SLAB_KERNEL;
  658         return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
  659             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  660 }
  661 #endif
  662 
  663 /*
  664  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  665  * Requirements:
  666  *  - Must deal with pages in order to ensure that none of the PG_* bits
  667  *    are ever set, PG_V in particular.
  668  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  669  *    on PAE systems.  This should be ok.
  670  *  - Assumes nothing will ever test these addresses for 0 to indicate
  671  *    no mapping instead of correctly checking PG_V.
  672  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  673  * Because PG_V is never set, there can be no mappings to invalidate.
  674  */
  675 static vm_offset_t
  676 pmap_ptelist_alloc(vm_offset_t *head)
  677 {
  678         pt_entry_t *pte;
  679         vm_offset_t va;
  680 
  681         va = *head;
  682         if (va == 0)
  683                 panic("pmap_ptelist_alloc: exhausted ptelist KVA");
  684         pte = vtopte(va);
  685         *head = *pte;
  686         if (*head & PG_V)
  687                 panic("pmap_ptelist_alloc: va with PG_V set!");
  688         *pte = 0;
  689         return (va);
  690 }
  691 
  692 static void
  693 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  694 {
  695         pt_entry_t *pte;
  696 
  697         if (va & PG_V)
  698                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  699         pte = vtopte(va);
  700         *pte = *head;           /* virtual! PG_V is 0 though */
  701         *head = va;
  702 }
  703 
  704 static void
  705 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  706 {
  707         int i;
  708         vm_offset_t va;
  709 
  710         *head = 0;
  711         for (i = npages - 1; i >= 0; i--) {
  712                 va = (vm_offset_t)base + i * PAGE_SIZE;
  713                 pmap_ptelist_free(head, va);
  714         }
  715 }
  716 
  717 
  718 /*
  719  *      Initialize the pmap module.
  720  *      Called by vm_init, to initialize any structures that the pmap
  721  *      system needs to map virtual memory.
  722  */
  723 void
  724 pmap_init(void)
  725 {
  726         vm_page_t mpte;
  727         vm_size_t s;
  728         int i, pv_npg;
  729 
  730         /*
  731          * Initialize the vm page array entries for the kernel pmap's
  732          * page table pages.
  733          */ 
  734         for (i = 0; i < NKPT; i++) {
  735                 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
  736                 KASSERT(mpte >= vm_page_array &&
  737                     mpte < &vm_page_array[vm_page_array_size],
  738                     ("pmap_init: page table page is out of range"));
  739                 mpte->pindex = i + KPTDI;
  740                 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
  741         }
  742 
  743         /*
  744          * Initialize the address space (zone) for the pv entries.  Set a
  745          * high water mark so that the system can recover from excessive
  746          * numbers of pv entries.
  747          */
  748         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  749         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  750         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  751         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  752         pv_entry_high_water = 9 * (pv_entry_max / 10);
  753 
  754         /*
  755          * If the kernel is running in a virtual machine on an AMD Family 10h
  756          * processor, then it must assume that MCA is enabled by the virtual
  757          * machine monitor.
  758          */
  759         if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
  760             CPUID_TO_FAMILY(cpu_id) == 0x10)
  761                 workaround_erratum383 = 1;
  762 
  763         /*
  764          * Are large page mappings supported and enabled?
  765          */
  766         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  767         if (pseflag == 0)
  768                 pg_ps_enabled = 0;
  769         else if (pg_ps_enabled) {
  770                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
  771                     ("pmap_init: can't assign to pagesizes[1]"));
  772                 pagesizes[1] = NBPDR;
  773         }
  774 
  775         /*
  776          * Calculate the size of the pv head table for superpages.
  777          */
  778         for (i = 0; phys_avail[i + 1]; i += 2);
  779         pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
  780 
  781         /*
  782          * Allocate memory for the pv head table for superpages.
  783          */
  784         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  785         s = round_page(s);
  786         pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
  787             M_WAITOK | M_ZERO);
  788         for (i = 0; i < pv_npg; i++)
  789                 TAILQ_INIT(&pv_table[i].pv_list);
  790 
  791         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  792         pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
  793         if (pv_chunkbase == NULL)
  794                 panic("pmap_init: not enough kvm for pv chunks");
  795         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  796 #ifdef PAE
  797         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  798             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  799             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  800         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  801 #endif
  802 }
  803 
  804 
  805 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  806         "Max number of PV entries");
  807 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  808         "Page share factor per proc");
  809 
  810 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  811     "2/4MB page mapping counters");
  812 
  813 static u_long pmap_pde_demotions;
  814 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
  815     &pmap_pde_demotions, 0, "2/4MB page demotions");
  816 
  817 static u_long pmap_pde_mappings;
  818 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  819     &pmap_pde_mappings, 0, "2/4MB page mappings");
  820 
  821 static u_long pmap_pde_p_failures;
  822 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
  823     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
  824 
  825 static u_long pmap_pde_promotions;
  826 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
  827     &pmap_pde_promotions, 0, "2/4MB page promotions");
  828 
  829 /***************************************************
  830  * Low level helper routines.....
  831  ***************************************************/
  832 
  833 /*
  834  * Determine the appropriate bits to set in a PTE or PDE for a specified
  835  * caching mode.
  836  */
  837 int
  838 pmap_cache_bits(int mode, boolean_t is_pde)
  839 {
  840         int cache_bits, pat_flag, pat_idx;
  841 
  842         if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
  843                 panic("Unknown caching mode %d\n", mode);
  844 
  845         /* The PAT bit is different for PTE's and PDE's. */
  846         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  847 
  848         /* Map the caching mode to a PAT index. */
  849         pat_idx = pat_index[mode];
  850 
  851         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  852         cache_bits = 0;
  853         if (pat_idx & 0x4)
  854                 cache_bits |= pat_flag;
  855         if (pat_idx & 0x2)
  856                 cache_bits |= PG_NC_PCD;
  857         if (pat_idx & 0x1)
  858                 cache_bits |= PG_NC_PWT;
  859         return (cache_bits);
  860 }
  861 
  862 /*
  863  * The caller is responsible for maintaining TLB consistency.
  864  */
  865 static void
  866 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
  867 {
  868         pd_entry_t *pde;
  869         pmap_t pmap;
  870         boolean_t PTD_updated;
  871 
  872         PTD_updated = FALSE;
  873         mtx_lock_spin(&allpmaps_lock);
  874         LIST_FOREACH(pmap, &allpmaps, pm_list) {
  875                 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
  876                     PG_FRAME))
  877                         PTD_updated = TRUE;
  878                 pde = pmap_pde(pmap, va);
  879                 pde_store(pde, newpde);
  880         }
  881         mtx_unlock_spin(&allpmaps_lock);
  882         KASSERT(PTD_updated,
  883             ("pmap_kenter_pde: current page table is not in allpmaps"));
  884 }
  885 
  886 /*
  887  * After changing the page size for the specified virtual address in the page
  888  * table, flush the corresponding entries from the processor's TLB.  Only the
  889  * calling processor's TLB is affected.
  890  *
  891  * The calling thread must be pinned to a processor.
  892  */
  893 static void
  894 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
  895 {
  896         u_long cr4;
  897 
  898         if ((newpde & PG_PS) == 0)
  899                 /* Demotion: flush a specific 2MB page mapping. */
  900                 invlpg(va);
  901         else if ((newpde & PG_G) == 0)
  902                 /*
  903                  * Promotion: flush every 4KB page mapping from the TLB
  904                  * because there are too many to flush individually.
  905                  */
  906                 invltlb();
  907         else {
  908                 /*
  909                  * Promotion: flush every 4KB page mapping from the TLB,
  910                  * including any global (PG_G) mappings.
  911                  */
  912                 cr4 = rcr4();
  913                 load_cr4(cr4 & ~CR4_PGE);
  914                 /*
  915                  * Although preemption at this point could be detrimental to
  916                  * performance, it would not lead to an error.  PG_G is simply
  917                  * ignored if CR4.PGE is clear.  Moreover, in case this block
  918                  * is re-entered, the load_cr4() either above or below will
  919                  * modify CR4.PGE flushing the TLB.
  920                  */
  921                 load_cr4(cr4 | CR4_PGE);
  922         }
  923 }
  924 #ifdef SMP
  925 /*
  926  * For SMP, these functions have to use the IPI mechanism for coherence.
  927  *
  928  * N.B.: Before calling any of the following TLB invalidation functions,
  929  * the calling processor must ensure that all stores updating a non-
  930  * kernel page table are globally performed.  Otherwise, another
  931  * processor could cache an old, pre-update entry without being
  932  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  933  * active on another processor after its pm_active field is checked by
  934  * one of the following functions but before a store updating the page
  935  * table is globally performed. (2) The pmap becomes active on another
  936  * processor before its pm_active field is checked but due to
  937  * speculative loads one of the following functions stills reads the
  938  * pmap as inactive on the other processor.
  939  * 
  940  * The kernel page table is exempt because its pm_active field is
  941  * immutable.  The kernel page table is always active on every
  942  * processor.
  943  */
  944 void
  945 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  946 {
  947         cpuset_t other_cpus;
  948         u_int cpuid;
  949 
  950         sched_pin();
  951         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  952                 invlpg(va);
  953                 smp_invlpg(va);
  954         } else {
  955                 cpuid = PCPU_GET(cpuid);
  956                 other_cpus = all_cpus;
  957                 CPU_CLR(cpuid, &other_cpus);
  958                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  959                         invlpg(va);
  960                 CPU_AND(&other_cpus, &pmap->pm_active);
  961                 if (!CPU_EMPTY(&other_cpus))
  962                         smp_masked_invlpg(other_cpus, va);
  963         }
  964         sched_unpin();
  965 }
  966 
  967 void
  968 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  969 {
  970         cpuset_t other_cpus;
  971         vm_offset_t addr;
  972         u_int cpuid;
  973 
  974         sched_pin();
  975         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  976                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  977                         invlpg(addr);
  978                 smp_invlpg_range(sva, eva);
  979         } else {
  980                 cpuid = PCPU_GET(cpuid);
  981                 other_cpus = all_cpus;
  982                 CPU_CLR(cpuid, &other_cpus);
  983                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  984                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  985                                 invlpg(addr);
  986                 CPU_AND(&other_cpus, &pmap->pm_active);
  987                 if (!CPU_EMPTY(&other_cpus))
  988                         smp_masked_invlpg_range(other_cpus, sva, eva);
  989         }
  990         sched_unpin();
  991 }
  992 
  993 void
  994 pmap_invalidate_all(pmap_t pmap)
  995 {
  996         cpuset_t other_cpus;
  997         u_int cpuid;
  998 
  999         sched_pin();
 1000         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1001                 invltlb();
 1002                 smp_invltlb();
 1003         } else {
 1004                 cpuid = PCPU_GET(cpuid);
 1005                 other_cpus = all_cpus;
 1006                 CPU_CLR(cpuid, &other_cpus);
 1007                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1008                         invltlb();
 1009                 CPU_AND(&other_cpus, &pmap->pm_active);
 1010                 if (!CPU_EMPTY(&other_cpus))
 1011                         smp_masked_invltlb(other_cpus);
 1012         }
 1013         sched_unpin();
 1014 }
 1015 
 1016 void
 1017 pmap_invalidate_cache(void)
 1018 {
 1019 
 1020         sched_pin();
 1021         wbinvd();
 1022         smp_cache_flush();
 1023         sched_unpin();
 1024 }
 1025 
 1026 struct pde_action {
 1027         cpuset_t invalidate;    /* processors that invalidate their TLB */
 1028         vm_offset_t va;
 1029         pd_entry_t *pde;
 1030         pd_entry_t newpde;
 1031         u_int store;            /* processor that updates the PDE */
 1032 };
 1033 
 1034 static void
 1035 pmap_update_pde_kernel(void *arg)
 1036 {
 1037         struct pde_action *act = arg;
 1038         pd_entry_t *pde;
 1039         pmap_t pmap;
 1040 
 1041         if (act->store == PCPU_GET(cpuid)) {
 1042 
 1043                 /*
 1044                  * Elsewhere, this operation requires allpmaps_lock for
 1045                  * synchronization.  Here, it does not because it is being
 1046                  * performed in the context of an all_cpus rendezvous.
 1047                  */
 1048                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1049                         pde = pmap_pde(pmap, act->va);
 1050                         pde_store(pde, act->newpde);
 1051                 }
 1052         }
 1053 }
 1054 
 1055 static void
 1056 pmap_update_pde_user(void *arg)
 1057 {
 1058         struct pde_action *act = arg;
 1059 
 1060         if (act->store == PCPU_GET(cpuid))
 1061                 pde_store(act->pde, act->newpde);
 1062 }
 1063 
 1064 static void
 1065 pmap_update_pde_teardown(void *arg)
 1066 {
 1067         struct pde_action *act = arg;
 1068 
 1069         if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 1070                 pmap_update_pde_invalidate(act->va, act->newpde);
 1071 }
 1072 
 1073 /*
 1074  * Change the page size for the specified virtual address in a way that
 1075  * prevents any possibility of the TLB ever having two entries that map the
 1076  * same virtual address using different page sizes.  This is the recommended
 1077  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
 1078  * machine check exception for a TLB state that is improperly diagnosed as a
 1079  * hardware error.
 1080  */
 1081 static void
 1082 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1083 {
 1084         struct pde_action act;
 1085         cpuset_t active, other_cpus;
 1086         u_int cpuid;
 1087 
 1088         sched_pin();
 1089         cpuid = PCPU_GET(cpuid);
 1090         other_cpus = all_cpus;
 1091         CPU_CLR(cpuid, &other_cpus);
 1092         if (pmap == kernel_pmap)
 1093                 active = all_cpus;
 1094         else
 1095                 active = pmap->pm_active;
 1096         if (CPU_OVERLAP(&active, &other_cpus)) {
 1097                 act.store = cpuid;
 1098                 act.invalidate = active;
 1099                 act.va = va;
 1100                 act.pde = pde;
 1101                 act.newpde = newpde;
 1102                 CPU_SET(cpuid, &active);
 1103                 smp_rendezvous_cpus(active,
 1104                     smp_no_rendevous_barrier, pmap == kernel_pmap ?
 1105                     pmap_update_pde_kernel : pmap_update_pde_user,
 1106                     pmap_update_pde_teardown, &act);
 1107         } else {
 1108                 if (pmap == kernel_pmap)
 1109                         pmap_kenter_pde(va, newpde);
 1110                 else
 1111                         pde_store(pde, newpde);
 1112                 if (CPU_ISSET(cpuid, &active))
 1113                         pmap_update_pde_invalidate(va, newpde);
 1114         }
 1115         sched_unpin();
 1116 }
 1117 #else /* !SMP */
 1118 /*
 1119  * Normal, non-SMP, 486+ invalidation functions.
 1120  * We inline these within pmap.c for speed.
 1121  */
 1122 PMAP_INLINE void
 1123 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1124 {
 1125 
 1126         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1127                 invlpg(va);
 1128 }
 1129 
 1130 PMAP_INLINE void
 1131 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1132 {
 1133         vm_offset_t addr;
 1134 
 1135         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1136                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1137                         invlpg(addr);
 1138 }
 1139 
 1140 PMAP_INLINE void
 1141 pmap_invalidate_all(pmap_t pmap)
 1142 {
 1143 
 1144         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1145                 invltlb();
 1146 }
 1147 
 1148 PMAP_INLINE void
 1149 pmap_invalidate_cache(void)
 1150 {
 1151 
 1152         wbinvd();
 1153 }
 1154 
 1155 static void
 1156 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1157 {
 1158 
 1159         if (pmap == kernel_pmap)
 1160                 pmap_kenter_pde(va, newpde);
 1161         else
 1162                 pde_store(pde, newpde);
 1163         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1164                 pmap_update_pde_invalidate(va, newpde);
 1165 }
 1166 #endif /* !SMP */
 1167 
 1168 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
 1169 
 1170 void
 1171 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
 1172 {
 1173 
 1174         KASSERT((sva & PAGE_MASK) == 0,
 1175             ("pmap_invalidate_cache_range: sva not page-aligned"));
 1176         KASSERT((eva & PAGE_MASK) == 0,
 1177             ("pmap_invalidate_cache_range: eva not page-aligned"));
 1178 
 1179         if (cpu_feature & CPUID_SS)
 1180                 ; /* If "Self Snoop" is supported, do nothing. */
 1181         else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 1182             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1183 
 1184 #ifdef DEV_APIC
 1185                 /*
 1186                  * XXX: Some CPUs fault, hang, or trash the local APIC
 1187                  * registers if we use CLFLUSH on the local APIC
 1188                  * range.  The local APIC is always uncached, so we
 1189                  * don't need to flush for that range anyway.
 1190                  */
 1191                 if (pmap_kextract(sva) == lapic_paddr)
 1192                         return;
 1193 #endif
 1194                 /*
 1195                  * Otherwise, do per-cache line flush.  Use the mfence
 1196                  * instruction to insure that previous stores are
 1197                  * included in the write-back.  The processor
 1198                  * propagates flush to other processors in the cache
 1199                  * coherence domain.
 1200                  */
 1201                 mfence();
 1202                 for (; sva < eva; sva += cpu_clflush_line_size)
 1203                         clflush(sva);
 1204                 mfence();
 1205         } else {
 1206 
 1207                 /*
 1208                  * No targeted cache flush methods are supported by CPU,
 1209                  * or the supplied range is bigger than 2MB.
 1210                  * Globally invalidate cache.
 1211                  */
 1212                 pmap_invalidate_cache();
 1213         }
 1214 }
 1215 
 1216 void
 1217 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 1218 {
 1219         int i;
 1220 
 1221         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 1222             (cpu_feature & CPUID_CLFSH) == 0) {
 1223                 pmap_invalidate_cache();
 1224         } else {
 1225                 for (i = 0; i < count; i++)
 1226                         pmap_flush_page(pages[i]);
 1227         }
 1228 }
 1229 
 1230 /*
 1231  * Are we current address space or kernel?  N.B. We return FALSE when
 1232  * a pmap's page table is in use because a kernel thread is borrowing
 1233  * it.  The borrowed page table can change spontaneously, making any
 1234  * dependence on its continued use subject to a race condition.
 1235  */
 1236 static __inline int
 1237 pmap_is_current(pmap_t pmap)
 1238 {
 1239 
 1240         return (pmap == kernel_pmap ||
 1241             (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
 1242             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
 1243 }
 1244 
 1245 /*
 1246  * If the given pmap is not the current or kernel pmap, the returned pte must
 1247  * be released by passing it to pmap_pte_release().
 1248  */
 1249 pt_entry_t *
 1250 pmap_pte(pmap_t pmap, vm_offset_t va)
 1251 {
 1252         pd_entry_t newpf;
 1253         pd_entry_t *pde;
 1254 
 1255         pde = pmap_pde(pmap, va);
 1256         if (*pde & PG_PS)
 1257                 return (pde);
 1258         if (*pde != 0) {
 1259                 /* are we current address space or kernel? */
 1260                 if (pmap_is_current(pmap))
 1261                         return (vtopte(va));
 1262                 mtx_lock(&PMAP2mutex);
 1263                 newpf = *pde & PG_FRAME;
 1264                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1265                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1266                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 1267                 }
 1268                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1269         }
 1270         return (NULL);
 1271 }
 1272 
 1273 /*
 1274  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1275  * being NULL.
 1276  */
 1277 static __inline void
 1278 pmap_pte_release(pt_entry_t *pte)
 1279 {
 1280 
 1281         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
 1282                 mtx_unlock(&PMAP2mutex);
 1283 }
 1284 
 1285 static __inline void
 1286 invlcaddr(void *caddr)
 1287 {
 1288 
 1289         invlpg((u_int)caddr);
 1290 }
 1291 
 1292 /*
 1293  * Super fast pmap_pte routine best used when scanning
 1294  * the pv lists.  This eliminates many coarse-grained
 1295  * invltlb calls.  Note that many of the pv list
 1296  * scans are across different pmaps.  It is very wasteful
 1297  * to do an entire invltlb for checking a single mapping.
 1298  *
 1299  * If the given pmap is not the current pmap, pvh_global_lock
 1300  * must be held and curthread pinned to a CPU.
 1301  */
 1302 static pt_entry_t *
 1303 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1304 {
 1305         pd_entry_t newpf;
 1306         pd_entry_t *pde;
 1307 
 1308         pde = pmap_pde(pmap, va);
 1309         if (*pde & PG_PS)
 1310                 return (pde);
 1311         if (*pde != 0) {
 1312                 /* are we current address space or kernel? */
 1313                 if (pmap_is_current(pmap))
 1314                         return (vtopte(va));
 1315                 rw_assert(&pvh_global_lock, RA_WLOCKED);
 1316                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1317                 newpf = *pde & PG_FRAME;
 1318                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1319                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1320 #ifdef SMP
 1321                         PMAP1cpu = PCPU_GET(cpuid);
 1322 #endif
 1323                         invlcaddr(PADDR1);
 1324                         PMAP1changed++;
 1325                 } else
 1326 #ifdef SMP
 1327                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1328                         PMAP1cpu = PCPU_GET(cpuid);
 1329                         invlcaddr(PADDR1);
 1330                         PMAP1changedcpu++;
 1331                 } else
 1332 #endif
 1333                         PMAP1unchanged++;
 1334                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1335         }
 1336         return (0);
 1337 }
 1338 
 1339 /*
 1340  *      Routine:        pmap_extract
 1341  *      Function:
 1342  *              Extract the physical page address associated
 1343  *              with the given map/virtual_address pair.
 1344  */
 1345 vm_paddr_t 
 1346 pmap_extract(pmap_t pmap, vm_offset_t va)
 1347 {
 1348         vm_paddr_t rtval;
 1349         pt_entry_t *pte;
 1350         pd_entry_t pde;
 1351 
 1352         rtval = 0;
 1353         PMAP_LOCK(pmap);
 1354         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1355         if (pde != 0) {
 1356                 if ((pde & PG_PS) != 0)
 1357                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
 1358                 else {
 1359                         pte = pmap_pte(pmap, va);
 1360                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1361                         pmap_pte_release(pte);
 1362                 }
 1363         }
 1364         PMAP_UNLOCK(pmap);
 1365         return (rtval);
 1366 }
 1367 
 1368 /*
 1369  *      Routine:        pmap_extract_and_hold
 1370  *      Function:
 1371  *              Atomically extract and hold the physical page
 1372  *              with the given pmap and virtual address pair
 1373  *              if that mapping permits the given protection.
 1374  */
 1375 vm_page_t
 1376 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1377 {
 1378         pd_entry_t pde;
 1379         pt_entry_t pte, *ptep;
 1380         vm_page_t m;
 1381         vm_paddr_t pa;
 1382 
 1383         pa = 0;
 1384         m = NULL;
 1385         PMAP_LOCK(pmap);
 1386 retry:
 1387         pde = *pmap_pde(pmap, va);
 1388         if (pde != 0) {
 1389                 if (pde & PG_PS) {
 1390                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1391                                 if (vm_page_pa_tryrelock(pmap, (pde &
 1392                                     PG_PS_FRAME) | (va & PDRMASK), &pa))
 1393                                         goto retry;
 1394                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1395                                     (va & PDRMASK));
 1396                                 vm_page_hold(m);
 1397                         }
 1398                 } else {
 1399                         ptep = pmap_pte(pmap, va);
 1400                         pte = *ptep;
 1401                         pmap_pte_release(ptep);
 1402                         if (pte != 0 &&
 1403                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1404                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 1405                                     &pa))
 1406                                         goto retry;
 1407                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1408                                 vm_page_hold(m);
 1409                         }
 1410                 }
 1411         }
 1412         PA_UNLOCK_COND(pa);
 1413         PMAP_UNLOCK(pmap);
 1414         return (m);
 1415 }
 1416 
 1417 /***************************************************
 1418  * Low level mapping routines.....
 1419  ***************************************************/
 1420 
 1421 /*
 1422  * Add a wired page to the kva.
 1423  * Note: not SMP coherent.
 1424  *
 1425  * This function may be used before pmap_bootstrap() is called.
 1426  */
 1427 PMAP_INLINE void 
 1428 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1429 {
 1430         pt_entry_t *pte;
 1431 
 1432         pte = vtopte(va);
 1433         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1434 }
 1435 
 1436 static __inline void
 1437 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1438 {
 1439         pt_entry_t *pte;
 1440 
 1441         pte = vtopte(va);
 1442         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1443 }
 1444 
 1445 /*
 1446  * Remove a page from the kernel pagetables.
 1447  * Note: not SMP coherent.
 1448  *
 1449  * This function may be used before pmap_bootstrap() is called.
 1450  */
 1451 PMAP_INLINE void
 1452 pmap_kremove(vm_offset_t va)
 1453 {
 1454         pt_entry_t *pte;
 1455 
 1456         pte = vtopte(va);
 1457         pte_clear(pte);
 1458 }
 1459 
 1460 /*
 1461  *      Used to map a range of physical addresses into kernel
 1462  *      virtual address space.
 1463  *
 1464  *      The value passed in '*virt' is a suggested virtual address for
 1465  *      the mapping. Architectures which can support a direct-mapped
 1466  *      physical to virtual region can return the appropriate address
 1467  *      within that region, leaving '*virt' unchanged. Other
 1468  *      architectures should map the pages starting at '*virt' and
 1469  *      update '*virt' with the first usable address after the mapped
 1470  *      region.
 1471  */
 1472 vm_offset_t
 1473 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1474 {
 1475         vm_offset_t va, sva;
 1476         vm_paddr_t superpage_offset;
 1477         pd_entry_t newpde;
 1478 
 1479         va = *virt;
 1480         /*
 1481          * Does the physical address range's size and alignment permit at
 1482          * least one superpage mapping to be created?
 1483          */ 
 1484         superpage_offset = start & PDRMASK;
 1485         if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
 1486                 /*
 1487                  * Increase the starting virtual address so that its alignment
 1488                  * does not preclude the use of superpage mappings.
 1489                  */
 1490                 if ((va & PDRMASK) < superpage_offset)
 1491                         va = (va & ~PDRMASK) + superpage_offset;
 1492                 else if ((va & PDRMASK) > superpage_offset)
 1493                         va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
 1494         }
 1495         sva = va;
 1496         while (start < end) {
 1497                 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
 1498                     pseflag) {
 1499                         KASSERT((va & PDRMASK) == 0,
 1500                             ("pmap_map: misaligned va %#x", va));
 1501                         newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
 1502                         pmap_kenter_pde(va, newpde);
 1503                         va += NBPDR;
 1504                         start += NBPDR;
 1505                 } else {
 1506                         pmap_kenter(va, start);
 1507                         va += PAGE_SIZE;
 1508                         start += PAGE_SIZE;
 1509                 }
 1510         }
 1511         pmap_invalidate_range(kernel_pmap, sva, va);
 1512         *virt = va;
 1513         return (sva);
 1514 }
 1515 
 1516 
 1517 /*
 1518  * Add a list of wired pages to the kva
 1519  * this routine is only used for temporary
 1520  * kernel mappings that do not need to have
 1521  * page modification or references recorded.
 1522  * Note that old mappings are simply written
 1523  * over.  The page *must* be wired.
 1524  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1525  */
 1526 void
 1527 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1528 {
 1529         pt_entry_t *endpte, oldpte, pa, *pte;
 1530         vm_page_t m;
 1531 
 1532         oldpte = 0;
 1533         pte = vtopte(sva);
 1534         endpte = pte + count;
 1535         while (pte < endpte) {
 1536                 m = *ma++;
 1537                 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 1538                 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
 1539                         oldpte |= *pte;
 1540                         pte_store(pte, pa | pgeflag | PG_RW | PG_V);
 1541                 }
 1542                 pte++;
 1543         }
 1544         if (__predict_false((oldpte & PG_V) != 0))
 1545                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1546                     PAGE_SIZE);
 1547 }
 1548 
 1549 /*
 1550  * This routine tears out page mappings from the
 1551  * kernel -- it is meant only for temporary mappings.
 1552  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1553  */
 1554 void
 1555 pmap_qremove(vm_offset_t sva, int count)
 1556 {
 1557         vm_offset_t va;
 1558 
 1559         va = sva;
 1560         while (count-- > 0) {
 1561                 pmap_kremove(va);
 1562                 va += PAGE_SIZE;
 1563         }
 1564         pmap_invalidate_range(kernel_pmap, sva, va);
 1565 }
 1566 
 1567 /***************************************************
 1568  * Page table page management routines.....
 1569  ***************************************************/
 1570 static __inline void
 1571 pmap_free_zero_pages(struct spglist *free)
 1572 {
 1573         vm_page_t m;
 1574 
 1575         while ((m = SLIST_FIRST(free)) != NULL) {
 1576                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
 1577                 /* Preserve the page's PG_ZERO setting. */
 1578                 vm_page_free_toq(m);
 1579         }
 1580 }
 1581 
 1582 /*
 1583  * Schedule the specified unused page table page to be freed.  Specifically,
 1584  * add the page to the specified list of pages that will be released to the
 1585  * physical memory manager after the TLB has been updated.
 1586  */
 1587 static __inline void
 1588 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
 1589     boolean_t set_PG_ZERO)
 1590 {
 1591 
 1592         if (set_PG_ZERO)
 1593                 m->flags |= PG_ZERO;
 1594         else
 1595                 m->flags &= ~PG_ZERO;
 1596         SLIST_INSERT_HEAD(free, m, plinks.s.ss);
 1597 }
 1598 
 1599 /*
 1600  * Inserts the specified page table page into the specified pmap's collection
 1601  * of idle page table pages.  Each of a pmap's page table pages is responsible
 1602  * for mapping a distinct range of virtual addresses.  The pmap's collection is
 1603  * ordered by this virtual address range.
 1604  */
 1605 static __inline int
 1606 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 1607 {
 1608 
 1609         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1610         return (vm_radix_insert(&pmap->pm_root, mpte));
 1611 }
 1612 
 1613 /*
 1614  * Looks for a page table page mapping the specified virtual address in the
 1615  * specified pmap's collection of idle page table pages.  Returns NULL if there
 1616  * is no page table page corresponding to the specified virtual address.
 1617  */
 1618 static __inline vm_page_t
 1619 pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
 1620 {
 1621 
 1622         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1623         return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
 1624 }
 1625 
 1626 /*
 1627  * Removes the specified page table page from the specified pmap's collection
 1628  * of idle page table pages.  The specified page table page must be a member of
 1629  * the pmap's collection.
 1630  */
 1631 static __inline void
 1632 pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
 1633 {
 1634 
 1635         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1636         vm_radix_remove(&pmap->pm_root, mpte->pindex);
 1637 }
 1638 
 1639 /*
 1640  * Decrements a page table page's wire count, which is used to record the
 1641  * number of valid page table entries within the page.  If the wire count
 1642  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 1643  * page table page was unmapped and FALSE otherwise.
 1644  */
 1645 static inline boolean_t
 1646 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1647 {
 1648 
 1649         --m->wire_count;
 1650         if (m->wire_count == 0) {
 1651                 _pmap_unwire_ptp(pmap, m, free);
 1652                 return (TRUE);
 1653         } else
 1654                 return (FALSE);
 1655 }
 1656 
 1657 static void
 1658 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1659 {
 1660         vm_offset_t pteva;
 1661 
 1662         /*
 1663          * unmap the page table page
 1664          */
 1665         pmap->pm_pdir[m->pindex] = 0;
 1666         --pmap->pm_stats.resident_count;
 1667 
 1668         /*
 1669          * This is a release store so that the ordinary store unmapping
 1670          * the page table page is globally performed before TLB shoot-
 1671          * down is begun.
 1672          */
 1673         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1674 
 1675         /*
 1676          * Do an invltlb to make the invalidated mapping
 1677          * take effect immediately.
 1678          */
 1679         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1680         pmap_invalidate_page(pmap, pteva);
 1681 
 1682         /* 
 1683          * Put page on a list so that it is released after
 1684          * *ALL* TLB shootdown is done
 1685          */
 1686         pmap_add_delayed_free_list(m, free, TRUE);
 1687 }
 1688 
 1689 /*
 1690  * After removing a page table entry, this routine is used to
 1691  * conditionally free the page, and manage the hold/wire counts.
 1692  */
 1693 static int
 1694 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
 1695 {
 1696         pd_entry_t ptepde;
 1697         vm_page_t mpte;
 1698 
 1699         if (va >= VM_MAXUSER_ADDRESS)
 1700                 return (0);
 1701         ptepde = *pmap_pde(pmap, va);
 1702         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1703         return (pmap_unwire_ptp(pmap, mpte, free));
 1704 }
 1705 
 1706 /*
 1707  * Initialize the pmap for the swapper process.
 1708  */
 1709 void
 1710 pmap_pinit0(pmap_t pmap)
 1711 {
 1712 
 1713         PMAP_LOCK_INIT(pmap);
 1714         /*
 1715          * Since the page table directory is shared with the kernel pmap,
 1716          * which is already included in the list "allpmaps", this pmap does
 1717          * not need to be inserted into that list.
 1718          */
 1719         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1720 #ifdef PAE
 1721         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1722 #endif
 1723         pmap->pm_root.rt_root = 0;
 1724         CPU_ZERO(&pmap->pm_active);
 1725         PCPU_SET(curpmap, pmap);
 1726         TAILQ_INIT(&pmap->pm_pvchunk);
 1727         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1728 }
 1729 
 1730 /*
 1731  * Initialize a preallocated and zeroed pmap structure,
 1732  * such as one in a vmspace structure.
 1733  */
 1734 int
 1735 pmap_pinit(pmap_t pmap)
 1736 {
 1737         vm_page_t m, ptdpg[NPGPTD];
 1738         vm_paddr_t pa;
 1739         int i;
 1740 
 1741         /*
 1742          * No need to allocate page table space yet but we do need a valid
 1743          * page directory table.
 1744          */
 1745         if (pmap->pm_pdir == NULL) {
 1746                 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
 1747                 if (pmap->pm_pdir == NULL) {
 1748                         PMAP_LOCK_DESTROY(pmap);
 1749                         return (0);
 1750                 }
 1751 #ifdef PAE
 1752                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1753                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1754                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1755                     ("pmap_pinit: pdpt misaligned"));
 1756                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1757                     ("pmap_pinit: pdpt above 4g"));
 1758 #endif
 1759                 pmap->pm_root.rt_root = 0;
 1760         }
 1761         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 1762             ("pmap_pinit: pmap has reserved page table page(s)"));
 1763 
 1764         /*
 1765          * allocate the page directory page(s)
 1766          */
 1767         for (i = 0; i < NPGPTD;) {
 1768                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 1769                     VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1770                 if (m == NULL)
 1771                         VM_WAIT;
 1772                 else {
 1773                         ptdpg[i++] = m;
 1774                 }
 1775         }
 1776 
 1777         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1778 
 1779         for (i = 0; i < NPGPTD; i++)
 1780                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1781                         pagezero(pmap->pm_pdir + (i * NPDEPG));
 1782 
 1783         mtx_lock_spin(&allpmaps_lock);
 1784         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1785         /* Copy the kernel page table directory entries. */
 1786         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1787         mtx_unlock_spin(&allpmaps_lock);
 1788 
 1789         /* install self-referential address mapping entry(s) */
 1790         for (i = 0; i < NPGPTD; i++) {
 1791                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1792                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1793 #ifdef PAE
 1794                 pmap->pm_pdpt[i] = pa | PG_V;
 1795 #endif
 1796         }
 1797 
 1798         CPU_ZERO(&pmap->pm_active);
 1799         TAILQ_INIT(&pmap->pm_pvchunk);
 1800         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1801 
 1802         return (1);
 1803 }
 1804 
 1805 /*
 1806  * this routine is called if the page table page is not
 1807  * mapped correctly.
 1808  */
 1809 static vm_page_t
 1810 _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
 1811 {
 1812         vm_paddr_t ptepa;
 1813         vm_page_t m;
 1814 
 1815         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1816             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1817             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1818 
 1819         /*
 1820          * Allocate a page table page.
 1821          */
 1822         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1823             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1824                 if (flags & M_WAITOK) {
 1825                         PMAP_UNLOCK(pmap);
 1826                         rw_wunlock(&pvh_global_lock);
 1827                         VM_WAIT;
 1828                         rw_wlock(&pvh_global_lock);
 1829                         PMAP_LOCK(pmap);
 1830                 }
 1831 
 1832                 /*
 1833                  * Indicate the need to retry.  While waiting, the page table
 1834                  * page may have been allocated.
 1835                  */
 1836                 return (NULL);
 1837         }
 1838         if ((m->flags & PG_ZERO) == 0)
 1839                 pmap_zero_page(m);
 1840 
 1841         /*
 1842          * Map the pagetable page into the process address space, if
 1843          * it isn't already there.
 1844          */
 1845 
 1846         pmap->pm_stats.resident_count++;
 1847 
 1848         ptepa = VM_PAGE_TO_PHYS(m);
 1849         pmap->pm_pdir[ptepindex] =
 1850                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1851 
 1852         return (m);
 1853 }
 1854 
 1855 static vm_page_t
 1856 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1857 {
 1858         u_int ptepindex;
 1859         pd_entry_t ptepa;
 1860         vm_page_t m;
 1861 
 1862         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1863             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1864             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1865 
 1866         /*
 1867          * Calculate pagetable page index
 1868          */
 1869         ptepindex = va >> PDRSHIFT;
 1870 retry:
 1871         /*
 1872          * Get the page directory entry
 1873          */
 1874         ptepa = pmap->pm_pdir[ptepindex];
 1875 
 1876         /*
 1877          * This supports switching from a 4MB page to a
 1878          * normal 4K page.
 1879          */
 1880         if (ptepa & PG_PS) {
 1881                 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
 1882                 ptepa = pmap->pm_pdir[ptepindex];
 1883         }
 1884 
 1885         /*
 1886          * If the page table page is mapped, we just increment the
 1887          * hold count, and activate it.
 1888          */
 1889         if (ptepa) {
 1890                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 1891                 m->wire_count++;
 1892         } else {
 1893                 /*
 1894                  * Here if the pte page isn't mapped, or if it has
 1895                  * been deallocated. 
 1896                  */
 1897                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1898                 if (m == NULL && (flags & M_WAITOK))
 1899                         goto retry;
 1900         }
 1901         return (m);
 1902 }
 1903 
 1904 
 1905 /***************************************************
 1906 * Pmap allocation/deallocation routines.
 1907  ***************************************************/
 1908 
 1909 #ifdef SMP
 1910 /*
 1911  * Deal with a SMP shootdown of other users of the pmap that we are
 1912  * trying to dispose of.  This can be a bit hairy.
 1913  */
 1914 static cpuset_t *lazymask;
 1915 static u_int lazyptd;
 1916 static volatile u_int lazywait;
 1917 
 1918 void pmap_lazyfix_action(void);
 1919 
 1920 void
 1921 pmap_lazyfix_action(void)
 1922 {
 1923 
 1924 #ifdef COUNT_IPIS
 1925         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1926 #endif
 1927         if (rcr3() == lazyptd)
 1928                 load_cr3(curpcb->pcb_cr3);
 1929         CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
 1930         atomic_store_rel_int(&lazywait, 1);
 1931 }
 1932 
 1933 static void
 1934 pmap_lazyfix_self(u_int cpuid)
 1935 {
 1936 
 1937         if (rcr3() == lazyptd)
 1938                 load_cr3(curpcb->pcb_cr3);
 1939         CPU_CLR_ATOMIC(cpuid, lazymask);
 1940 }
 1941 
 1942 
 1943 static void
 1944 pmap_lazyfix(pmap_t pmap)
 1945 {
 1946         cpuset_t mymask, mask;
 1947         u_int cpuid, spins;
 1948         int lsb;
 1949 
 1950         mask = pmap->pm_active;
 1951         while (!CPU_EMPTY(&mask)) {
 1952                 spins = 50000000;
 1953 
 1954                 /* Find least significant set bit. */
 1955                 lsb = CPU_FFS(&mask);
 1956                 MPASS(lsb != 0);
 1957                 lsb--;
 1958                 CPU_SETOF(lsb, &mask);
 1959                 mtx_lock_spin(&smp_ipi_mtx);
 1960 #ifdef PAE
 1961                 lazyptd = vtophys(pmap->pm_pdpt);
 1962 #else
 1963                 lazyptd = vtophys(pmap->pm_pdir);
 1964 #endif
 1965                 cpuid = PCPU_GET(cpuid);
 1966 
 1967                 /* Use a cpuset just for having an easy check. */
 1968                 CPU_SETOF(cpuid, &mymask);
 1969                 if (!CPU_CMP(&mask, &mymask)) {
 1970                         lazymask = &pmap->pm_active;
 1971                         pmap_lazyfix_self(cpuid);
 1972                 } else {
 1973                         atomic_store_rel_int((u_int *)&lazymask,
 1974                             (u_int)&pmap->pm_active);
 1975                         atomic_store_rel_int(&lazywait, 0);
 1976                         ipi_selected(mask, IPI_LAZYPMAP);
 1977                         while (lazywait == 0) {
 1978                                 ia32_pause();
 1979                                 if (--spins == 0)
 1980                                         break;
 1981                         }
 1982                 }
 1983                 mtx_unlock_spin(&smp_ipi_mtx);
 1984                 if (spins == 0)
 1985                         printf("pmap_lazyfix: spun for 50000000\n");
 1986                 mask = pmap->pm_active;
 1987         }
 1988 }
 1989 
 1990 #else   /* SMP */
 1991 
 1992 /*
 1993  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1994  * unlikely to have to even execute this code, including the fact
 1995  * that the cleanup is deferred until the parent does a wait(2), which
 1996  * means that another userland process has run.
 1997  */
 1998 static void
 1999 pmap_lazyfix(pmap_t pmap)
 2000 {
 2001         u_int cr3;
 2002 
 2003         cr3 = vtophys(pmap->pm_pdir);
 2004         if (cr3 == rcr3()) {
 2005                 load_cr3(curpcb->pcb_cr3);
 2006                 CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
 2007         }
 2008 }
 2009 #endif  /* SMP */
 2010 
 2011 /*
 2012  * Release any resources held by the given physical map.
 2013  * Called when a pmap initialized by pmap_pinit is being released.
 2014  * Should only be called if the map contains no valid mappings.
 2015  */
 2016 void
 2017 pmap_release(pmap_t pmap)
 2018 {
 2019         vm_page_t m, ptdpg[NPGPTD];
 2020         int i;
 2021 
 2022         KASSERT(pmap->pm_stats.resident_count == 0,
 2023             ("pmap_release: pmap resident count %ld != 0",
 2024             pmap->pm_stats.resident_count));
 2025         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 2026             ("pmap_release: pmap has reserved page table page(s)"));
 2027 
 2028         pmap_lazyfix(pmap);
 2029         mtx_lock_spin(&allpmaps_lock);
 2030         LIST_REMOVE(pmap, pm_list);
 2031         mtx_unlock_spin(&allpmaps_lock);
 2032 
 2033         for (i = 0; i < NPGPTD; i++)
 2034                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 2035                     PG_FRAME);
 2036 
 2037         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 2038             sizeof(*pmap->pm_pdir));
 2039 
 2040         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 2041 
 2042         for (i = 0; i < NPGPTD; i++) {
 2043                 m = ptdpg[i];
 2044 #ifdef PAE
 2045                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 2046                     ("pmap_release: got wrong ptd page"));
 2047 #endif
 2048                 m->wire_count--;
 2049                 atomic_subtract_int(&cnt.v_wire_count, 1);
 2050                 vm_page_free_zero(m);
 2051         }
 2052 }
 2053 
 2054 static int
 2055 kvm_size(SYSCTL_HANDLER_ARGS)
 2056 {
 2057         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 2058 
 2059         return (sysctl_handle_long(oidp, &ksize, 0, req));
 2060 }
 2061 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 2062     0, 0, kvm_size, "IU", "Size of KVM");
 2063 
 2064 static int
 2065 kvm_free(SYSCTL_HANDLER_ARGS)
 2066 {
 2067         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 2068 
 2069         return (sysctl_handle_long(oidp, &kfree, 0, req));
 2070 }
 2071 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 2072     0, 0, kvm_free, "IU", "Amount of KVM free");
 2073 
 2074 /*
 2075  * grow the number of kernel page table entries, if needed
 2076  */
 2077 void
 2078 pmap_growkernel(vm_offset_t addr)
 2079 {
 2080         vm_paddr_t ptppaddr;
 2081         vm_page_t nkpg;
 2082         pd_entry_t newpdir;
 2083 
 2084         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 2085         addr = roundup2(addr, NBPDR);
 2086         if (addr - 1 >= kernel_map->max_offset)
 2087                 addr = kernel_map->max_offset;
 2088         while (kernel_vm_end < addr) {
 2089                 if (pdir_pde(PTD, kernel_vm_end)) {
 2090                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2091                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2092                                 kernel_vm_end = kernel_map->max_offset;
 2093                                 break;
 2094                         }
 2095                         continue;
 2096                 }
 2097 
 2098                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 2099                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 2100                     VM_ALLOC_ZERO);
 2101                 if (nkpg == NULL)
 2102                         panic("pmap_growkernel: no memory to grow kernel");
 2103 
 2104                 nkpt++;
 2105 
 2106                 if ((nkpg->flags & PG_ZERO) == 0)
 2107                         pmap_zero_page(nkpg);
 2108                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 2109                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 2110                 pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
 2111 
 2112                 pmap_kenter_pde(kernel_vm_end, newpdir);
 2113                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2114                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2115                         kernel_vm_end = kernel_map->max_offset;
 2116                         break;
 2117                 }
 2118         }
 2119 }
 2120 
 2121 
 2122 /***************************************************
 2123  * page management routines.
 2124  ***************************************************/
 2125 
 2126 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 2127 CTASSERT(_NPCM == 11);
 2128 CTASSERT(_NPCPV == 336);
 2129 
 2130 static __inline struct pv_chunk *
 2131 pv_to_chunk(pv_entry_t pv)
 2132 {
 2133 
 2134         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 2135 }
 2136 
 2137 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 2138 
 2139 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 2140 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 2141 
 2142 static const uint32_t pc_freemask[_NPCM] = {
 2143         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2144         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2145         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2146         PC_FREE0_9, PC_FREE10
 2147 };
 2148 
 2149 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 2150         "Current number of pv entries");
 2151 
 2152 #ifdef PV_STATS
 2153 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 2154 
 2155 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2156         "Current number of pv entry chunks");
 2157 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2158         "Current number of pv entry chunks allocated");
 2159 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2160         "Current number of pv entry chunks frees");
 2161 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2162         "Number of times tried to get a chunk page but failed.");
 2163 
 2164 static long pv_entry_frees, pv_entry_allocs;
 2165 static int pv_entry_spare;
 2166 
 2167 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2168         "Current number of pv entry frees");
 2169 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2170         "Current number of pv entry allocs");
 2171 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2172         "Current number of spare pv entries");
 2173 #endif
 2174 
 2175 /*
 2176  * We are in a serious low memory condition.  Resort to
 2177  * drastic measures to free some pages so we can allocate
 2178  * another pv entry chunk.
 2179  */
 2180 static vm_page_t
 2181 pmap_pv_reclaim(pmap_t locked_pmap)
 2182 {
 2183         struct pch newtail;
 2184         struct pv_chunk *pc;
 2185         struct md_page *pvh;
 2186         pd_entry_t *pde;
 2187         pmap_t pmap;
 2188         pt_entry_t *pte, tpte;
 2189         pv_entry_t pv;
 2190         vm_offset_t va;
 2191         vm_page_t m, m_pc;
 2192         struct spglist free;
 2193         uint32_t inuse;
 2194         int bit, field, freed;
 2195 
 2196         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 2197         pmap = NULL;
 2198         m_pc = NULL;
 2199         SLIST_INIT(&free);
 2200         TAILQ_INIT(&newtail);
 2201         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
 2202             SLIST_EMPTY(&free))) {
 2203                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2204                 if (pmap != pc->pc_pmap) {
 2205                         if (pmap != NULL) {
 2206                                 pmap_invalidate_all(pmap);
 2207                                 if (pmap != locked_pmap)
 2208                                         PMAP_UNLOCK(pmap);
 2209                         }
 2210                         pmap = pc->pc_pmap;
 2211                         /* Avoid deadlock and lock recursion. */
 2212                         if (pmap > locked_pmap)
 2213                                 PMAP_LOCK(pmap);
 2214                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 2215                                 pmap = NULL;
 2216                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2217                                 continue;
 2218                         }
 2219                 }
 2220 
 2221                 /*
 2222                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 2223                  */
 2224                 freed = 0;
 2225                 for (field = 0; field < _NPCM; field++) {
 2226                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 2227                             inuse != 0; inuse &= ~(1UL << bit)) {
 2228                                 bit = bsfl(inuse);
 2229                                 pv = &pc->pc_pventry[field * 32 + bit];
 2230                                 va = pv->pv_va;
 2231                                 pde = pmap_pde(pmap, va);
 2232                                 if ((*pde & PG_PS) != 0)
 2233                                         continue;
 2234                                 pte = pmap_pte(pmap, va);
 2235                                 tpte = *pte;
 2236                                 if ((tpte & PG_W) == 0)
 2237                                         tpte = pte_load_clear(pte);
 2238                                 pmap_pte_release(pte);
 2239                                 if ((tpte & PG_W) != 0)
 2240                                         continue;
 2241                                 KASSERT(tpte != 0,
 2242                                     ("pmap_pv_reclaim: pmap %p va %x zero pte",
 2243                                     pmap, va));
 2244                                 if ((tpte & PG_G) != 0)
 2245                                         pmap_invalidate_page(pmap, va);
 2246                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2247                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2248                                         vm_page_dirty(m);
 2249                                 if ((tpte & PG_A) != 0)
 2250                                         vm_page_aflag_set(m, PGA_REFERENCED);
 2251                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 2252                                 if (TAILQ_EMPTY(&m->md.pv_list) &&
 2253                                     (m->flags & PG_FICTITIOUS) == 0) {
 2254                                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2255                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 2256                                                 vm_page_aflag_clear(m,
 2257                                                     PGA_WRITEABLE);
 2258                                         }
 2259                                 }
 2260                                 pc->pc_map[field] |= 1UL << bit;
 2261                                 pmap_unuse_pt(pmap, va, &free);
 2262                                 freed++;
 2263                         }
 2264                 }
 2265                 if (freed == 0) {
 2266                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2267                         continue;
 2268                 }
 2269                 /* Every freed mapping is for a 4 KB page. */
 2270                 pmap->pm_stats.resident_count -= freed;
 2271                 PV_STAT(pv_entry_frees += freed);
 2272                 PV_STAT(pv_entry_spare += freed);
 2273                 pv_entry_count -= freed;
 2274                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2275                 for (field = 0; field < _NPCM; field++)
 2276                         if (pc->pc_map[field] != pc_freemask[field]) {
 2277                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2278                                     pc_list);
 2279                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2280 
 2281                                 /*
 2282                                  * One freed pv entry in locked_pmap is
 2283                                  * sufficient.
 2284                                  */
 2285                                 if (pmap == locked_pmap)
 2286                                         goto out;
 2287                                 break;
 2288                         }
 2289                 if (field == _NPCM) {
 2290                         PV_STAT(pv_entry_spare -= _NPCPV);
 2291                         PV_STAT(pc_chunk_count--);
 2292                         PV_STAT(pc_chunk_frees++);
 2293                         /* Entire chunk is free; return it. */
 2294                         m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2295                         pmap_qremove((vm_offset_t)pc, 1);
 2296                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2297                         break;
 2298                 }
 2299         }
 2300 out:
 2301         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 2302         if (pmap != NULL) {
 2303                 pmap_invalidate_all(pmap);
 2304                 if (pmap != locked_pmap)
 2305                         PMAP_UNLOCK(pmap);
 2306         }
 2307         if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
 2308                 m_pc = SLIST_FIRST(&free);
 2309                 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 2310                 /* Recycle a freed page table page. */
 2311                 m_pc->wire_count = 1;
 2312                 atomic_add_int(&cnt.v_wire_count, 1);
 2313         }
 2314         pmap_free_zero_pages(&free);
 2315         return (m_pc);
 2316 }
 2317 
 2318 /*
 2319  * free the pv_entry back to the free list
 2320  */
 2321 static void
 2322 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2323 {
 2324         struct pv_chunk *pc;
 2325         int idx, field, bit;
 2326 
 2327         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2328         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2329         PV_STAT(pv_entry_frees++);
 2330         PV_STAT(pv_entry_spare++);
 2331         pv_entry_count--;
 2332         pc = pv_to_chunk(pv);
 2333         idx = pv - &pc->pc_pventry[0];
 2334         field = idx / 32;
 2335         bit = idx % 32;
 2336         pc->pc_map[field] |= 1ul << bit;
 2337         for (idx = 0; idx < _NPCM; idx++)
 2338                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2339                         /*
 2340                          * 98% of the time, pc is already at the head of the
 2341                          * list.  If it isn't already, move it to the head.
 2342                          */
 2343                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 2344                             pc)) {
 2345                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2346                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2347                                     pc_list);
 2348                         }
 2349                         return;
 2350                 }
 2351         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2352         free_pv_chunk(pc);
 2353 }
 2354 
 2355 static void
 2356 free_pv_chunk(struct pv_chunk *pc)
 2357 {
 2358         vm_page_t m;
 2359 
 2360         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2361         PV_STAT(pv_entry_spare -= _NPCPV);
 2362         PV_STAT(pc_chunk_count--);
 2363         PV_STAT(pc_chunk_frees++);
 2364         /* entire chunk is free, return it */
 2365         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2366         pmap_qremove((vm_offset_t)pc, 1);
 2367         vm_page_unwire(m, 0);
 2368         vm_page_free(m);
 2369         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2370 }
 2371 
 2372 /*
 2373  * get a new pv_entry, allocating a block from the system
 2374  * when needed.
 2375  */
 2376 static pv_entry_t
 2377 get_pv_entry(pmap_t pmap, boolean_t try)
 2378 {
 2379         static const struct timeval printinterval = { 60, 0 };
 2380         static struct timeval lastprint;
 2381         int bit, field;
 2382         pv_entry_t pv;
 2383         struct pv_chunk *pc;
 2384         vm_page_t m;
 2385 
 2386         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2387         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2388         PV_STAT(pv_entry_allocs++);
 2389         pv_entry_count++;
 2390         if (pv_entry_count > pv_entry_high_water)
 2391                 if (ratecheck(&lastprint, &printinterval))
 2392                         printf("Approaching the limit on PV entries, consider "
 2393                             "increasing either the vm.pmap.shpgperproc or the "
 2394                             "vm.pmap.pv_entry_max tunable.\n");
 2395 retry:
 2396         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2397         if (pc != NULL) {
 2398                 for (field = 0; field < _NPCM; field++) {
 2399                         if (pc->pc_map[field]) {
 2400                                 bit = bsfl(pc->pc_map[field]);
 2401                                 break;
 2402                         }
 2403                 }
 2404                 if (field < _NPCM) {
 2405                         pv = &pc->pc_pventry[field * 32 + bit];
 2406                         pc->pc_map[field] &= ~(1ul << bit);
 2407                         /* If this was the last item, move it to tail */
 2408                         for (field = 0; field < _NPCM; field++)
 2409                                 if (pc->pc_map[field] != 0) {
 2410                                         PV_STAT(pv_entry_spare--);
 2411                                         return (pv);    /* not full, return */
 2412                                 }
 2413                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2414                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2415                         PV_STAT(pv_entry_spare--);
 2416                         return (pv);
 2417                 }
 2418         }
 2419         /*
 2420          * Access to the ptelist "pv_vafree" is synchronized by the pvh
 2421          * global lock.  If "pv_vafree" is currently non-empty, it will
 2422          * remain non-empty until pmap_ptelist_alloc() completes.
 2423          */
 2424         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 2425             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2426                 if (try) {
 2427                         pv_entry_count--;
 2428                         PV_STAT(pc_chunk_tryfail++);
 2429                         return (NULL);
 2430                 }
 2431                 m = pmap_pv_reclaim(pmap);
 2432                 if (m == NULL)
 2433                         goto retry;
 2434         }
 2435         PV_STAT(pc_chunk_count++);
 2436         PV_STAT(pc_chunk_allocs++);
 2437         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2438         pmap_qenter((vm_offset_t)pc, &m, 1);
 2439         pc->pc_pmap = pmap;
 2440         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2441         for (field = 1; field < _NPCM; field++)
 2442                 pc->pc_map[field] = pc_freemask[field];
 2443         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 2444         pv = &pc->pc_pventry[0];
 2445         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2446         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2447         return (pv);
 2448 }
 2449 
 2450 static __inline pv_entry_t
 2451 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2452 {
 2453         pv_entry_t pv;
 2454 
 2455         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2456         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 2457                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2458                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 2459                         break;
 2460                 }
 2461         }
 2462         return (pv);
 2463 }
 2464 
 2465 static void
 2466 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2467 {
 2468         struct md_page *pvh;
 2469         pv_entry_t pv;
 2470         vm_offset_t va_last;
 2471         vm_page_t m;
 2472 
 2473         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2474         KASSERT((pa & PDRMASK) == 0,
 2475             ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
 2476 
 2477         /*
 2478          * Transfer the 4mpage's pv entry for this mapping to the first
 2479          * page's pv list.
 2480          */
 2481         pvh = pa_to_pvh(pa);
 2482         va = trunc_4mpage(va);
 2483         pv = pmap_pvh_remove(pvh, pmap, va);
 2484         KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 2485         m = PHYS_TO_VM_PAGE(pa);
 2486         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2487         /* Instantiate the remaining NPTEPG - 1 pv entries. */
 2488         va_last = va + NBPDR - PAGE_SIZE;
 2489         do {
 2490                 m++;
 2491                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2492                     ("pmap_pv_demote_pde: page %p is not managed", m));
 2493                 va += PAGE_SIZE;
 2494                 pmap_insert_entry(pmap, va, m);
 2495         } while (va < va_last);
 2496 }
 2497 
 2498 static void
 2499 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2500 {
 2501         struct md_page *pvh;
 2502         pv_entry_t pv;
 2503         vm_offset_t va_last;
 2504         vm_page_t m;
 2505 
 2506         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2507         KASSERT((pa & PDRMASK) == 0,
 2508             ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
 2509 
 2510         /*
 2511          * Transfer the first page's pv entry for this mapping to the
 2512          * 4mpage's pv list.  Aside from avoiding the cost of a call
 2513          * to get_pv_entry(), a transfer avoids the possibility that
 2514          * get_pv_entry() calls pmap_collect() and that pmap_collect()
 2515          * removes one of the mappings that is being promoted.
 2516          */
 2517         m = PHYS_TO_VM_PAGE(pa);
 2518         va = trunc_4mpage(va);
 2519         pv = pmap_pvh_remove(&m->md, pmap, va);
 2520         KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 2521         pvh = pa_to_pvh(pa);
 2522         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2523         /* Free the remaining NPTEPG - 1 pv entries. */
 2524         va_last = va + NBPDR - PAGE_SIZE;
 2525         do {
 2526                 m++;
 2527                 va += PAGE_SIZE;
 2528                 pmap_pvh_free(&m->md, pmap, va);
 2529         } while (va < va_last);
 2530 }
 2531 
 2532 static void
 2533 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2534 {
 2535         pv_entry_t pv;
 2536 
 2537         pv = pmap_pvh_remove(pvh, pmap, va);
 2538         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2539         free_pv_entry(pmap, pv);
 2540 }
 2541 
 2542 static void
 2543 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2544 {
 2545         struct md_page *pvh;
 2546 
 2547         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2548         pmap_pvh_free(&m->md, pmap, va);
 2549         if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
 2550                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2551                 if (TAILQ_EMPTY(&pvh->pv_list))
 2552                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2553         }
 2554 }
 2555 
 2556 /*
 2557  * Create a pv entry for page at pa for
 2558  * (pmap, va).
 2559  */
 2560 static void
 2561 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2562 {
 2563         pv_entry_t pv;
 2564 
 2565         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2566         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2567         pv = get_pv_entry(pmap, FALSE);
 2568         pv->pv_va = va;
 2569         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2570 }
 2571 
 2572 /*
 2573  * Conditionally create a pv entry.
 2574  */
 2575 static boolean_t
 2576 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2577 {
 2578         pv_entry_t pv;
 2579 
 2580         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2581         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2582         if (pv_entry_count < pv_entry_high_water && 
 2583             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2584                 pv->pv_va = va;
 2585                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2586                 return (TRUE);
 2587         } else
 2588                 return (FALSE);
 2589 }
 2590 
 2591 /*
 2592  * Create the pv entries for each of the pages within a superpage.
 2593  */
 2594 static boolean_t
 2595 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2596 {
 2597         struct md_page *pvh;
 2598         pv_entry_t pv;
 2599 
 2600         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2601         if (pv_entry_count < pv_entry_high_water && 
 2602             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2603                 pv->pv_va = va;
 2604                 pvh = pa_to_pvh(pa);
 2605                 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2606                 return (TRUE);
 2607         } else
 2608                 return (FALSE);
 2609 }
 2610 
 2611 /*
 2612  * Fills a page table page with mappings to consecutive physical pages.
 2613  */
 2614 static void
 2615 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 2616 {
 2617         pt_entry_t *pte;
 2618 
 2619         for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 2620                 *pte = newpte;  
 2621                 newpte += PAGE_SIZE;
 2622         }
 2623 }
 2624 
 2625 /*
 2626  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
 2627  * 2- or 4MB page mapping is invalidated.
 2628  */
 2629 static boolean_t
 2630 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2631 {
 2632         pd_entry_t newpde, oldpde;
 2633         pt_entry_t *firstpte, newpte;
 2634         vm_paddr_t mptepa;
 2635         vm_page_t mpte;
 2636         struct spglist free;
 2637 
 2638         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2639         oldpde = *pde;
 2640         KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 2641             ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 2642         if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
 2643             NULL)
 2644                 pmap_remove_pt_page(pmap, mpte);
 2645         else {
 2646                 KASSERT((oldpde & PG_W) == 0,
 2647                     ("pmap_demote_pde: page table page for a wired mapping"
 2648                     " is missing"));
 2649 
 2650                 /*
 2651                  * Invalidate the 2- or 4MB page mapping and return
 2652                  * "failure" if the mapping was never accessed or the
 2653                  * allocation of the new page table page fails.
 2654                  */
 2655                 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 2656                     va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
 2657                     VM_ALLOC_WIRED)) == NULL) {
 2658                         SLIST_INIT(&free);
 2659                         pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
 2660                         pmap_invalidate_page(pmap, trunc_4mpage(va));
 2661                         pmap_free_zero_pages(&free);
 2662                         CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
 2663                             " in pmap %p", va, pmap);
 2664                         return (FALSE);
 2665                 }
 2666                 if (va < VM_MAXUSER_ADDRESS)
 2667                         pmap->pm_stats.resident_count++;
 2668         }
 2669         mptepa = VM_PAGE_TO_PHYS(mpte);
 2670 
 2671         /*
 2672          * If the page mapping is in the kernel's address space, then the
 2673          * KPTmap can provide access to the page table page.  Otherwise,
 2674          * temporarily map the page table page (mpte) into the kernel's
 2675          * address space at either PADDR1 or PADDR2. 
 2676          */
 2677         if (va >= KERNBASE)
 2678                 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
 2679         else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
 2680                 if ((*PMAP1 & PG_FRAME) != mptepa) {
 2681                         *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2682 #ifdef SMP
 2683                         PMAP1cpu = PCPU_GET(cpuid);
 2684 #endif
 2685                         invlcaddr(PADDR1);
 2686                         PMAP1changed++;
 2687                 } else
 2688 #ifdef SMP
 2689                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 2690                         PMAP1cpu = PCPU_GET(cpuid);
 2691                         invlcaddr(PADDR1);
 2692                         PMAP1changedcpu++;
 2693                 } else
 2694 #endif
 2695                         PMAP1unchanged++;
 2696                 firstpte = PADDR1;
 2697         } else {
 2698                 mtx_lock(&PMAP2mutex);
 2699                 if ((*PMAP2 & PG_FRAME) != mptepa) {
 2700                         *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2701                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 2702                 }
 2703                 firstpte = PADDR2;
 2704         }
 2705         newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 2706         KASSERT((oldpde & PG_A) != 0,
 2707             ("pmap_demote_pde: oldpde is missing PG_A"));
 2708         KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 2709             ("pmap_demote_pde: oldpde is missing PG_M"));
 2710         newpte = oldpde & ~PG_PS;
 2711         if ((newpte & PG_PDE_PAT) != 0)
 2712                 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
 2713 
 2714         /*
 2715          * If the page table page is new, initialize it.
 2716          */
 2717         if (mpte->wire_count == 1) {
 2718                 mpte->wire_count = NPTEPG;
 2719                 pmap_fill_ptp(firstpte, newpte);
 2720         }
 2721         KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 2722             ("pmap_demote_pde: firstpte and newpte map different physical"
 2723             " addresses"));
 2724 
 2725         /*
 2726          * If the mapping has changed attributes, update the page table
 2727          * entries.
 2728          */ 
 2729         if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 2730                 pmap_fill_ptp(firstpte, newpte);
 2731         
 2732         /*
 2733          * Demote the mapping.  This pmap is locked.  The old PDE has
 2734          * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 2735          * set.  Thus, there is no danger of a race with another
 2736          * processor changing the setting of PG_A and/or PG_M between
 2737          * the read above and the store below. 
 2738          */
 2739         if (workaround_erratum383)
 2740                 pmap_update_pde(pmap, va, pde, newpde);
 2741         else if (pmap == kernel_pmap)
 2742                 pmap_kenter_pde(va, newpde);
 2743         else
 2744                 pde_store(pde, newpde); 
 2745         if (firstpte == PADDR2)
 2746                 mtx_unlock(&PMAP2mutex);
 2747 
 2748         /*
 2749          * Invalidate the recursive mapping of the page table page.
 2750          */
 2751         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2752 
 2753         /*
 2754          * Demote the pv entry.  This depends on the earlier demotion
 2755          * of the mapping.  Specifically, the (re)creation of a per-
 2756          * page pv entry might trigger the execution of pmap_collect(),
 2757          * which might reclaim a newly (re)created per-page pv entry
 2758          * and destroy the associated mapping.  In order to destroy
 2759          * the mapping, the PDE must have already changed from mapping
 2760          * the 2mpage to referencing the page table page.
 2761          */
 2762         if ((oldpde & PG_MANAGED) != 0)
 2763                 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
 2764 
 2765         pmap_pde_demotions++;
 2766         CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
 2767             " in pmap %p", va, pmap);
 2768         return (TRUE);
 2769 }
 2770 
 2771 /*
 2772  * Removes a 2- or 4MB page mapping from the kernel pmap.
 2773  */
 2774 static void
 2775 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2776 {
 2777         pd_entry_t newpde;
 2778         vm_paddr_t mptepa;
 2779         vm_page_t mpte;
 2780 
 2781         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2782         mpte = pmap_lookup_pt_page(pmap, va);
 2783         if (mpte == NULL)
 2784                 panic("pmap_remove_kernel_pde: Missing pt page.");
 2785 
 2786         pmap_remove_pt_page(pmap, mpte);
 2787         mptepa = VM_PAGE_TO_PHYS(mpte);
 2788         newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
 2789 
 2790         /*
 2791          * Initialize the page table page.
 2792          */
 2793         pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
 2794 
 2795         /*
 2796          * Remove the mapping.
 2797          */
 2798         if (workaround_erratum383)
 2799                 pmap_update_pde(pmap, va, pde, newpde);
 2800         else 
 2801                 pmap_kenter_pde(va, newpde);
 2802 
 2803         /*
 2804          * Invalidate the recursive mapping of the page table page.
 2805          */
 2806         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2807 }
 2808 
 2809 /*
 2810  * pmap_remove_pde: do the things to unmap a superpage in a process
 2811  */
 2812 static void
 2813 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
 2814     struct spglist *free)
 2815 {
 2816         struct md_page *pvh;
 2817         pd_entry_t oldpde;
 2818         vm_offset_t eva, va;
 2819         vm_page_t m, mpte;
 2820 
 2821         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2822         KASSERT((sva & PDRMASK) == 0,
 2823             ("pmap_remove_pde: sva is not 4mpage aligned"));
 2824         oldpde = pte_load_clear(pdq);
 2825         if (oldpde & PG_W)
 2826                 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 2827 
 2828         /*
 2829          * Machines that don't support invlpg, also don't support
 2830          * PG_G.
 2831          */
 2832         if (oldpde & PG_G)
 2833                 pmap_invalidate_page(kernel_pmap, sva);
 2834         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2835         if (oldpde & PG_MANAGED) {
 2836                 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 2837                 pmap_pvh_free(pvh, pmap, sva);
 2838                 eva = sva + NBPDR;
 2839                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 2840                     va < eva; va += PAGE_SIZE, m++) {
 2841                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2842                                 vm_page_dirty(m);
 2843                         if (oldpde & PG_A)
 2844                                 vm_page_aflag_set(m, PGA_REFERENCED);
 2845                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 2846                             TAILQ_EMPTY(&pvh->pv_list))
 2847                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2848                 }
 2849         }
 2850         if (pmap == kernel_pmap) {
 2851                 pmap_remove_kernel_pde(pmap, pdq, sva);
 2852         } else {
 2853                 mpte = pmap_lookup_pt_page(pmap, sva);
 2854                 if (mpte != NULL) {
 2855                         pmap_remove_pt_page(pmap, mpte);
 2856                         pmap->pm_stats.resident_count--;
 2857                         KASSERT(mpte->wire_count == NPTEPG,
 2858                             ("pmap_remove_pde: pte page wire count error"));
 2859                         mpte->wire_count = 0;
 2860                         pmap_add_delayed_free_list(mpte, free, FALSE);
 2861                         atomic_subtract_int(&cnt.v_wire_count, 1);
 2862                 }
 2863         }
 2864 }
 2865 
 2866 /*
 2867  * pmap_remove_pte: do the things to unmap a page in a process
 2868  */
 2869 static int
 2870 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
 2871     struct spglist *free)
 2872 {
 2873         pt_entry_t oldpte;
 2874         vm_page_t m;
 2875 
 2876         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2877         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2878         oldpte = pte_load_clear(ptq);
 2879         KASSERT(oldpte != 0,
 2880             ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
 2881         if (oldpte & PG_W)
 2882                 pmap->pm_stats.wired_count -= 1;
 2883         /*
 2884          * Machines that don't support invlpg, also don't support
 2885          * PG_G.
 2886          */
 2887         if (oldpte & PG_G)
 2888                 pmap_invalidate_page(kernel_pmap, va);
 2889         pmap->pm_stats.resident_count -= 1;
 2890         if (oldpte & PG_MANAGED) {
 2891                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 2892                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2893                         vm_page_dirty(m);
 2894                 if (oldpte & PG_A)
 2895                         vm_page_aflag_set(m, PGA_REFERENCED);
 2896                 pmap_remove_entry(pmap, m, va);
 2897         }
 2898         return (pmap_unuse_pt(pmap, va, free));
 2899 }
 2900 
 2901 /*
 2902  * Remove a single page from a process address space
 2903  */
 2904 static void
 2905 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
 2906 {
 2907         pt_entry_t *pte;
 2908 
 2909         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2910         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2911         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2912         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2913                 return;
 2914         pmap_remove_pte(pmap, pte, va, free);
 2915         pmap_invalidate_page(pmap, va);
 2916 }
 2917 
 2918 /*
 2919  *      Remove the given range of addresses from the specified map.
 2920  *
 2921  *      It is assumed that the start and end are properly
 2922  *      rounded to the page size.
 2923  */
 2924 void
 2925 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2926 {
 2927         vm_offset_t pdnxt;
 2928         pd_entry_t ptpaddr;
 2929         pt_entry_t *pte;
 2930         struct spglist free;
 2931         int anyvalid;
 2932 
 2933         /*
 2934          * Perform an unsynchronized read.  This is, however, safe.
 2935          */
 2936         if (pmap->pm_stats.resident_count == 0)
 2937                 return;
 2938 
 2939         anyvalid = 0;
 2940         SLIST_INIT(&free);
 2941 
 2942         rw_wlock(&pvh_global_lock);
 2943         sched_pin();
 2944         PMAP_LOCK(pmap);
 2945 
 2946         /*
 2947          * special handling of removing one page.  a very
 2948          * common operation and easy to short circuit some
 2949          * code.
 2950          */
 2951         if ((sva + PAGE_SIZE == eva) && 
 2952             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2953                 pmap_remove_page(pmap, sva, &free);
 2954                 goto out;
 2955         }
 2956 
 2957         for (; sva < eva; sva = pdnxt) {
 2958                 u_int pdirindex;
 2959 
 2960                 /*
 2961                  * Calculate index for next page table.
 2962                  */
 2963                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2964                 if (pdnxt < sva)
 2965                         pdnxt = eva;
 2966                 if (pmap->pm_stats.resident_count == 0)
 2967                         break;
 2968 
 2969                 pdirindex = sva >> PDRSHIFT;
 2970                 ptpaddr = pmap->pm_pdir[pdirindex];
 2971 
 2972                 /*
 2973                  * Weed out invalid mappings. Note: we assume that the page
 2974                  * directory table is always allocated, and in kernel virtual.
 2975                  */
 2976                 if (ptpaddr == 0)
 2977                         continue;
 2978 
 2979                 /*
 2980                  * Check for large page.
 2981                  */
 2982                 if ((ptpaddr & PG_PS) != 0) {
 2983                         /*
 2984                          * Are we removing the entire large page?  If not,
 2985                          * demote the mapping and fall through.
 2986                          */
 2987                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 2988                                 /*
 2989                                  * The TLB entry for a PG_G mapping is
 2990                                  * invalidated by pmap_remove_pde().
 2991                                  */
 2992                                 if ((ptpaddr & PG_G) == 0)
 2993                                         anyvalid = 1;
 2994                                 pmap_remove_pde(pmap,
 2995                                     &pmap->pm_pdir[pdirindex], sva, &free);
 2996                                 continue;
 2997                         } else if (!pmap_demote_pde(pmap,
 2998                             &pmap->pm_pdir[pdirindex], sva)) {
 2999                                 /* The large page mapping was destroyed. */
 3000                                 continue;
 3001                         }
 3002                 }
 3003 
 3004                 /*
 3005                  * Limit our scan to either the end of the va represented
 3006                  * by the current page table page, or to the end of the
 3007                  * range being removed.
 3008                  */
 3009                 if (pdnxt > eva)
 3010                         pdnxt = eva;
 3011 
 3012                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3013                     sva += PAGE_SIZE) {
 3014                         if (*pte == 0)
 3015                                 continue;
 3016 
 3017                         /*
 3018                          * The TLB entry for a PG_G mapping is invalidated
 3019                          * by pmap_remove_pte().
 3020                          */
 3021                         if ((*pte & PG_G) == 0)
 3022                                 anyvalid = 1;
 3023                         if (pmap_remove_pte(pmap, pte, sva, &free))
 3024                                 break;
 3025                 }
 3026         }
 3027 out:
 3028         sched_unpin();
 3029         if (anyvalid)
 3030                 pmap_invalidate_all(pmap);
 3031         rw_wunlock(&pvh_global_lock);
 3032         PMAP_UNLOCK(pmap);
 3033         pmap_free_zero_pages(&free);
 3034 }
 3035 
 3036 /*
 3037  *      Routine:        pmap_remove_all
 3038  *      Function:
 3039  *              Removes this physical page from
 3040  *              all physical maps in which it resides.
 3041  *              Reflects back modify bits to the pager.
 3042  *
 3043  *      Notes:
 3044  *              Original versions of this routine were very
 3045  *              inefficient because they iteratively called
 3046  *              pmap_remove (slow...)
 3047  */
 3048 
 3049 void
 3050 pmap_remove_all(vm_page_t m)
 3051 {
 3052         struct md_page *pvh;
 3053         pv_entry_t pv;
 3054         pmap_t pmap;
 3055         pt_entry_t *pte, tpte;
 3056         pd_entry_t *pde;
 3057         vm_offset_t va;
 3058         struct spglist free;
 3059 
 3060         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3061             ("pmap_remove_all: page %p is not managed", m));
 3062         SLIST_INIT(&free);
 3063         rw_wlock(&pvh_global_lock);
 3064         sched_pin();
 3065         if ((m->flags & PG_FICTITIOUS) != 0)
 3066                 goto small_mappings;
 3067         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 3068         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 3069                 va = pv->pv_va;
 3070                 pmap = PV_PMAP(pv);
 3071                 PMAP_LOCK(pmap);
 3072                 pde = pmap_pde(pmap, va);
 3073                 (void)pmap_demote_pde(pmap, pde, va);
 3074                 PMAP_UNLOCK(pmap);
 3075         }
 3076 small_mappings:
 3077         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3078                 pmap = PV_PMAP(pv);
 3079                 PMAP_LOCK(pmap);
 3080                 pmap->pm_stats.resident_count--;
 3081                 pde = pmap_pde(pmap, pv->pv_va);
 3082                 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 3083                     " a 4mpage in page %p's pv list", m));
 3084                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3085                 tpte = pte_load_clear(pte);
 3086                 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
 3087                     pmap, pv->pv_va));
 3088                 if (tpte & PG_W)
 3089                         pmap->pm_stats.wired_count--;
 3090                 if (tpte & PG_A)
 3091                         vm_page_aflag_set(m, PGA_REFERENCED);
 3092 
 3093                 /*
 3094                  * Update the vm_page_t clean and reference bits.
 3095                  */
 3096                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3097                         vm_page_dirty(m);
 3098                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3099                 pmap_invalidate_page(pmap, pv->pv_va);
 3100                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 3101                 free_pv_entry(pmap, pv);
 3102                 PMAP_UNLOCK(pmap);
 3103         }
 3104         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3105         sched_unpin();
 3106         rw_wunlock(&pvh_global_lock);
 3107         pmap_free_zero_pages(&free);
 3108 }
 3109 
 3110 /*
 3111  * pmap_protect_pde: do the things to protect a 4mpage in a process
 3112  */
 3113 static boolean_t
 3114 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 3115 {
 3116         pd_entry_t newpde, oldpde;
 3117         vm_offset_t eva, va;
 3118         vm_page_t m;
 3119         boolean_t anychanged;
 3120 
 3121         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3122         KASSERT((sva & PDRMASK) == 0,
 3123             ("pmap_protect_pde: sva is not 4mpage aligned"));
 3124         anychanged = FALSE;
 3125 retry:
 3126         oldpde = newpde = *pde;
 3127         if (oldpde & PG_MANAGED) {
 3128                 eva = sva + NBPDR;
 3129                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 3130                     va < eva; va += PAGE_SIZE, m++)
 3131                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3132                                 vm_page_dirty(m);
 3133         }
 3134         if ((prot & VM_PROT_WRITE) == 0)
 3135                 newpde &= ~(PG_RW | PG_M);
 3136 #ifdef PAE
 3137         if ((prot & VM_PROT_EXECUTE) == 0)
 3138                 newpde |= pg_nx;
 3139 #endif
 3140         if (newpde != oldpde) {
 3141                 if (!pde_cmpset(pde, oldpde, newpde))
 3142                         goto retry;
 3143                 if (oldpde & PG_G)
 3144                         pmap_invalidate_page(pmap, sva);
 3145                 else
 3146                         anychanged = TRUE;
 3147         }
 3148         return (anychanged);
 3149 }
 3150 
 3151 /*
 3152  *      Set the physical protection on the
 3153  *      specified range of this map as requested.
 3154  */
 3155 void
 3156 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3157 {
 3158         vm_offset_t pdnxt;
 3159         pd_entry_t ptpaddr;
 3160         pt_entry_t *pte;
 3161         boolean_t anychanged, pv_lists_locked;
 3162 
 3163         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 3164                 pmap_remove(pmap, sva, eva);
 3165                 return;
 3166         }
 3167 
 3168 #ifdef PAE
 3169         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 3170             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 3171                 return;
 3172 #else
 3173         if (prot & VM_PROT_WRITE)
 3174                 return;
 3175 #endif
 3176 
 3177         if (pmap_is_current(pmap))
 3178                 pv_lists_locked = FALSE;
 3179         else {
 3180                 pv_lists_locked = TRUE;
 3181 resume:
 3182                 rw_wlock(&pvh_global_lock);
 3183                 sched_pin();
 3184         }
 3185         anychanged = FALSE;
 3186 
 3187         PMAP_LOCK(pmap);
 3188         for (; sva < eva; sva = pdnxt) {
 3189                 pt_entry_t obits, pbits;
 3190                 u_int pdirindex;
 3191 
 3192                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3193                 if (pdnxt < sva)
 3194                         pdnxt = eva;
 3195 
 3196                 pdirindex = sva >> PDRSHIFT;
 3197                 ptpaddr = pmap->pm_pdir[pdirindex];
 3198 
 3199                 /*
 3200                  * Weed out invalid mappings. Note: we assume that the page
 3201                  * directory table is always allocated, and in kernel virtual.
 3202                  */
 3203                 if (ptpaddr == 0)
 3204                         continue;
 3205 
 3206                 /*
 3207                  * Check for large page.
 3208                  */
 3209                 if ((ptpaddr & PG_PS) != 0) {
 3210                         /*
 3211                          * Are we protecting the entire large page?  If not,
 3212                          * demote the mapping and fall through.
 3213                          */
 3214                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3215                                 /*
 3216                                  * The TLB entry for a PG_G mapping is
 3217                                  * invalidated by pmap_protect_pde().
 3218                                  */
 3219                                 if (pmap_protect_pde(pmap,
 3220                                     &pmap->pm_pdir[pdirindex], sva, prot))
 3221                                         anychanged = TRUE;
 3222                                 continue;
 3223                         } else {
 3224                                 if (!pv_lists_locked) {
 3225                                         pv_lists_locked = TRUE;
 3226                                         if (!rw_try_wlock(&pvh_global_lock)) {
 3227                                                 if (anychanged)
 3228                                                         pmap_invalidate_all(
 3229                                                             pmap);
 3230                                                 PMAP_UNLOCK(pmap);
 3231                                                 goto resume;
 3232                                         }
 3233                                         sched_pin();
 3234                                 }
 3235                                 if (!pmap_demote_pde(pmap,
 3236                                     &pmap->pm_pdir[pdirindex], sva)) {
 3237                                         /*
 3238                                          * The large page mapping was
 3239                                          * destroyed.
 3240                                          */
 3241                                         continue;
 3242                                 }
 3243                         }
 3244                 }
 3245 
 3246                 if (pdnxt > eva)
 3247                         pdnxt = eva;
 3248 
 3249                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3250                     sva += PAGE_SIZE) {
 3251                         vm_page_t m;
 3252 
 3253 retry:
 3254                         /*
 3255                          * Regardless of whether a pte is 32 or 64 bits in
 3256                          * size, PG_RW, PG_A, and PG_M are among the least
 3257                          * significant 32 bits.
 3258                          */
 3259                         obits = pbits = *pte;
 3260                         if ((pbits & PG_V) == 0)
 3261                                 continue;
 3262 
 3263                         if ((prot & VM_PROT_WRITE) == 0) {
 3264                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 3265                                     (PG_MANAGED | PG_M | PG_RW)) {
 3266                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3267                                         vm_page_dirty(m);
 3268                                 }
 3269                                 pbits &= ~(PG_RW | PG_M);
 3270                         }
 3271 #ifdef PAE
 3272                         if ((prot & VM_PROT_EXECUTE) == 0)
 3273                                 pbits |= pg_nx;
 3274 #endif
 3275 
 3276                         if (pbits != obits) {
 3277 #ifdef PAE
 3278                                 if (!atomic_cmpset_64(pte, obits, pbits))
 3279                                         goto retry;
 3280 #else
 3281                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 3282                                     pbits))
 3283                                         goto retry;
 3284 #endif
 3285                                 if (obits & PG_G)
 3286                                         pmap_invalidate_page(pmap, sva);
 3287                                 else
 3288                                         anychanged = TRUE;
 3289                         }
 3290                 }
 3291         }
 3292         if (anychanged)
 3293                 pmap_invalidate_all(pmap);
 3294         if (pv_lists_locked) {
 3295                 sched_unpin();
 3296                 rw_wunlock(&pvh_global_lock);
 3297         }
 3298         PMAP_UNLOCK(pmap);
 3299 }
 3300 
 3301 /*
 3302  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
 3303  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
 3304  * For promotion to occur, two conditions must be met: (1) the 4KB page
 3305  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
 3306  * mappings must have identical characteristics.
 3307  *
 3308  * Managed (PG_MANAGED) mappings within the kernel address space are not
 3309  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
 3310  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
 3311  * pmap.
 3312  */
 3313 static void
 3314 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 3315 {
 3316         pd_entry_t newpde;
 3317         pt_entry_t *firstpte, oldpte, pa, *pte;
 3318         vm_offset_t oldpteva;
 3319         vm_page_t mpte;
 3320 
 3321         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3322 
 3323         /*
 3324          * Examine the first PTE in the specified PTP.  Abort if this PTE is
 3325          * either invalid, unused, or does not map the first 4KB physical page
 3326          * within a 2- or 4MB page.
 3327          */
 3328         firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
 3329 setpde:
 3330         newpde = *firstpte;
 3331         if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 3332                 pmap_pde_p_failures++;
 3333                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3334                     " in pmap %p", va, pmap);
 3335                 return;
 3336         }
 3337         if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
 3338                 pmap_pde_p_failures++;
 3339                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3340                     " in pmap %p", va, pmap);
 3341                 return;
 3342         }
 3343         if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 3344                 /*
 3345                  * When PG_M is already clear, PG_RW can be cleared without
 3346                  * a TLB invalidation.
 3347                  */
 3348                 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
 3349                     ~PG_RW))  
 3350                         goto setpde;
 3351                 newpde &= ~PG_RW;
 3352         }
 3353 
 3354         /* 
 3355          * Examine each of the other PTEs in the specified PTP.  Abort if this
 3356          * PTE maps an unexpected 4KB physical page or does not have identical
 3357          * characteristics to the first PTE.
 3358          */
 3359         pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 3360         for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 3361 setpte:
 3362                 oldpte = *pte;
 3363                 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 3364                         pmap_pde_p_failures++;
 3365                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3366                             " in pmap %p", va, pmap);
 3367                         return;
 3368                 }
 3369                 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 3370                         /*
 3371                          * When PG_M is already clear, PG_RW can be cleared
 3372                          * without a TLB invalidation.
 3373                          */
 3374                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3375                             oldpte & ~PG_RW))
 3376                                 goto setpte;
 3377                         oldpte &= ~PG_RW;
 3378                         oldpteva = (oldpte & PG_FRAME & PDRMASK) |
 3379                             (va & ~PDRMASK);
 3380                         CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
 3381                             " in pmap %p", oldpteva, pmap);
 3382                 }
 3383                 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 3384                         pmap_pde_p_failures++;
 3385                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3386                             " in pmap %p", va, pmap);
 3387                         return;
 3388                 }
 3389                 pa -= PAGE_SIZE;
 3390         }
 3391 
 3392         /*
 3393          * Save the page table page in its current state until the PDE
 3394          * mapping the superpage is demoted by pmap_demote_pde() or
 3395          * destroyed by pmap_remove_pde(). 
 3396          */
 3397         mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 3398         KASSERT(mpte >= vm_page_array &&
 3399             mpte < &vm_page_array[vm_page_array_size],
 3400             ("pmap_promote_pde: page table page is out of range"));
 3401         KASSERT(mpte->pindex == va >> PDRSHIFT,
 3402             ("pmap_promote_pde: page table page's pindex is wrong"));
 3403         if (pmap_insert_pt_page(pmap, mpte)) {
 3404                 pmap_pde_p_failures++;
 3405                 CTR2(KTR_PMAP,
 3406                     "pmap_promote_pde: failure for va %#x in pmap %p", va,
 3407                     pmap);
 3408                 return;
 3409         }
 3410 
 3411         /*
 3412          * Promote the pv entries.
 3413          */
 3414         if ((newpde & PG_MANAGED) != 0)
 3415                 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
 3416 
 3417         /*
 3418          * Propagate the PAT index to its proper position.
 3419          */
 3420         if ((newpde & PG_PTE_PAT) != 0)
 3421                 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
 3422 
 3423         /*
 3424          * Map the superpage.
 3425          */
 3426         if (workaround_erratum383)
 3427                 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 3428         else if (pmap == kernel_pmap)
 3429                 pmap_kenter_pde(va, PG_PS | newpde);
 3430         else
 3431                 pde_store(pde, PG_PS | newpde);
 3432 
 3433         pmap_pde_promotions++;
 3434         CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
 3435             " in pmap %p", va, pmap);
 3436 }
 3437 
 3438 /*
 3439  *      Insert the given physical page (p) at
 3440  *      the specified virtual address (v) in the
 3441  *      target physical map with the protection requested.
 3442  *
 3443  *      If specified, the page will be wired down, meaning
 3444  *      that the related pte can not be reclaimed.
 3445  *
 3446  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3447  *      or lose information.  That is, this routine must actually
 3448  *      insert this page into the given map NOW.
 3449  */
 3450 void
 3451 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 3452     vm_prot_t prot, boolean_t wired)
 3453 {
 3454         pd_entry_t *pde;
 3455         pt_entry_t *pte;
 3456         pt_entry_t newpte, origpte;
 3457         pv_entry_t pv;
 3458         vm_paddr_t opa, pa;
 3459         vm_page_t mpte, om;
 3460         boolean_t invlva;
 3461 
 3462         va = trunc_page(va);
 3463         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 3464         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 3465             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 3466             va));
 3467         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 3468                 VM_OBJECT_ASSERT_WLOCKED(m->object);
 3469 
 3470         mpte = NULL;
 3471 
 3472         rw_wlock(&pvh_global_lock);
 3473         PMAP_LOCK(pmap);
 3474         sched_pin();
 3475 
 3476         /*
 3477          * In the case that a page table page is not
 3478          * resident, we are creating it here.
 3479          */
 3480         if (va < VM_MAXUSER_ADDRESS) {
 3481                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 3482         }
 3483 
 3484         pde = pmap_pde(pmap, va);
 3485         if ((*pde & PG_PS) != 0)
 3486                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 3487         pte = pmap_pte_quick(pmap, va);
 3488 
 3489         /*
 3490          * Page Directory table entry not valid, we need a new PT page
 3491          */
 3492         if (pte == NULL) {
 3493                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 3494                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 3495         }
 3496 
 3497         pa = VM_PAGE_TO_PHYS(m);
 3498         om = NULL;
 3499         origpte = *pte;
 3500         opa = origpte & PG_FRAME;
 3501 
 3502         /*
 3503          * Mapping has not changed, must be protection or wiring change.
 3504          */
 3505         if (origpte && (opa == pa)) {
 3506                 /*
 3507                  * Wiring change, just update stats. We don't worry about
 3508                  * wiring PT pages as they remain resident as long as there
 3509                  * are valid mappings in them. Hence, if a user page is wired,
 3510                  * the PT page will be also.
 3511                  */
 3512                 if (wired && ((origpte & PG_W) == 0))
 3513                         pmap->pm_stats.wired_count++;
 3514                 else if (!wired && (origpte & PG_W))
 3515                         pmap->pm_stats.wired_count--;
 3516 
 3517                 /*
 3518                  * Remove extra pte reference
 3519                  */
 3520                 if (mpte)
 3521                         mpte->wire_count--;
 3522 
 3523                 if (origpte & PG_MANAGED) {
 3524                         om = m;
 3525                         pa |= PG_MANAGED;
 3526                 }
 3527                 goto validate;
 3528         } 
 3529 
 3530         pv = NULL;
 3531 
 3532         /*
 3533          * Mapping has changed, invalidate old range and fall through to
 3534          * handle validating new mapping.
 3535          */
 3536         if (opa) {
 3537                 if (origpte & PG_W)
 3538                         pmap->pm_stats.wired_count--;
 3539                 if (origpte & PG_MANAGED) {
 3540                         om = PHYS_TO_VM_PAGE(opa);
 3541                         pv = pmap_pvh_remove(&om->md, pmap, va);
 3542                 }
 3543                 if (mpte != NULL) {
 3544                         mpte->wire_count--;
 3545                         KASSERT(mpte->wire_count > 0,
 3546                             ("pmap_enter: missing reference to page table page,"
 3547                              " va: 0x%x", va));
 3548                 }
 3549         } else
 3550                 pmap->pm_stats.resident_count++;
 3551 
 3552         /*
 3553          * Enter on the PV list if part of our managed memory.
 3554          */
 3555         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3556                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3557                     ("pmap_enter: managed mapping within the clean submap"));
 3558                 if (pv == NULL)
 3559                         pv = get_pv_entry(pmap, FALSE);
 3560                 pv->pv_va = va;
 3561                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 3562                 pa |= PG_MANAGED;
 3563         } else if (pv != NULL)
 3564                 free_pv_entry(pmap, pv);
 3565 
 3566         /*
 3567          * Increment counters
 3568          */
 3569         if (wired)
 3570                 pmap->pm_stats.wired_count++;
 3571 
 3572 validate:
 3573         /*
 3574          * Now validate mapping with desired protection/wiring.
 3575          */
 3576         newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
 3577         if ((prot & VM_PROT_WRITE) != 0) {
 3578                 newpte |= PG_RW;
 3579                 if ((newpte & PG_MANAGED) != 0)
 3580                         vm_page_aflag_set(m, PGA_WRITEABLE);
 3581         }
 3582 #ifdef PAE
 3583         if ((prot & VM_PROT_EXECUTE) == 0)
 3584                 newpte |= pg_nx;
 3585 #endif
 3586         if (wired)
 3587                 newpte |= PG_W;
 3588         if (va < VM_MAXUSER_ADDRESS)
 3589                 newpte |= PG_U;
 3590         if (pmap == kernel_pmap)
 3591                 newpte |= pgeflag;
 3592 
 3593         /*
 3594          * if the mapping or permission bits are different, we need
 3595          * to update the pte.
 3596          */
 3597         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 3598                 newpte |= PG_A;
 3599                 if ((access & VM_PROT_WRITE) != 0)
 3600                         newpte |= PG_M;
 3601                 if (origpte & PG_V) {
 3602                         invlva = FALSE;
 3603                         origpte = pte_load_store(pte, newpte);
 3604                         if (origpte & PG_A) {
 3605                                 if (origpte & PG_MANAGED)
 3606                                         vm_page_aflag_set(om, PGA_REFERENCED);
 3607                                 if (opa != VM_PAGE_TO_PHYS(m))
 3608                                         invlva = TRUE;
 3609 #ifdef PAE
 3610                                 if ((origpte & PG_NX) == 0 &&
 3611                                     (newpte & PG_NX) != 0)
 3612                                         invlva = TRUE;
 3613 #endif
 3614                         }
 3615                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3616                                 if ((origpte & PG_MANAGED) != 0)
 3617                                         vm_page_dirty(om);
 3618                                 if ((prot & VM_PROT_WRITE) == 0)
 3619                                         invlva = TRUE;
 3620                         }
 3621                         if ((origpte & PG_MANAGED) != 0 &&
 3622                             TAILQ_EMPTY(&om->md.pv_list) &&
 3623                             ((om->flags & PG_FICTITIOUS) != 0 ||
 3624                             TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 3625                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 3626                         if (invlva)
 3627                                 pmap_invalidate_page(pmap, va);
 3628                 } else
 3629                         pte_store(pte, newpte);
 3630         }
 3631 
 3632         /*
 3633          * If both the page table page and the reservation are fully
 3634          * populated, then attempt promotion.
 3635          */
 3636         if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 3637             pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
 3638             vm_reserv_level_iffullpop(m) == 0)
 3639                 pmap_promote_pde(pmap, pde, va);
 3640 
 3641         sched_unpin();
 3642         rw_wunlock(&pvh_global_lock);
 3643         PMAP_UNLOCK(pmap);
 3644 }
 3645 
 3646 /*
 3647  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
 3648  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
 3649  * blocking, (2) a mapping already exists at the specified virtual address, or
 3650  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
 3651  */
 3652 static boolean_t
 3653 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3654 {
 3655         pd_entry_t *pde, newpde;
 3656 
 3657         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3658         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3659         pde = pmap_pde(pmap, va);
 3660         if (*pde != 0) {
 3661                 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3662                     " in pmap %p", va, pmap);
 3663                 return (FALSE);
 3664         }
 3665         newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
 3666             PG_PS | PG_V;
 3667         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3668                 newpde |= PG_MANAGED;
 3669 
 3670                 /*
 3671                  * Abort this mapping if its PV entry could not be created.
 3672                  */
 3673                 if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
 3674                         CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3675                             " in pmap %p", va, pmap);
 3676                         return (FALSE);
 3677                 }
 3678         }
 3679 #ifdef PAE
 3680         if ((prot & VM_PROT_EXECUTE) == 0)
 3681                 newpde |= pg_nx;
 3682 #endif
 3683         if (va < VM_MAXUSER_ADDRESS)
 3684                 newpde |= PG_U;
 3685 
 3686         /*
 3687          * Increment counters.
 3688          */
 3689         pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 3690 
 3691         /*
 3692          * Map the superpage.
 3693          */
 3694         pde_store(pde, newpde);
 3695 
 3696         pmap_pde_mappings++;
 3697         CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 3698             " in pmap %p", va, pmap);
 3699         return (TRUE);
 3700 }
 3701 
 3702 /*
 3703  * Maps a sequence of resident pages belonging to the same object.
 3704  * The sequence begins with the given page m_start.  This page is
 3705  * mapped at the given virtual address start.  Each subsequent page is
 3706  * mapped at a virtual address that is offset from start by the same
 3707  * amount as the page is offset from m_start within the object.  The
 3708  * last page in the sequence is the page with the largest offset from
 3709  * m_start that can be mapped at a virtual address less than the given
 3710  * virtual address end.  Not every virtual page between start and end
 3711  * is mapped; only those for which a resident page exists with the
 3712  * corresponding offset from m_start are mapped.
 3713  */
 3714 void
 3715 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3716     vm_page_t m_start, vm_prot_t prot)
 3717 {
 3718         vm_offset_t va;
 3719         vm_page_t m, mpte;
 3720         vm_pindex_t diff, psize;
 3721 
 3722         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 3723 
 3724         psize = atop(end - start);
 3725         mpte = NULL;
 3726         m = m_start;
 3727         rw_wlock(&pvh_global_lock);
 3728         PMAP_LOCK(pmap);
 3729         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3730                 va = start + ptoa(diff);
 3731                 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 3732                     (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
 3733                     pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
 3734                     pmap_enter_pde(pmap, va, m, prot))
 3735                         m = &m[NBPDR / PAGE_SIZE - 1];
 3736                 else
 3737                         mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 3738                             mpte);
 3739                 m = TAILQ_NEXT(m, listq);
 3740         }
 3741         rw_wunlock(&pvh_global_lock);
 3742         PMAP_UNLOCK(pmap);
 3743 }
 3744 
 3745 /*
 3746  * this code makes some *MAJOR* assumptions:
 3747  * 1. Current pmap & pmap exists.
 3748  * 2. Not wired.
 3749  * 3. Read access.
 3750  * 4. No page table pages.
 3751  * but is *MUCH* faster than pmap_enter...
 3752  */
 3753 
 3754 void
 3755 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3756 {
 3757 
 3758         rw_wlock(&pvh_global_lock);
 3759         PMAP_LOCK(pmap);
 3760         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 3761         rw_wunlock(&pvh_global_lock);
 3762         PMAP_UNLOCK(pmap);
 3763 }
 3764 
 3765 static vm_page_t
 3766 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 3767     vm_prot_t prot, vm_page_t mpte)
 3768 {
 3769         pt_entry_t *pte;
 3770         vm_paddr_t pa;
 3771         struct spglist free;
 3772 
 3773         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 3774             (m->oflags & VPO_UNMANAGED) != 0,
 3775             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 3776         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3777         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3778 
 3779         /*
 3780          * In the case that a page table page is not
 3781          * resident, we are creating it here.
 3782          */
 3783         if (va < VM_MAXUSER_ADDRESS) {
 3784                 u_int ptepindex;
 3785                 pd_entry_t ptepa;
 3786 
 3787                 /*
 3788                  * Calculate pagetable page index
 3789                  */
 3790                 ptepindex = va >> PDRSHIFT;
 3791                 if (mpte && (mpte->pindex == ptepindex)) {
 3792                         mpte->wire_count++;
 3793                 } else {
 3794                         /*
 3795                          * Get the page directory entry
 3796                          */
 3797                         ptepa = pmap->pm_pdir[ptepindex];
 3798 
 3799                         /*
 3800                          * If the page table page is mapped, we just increment
 3801                          * the hold count, and activate it.
 3802                          */
 3803                         if (ptepa) {
 3804                                 if (ptepa & PG_PS)
 3805                                         return (NULL);
 3806                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 3807                                 mpte->wire_count++;
 3808                         } else {
 3809                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3810                                     M_NOWAIT);
 3811                                 if (mpte == NULL)
 3812                                         return (mpte);
 3813                         }
 3814                 }
 3815         } else {
 3816                 mpte = NULL;
 3817         }
 3818 
 3819         /*
 3820          * This call to vtopte makes the assumption that we are
 3821          * entering the page into the current pmap.  In order to support
 3822          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3823          * But that isn't as quick as vtopte.
 3824          */
 3825         pte = vtopte(va);
 3826         if (*pte) {
 3827                 if (mpte != NULL) {
 3828                         mpte->wire_count--;
 3829                         mpte = NULL;
 3830                 }
 3831                 return (mpte);
 3832         }
 3833 
 3834         /*
 3835          * Enter on the PV list if part of our managed memory.
 3836          */
 3837         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 3838             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3839                 if (mpte != NULL) {
 3840                         SLIST_INIT(&free);
 3841                         if (pmap_unwire_ptp(pmap, mpte, &free)) {
 3842                                 pmap_invalidate_page(pmap, va);
 3843                                 pmap_free_zero_pages(&free);
 3844                         }
 3845                         
 3846                         mpte = NULL;
 3847                 }
 3848                 return (mpte);
 3849         }
 3850 
 3851         /*
 3852          * Increment counters
 3853          */
 3854         pmap->pm_stats.resident_count++;
 3855 
 3856         pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 3857 #ifdef PAE
 3858         if ((prot & VM_PROT_EXECUTE) == 0)
 3859                 pa |= pg_nx;
 3860 #endif
 3861 
 3862         /*
 3863          * Now validate mapping with RO protection
 3864          */
 3865         if ((m->oflags & VPO_UNMANAGED) != 0)
 3866                 pte_store(pte, pa | PG_V | PG_U);
 3867         else
 3868                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3869         return (mpte);
 3870 }
 3871 
 3872 /*
 3873  * Make a temporary mapping for a physical address.  This is only intended
 3874  * to be used for panic dumps.
 3875  */
 3876 void *
 3877 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3878 {
 3879         vm_offset_t va;
 3880 
 3881         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3882         pmap_kenter(va, pa);
 3883         invlpg(va);
 3884         return ((void *)crashdumpmap);
 3885 }
 3886 
 3887 /*
 3888  * This code maps large physical mmap regions into the
 3889  * processor address space.  Note that some shortcuts
 3890  * are taken, but the code works.
 3891  */
 3892 void
 3893 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3894     vm_pindex_t pindex, vm_size_t size)
 3895 {
 3896         pd_entry_t *pde;
 3897         vm_paddr_t pa, ptepa;
 3898         vm_page_t p;
 3899         int pat_mode;
 3900 
 3901         VM_OBJECT_ASSERT_WLOCKED(object);
 3902         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3903             ("pmap_object_init_pt: non-device object"));
 3904         if (pseflag && 
 3905             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3906                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3907                         return;
 3908                 p = vm_page_lookup(object, pindex);
 3909                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3910                     ("pmap_object_init_pt: invalid page %p", p));
 3911                 pat_mode = p->md.pat_mode;
 3912 
 3913                 /*
 3914                  * Abort the mapping if the first page is not physically
 3915                  * aligned to a 2/4MB page boundary.
 3916                  */
 3917                 ptepa = VM_PAGE_TO_PHYS(p);
 3918                 if (ptepa & (NBPDR - 1))
 3919                         return;
 3920 
 3921                 /*
 3922                  * Skip the first page.  Abort the mapping if the rest of
 3923                  * the pages are not physically contiguous or have differing
 3924                  * memory attributes.
 3925                  */
 3926                 p = TAILQ_NEXT(p, listq);
 3927                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3928                     pa += PAGE_SIZE) {
 3929                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3930                             ("pmap_object_init_pt: invalid page %p", p));
 3931                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3932                             pat_mode != p->md.pat_mode)
 3933                                 return;
 3934                         p = TAILQ_NEXT(p, listq);
 3935                 }
 3936 
 3937                 /*
 3938                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3939                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3940                  * "pa" will not affect the termination of this loop.
 3941                  */
 3942                 PMAP_LOCK(pmap);
 3943                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3944                     size; pa += NBPDR) {
 3945                         pde = pmap_pde(pmap, addr);
 3946                         if (*pde == 0) {
 3947                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3948                                     PG_U | PG_RW | PG_V);
 3949                                 pmap->pm_stats.resident_count += NBPDR /
 3950                                     PAGE_SIZE;
 3951                                 pmap_pde_mappings++;
 3952                         }
 3953                         /* Else continue on if the PDE is already valid. */
 3954                         addr += NBPDR;
 3955                 }
 3956                 PMAP_UNLOCK(pmap);
 3957         }
 3958 }
 3959 
 3960 /*
 3961  *      Routine:        pmap_change_wiring
 3962  *      Function:       Change the wiring attribute for a map/virtual-address
 3963  *                      pair.
 3964  *      In/out conditions:
 3965  *                      The mapping must already exist in the pmap.
 3966  */
 3967 void
 3968 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 3969 {
 3970         pd_entry_t *pde;
 3971         pt_entry_t *pte;
 3972         boolean_t are_queues_locked;
 3973 
 3974         are_queues_locked = FALSE;
 3975 retry:
 3976         PMAP_LOCK(pmap);
 3977         pde = pmap_pde(pmap, va);
 3978         if ((*pde & PG_PS) != 0) {
 3979                 if (!wired != ((*pde & PG_W) == 0)) {
 3980                         if (!are_queues_locked) {
 3981                                 are_queues_locked = TRUE;
 3982                                 if (!rw_try_wlock(&pvh_global_lock)) {
 3983                                         PMAP_UNLOCK(pmap);
 3984                                         rw_wlock(&pvh_global_lock);
 3985                                         goto retry;
 3986                                 }
 3987                         }
 3988                         if (!pmap_demote_pde(pmap, pde, va))
 3989                                 panic("pmap_change_wiring: demotion failed");
 3990                 } else
 3991                         goto out;
 3992         }
 3993         pte = pmap_pte(pmap, va);
 3994 
 3995         if (wired && !pmap_pte_w(pte))
 3996                 pmap->pm_stats.wired_count++;
 3997         else if (!wired && pmap_pte_w(pte))
 3998                 pmap->pm_stats.wired_count--;
 3999 
 4000         /*
 4001          * Wiring is not a hardware characteristic so there is no need to
 4002          * invalidate TLB.
 4003          */
 4004         pmap_pte_set_w(pte, wired);
 4005         pmap_pte_release(pte);
 4006 out:
 4007         if (are_queues_locked)
 4008                 rw_wunlock(&pvh_global_lock);
 4009         PMAP_UNLOCK(pmap);
 4010 }
 4011 
 4012 
 4013 
 4014 /*
 4015  *      Copy the range specified by src_addr/len
 4016  *      from the source map to the range dst_addr/len
 4017  *      in the destination map.
 4018  *
 4019  *      This routine is only advisory and need not do anything.
 4020  */
 4021 
 4022 void
 4023 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 4024     vm_offset_t src_addr)
 4025 {
 4026         struct spglist free;
 4027         vm_offset_t addr;
 4028         vm_offset_t end_addr = src_addr + len;
 4029         vm_offset_t pdnxt;
 4030 
 4031         if (dst_addr != src_addr)
 4032                 return;
 4033 
 4034         if (!pmap_is_current(src_pmap))
 4035                 return;
 4036 
 4037         rw_wlock(&pvh_global_lock);
 4038         if (dst_pmap < src_pmap) {
 4039                 PMAP_LOCK(dst_pmap);
 4040                 PMAP_LOCK(src_pmap);
 4041         } else {
 4042                 PMAP_LOCK(src_pmap);
 4043                 PMAP_LOCK(dst_pmap);
 4044         }
 4045         sched_pin();
 4046         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 4047                 pt_entry_t *src_pte, *dst_pte;
 4048                 vm_page_t dstmpte, srcmpte;
 4049                 pd_entry_t srcptepaddr;
 4050                 u_int ptepindex;
 4051 
 4052                 KASSERT(addr < UPT_MIN_ADDRESS,
 4053                     ("pmap_copy: invalid to pmap_copy page tables"));
 4054 
 4055                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 4056                 if (pdnxt < addr)
 4057                         pdnxt = end_addr;
 4058                 ptepindex = addr >> PDRSHIFT;
 4059 
 4060                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 4061                 if (srcptepaddr == 0)
 4062                         continue;
 4063                         
 4064                 if (srcptepaddr & PG_PS) {
 4065                         if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
 4066                                 continue;
 4067                         if (dst_pmap->pm_pdir[ptepindex] == 0 &&
 4068                             ((srcptepaddr & PG_MANAGED) == 0 ||
 4069                             pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 4070                             PG_PS_FRAME))) {
 4071                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 4072                                     ~PG_W;
 4073                                 dst_pmap->pm_stats.resident_count +=
 4074                                     NBPDR / PAGE_SIZE;
 4075                         }
 4076                         continue;
 4077                 }
 4078 
 4079                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 4080                 KASSERT(srcmpte->wire_count > 0,
 4081                     ("pmap_copy: source page table page is unused"));
 4082 
 4083                 if (pdnxt > end_addr)
 4084                         pdnxt = end_addr;
 4085 
 4086                 src_pte = vtopte(addr);
 4087                 while (addr < pdnxt) {
 4088                         pt_entry_t ptetemp;
 4089                         ptetemp = *src_pte;
 4090                         /*
 4091                          * we only virtual copy managed pages
 4092                          */
 4093                         if ((ptetemp & PG_MANAGED) != 0) {
 4094                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 4095                                     M_NOWAIT);
 4096                                 if (dstmpte == NULL)
 4097                                         goto out;
 4098                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 4099                                 if (*dst_pte == 0 &&
 4100                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 4101                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 4102                                         /*
 4103                                          * Clear the wired, modified, and
 4104                                          * accessed (referenced) bits
 4105                                          * during the copy.
 4106                                          */
 4107                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 4108                                             PG_A);
 4109                                         dst_pmap->pm_stats.resident_count++;
 4110                                 } else {
 4111                                         SLIST_INIT(&free);
 4112                                         if (pmap_unwire_ptp(dst_pmap, dstmpte,
 4113                                             &free)) {
 4114                                                 pmap_invalidate_page(dst_pmap,
 4115                                                     addr);
 4116                                                 pmap_free_zero_pages(&free);
 4117                                         }
 4118                                         goto out;
 4119                                 }
 4120                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 4121                                         break;
 4122                         }
 4123                         addr += PAGE_SIZE;
 4124                         src_pte++;
 4125                 }
 4126         }
 4127 out:
 4128         sched_unpin();
 4129         rw_wunlock(&pvh_global_lock);
 4130         PMAP_UNLOCK(src_pmap);
 4131         PMAP_UNLOCK(dst_pmap);
 4132 }       
 4133 
 4134 static __inline void
 4135 pagezero(void *page)
 4136 {
 4137 #if defined(I686_CPU)
 4138         if (cpu_class == CPUCLASS_686) {
 4139 #if defined(CPU_ENABLE_SSE)
 4140                 if (cpu_feature & CPUID_SSE2)
 4141                         sse2_pagezero(page);
 4142                 else
 4143 #endif
 4144                         i686_pagezero(page);
 4145         } else
 4146 #endif
 4147                 bzero(page, PAGE_SIZE);
 4148 }
 4149 
 4150 /*
 4151  *      pmap_zero_page zeros the specified hardware page by mapping 
 4152  *      the page into KVM and using bzero to clear its contents.
 4153  */
 4154 void
 4155 pmap_zero_page(vm_page_t m)
 4156 {
 4157         struct sysmaps *sysmaps;
 4158 
 4159         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4160         mtx_lock(&sysmaps->lock);
 4161         if (*sysmaps->CMAP2)
 4162                 panic("pmap_zero_page: CMAP2 busy");
 4163         sched_pin();
 4164         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4165             pmap_cache_bits(m->md.pat_mode, 0);
 4166         invlcaddr(sysmaps->CADDR2);
 4167         pagezero(sysmaps->CADDR2);
 4168         *sysmaps->CMAP2 = 0;
 4169         sched_unpin();
 4170         mtx_unlock(&sysmaps->lock);
 4171 }
 4172 
 4173 /*
 4174  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4175  *      the page into KVM and using bzero to clear its contents.
 4176  *
 4177  *      off and size may not cover an area beyond a single hardware page.
 4178  */
 4179 void
 4180 pmap_zero_page_area(vm_page_t m, int off, int size)
 4181 {
 4182         struct sysmaps *sysmaps;
 4183 
 4184         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4185         mtx_lock(&sysmaps->lock);
 4186         if (*sysmaps->CMAP2)
 4187                 panic("pmap_zero_page_area: CMAP2 busy");
 4188         sched_pin();
 4189         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4190             pmap_cache_bits(m->md.pat_mode, 0);
 4191         invlcaddr(sysmaps->CADDR2);
 4192         if (off == 0 && size == PAGE_SIZE) 
 4193                 pagezero(sysmaps->CADDR2);
 4194         else
 4195                 bzero((char *)sysmaps->CADDR2 + off, size);
 4196         *sysmaps->CMAP2 = 0;
 4197         sched_unpin();
 4198         mtx_unlock(&sysmaps->lock);
 4199 }
 4200 
 4201 /*
 4202  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4203  *      the page into KVM and using bzero to clear its contents.  This
 4204  *      is intended to be called from the vm_pagezero process only and
 4205  *      outside of Giant.
 4206  */
 4207 void
 4208 pmap_zero_page_idle(vm_page_t m)
 4209 {
 4210 
 4211         if (*CMAP3)
 4212                 panic("pmap_zero_page_idle: CMAP3 busy");
 4213         sched_pin();
 4214         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4215             pmap_cache_bits(m->md.pat_mode, 0);
 4216         invlcaddr(CADDR3);
 4217         pagezero(CADDR3);
 4218         *CMAP3 = 0;
 4219         sched_unpin();
 4220 }
 4221 
 4222 /*
 4223  *      pmap_copy_page copies the specified (machine independent)
 4224  *      page by mapping the page into virtual memory and using
 4225  *      bcopy to copy the page, one machine dependent page at a
 4226  *      time.
 4227  */
 4228 void
 4229 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4230 {
 4231         struct sysmaps *sysmaps;
 4232 
 4233         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4234         mtx_lock(&sysmaps->lock);
 4235         if (*sysmaps->CMAP1)
 4236                 panic("pmap_copy_page: CMAP1 busy");
 4237         if (*sysmaps->CMAP2)
 4238                 panic("pmap_copy_page: CMAP2 busy");
 4239         sched_pin();
 4240         invlpg((u_int)sysmaps->CADDR1);
 4241         invlpg((u_int)sysmaps->CADDR2);
 4242         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
 4243             pmap_cache_bits(src->md.pat_mode, 0);
 4244         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
 4245             pmap_cache_bits(dst->md.pat_mode, 0);
 4246         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 4247         *sysmaps->CMAP1 = 0;
 4248         *sysmaps->CMAP2 = 0;
 4249         sched_unpin();
 4250         mtx_unlock(&sysmaps->lock);
 4251 }
 4252 
 4253 int unmapped_buf_allowed = 1;
 4254 
 4255 void
 4256 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 4257     vm_offset_t b_offset, int xfersize)
 4258 {
 4259         struct sysmaps *sysmaps;
 4260         vm_page_t a_pg, b_pg;
 4261         char *a_cp, *b_cp;
 4262         vm_offset_t a_pg_offset, b_pg_offset;
 4263         int cnt;
 4264 
 4265         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4266         mtx_lock(&sysmaps->lock);
 4267         if (*sysmaps->CMAP1 != 0)
 4268                 panic("pmap_copy_pages: CMAP1 busy");
 4269         if (*sysmaps->CMAP2 != 0)
 4270                 panic("pmap_copy_pages: CMAP2 busy");
 4271         sched_pin();
 4272         while (xfersize > 0) {
 4273                 invlpg((u_int)sysmaps->CADDR1);
 4274                 invlpg((u_int)sysmaps->CADDR2);
 4275                 a_pg = ma[a_offset >> PAGE_SHIFT];
 4276                 a_pg_offset = a_offset & PAGE_MASK;
 4277                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 4278                 b_pg = mb[b_offset >> PAGE_SHIFT];
 4279                 b_pg_offset = b_offset & PAGE_MASK;
 4280                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 4281                 *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
 4282                     pmap_cache_bits(b_pg->md.pat_mode, 0);
 4283                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
 4284                     PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
 4285                 a_cp = sysmaps->CADDR1 + a_pg_offset;
 4286                 b_cp = sysmaps->CADDR2 + b_pg_offset;
 4287                 bcopy(a_cp, b_cp, cnt);
 4288                 a_offset += cnt;
 4289                 b_offset += cnt;
 4290                 xfersize -= cnt;
 4291         }
 4292         *sysmaps->CMAP1 = 0;
 4293         *sysmaps->CMAP2 = 0;
 4294         sched_unpin();
 4295         mtx_unlock(&sysmaps->lock);
 4296 }
 4297 
 4298 /*
 4299  * Returns true if the pmap's pv is one of the first
 4300  * 16 pvs linked to from this page.  This count may
 4301  * be changed upwards or downwards in the future; it
 4302  * is only necessary that true be returned for a small
 4303  * subset of pmaps for proper page aging.
 4304  */
 4305 boolean_t
 4306 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4307 {
 4308         struct md_page *pvh;
 4309         pv_entry_t pv;
 4310         int loops = 0;
 4311         boolean_t rv;
 4312 
 4313         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4314             ("pmap_page_exists_quick: page %p is not managed", m));
 4315         rv = FALSE;
 4316         rw_wlock(&pvh_global_lock);
 4317         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4318                 if (PV_PMAP(pv) == pmap) {
 4319                         rv = TRUE;
 4320                         break;
 4321                 }
 4322                 loops++;
 4323                 if (loops >= 16)
 4324                         break;
 4325         }
 4326         if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 4327                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4328                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4329                         if (PV_PMAP(pv) == pmap) {
 4330                                 rv = TRUE;
 4331                                 break;
 4332                         }
 4333                         loops++;
 4334                         if (loops >= 16)
 4335                                 break;
 4336                 }
 4337         }
 4338         rw_wunlock(&pvh_global_lock);
 4339         return (rv);
 4340 }
 4341 
 4342 /*
 4343  *      pmap_page_wired_mappings:
 4344  *
 4345  *      Return the number of managed mappings to the given physical page
 4346  *      that are wired.
 4347  */
 4348 int
 4349 pmap_page_wired_mappings(vm_page_t m)
 4350 {
 4351         int count;
 4352 
 4353         count = 0;
 4354         if ((m->oflags & VPO_UNMANAGED) != 0)
 4355                 return (count);
 4356         rw_wlock(&pvh_global_lock);
 4357         count = pmap_pvh_wired_mappings(&m->md, count);
 4358         if ((m->flags & PG_FICTITIOUS) == 0) {
 4359             count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
 4360                 count);
 4361         }
 4362         rw_wunlock(&pvh_global_lock);
 4363         return (count);
 4364 }
 4365 
 4366 /*
 4367  *      pmap_pvh_wired_mappings:
 4368  *
 4369  *      Return the updated number "count" of managed mappings that are wired.
 4370  */
 4371 static int
 4372 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
 4373 {
 4374         pmap_t pmap;
 4375         pt_entry_t *pte;
 4376         pv_entry_t pv;
 4377 
 4378         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4379         sched_pin();
 4380         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4381                 pmap = PV_PMAP(pv);
 4382                 PMAP_LOCK(pmap);
 4383                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4384                 if ((*pte & PG_W) != 0)
 4385                         count++;
 4386                 PMAP_UNLOCK(pmap);
 4387         }
 4388         sched_unpin();
 4389         return (count);
 4390 }
 4391 
 4392 /*
 4393  * Returns TRUE if the given page is mapped individually or as part of
 4394  * a 4mpage.  Otherwise, returns FALSE.
 4395  */
 4396 boolean_t
 4397 pmap_page_is_mapped(vm_page_t m)
 4398 {
 4399         boolean_t rv;
 4400 
 4401         if ((m->oflags & VPO_UNMANAGED) != 0)
 4402                 return (FALSE);
 4403         rw_wlock(&pvh_global_lock);
 4404         rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 4405             ((m->flags & PG_FICTITIOUS) == 0 &&
 4406             !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 4407         rw_wunlock(&pvh_global_lock);
 4408         return (rv);
 4409 }
 4410 
 4411 /*
 4412  * Remove all pages from specified address space
 4413  * this aids process exit speeds.  Also, this code
 4414  * is special cased for current process only, but
 4415  * can have the more generic (and slightly slower)
 4416  * mode enabled.  This is much faster than pmap_remove
 4417  * in the case of running down an entire address space.
 4418  */
 4419 void
 4420 pmap_remove_pages(pmap_t pmap)
 4421 {
 4422         pt_entry_t *pte, tpte;
 4423         vm_page_t m, mpte, mt;
 4424         pv_entry_t pv;
 4425         struct md_page *pvh;
 4426         struct pv_chunk *pc, *npc;
 4427         struct spglist free;
 4428         int field, idx;
 4429         int32_t bit;
 4430         uint32_t inuse, bitmask;
 4431         int allfree;
 4432 
 4433         if (pmap != PCPU_GET(curpmap)) {
 4434                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 4435                 return;
 4436         }
 4437         SLIST_INIT(&free);
 4438         rw_wlock(&pvh_global_lock);
 4439         PMAP_LOCK(pmap);
 4440         sched_pin();
 4441         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 4442                 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
 4443                     pc->pc_pmap));
 4444                 allfree = 1;
 4445                 for (field = 0; field < _NPCM; field++) {
 4446                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 4447                         while (inuse != 0) {
 4448                                 bit = bsfl(inuse);
 4449                                 bitmask = 1UL << bit;
 4450                                 idx = field * 32 + bit;
 4451                                 pv = &pc->pc_pventry[idx];
 4452                                 inuse &= ~bitmask;
 4453 
 4454                                 pte = pmap_pde(pmap, pv->pv_va);
 4455                                 tpte = *pte;
 4456                                 if ((tpte & PG_PS) == 0) {
 4457                                         pte = vtopte(pv->pv_va);
 4458                                         tpte = *pte & ~PG_PTE_PAT;
 4459                                 }
 4460 
 4461                                 if (tpte == 0) {
 4462                                         printf(
 4463                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 4464                                             pte, pv->pv_va);
 4465                                         panic("bad pte");
 4466                                 }
 4467 
 4468 /*
 4469  * We cannot remove wired pages from a process' mapping at this time
 4470  */
 4471                                 if (tpte & PG_W) {
 4472                                         allfree = 0;
 4473                                         continue;
 4474                                 }
 4475 
 4476                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 4477                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 4478                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 4479                                     m, (uintmax_t)m->phys_addr,
 4480                                     (uintmax_t)tpte));
 4481 
 4482                                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 4483                                     m < &vm_page_array[vm_page_array_size],
 4484                                     ("pmap_remove_pages: bad tpte %#jx",
 4485                                     (uintmax_t)tpte));
 4486 
 4487                                 pte_clear(pte);
 4488 
 4489                                 /*
 4490                                  * Update the vm_page_t clean/reference bits.
 4491                                  */
 4492                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4493                                         if ((tpte & PG_PS) != 0) {
 4494                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4495                                                         vm_page_dirty(mt);
 4496                                         } else
 4497                                                 vm_page_dirty(m);
 4498                                 }
 4499 
 4500                                 /* Mark free */
 4501                                 PV_STAT(pv_entry_frees++);
 4502                                 PV_STAT(pv_entry_spare++);
 4503                                 pv_entry_count--;
 4504                                 pc->pc_map[field] |= bitmask;
 4505                                 if ((tpte & PG_PS) != 0) {
 4506                                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 4507                                         pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 4508                                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4509                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 4510                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4511                                                         if (TAILQ_EMPTY(&mt->md.pv_list))
 4512                                                                 vm_page_aflag_clear(mt, PGA_WRITEABLE);
 4513                                         }
 4514                                         mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
 4515                                         if (mpte != NULL) {
 4516                                                 pmap_remove_pt_page(pmap, mpte);
 4517                                                 pmap->pm_stats.resident_count--;
 4518                                                 KASSERT(mpte->wire_count == NPTEPG,
 4519                                                     ("pmap_remove_pages: pte page wire count error"));
 4520                                                 mpte->wire_count = 0;
 4521                                                 pmap_add_delayed_free_list(mpte, &free, FALSE);
 4522                                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 4523                                         }
 4524                                 } else {
 4525                                         pmap->pm_stats.resident_count--;
 4526                                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4527                                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 4528                                             (m->flags & PG_FICTITIOUS) == 0) {
 4529                                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4530                                                 if (TAILQ_EMPTY(&pvh->pv_list))
 4531                                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4532                                         }
 4533                                         pmap_unuse_pt(pmap, pv->pv_va, &free);
 4534                                 }
 4535                         }
 4536                 }
 4537                 if (allfree) {
 4538                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 4539                         free_pv_chunk(pc);
 4540                 }
 4541         }
 4542         sched_unpin();
 4543         pmap_invalidate_all(pmap);
 4544         rw_wunlock(&pvh_global_lock);
 4545         PMAP_UNLOCK(pmap);
 4546         pmap_free_zero_pages(&free);
 4547 }
 4548 
 4549 /*
 4550  *      pmap_is_modified:
 4551  *
 4552  *      Return whether or not the specified physical page was modified
 4553  *      in any physical maps.
 4554  */
 4555 boolean_t
 4556 pmap_is_modified(vm_page_t m)
 4557 {
 4558         boolean_t rv;
 4559 
 4560         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4561             ("pmap_is_modified: page %p is not managed", m));
 4562 
 4563         /*
 4564          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4565          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 4566          * is clear, no PTEs can have PG_M set.
 4567          */
 4568         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4569         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4570                 return (FALSE);
 4571         rw_wlock(&pvh_global_lock);
 4572         rv = pmap_is_modified_pvh(&m->md) ||
 4573             ((m->flags & PG_FICTITIOUS) == 0 &&
 4574             pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4575         rw_wunlock(&pvh_global_lock);
 4576         return (rv);
 4577 }
 4578 
 4579 /*
 4580  * Returns TRUE if any of the given mappings were used to modify
 4581  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
 4582  * mappings are supported.
 4583  */
 4584 static boolean_t
 4585 pmap_is_modified_pvh(struct md_page *pvh)
 4586 {
 4587         pv_entry_t pv;
 4588         pt_entry_t *pte;
 4589         pmap_t pmap;
 4590         boolean_t rv;
 4591 
 4592         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4593         rv = FALSE;
 4594         sched_pin();
 4595         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4596                 pmap = PV_PMAP(pv);
 4597                 PMAP_LOCK(pmap);
 4598                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4599                 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
 4600                 PMAP_UNLOCK(pmap);
 4601                 if (rv)
 4602                         break;
 4603         }
 4604         sched_unpin();
 4605         return (rv);
 4606 }
 4607 
 4608 /*
 4609  *      pmap_is_prefaultable:
 4610  *
 4611  *      Return whether or not the specified virtual address is elgible
 4612  *      for prefault.
 4613  */
 4614 boolean_t
 4615 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 4616 {
 4617         pd_entry_t *pde;
 4618         pt_entry_t *pte;
 4619         boolean_t rv;
 4620 
 4621         rv = FALSE;
 4622         PMAP_LOCK(pmap);
 4623         pde = pmap_pde(pmap, addr);
 4624         if (*pde != 0 && (*pde & PG_PS) == 0) {
 4625                 pte = vtopte(addr);
 4626                 rv = *pte == 0;
 4627         }
 4628         PMAP_UNLOCK(pmap);
 4629         return (rv);
 4630 }
 4631 
 4632 /*
 4633  *      pmap_is_referenced:
 4634  *
 4635  *      Return whether or not the specified physical page was referenced
 4636  *      in any physical maps.
 4637  */
 4638 boolean_t
 4639 pmap_is_referenced(vm_page_t m)
 4640 {
 4641         boolean_t rv;
 4642 
 4643         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4644             ("pmap_is_referenced: page %p is not managed", m));
 4645         rw_wlock(&pvh_global_lock);
 4646         rv = pmap_is_referenced_pvh(&m->md) ||
 4647             ((m->flags & PG_FICTITIOUS) == 0 &&
 4648             pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4649         rw_wunlock(&pvh_global_lock);
 4650         return (rv);
 4651 }
 4652 
 4653 /*
 4654  * Returns TRUE if any of the given mappings were referenced and FALSE
 4655  * otherwise.  Both page and 4mpage mappings are supported.
 4656  */
 4657 static boolean_t
 4658 pmap_is_referenced_pvh(struct md_page *pvh)
 4659 {
 4660         pv_entry_t pv;
 4661         pt_entry_t *pte;
 4662         pmap_t pmap;
 4663         boolean_t rv;
 4664 
 4665         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4666         rv = FALSE;
 4667         sched_pin();
 4668         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4669                 pmap = PV_PMAP(pv);
 4670                 PMAP_LOCK(pmap);
 4671                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4672                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 4673                 PMAP_UNLOCK(pmap);
 4674                 if (rv)
 4675                         break;
 4676         }
 4677         sched_unpin();
 4678         return (rv);
 4679 }
 4680 
 4681 /*
 4682  * Clear the write and modified bits in each of the given page's mappings.
 4683  */
 4684 void
 4685 pmap_remove_write(vm_page_t m)
 4686 {
 4687         struct md_page *pvh;
 4688         pv_entry_t next_pv, pv;
 4689         pmap_t pmap;
 4690         pd_entry_t *pde;
 4691         pt_entry_t oldpte, *pte;
 4692         vm_offset_t va;
 4693 
 4694         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4695             ("pmap_remove_write: page %p is not managed", m));
 4696 
 4697         /*
 4698          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4699          * set by another thread while the object is locked.  Thus,
 4700          * if PGA_WRITEABLE is clear, no page table entries need updating.
 4701          */
 4702         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4703         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4704                 return;
 4705         rw_wlock(&pvh_global_lock);
 4706         sched_pin();
 4707         if ((m->flags & PG_FICTITIOUS) != 0)
 4708                 goto small_mappings;
 4709         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4710         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 4711                 va = pv->pv_va;
 4712                 pmap = PV_PMAP(pv);
 4713                 PMAP_LOCK(pmap);
 4714                 pde = pmap_pde(pmap, va);
 4715                 if ((*pde & PG_RW) != 0)
 4716                         (void)pmap_demote_pde(pmap, pde, va);
 4717                 PMAP_UNLOCK(pmap);
 4718         }
 4719 small_mappings:
 4720         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4721                 pmap = PV_PMAP(pv);
 4722                 PMAP_LOCK(pmap);
 4723                 pde = pmap_pde(pmap, pv->pv_va);
 4724                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
 4725                     " a 4mpage in page %p's pv list", m));
 4726                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4727 retry:
 4728                 oldpte = *pte;
 4729                 if ((oldpte & PG_RW) != 0) {
 4730                         /*
 4731                          * Regardless of whether a pte is 32 or 64 bits
 4732                          * in size, PG_RW and PG_M are among the least
 4733                          * significant 32 bits.
 4734                          */
 4735                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 4736                             oldpte & ~(PG_RW | PG_M)))
 4737                                 goto retry;
 4738                         if ((oldpte & PG_M) != 0)
 4739                                 vm_page_dirty(m);
 4740                         pmap_invalidate_page(pmap, pv->pv_va);
 4741                 }
 4742                 PMAP_UNLOCK(pmap);
 4743         }
 4744         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4745         sched_unpin();
 4746         rw_wunlock(&pvh_global_lock);
 4747 }
 4748 
 4749 #define PMAP_TS_REFERENCED_MAX  5
 4750 
 4751 /*
 4752  *      pmap_ts_referenced:
 4753  *
 4754  *      Return a count of reference bits for a page, clearing those bits.
 4755  *      It is not necessary for every reference bit to be cleared, but it
 4756  *      is necessary that 0 only be returned when there are truly no
 4757  *      reference bits set.
 4758  *
 4759  *      XXX: The exact number of bits to check and clear is a matter that
 4760  *      should be tested and standardized at some point in the future for
 4761  *      optimal aging of shared pages.
 4762  */
 4763 int
 4764 pmap_ts_referenced(vm_page_t m)
 4765 {
 4766         struct md_page *pvh;
 4767         pv_entry_t pv, pvf;
 4768         pmap_t pmap;
 4769         pd_entry_t *pde;
 4770         pt_entry_t *pte;
 4771         vm_paddr_t pa;
 4772         int rtval = 0;
 4773 
 4774         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4775             ("pmap_ts_referenced: page %p is not managed", m));
 4776         pa = VM_PAGE_TO_PHYS(m);
 4777         pvh = pa_to_pvh(pa);
 4778         rw_wlock(&pvh_global_lock);
 4779         sched_pin();
 4780         if ((m->flags & PG_FICTITIOUS) != 0 ||
 4781             (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
 4782                 goto small_mappings;
 4783         pv = pvf;
 4784         do {
 4785                 pmap = PV_PMAP(pv);
 4786                 PMAP_LOCK(pmap);
 4787                 pde = pmap_pde(pmap, pv->pv_va);
 4788                 if ((*pde & PG_A) != 0) {
 4789                         /*
 4790                          * Since this reference bit is shared by either 1024
 4791                          * or 512 4KB pages, it should not be cleared every
 4792                          * time it is tested.  Apply a simple "hash" function
 4793                          * on the physical page number, the virtual superpage
 4794                          * number, and the pmap address to select one 4KB page
 4795                          * out of the 1024 or 512 on which testing the
 4796                          * reference bit will result in clearing that bit.
 4797                          * This function is designed to avoid the selection of
 4798                          * the same 4KB page for every 2- or 4MB page mapping.
 4799                          *
 4800                          * On demotion, a mapping that hasn't been referenced
 4801                          * is simply destroyed.  To avoid the possibility of a
 4802                          * subsequent page fault on a demoted wired mapping,
 4803                          * always leave its reference bit set.  Moreover,
 4804                          * since the superpage is wired, the current state of
 4805                          * its reference bit won't affect page replacement.
 4806                          */
 4807                         if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
 4808                             (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
 4809                             (*pde & PG_W) == 0) {
 4810                                 atomic_clear_int((u_int *)pde, PG_A);
 4811                                 pmap_invalidate_page(pmap, pv->pv_va);
 4812                         }
 4813                         rtval++;
 4814                 }
 4815                 PMAP_UNLOCK(pmap);
 4816                 /* Rotate the PV list if it has more than one entry. */
 4817                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4818                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4819                         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 4820                 }
 4821                 if (rtval >= PMAP_TS_REFERENCED_MAX)
 4822                         goto out;
 4823         } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
 4824 small_mappings:
 4825         if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
 4826                 goto out;
 4827         pv = pvf;
 4828         do {
 4829                 pmap = PV_PMAP(pv);
 4830                 PMAP_LOCK(pmap);
 4831                 pde = pmap_pde(pmap, pv->pv_va);
 4832                 KASSERT((*pde & PG_PS) == 0,
 4833                     ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
 4834                     m));
 4835                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4836                 if ((*pte & PG_A) != 0) {
 4837                         atomic_clear_int((u_int *)pte, PG_A);
 4838                         pmap_invalidate_page(pmap, pv->pv_va);
 4839                         rtval++;
 4840                 }
 4841                 PMAP_UNLOCK(pmap);
 4842                 /* Rotate the PV list if it has more than one entry. */
 4843                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4844                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4845                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 4846                 }
 4847         } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
 4848             PMAP_TS_REFERENCED_MAX);
 4849 out:
 4850         sched_unpin();
 4851         rw_wunlock(&pvh_global_lock);
 4852         return (rtval);
 4853 }
 4854 
 4855 /*
 4856  *      Apply the given advice to the specified range of addresses within the
 4857  *      given pmap.  Depending on the advice, clear the referenced and/or
 4858  *      modified flags in each mapping and set the mapped page's dirty field.
 4859  */
 4860 void
 4861 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 4862 {
 4863         pd_entry_t oldpde, *pde;
 4864         pt_entry_t *pte;
 4865         vm_offset_t pdnxt;
 4866         vm_page_t m;
 4867         boolean_t anychanged, pv_lists_locked;
 4868 
 4869         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 4870                 return;
 4871         if (pmap_is_current(pmap))
 4872                 pv_lists_locked = FALSE;
 4873         else {
 4874                 pv_lists_locked = TRUE;
 4875 resume:
 4876                 rw_wlock(&pvh_global_lock);
 4877                 sched_pin();
 4878         }
 4879         anychanged = FALSE;
 4880         PMAP_LOCK(pmap);
 4881         for (; sva < eva; sva = pdnxt) {
 4882                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 4883                 if (pdnxt < sva)
 4884                         pdnxt = eva;
 4885                 pde = pmap_pde(pmap, sva);
 4886                 oldpde = *pde;
 4887                 if ((oldpde & PG_V) == 0)
 4888                         continue;
 4889                 else if ((oldpde & PG_PS) != 0) {
 4890                         if ((oldpde & PG_MANAGED) == 0)
 4891                                 continue;
 4892                         if (!pv_lists_locked) {
 4893                                 pv_lists_locked = TRUE;
 4894                                 if (!rw_try_wlock(&pvh_global_lock)) {
 4895                                         if (anychanged)
 4896                                                 pmap_invalidate_all(pmap);
 4897                                         PMAP_UNLOCK(pmap);
 4898                                         goto resume;
 4899                                 }
 4900                                 sched_pin();
 4901                         }
 4902                         if (!pmap_demote_pde(pmap, pde, sva)) {
 4903                                 /*
 4904                                  * The large page mapping was destroyed.
 4905                                  */
 4906                                 continue;
 4907                         }
 4908 
 4909                         /*
 4910                          * Unless the page mappings are wired, remove the
 4911                          * mapping to a single page so that a subsequent
 4912                          * access may repromote.  Since the underlying page
 4913                          * table page is fully populated, this removal never
 4914                          * frees a page table page.
 4915                          */
 4916                         if ((oldpde & PG_W) == 0) {
 4917                                 pte = pmap_pte_quick(pmap, sva);
 4918                                 KASSERT((*pte & PG_V) != 0,
 4919                                     ("pmap_advise: invalid PTE"));
 4920                                 pmap_remove_pte(pmap, pte, sva, NULL);
 4921                                 anychanged = TRUE;
 4922                         }
 4923                 }
 4924                 if (pdnxt > eva)
 4925                         pdnxt = eva;
 4926                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 4927                     sva += PAGE_SIZE) {
 4928                         if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
 4929                             PG_V))
 4930                                 continue;
 4931                         else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4932                                 if (advice == MADV_DONTNEED) {
 4933                                         /*
 4934                                          * Future calls to pmap_is_modified()
 4935                                          * can be avoided by making the page
 4936                                          * dirty now.
 4937                                          */
 4938                                         m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 4939                                         vm_page_dirty(m);
 4940                                 }
 4941                                 atomic_clear_int((u_int *)pte, PG_M | PG_A);
 4942                         } else if ((*pte & PG_A) != 0)
 4943                                 atomic_clear_int((u_int *)pte, PG_A);
 4944                         else
 4945                                 continue;
 4946                         if ((*pte & PG_G) != 0)
 4947                                 pmap_invalidate_page(pmap, sva);
 4948                         else
 4949                                 anychanged = TRUE;
 4950                 }
 4951         }
 4952         if (anychanged)
 4953                 pmap_invalidate_all(pmap);
 4954         if (pv_lists_locked) {
 4955                 sched_unpin();
 4956                 rw_wunlock(&pvh_global_lock);
 4957         }
 4958         PMAP_UNLOCK(pmap);
 4959 }
 4960 
 4961 /*
 4962  *      Clear the modify bits on the specified physical page.
 4963  */
 4964 void
 4965 pmap_clear_modify(vm_page_t m)
 4966 {
 4967         struct md_page *pvh;
 4968         pv_entry_t next_pv, pv;
 4969         pmap_t pmap;
 4970         pd_entry_t oldpde, *pde;
 4971         pt_entry_t oldpte, *pte;
 4972         vm_offset_t va;
 4973 
 4974         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4975             ("pmap_clear_modify: page %p is not managed", m));
 4976         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4977         KASSERT(!vm_page_xbusied(m),
 4978             ("pmap_clear_modify: page %p is exclusive busied", m));
 4979 
 4980         /*
 4981          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 4982          * If the object containing the page is locked and the page is not
 4983          * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
 4984          */
 4985         if ((m->aflags & PGA_WRITEABLE) == 0)
 4986                 return;
 4987         rw_wlock(&pvh_global_lock);
 4988         sched_pin();
 4989         if ((m->flags & PG_FICTITIOUS) != 0)
 4990                 goto small_mappings;
 4991         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4992         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 4993                 va = pv->pv_va;
 4994                 pmap = PV_PMAP(pv);
 4995                 PMAP_LOCK(pmap);
 4996                 pde = pmap_pde(pmap, va);
 4997                 oldpde = *pde;
 4998                 if ((oldpde & PG_RW) != 0) {
 4999                         if (pmap_demote_pde(pmap, pde, va)) {
 5000                                 if ((oldpde & PG_W) == 0) {
 5001                                         /*
 5002                                          * Write protect the mapping to a
 5003                                          * single page so that a subsequent
 5004                                          * write access may repromote.
 5005                                          */
 5006                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 5007                                             PG_PS_FRAME);
 5008                                         pte = pmap_pte_quick(pmap, va);
 5009                                         oldpte = *pte;
 5010                                         if ((oldpte & PG_V) != 0) {
 5011                                                 /*
 5012                                                  * Regardless of whether a pte is 32 or 64 bits
 5013                                                  * in size, PG_RW and PG_M are among the least
 5014                                                  * significant 32 bits.
 5015                                                  */
 5016                                                 while (!atomic_cmpset_int((u_int *)pte,
 5017                                                     oldpte,
 5018                                                     oldpte & ~(PG_M | PG_RW)))
 5019                                                         oldpte = *pte;
 5020                                                 vm_page_dirty(m);
 5021                                                 pmap_invalidate_page(pmap, va);
 5022                                         }
 5023                                 }
 5024                         }
 5025                 }
 5026                 PMAP_UNLOCK(pmap);
 5027         }
 5028 small_mappings:
 5029         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 5030                 pmap = PV_PMAP(pv);
 5031                 PMAP_LOCK(pmap);
 5032                 pde = pmap_pde(pmap, pv->pv_va);
 5033                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 5034                     " a 4mpage in page %p's pv list", m));
 5035                 pte = pmap_pte_quick(pmap, pv->pv_va);
 5036                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 5037                         /*
 5038                          * Regardless of whether a pte is 32 or 64 bits
 5039                          * in size, PG_M is among the least significant
 5040                          * 32 bits. 
 5041                          */
 5042                         atomic_clear_int((u_int *)pte, PG_M);
 5043                         pmap_invalidate_page(pmap, pv->pv_va);
 5044                 }
 5045                 PMAP_UNLOCK(pmap);
 5046         }
 5047         sched_unpin();
 5048         rw_wunlock(&pvh_global_lock);
 5049 }
 5050 
 5051 /*
 5052  * Miscellaneous support routines follow
 5053  */
 5054 
 5055 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 5056 static __inline void
 5057 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
 5058 {
 5059         u_int opte, npte;
 5060 
 5061         /*
 5062          * The cache mode bits are all in the low 32-bits of the
 5063          * PTE, so we can just spin on updating the low 32-bits.
 5064          */
 5065         do {
 5066                 opte = *(u_int *)pte;
 5067                 npte = opte & ~PG_PTE_CACHE;
 5068                 npte |= cache_bits;
 5069         } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 5070 }
 5071 
 5072 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
 5073 static __inline void
 5074 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
 5075 {
 5076         u_int opde, npde;
 5077 
 5078         /*
 5079          * The cache mode bits are all in the low 32-bits of the
 5080          * PDE, so we can just spin on updating the low 32-bits.
 5081          */
 5082         do {
 5083                 opde = *(u_int *)pde;
 5084                 npde = opde & ~PG_PDE_CACHE;
 5085                 npde |= cache_bits;
 5086         } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 5087 }
 5088 
 5089 /*
 5090  * Map a set of physical memory pages into the kernel virtual
 5091  * address space. Return a pointer to where it is mapped. This
 5092  * routine is intended to be used for mapping device memory,
 5093  * NOT real memory.
 5094  */
 5095 void *
 5096 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 5097 {
 5098         vm_offset_t va, offset;
 5099         vm_size_t tmpsize;
 5100 
 5101         offset = pa & PAGE_MASK;
 5102         size = round_page(offset + size);
 5103         pa = pa & PG_FRAME;
 5104 
 5105         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 5106                 va = KERNBASE + pa;
 5107         else
 5108                 va = kva_alloc(size);
 5109         if (!va)
 5110                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 5111 
 5112         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 5113                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 5114         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 5115         pmap_invalidate_cache_range(va, va + size);
 5116         return ((void *)(va + offset));
 5117 }
 5118 
 5119 void *
 5120 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 5121 {
 5122 
 5123         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 5124 }
 5125 
 5126 void *
 5127 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 5128 {
 5129 
 5130         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 5131 }
 5132 
 5133 void
 5134 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 5135 {
 5136         vm_offset_t base, offset;
 5137 
 5138         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 5139                 return;
 5140         base = trunc_page(va);
 5141         offset = va & PAGE_MASK;
 5142         size = round_page(offset + size);
 5143         kva_free(base, size);
 5144 }
 5145 
 5146 /*
 5147  * Sets the memory attribute for the specified page.
 5148  */
 5149 void
 5150 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 5151 {
 5152 
 5153         m->md.pat_mode = ma;
 5154         if ((m->flags & PG_FICTITIOUS) != 0)
 5155                 return;
 5156 
 5157         /*
 5158          * If "m" is a normal page, flush it from the cache.
 5159          * See pmap_invalidate_cache_range().
 5160          *
 5161          * First, try to find an existing mapping of the page by sf
 5162          * buffer. sf_buf_invalidate_cache() modifies mapping and
 5163          * flushes the cache.
 5164          */    
 5165         if (sf_buf_invalidate_cache(m))
 5166                 return;
 5167 
 5168         /*
 5169          * If page is not mapped by sf buffer, but CPU does not
 5170          * support self snoop, map the page transient and do
 5171          * invalidation. In the worst case, whole cache is flushed by
 5172          * pmap_invalidate_cache_range().
 5173          */
 5174         if ((cpu_feature & CPUID_SS) == 0)
 5175                 pmap_flush_page(m);
 5176 }
 5177 
 5178 static void
 5179 pmap_flush_page(vm_page_t m)
 5180 {
 5181         struct sysmaps *sysmaps;
 5182         vm_offset_t sva, eva;
 5183 
 5184         if ((cpu_feature & CPUID_CLFSH) != 0) {
 5185                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 5186                 mtx_lock(&sysmaps->lock);
 5187                 if (*sysmaps->CMAP2)
 5188                         panic("pmap_flush_page: CMAP2 busy");
 5189                 sched_pin();
 5190                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
 5191                     PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
 5192                 invlcaddr(sysmaps->CADDR2);
 5193                 sva = (vm_offset_t)sysmaps->CADDR2;
 5194                 eva = sva + PAGE_SIZE;
 5195 
 5196                 /*
 5197                  * Use mfence despite the ordering implied by
 5198                  * mtx_{un,}lock() because clflush is not guaranteed
 5199                  * to be ordered by any other instruction.
 5200                  */
 5201                 mfence();
 5202                 for (; sva < eva; sva += cpu_clflush_line_size)
 5203                         clflush(sva);
 5204                 mfence();
 5205                 *sysmaps->CMAP2 = 0;
 5206                 sched_unpin();
 5207                 mtx_unlock(&sysmaps->lock);
 5208         } else
 5209                 pmap_invalidate_cache();
 5210 }
 5211 
 5212 /*
 5213  * Changes the specified virtual address range's memory type to that given by
 5214  * the parameter "mode".  The specified virtual address range must be
 5215  * completely contained within either the kernel map.
 5216  *
 5217  * Returns zero if the change completed successfully, and either EINVAL or
 5218  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 5219  * of the virtual address range was not mapped, and ENOMEM is returned if
 5220  * there was insufficient memory available to complete the change.
 5221  */
 5222 int
 5223 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 5224 {
 5225         vm_offset_t base, offset, tmpva;
 5226         pd_entry_t *pde;
 5227         pt_entry_t *pte;
 5228         int cache_bits_pte, cache_bits_pde;
 5229         boolean_t changed;
 5230 
 5231         base = trunc_page(va);
 5232         offset = va & PAGE_MASK;
 5233         size = round_page(offset + size);
 5234 
 5235         /*
 5236          * Only supported on kernel virtual addresses above the recursive map.
 5237          */
 5238         if (base < VM_MIN_KERNEL_ADDRESS)
 5239                 return (EINVAL);
 5240 
 5241         cache_bits_pde = pmap_cache_bits(mode, 1);
 5242         cache_bits_pte = pmap_cache_bits(mode, 0);
 5243         changed = FALSE;
 5244 
 5245         /*
 5246          * Pages that aren't mapped aren't supported.  Also break down
 5247          * 2/4MB pages into 4KB pages if required.
 5248          */
 5249         PMAP_LOCK(kernel_pmap);
 5250         for (tmpva = base; tmpva < base + size; ) {
 5251                 pde = pmap_pde(kernel_pmap, tmpva);
 5252                 if (*pde == 0) {
 5253                         PMAP_UNLOCK(kernel_pmap);
 5254                         return (EINVAL);
 5255                 }
 5256                 if (*pde & PG_PS) {
 5257                         /*
 5258                          * If the current 2/4MB page already has
 5259                          * the required memory type, then we need not
 5260                          * demote this page.  Just increment tmpva to
 5261                          * the next 2/4MB page frame.
 5262                          */
 5263                         if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
 5264                                 tmpva = trunc_4mpage(tmpva) + NBPDR;
 5265                                 continue;
 5266                         }
 5267 
 5268                         /*
 5269                          * If the current offset aligns with a 2/4MB
 5270                          * page frame and there is at least 2/4MB left
 5271                          * within the range, then we need not break
 5272                          * down this page into 4KB pages.
 5273                          */
 5274                         if ((tmpva & PDRMASK) == 0 &&
 5275                             tmpva + PDRMASK < base + size) {
 5276                                 tmpva += NBPDR;
 5277                                 continue;
 5278                         }
 5279                         if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
 5280                                 PMAP_UNLOCK(kernel_pmap);
 5281                                 return (ENOMEM);
 5282                         }
 5283                 }
 5284                 pte = vtopte(tmpva);
 5285                 if (*pte == 0) {
 5286                         PMAP_UNLOCK(kernel_pmap);
 5287                         return (EINVAL);
 5288                 }
 5289                 tmpva += PAGE_SIZE;
 5290         }
 5291         PMAP_UNLOCK(kernel_pmap);
 5292 
 5293         /*
 5294          * Ok, all the pages exist, so run through them updating their
 5295          * cache mode if required.
 5296          */
 5297         for (tmpva = base; tmpva < base + size; ) {
 5298                 pde = pmap_pde(kernel_pmap, tmpva);
 5299                 if (*pde & PG_PS) {
 5300                         if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
 5301                                 pmap_pde_attr(pde, cache_bits_pde);
 5302                                 changed = TRUE;
 5303                         }
 5304                         tmpva = trunc_4mpage(tmpva) + NBPDR;
 5305                 } else {
 5306                         pte = vtopte(tmpva);
 5307                         if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
 5308                                 pmap_pte_attr(pte, cache_bits_pte);
 5309                                 changed = TRUE;
 5310                         }
 5311                         tmpva += PAGE_SIZE;
 5312                 }
 5313         }
 5314 
 5315         /*
 5316          * Flush CPU caches to make sure any data isn't cached that
 5317          * shouldn't be, etc.
 5318          */
 5319         if (changed) {
 5320                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 5321                 pmap_invalidate_cache_range(base, tmpva);
 5322         }
 5323         return (0);
 5324 }
 5325 
 5326 /*
 5327  * perform the pmap work for mincore
 5328  */
 5329 int
 5330 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 5331 {
 5332         pd_entry_t *pdep;
 5333         pt_entry_t *ptep, pte;
 5334         vm_paddr_t pa;
 5335         int val;
 5336 
 5337         PMAP_LOCK(pmap);
 5338 retry:
 5339         pdep = pmap_pde(pmap, addr);
 5340         if (*pdep != 0) {
 5341                 if (*pdep & PG_PS) {
 5342                         pte = *pdep;
 5343                         /* Compute the physical address of the 4KB page. */
 5344                         pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 5345                             PG_FRAME;
 5346                         val = MINCORE_SUPER;
 5347                 } else {
 5348                         ptep = pmap_pte(pmap, addr);
 5349                         pte = *ptep;
 5350                         pmap_pte_release(ptep);
 5351                         pa = pte & PG_FRAME;
 5352                         val = 0;
 5353                 }
 5354         } else {
 5355                 pte = 0;
 5356                 pa = 0;
 5357                 val = 0;
 5358         }
 5359         if ((pte & PG_V) != 0) {
 5360                 val |= MINCORE_INCORE;
 5361                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 5362                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 5363                 if ((pte & PG_A) != 0)
 5364                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 5365         }
 5366         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 5367             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 5368             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 5369                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 5370                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 5371                         goto retry;
 5372         } else
 5373                 PA_UNLOCK_COND(*locked_pa);
 5374         PMAP_UNLOCK(pmap);
 5375         return (val);
 5376 }
 5377 
 5378 void
 5379 pmap_activate(struct thread *td)
 5380 {
 5381         pmap_t  pmap, oldpmap;
 5382         u_int   cpuid;
 5383         u_int32_t  cr3;
 5384 
 5385         critical_enter();
 5386         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 5387         oldpmap = PCPU_GET(curpmap);
 5388         cpuid = PCPU_GET(cpuid);
 5389 #if defined(SMP)
 5390         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 5391         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 5392 #else
 5393         CPU_CLR(cpuid, &oldpmap->pm_active);
 5394         CPU_SET(cpuid, &pmap->pm_active);
 5395 #endif
 5396 #ifdef PAE
 5397         cr3 = vtophys(pmap->pm_pdpt);
 5398 #else
 5399         cr3 = vtophys(pmap->pm_pdir);
 5400 #endif
 5401         /*
 5402          * pmap_activate is for the current thread on the current cpu
 5403          */
 5404         td->td_pcb->pcb_cr3 = cr3;
 5405         load_cr3(cr3);
 5406         PCPU_SET(curpmap, pmap);
 5407         critical_exit();
 5408 }
 5409 
 5410 void
 5411 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 5412 {
 5413 }
 5414 
 5415 /*
 5416  *      Increase the starting virtual address of the given mapping if a
 5417  *      different alignment might result in more superpage mappings.
 5418  */
 5419 void
 5420 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 5421     vm_offset_t *addr, vm_size_t size)
 5422 {
 5423         vm_offset_t superpage_offset;
 5424 
 5425         if (size < NBPDR)
 5426                 return;
 5427         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 5428                 offset += ptoa(object->pg_color);
 5429         superpage_offset = offset & PDRMASK;
 5430         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 5431             (*addr & PDRMASK) == superpage_offset)
 5432                 return;
 5433         if ((*addr & PDRMASK) < superpage_offset)
 5434                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 5435         else
 5436                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 5437 }
 5438 
 5439 
 5440 #if defined(PMAP_DEBUG)
 5441 pmap_pid_dump(int pid)
 5442 {
 5443         pmap_t pmap;
 5444         struct proc *p;
 5445         int npte = 0;
 5446         int index;
 5447 
 5448         sx_slock(&allproc_lock);
 5449         FOREACH_PROC_IN_SYSTEM(p) {
 5450                 if (p->p_pid != pid)
 5451                         continue;
 5452 
 5453                 if (p->p_vmspace) {
 5454                         int i,j;
 5455                         index = 0;
 5456                         pmap = vmspace_pmap(p->p_vmspace);
 5457                         for (i = 0; i < NPDEPTD; i++) {
 5458                                 pd_entry_t *pde;
 5459                                 pt_entry_t *pte;
 5460                                 vm_offset_t base = i << PDRSHIFT;
 5461                                 
 5462                                 pde = &pmap->pm_pdir[i];
 5463                                 if (pde && pmap_pde_v(pde)) {
 5464                                         for (j = 0; j < NPTEPG; j++) {
 5465                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 5466                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 5467                                                         if (index) {
 5468                                                                 index = 0;
 5469                                                                 printf("\n");
 5470                                                         }
 5471                                                         sx_sunlock(&allproc_lock);
 5472                                                         return (npte);
 5473                                                 }
 5474                                                 pte = pmap_pte(pmap, va);
 5475                                                 if (pte && pmap_pte_v(pte)) {
 5476                                                         pt_entry_t pa;
 5477                                                         vm_page_t m;
 5478                                                         pa = *pte;
 5479                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 5480                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 5481                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 5482                                                         npte++;
 5483                                                         index++;
 5484                                                         if (index >= 2) {
 5485                                                                 index = 0;
 5486                                                                 printf("\n");
 5487                                                         } else {
 5488                                                                 printf(" ");
 5489                                                         }
 5490                                                 }
 5491                                         }
 5492                                 }
 5493                         }
 5494                 }
 5495         }
 5496         sx_sunlock(&allproc_lock);
 5497         return (npte);
 5498 }
 5499 #endif
 5500 
 5501 #if defined(DEBUG)
 5502 
 5503 static void     pads(pmap_t pm);
 5504 void            pmap_pvdump(vm_paddr_t pa);
 5505 
 5506 /* print address space of pmap*/
 5507 static void
 5508 pads(pmap_t pm)
 5509 {
 5510         int i, j;
 5511         vm_paddr_t va;
 5512         pt_entry_t *ptep;
 5513 
 5514         if (pm == kernel_pmap)
 5515                 return;
 5516         for (i = 0; i < NPDEPTD; i++)
 5517                 if (pm->pm_pdir[i])
 5518                         for (j = 0; j < NPTEPG; j++) {
 5519                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 5520                                 if (pm == kernel_pmap && va < KERNBASE)
 5521                                         continue;
 5522                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 5523                                         continue;
 5524                                 ptep = pmap_pte(pm, va);
 5525                                 if (pmap_pte_v(ptep))
 5526                                         printf("%x:%x ", va, *ptep);
 5527                         };
 5528 
 5529 }
 5530 
 5531 void
 5532 pmap_pvdump(vm_paddr_t pa)
 5533 {
 5534         pv_entry_t pv;
 5535         pmap_t pmap;
 5536         vm_page_t m;
 5537 
 5538         printf("pa %x", pa);
 5539         m = PHYS_TO_VM_PAGE(pa);
 5540         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 5541                 pmap = PV_PMAP(pv);
 5542                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 5543                 pads(pmap);
 5544         }
 5545         printf(" ");
 5546 }
 5547 #endif

Cache object: 84e03259e8402ffb2f9d07b7a695ba48


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.