The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/10.3/sys/i386/i386/pmap.c 287945 2015-09-17 23:31:44Z rstone $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      Since the information managed by this module is
   84  *      also stored by the logical address mapping module,
   85  *      this module may throw away valid virtual-to-physical
   86  *      mappings at almost any time.  However, invalidations
   87  *      of virtual-to-physical mappings must be done as
   88  *      requested.
   89  *
   90  *      In order to cope with hardware architectures which
   91  *      make virtual-to-physical map invalidates expensive,
   92  *      this module may delay invalidate or reduced protection
   93  *      operations until such time as they are actually
   94  *      necessary.  This module is given full information as
   95  *      to which processors are currently using which maps,
   96  *      and to when physical maps must be made correct.
   97  */
   98 
   99 #include "opt_apic.h"
  100 #include "opt_cpu.h"
  101 #include "opt_pmap.h"
  102 #include "opt_smp.h"
  103 #include "opt_xbox.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/kernel.h>
  108 #include <sys/ktr.h>
  109 #include <sys/lock.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mman.h>
  112 #include <sys/msgbuf.h>
  113 #include <sys/mutex.h>
  114 #include <sys/proc.h>
  115 #include <sys/rwlock.h>
  116 #include <sys/sf_buf.h>
  117 #include <sys/sx.h>
  118 #include <sys/vmmeter.h>
  119 #include <sys/sched.h>
  120 #include <sys/sysctl.h>
  121 #ifdef SMP
  122 #include <sys/smp.h>
  123 #else
  124 #include <sys/cpuset.h>
  125 #endif
  126 
  127 #include <vm/vm.h>
  128 #include <vm/vm_param.h>
  129 #include <vm/vm_kern.h>
  130 #include <vm/vm_page.h>
  131 #include <vm/vm_map.h>
  132 #include <vm/vm_object.h>
  133 #include <vm/vm_extern.h>
  134 #include <vm/vm_pageout.h>
  135 #include <vm/vm_pager.h>
  136 #include <vm/vm_phys.h>
  137 #include <vm/vm_radix.h>
  138 #include <vm/vm_reserv.h>
  139 #include <vm/uma.h>
  140 
  141 #ifdef DEV_APIC
  142 #include <sys/bus.h>
  143 #include <machine/intr_machdep.h>
  144 #include <machine/apicvar.h>
  145 #endif
  146 #include <machine/cpu.h>
  147 #include <machine/cputypes.h>
  148 #include <machine/md_var.h>
  149 #include <machine/pcb.h>
  150 #include <machine/specialreg.h>
  151 #ifdef SMP
  152 #include <machine/smp.h>
  153 #endif
  154 
  155 #ifdef XBOX
  156 #include <machine/xbox.h>
  157 #endif
  158 
  159 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  160 #define CPU_ENABLE_SSE
  161 #endif
  162 
  163 #ifndef PMAP_SHPGPERPROC
  164 #define PMAP_SHPGPERPROC 200
  165 #endif
  166 
  167 #if !defined(DIAGNOSTIC)
  168 #ifdef __GNUC_GNU_INLINE__
  169 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  170 #else
  171 #define PMAP_INLINE     extern inline
  172 #endif
  173 #else
  174 #define PMAP_INLINE
  175 #endif
  176 
  177 #ifdef PV_STATS
  178 #define PV_STAT(x)      do { x ; } while (0)
  179 #else
  180 #define PV_STAT(x)      do { } while (0)
  181 #endif
  182 
  183 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  184 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  185 
  186 /*
  187  * Get PDEs and PTEs for user/kernel address space
  188  */
  189 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  190 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  191 
  192 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  193 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  194 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  195 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  196 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  197 
  198 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  199     atomic_clear_int((u_int *)(pte), PG_W))
  200 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  201 
  202 struct pmap kernel_pmap_store;
  203 LIST_HEAD(pmaplist, pmap);
  204 static struct pmaplist allpmaps;
  205 static struct mtx allpmaps_lock;
  206 
  207 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  208 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  209 int pgeflag = 0;                /* PG_G or-in */
  210 int pseflag = 0;                /* PG_PS or-in */
  211 
  212 static int nkpt = NKPT;
  213 vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
  214 extern u_int32_t KERNend;
  215 extern u_int32_t KPTphys;
  216 
  217 #if defined(PAE) || defined(PAE_TABLES)
  218 pt_entry_t pg_nx;
  219 static uma_zone_t pdptzone;
  220 #endif
  221 
  222 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  223 
  224 static int pat_works = 1;
  225 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
  226     "Is page attribute table fully functional?");
  227 
  228 static int pg_ps_enabled = 1;
  229 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
  230     "Are large page mappings enabled?");
  231 
  232 #define PAT_INDEX_SIZE  8
  233 static int pat_index[PAT_INDEX_SIZE];   /* cache mode to PAT index conversion */
  234 
  235 /*
  236  * pmap_mapdev support pre initialization (i.e. console)
  237  */
  238 #define PMAP_PREINIT_MAPPING_COUNT      8
  239 static struct pmap_preinit_mapping {
  240         vm_paddr_t      pa;
  241         vm_offset_t     va;
  242         vm_size_t       sz;
  243         int             mode;
  244 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
  245 static int pmap_initialized;
  246 
  247 static struct rwlock_padalign pvh_global_lock;
  248 
  249 /*
  250  * Data for the pv entry allocation mechanism
  251  */
  252 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  253 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  254 static struct md_page *pv_table;
  255 static int shpgperproc = PMAP_SHPGPERPROC;
  256 
  257 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  258 int pv_maxchunks;                       /* How many chunks we have KVA for */
  259 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  260 
  261 /*
  262  * All those kernel PT submaps that BSD is so fond of
  263  */
  264 struct sysmaps {
  265         struct  mtx lock;
  266         pt_entry_t *CMAP1;
  267         pt_entry_t *CMAP2;
  268         caddr_t CADDR1;
  269         caddr_t CADDR2;
  270 };
  271 static struct sysmaps sysmaps_pcpu[MAXCPU];
  272 pt_entry_t *CMAP3;
  273 static pd_entry_t *KPTD;
  274 caddr_t ptvmmap = 0;
  275 caddr_t CADDR3;
  276 struct msgbuf *msgbufp = 0;
  277 
  278 /*
  279  * Crashdump maps.
  280  */
  281 static caddr_t crashdumpmap;
  282 
  283 static pt_entry_t *PMAP1 = 0, *PMAP2;
  284 static pt_entry_t *PADDR1 = 0, *PADDR2;
  285 #ifdef SMP
  286 static int PMAP1cpu;
  287 static int PMAP1changedcpu;
  288 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  289            &PMAP1changedcpu, 0,
  290            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  291 #endif
  292 static int PMAP1changed;
  293 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  294            &PMAP1changed, 0,
  295            "Number of times pmap_pte_quick changed PMAP1");
  296 static int PMAP1unchanged;
  297 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  298            &PMAP1unchanged, 0,
  299            "Number of times pmap_pte_quick didn't change PMAP1");
  300 static struct mtx PMAP2mutex;
  301 
  302 static void     free_pv_chunk(struct pv_chunk *pc);
  303 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  304 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  305 static void     pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  306 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  307 static void     pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  308 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  309 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  310                     vm_offset_t va);
  311 static int      pmap_pvh_wired_mappings(struct md_page *pvh, int count);
  312 
  313 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  314 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
  315     vm_prot_t prot);
  316 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  317     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  318 static void pmap_flush_page(vm_page_t m);
  319 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
  320 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
  321 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
  322 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
  323 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  324 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
  325 static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
  326 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
  327 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  328 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
  329     vm_prot_t prot);
  330 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
  331 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
  332     struct spglist *free);
  333 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  334     struct spglist *free);
  335 static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
  336 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  337     struct spglist *free);
  338 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  339                                         vm_offset_t va);
  340 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  341 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  342     vm_page_t m);
  343 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
  344     pd_entry_t newpde);
  345 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
  346 
  347 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  348 
  349 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
  350 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
  351 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  352 static void pmap_pte_release(pt_entry_t *pte);
  353 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
  354 #if defined(PAE) || defined(PAE_TABLES)
  355 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
  356     int wait);
  357 #endif
  358 static void pmap_set_pg(void);
  359 
  360 static __inline void pagezero(void *page);
  361 
  362 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  363 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  364 
  365 /*
  366  * If you get an error here, then you set KVA_PAGES wrong! See the
  367  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  368  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  369  */
  370 CTASSERT(KERNBASE % (1 << 24) == 0);
  371 
  372 /*
  373  *      Bootstrap the system enough to run with virtual memory.
  374  *
  375  *      On the i386 this is called after mapping has already been enabled
  376  *      and just syncs the pmap module with what has already been done.
  377  *      [We can't call it easily with mapping off since the kernel is not
  378  *      mapped with PA == VA, hence we would have to relocate every address
  379  *      from the linked base (virtual) address "KERNBASE" to the actual
  380  *      (physical) address starting relative to 0]
  381  */
  382 void
  383 pmap_bootstrap(vm_paddr_t firstaddr)
  384 {
  385         vm_offset_t va;
  386         pt_entry_t *pte, *unused;
  387         struct sysmaps *sysmaps;
  388         int i;
  389 
  390         /*
  391          * Add a physical memory segment (vm_phys_seg) corresponding to the
  392          * preallocated kernel page table pages so that vm_page structures
  393          * representing these pages will be created.  The vm_page structures
  394          * are required for promotion of the corresponding kernel virtual
  395          * addresses to superpage mappings.
  396          */
  397         vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
  398 
  399         /*
  400          * Initialize the first available kernel virtual address.  However,
  401          * using "firstaddr" may waste a few pages of the kernel virtual
  402          * address space, because locore may not have mapped every physical
  403          * page that it allocated.  Preferably, locore would provide a first
  404          * unused virtual address in addition to "firstaddr".
  405          */
  406         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  407 
  408         virtual_end = VM_MAX_KERNEL_ADDRESS;
  409 
  410         /*
  411          * Initialize the kernel pmap (which is statically allocated).
  412          */
  413         PMAP_LOCK_INIT(kernel_pmap);
  414         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  415 #if defined(PAE) || defined(PAE_TABLES)
  416         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  417 #endif
  418         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  419         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  420 
  421         /*
  422          * Initialize the global pv list lock.
  423          */
  424         rw_init(&pvh_global_lock, "pmap pv global");
  425 
  426         LIST_INIT(&allpmaps);
  427 
  428         /*
  429          * Request a spin mutex so that changes to allpmaps cannot be
  430          * preempted by smp_rendezvous_cpus().  Otherwise,
  431          * pmap_update_pde_kernel() could access allpmaps while it is
  432          * being changed.
  433          */
  434         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  435         mtx_lock_spin(&allpmaps_lock);
  436         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  437         mtx_unlock_spin(&allpmaps_lock);
  438 
  439         /*
  440          * Reserve some special page table entries/VA space for temporary
  441          * mapping of pages.
  442          */
  443 #define SYSMAP(c, p, v, n)      \
  444         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  445 
  446         va = virtual_avail;
  447         pte = vtopte(va);
  448 
  449         /*
  450          * CMAP1/CMAP2 are used for zeroing and copying pages.
  451          * CMAP3 is used for the idle process page zeroing.
  452          */
  453         for (i = 0; i < MAXCPU; i++) {
  454                 sysmaps = &sysmaps_pcpu[i];
  455                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  456                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  457                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  458         }
  459         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  460 
  461         /*
  462          * Crashdump maps.
  463          */
  464         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  465 
  466         /*
  467          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  468          */
  469         SYSMAP(caddr_t, unused, ptvmmap, 1)
  470 
  471         /*
  472          * msgbufp is used to map the system message buffer.
  473          */
  474         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  475 
  476         /*
  477          * KPTmap is used by pmap_kextract().
  478          *
  479          * KPTmap is first initialized by locore.  However, that initial
  480          * KPTmap can only support NKPT page table pages.  Here, a larger
  481          * KPTmap is created that can support KVA_PAGES page table pages.
  482          */
  483         SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
  484 
  485         for (i = 0; i < NKPT; i++)
  486                 KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
  487 
  488         /*
  489          * Adjust the start of the KPTD and KPTmap so that the implementation
  490          * of pmap_kextract() and pmap_growkernel() can be made simpler.
  491          */
  492         KPTD -= KPTDI;
  493         KPTmap -= i386_btop(KPTDI << PDRSHIFT);
  494 
  495         /*
  496          * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
  497          * respectively.
  498          */
  499         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  500         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  501 
  502         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  503 
  504         virtual_avail = va;
  505 
  506         /*
  507          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  508          * physical memory region that is used by the ACPI wakeup code.  This
  509          * mapping must not have PG_G set. 
  510          */
  511 #ifdef XBOX
  512         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  513          * an early stadium, we cannot yet neatly map video memory ... :-(
  514          * Better fixes are very welcome! */
  515         if (!arch_i386_is_xbox)
  516 #endif
  517         for (i = 1; i < NKPT; i++)
  518                 PTD[i] = 0;
  519 
  520         /* Initialize the PAT MSR if present. */
  521         pmap_init_pat();
  522 
  523         /* Turn on PG_G on kernel page(s) */
  524         pmap_set_pg();
  525 }
  526 
  527 /*
  528  * Setup the PAT MSR.
  529  */
  530 void
  531 pmap_init_pat(void)
  532 {
  533         int pat_table[PAT_INDEX_SIZE];
  534         uint64_t pat_msr;
  535         u_long cr0, cr4;
  536         int i;
  537 
  538         /* Set default PAT index table. */
  539         for (i = 0; i < PAT_INDEX_SIZE; i++)
  540                 pat_table[i] = -1;
  541         pat_table[PAT_WRITE_BACK] = 0;
  542         pat_table[PAT_WRITE_THROUGH] = 1;
  543         pat_table[PAT_UNCACHEABLE] = 3;
  544         pat_table[PAT_WRITE_COMBINING] = 3;
  545         pat_table[PAT_WRITE_PROTECTED] = 3;
  546         pat_table[PAT_UNCACHED] = 3;
  547 
  548         /* Bail if this CPU doesn't implement PAT. */
  549         if ((cpu_feature & CPUID_PAT) == 0) {
  550                 for (i = 0; i < PAT_INDEX_SIZE; i++)
  551                         pat_index[i] = pat_table[i];
  552                 pat_works = 0;
  553                 return;
  554         }
  555 
  556         /*
  557          * Due to some Intel errata, we can only safely use the lower 4
  558          * PAT entries.
  559          *
  560          *   Intel Pentium III Processor Specification Update
  561          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  562          * or Mode C Paging)
  563          *
  564          *   Intel Pentium IV  Processor Specification Update
  565          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  566          */
  567         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  568             !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
  569                 pat_works = 0;
  570 
  571         /* Initialize default PAT entries. */
  572         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
  573             PAT_VALUE(1, PAT_WRITE_THROUGH) |
  574             PAT_VALUE(2, PAT_UNCACHED) |
  575             PAT_VALUE(3, PAT_UNCACHEABLE) |
  576             PAT_VALUE(4, PAT_WRITE_BACK) |
  577             PAT_VALUE(5, PAT_WRITE_THROUGH) |
  578             PAT_VALUE(6, PAT_UNCACHED) |
  579             PAT_VALUE(7, PAT_UNCACHEABLE);
  580 
  581         if (pat_works) {
  582                 /*
  583                  * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
  584                  * Program 5 and 6 as WP and WC.
  585                  * Leave 4 and 7 as WB and UC.
  586                  */
  587                 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
  588                 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
  589                     PAT_VALUE(6, PAT_WRITE_COMBINING);
  590                 pat_table[PAT_UNCACHED] = 2;
  591                 pat_table[PAT_WRITE_PROTECTED] = 5;
  592                 pat_table[PAT_WRITE_COMBINING] = 6;
  593         } else {
  594                 /*
  595                  * Just replace PAT Index 2 with WC instead of UC-.
  596                  */
  597                 pat_msr &= ~PAT_MASK(2);
  598                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  599                 pat_table[PAT_WRITE_COMBINING] = 2;
  600         }
  601 
  602         /* Disable PGE. */
  603         cr4 = rcr4();
  604         load_cr4(cr4 & ~CR4_PGE);
  605 
  606         /* Disable caches (CD = 1, NW = 0). */
  607         cr0 = rcr0();
  608         load_cr0((cr0 & ~CR0_NW) | CR0_CD);
  609 
  610         /* Flushes caches and TLBs. */
  611         wbinvd();
  612         invltlb();
  613 
  614         /* Update PAT and index table. */
  615         wrmsr(MSR_PAT, pat_msr);
  616         for (i = 0; i < PAT_INDEX_SIZE; i++)
  617                 pat_index[i] = pat_table[i];
  618 
  619         /* Flush caches and TLBs again. */
  620         wbinvd();
  621         invltlb();
  622 
  623         /* Restore caches and PGE. */
  624         load_cr0(cr0);
  625         load_cr4(cr4);
  626 }
  627 
  628 /*
  629  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  630  */
  631 static void
  632 pmap_set_pg(void)
  633 {
  634         pt_entry_t *pte;
  635         vm_offset_t va, endva;
  636 
  637         if (pgeflag == 0)
  638                 return;
  639 
  640         endva = KERNBASE + KERNend;
  641 
  642         if (pseflag) {
  643                 va = KERNBASE + KERNLOAD;
  644                 while (va  < endva) {
  645                         pdir_pde(PTD, va) |= pgeflag;
  646                         invltlb();      /* Play it safe, invltlb() every time */
  647                         va += NBPDR;
  648                 }
  649         } else {
  650                 va = (vm_offset_t)btext;
  651                 while (va < endva) {
  652                         pte = vtopte(va);
  653                         if (*pte)
  654                                 *pte |= pgeflag;
  655                         invltlb();      /* Play it safe, invltlb() every time */
  656                         va += PAGE_SIZE;
  657                 }
  658         }
  659 }
  660 
  661 /*
  662  * Initialize a vm_page's machine-dependent fields.
  663  */
  664 void
  665 pmap_page_init(vm_page_t m)
  666 {
  667 
  668         TAILQ_INIT(&m->md.pv_list);
  669         m->md.pat_mode = PAT_WRITE_BACK;
  670 }
  671 
  672 #if defined(PAE) || defined(PAE_TABLES)
  673 static void *
  674 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
  675 {
  676 
  677         /* Inform UMA that this allocator uses kernel_map/object. */
  678         *flags = UMA_SLAB_KERNEL;
  679         return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
  680             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  681 }
  682 #endif
  683 
  684 /*
  685  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
  686  * Requirements:
  687  *  - Must deal with pages in order to ensure that none of the PG_* bits
  688  *    are ever set, PG_V in particular.
  689  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  690  *    on PAE systems.  This should be ok.
  691  *  - Assumes nothing will ever test these addresses for 0 to indicate
  692  *    no mapping instead of correctly checking PG_V.
  693  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  694  * Because PG_V is never set, there can be no mappings to invalidate.
  695  */
  696 static vm_offset_t
  697 pmap_ptelist_alloc(vm_offset_t *head)
  698 {
  699         pt_entry_t *pte;
  700         vm_offset_t va;
  701 
  702         va = *head;
  703         if (va == 0)
  704                 panic("pmap_ptelist_alloc: exhausted ptelist KVA");
  705         pte = vtopte(va);
  706         *head = *pte;
  707         if (*head & PG_V)
  708                 panic("pmap_ptelist_alloc: va with PG_V set!");
  709         *pte = 0;
  710         return (va);
  711 }
  712 
  713 static void
  714 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  715 {
  716         pt_entry_t *pte;
  717 
  718         if (va & PG_V)
  719                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  720         pte = vtopte(va);
  721         *pte = *head;           /* virtual! PG_V is 0 though */
  722         *head = va;
  723 }
  724 
  725 static void
  726 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  727 {
  728         int i;
  729         vm_offset_t va;
  730 
  731         *head = 0;
  732         for (i = npages - 1; i >= 0; i--) {
  733                 va = (vm_offset_t)base + i * PAGE_SIZE;
  734                 pmap_ptelist_free(head, va);
  735         }
  736 }
  737 
  738 
  739 /*
  740  *      Initialize the pmap module.
  741  *      Called by vm_init, to initialize any structures that the pmap
  742  *      system needs to map virtual memory.
  743  */
  744 void
  745 pmap_init(void)
  746 {
  747         struct pmap_preinit_mapping *ppim;
  748         vm_page_t mpte;
  749         vm_size_t s;
  750         int i, pv_npg;
  751 
  752         /*
  753          * Initialize the vm page array entries for the kernel pmap's
  754          * page table pages.
  755          */ 
  756         for (i = 0; i < NKPT; i++) {
  757                 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
  758                 KASSERT(mpte >= vm_page_array &&
  759                     mpte < &vm_page_array[vm_page_array_size],
  760                     ("pmap_init: page table page is out of range"));
  761                 mpte->pindex = i + KPTDI;
  762                 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
  763         }
  764 
  765         /*
  766          * Initialize the address space (zone) for the pv entries.  Set a
  767          * high water mark so that the system can recover from excessive
  768          * numbers of pv entries.
  769          */
  770         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  771         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  772         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  773         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  774         pv_entry_high_water = 9 * (pv_entry_max / 10);
  775 
  776         /*
  777          * If the kernel is running on a virtual machine, then it must assume
  778          * that MCA is enabled by the hypervisor.  Moreover, the kernel must
  779          * be prepared for the hypervisor changing the vendor and family that
  780          * are reported by CPUID.  Consequently, the workaround for AMD Family
  781          * 10h Erratum 383 is enabled if the processor's feature set does not
  782          * include at least one feature that is only supported by older Intel
  783          * or newer AMD processors.
  784          */
  785         if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
  786             (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
  787             CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
  788             AMDID2_FMA4)) == 0)
  789                 workaround_erratum383 = 1;
  790 
  791         /*
  792          * Are large page mappings supported and enabled?
  793          */
  794         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  795         if (pseflag == 0)
  796                 pg_ps_enabled = 0;
  797         else if (pg_ps_enabled) {
  798                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
  799                     ("pmap_init: can't assign to pagesizes[1]"));
  800                 pagesizes[1] = NBPDR;
  801         }
  802 
  803         /*
  804          * Calculate the size of the pv head table for superpages.
  805          * Handle the possibility that "vm_phys_segs[...].end" is zero.
  806          */
  807         pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
  808             PAGE_SIZE) / NBPDR + 1;
  809 
  810         /*
  811          * Allocate memory for the pv head table for superpages.
  812          */
  813         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  814         s = round_page(s);
  815         pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
  816             M_WAITOK | M_ZERO);
  817         for (i = 0; i < pv_npg; i++)
  818                 TAILQ_INIT(&pv_table[i].pv_list);
  819 
  820         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  821         pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
  822         if (pv_chunkbase == NULL)
  823                 panic("pmap_init: not enough kvm for pv chunks");
  824         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  825 #if defined(PAE) || defined(PAE_TABLES)
  826         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  827             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  828             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  829         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  830 #endif
  831 
  832         pmap_initialized = 1;
  833         if (!bootverbose)
  834                 return;
  835         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
  836                 ppim = pmap_preinit_mapping + i;
  837                 if (ppim->va == 0)
  838                         continue;
  839                 printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
  840                     (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
  841         }
  842 }
  843 
  844 
  845 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  846         "Max number of PV entries");
  847 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  848         "Page share factor per proc");
  849 
  850 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  851     "2/4MB page mapping counters");
  852 
  853 static u_long pmap_pde_demotions;
  854 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
  855     &pmap_pde_demotions, 0, "2/4MB page demotions");
  856 
  857 static u_long pmap_pde_mappings;
  858 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  859     &pmap_pde_mappings, 0, "2/4MB page mappings");
  860 
  861 static u_long pmap_pde_p_failures;
  862 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
  863     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
  864 
  865 static u_long pmap_pde_promotions;
  866 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
  867     &pmap_pde_promotions, 0, "2/4MB page promotions");
  868 
  869 /***************************************************
  870  * Low level helper routines.....
  871  ***************************************************/
  872 
  873 /*
  874  * Determine the appropriate bits to set in a PTE or PDE for a specified
  875  * caching mode.
  876  */
  877 int
  878 pmap_cache_bits(int mode, boolean_t is_pde)
  879 {
  880         int cache_bits, pat_flag, pat_idx;
  881 
  882         if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
  883                 panic("Unknown caching mode %d\n", mode);
  884 
  885         /* The PAT bit is different for PTE's and PDE's. */
  886         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  887 
  888         /* Map the caching mode to a PAT index. */
  889         pat_idx = pat_index[mode];
  890 
  891         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  892         cache_bits = 0;
  893         if (pat_idx & 0x4)
  894                 cache_bits |= pat_flag;
  895         if (pat_idx & 0x2)
  896                 cache_bits |= PG_NC_PCD;
  897         if (pat_idx & 0x1)
  898                 cache_bits |= PG_NC_PWT;
  899         return (cache_bits);
  900 }
  901 
  902 /*
  903  * The caller is responsible for maintaining TLB consistency.
  904  */
  905 static void
  906 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
  907 {
  908         pd_entry_t *pde;
  909         pmap_t pmap;
  910         boolean_t PTD_updated;
  911 
  912         PTD_updated = FALSE;
  913         mtx_lock_spin(&allpmaps_lock);
  914         LIST_FOREACH(pmap, &allpmaps, pm_list) {
  915                 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
  916                     PG_FRAME))
  917                         PTD_updated = TRUE;
  918                 pde = pmap_pde(pmap, va);
  919                 pde_store(pde, newpde);
  920         }
  921         mtx_unlock_spin(&allpmaps_lock);
  922         KASSERT(PTD_updated,
  923             ("pmap_kenter_pde: current page table is not in allpmaps"));
  924 }
  925 
  926 /*
  927  * After changing the page size for the specified virtual address in the page
  928  * table, flush the corresponding entries from the processor's TLB.  Only the
  929  * calling processor's TLB is affected.
  930  *
  931  * The calling thread must be pinned to a processor.
  932  */
  933 static void
  934 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
  935 {
  936         u_long cr4;
  937 
  938         if ((newpde & PG_PS) == 0)
  939                 /* Demotion: flush a specific 2MB page mapping. */
  940                 invlpg(va);
  941         else if ((newpde & PG_G) == 0)
  942                 /*
  943                  * Promotion: flush every 4KB page mapping from the TLB
  944                  * because there are too many to flush individually.
  945                  */
  946                 invltlb();
  947         else {
  948                 /*
  949                  * Promotion: flush every 4KB page mapping from the TLB,
  950                  * including any global (PG_G) mappings.
  951                  */
  952                 cr4 = rcr4();
  953                 load_cr4(cr4 & ~CR4_PGE);
  954                 /*
  955                  * Although preemption at this point could be detrimental to
  956                  * performance, it would not lead to an error.  PG_G is simply
  957                  * ignored if CR4.PGE is clear.  Moreover, in case this block
  958                  * is re-entered, the load_cr4() either above or below will
  959                  * modify CR4.PGE flushing the TLB.
  960                  */
  961                 load_cr4(cr4 | CR4_PGE);
  962         }
  963 }
  964 #ifdef SMP
  965 /*
  966  * For SMP, these functions have to use the IPI mechanism for coherence.
  967  *
  968  * N.B.: Before calling any of the following TLB invalidation functions,
  969  * the calling processor must ensure that all stores updating a non-
  970  * kernel page table are globally performed.  Otherwise, another
  971  * processor could cache an old, pre-update entry without being
  972  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  973  * active on another processor after its pm_active field is checked by
  974  * one of the following functions but before a store updating the page
  975  * table is globally performed. (2) The pmap becomes active on another
  976  * processor before its pm_active field is checked but due to
  977  * speculative loads one of the following functions stills reads the
  978  * pmap as inactive on the other processor.
  979  * 
  980  * The kernel page table is exempt because its pm_active field is
  981  * immutable.  The kernel page table is always active on every
  982  * processor.
  983  */
  984 void
  985 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  986 {
  987         cpuset_t other_cpus;
  988         u_int cpuid;
  989 
  990         sched_pin();
  991         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  992                 invlpg(va);
  993                 smp_invlpg(va);
  994         } else {
  995                 cpuid = PCPU_GET(cpuid);
  996                 other_cpus = all_cpus;
  997                 CPU_CLR(cpuid, &other_cpus);
  998                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  999                         invlpg(va);
 1000                 CPU_AND(&other_cpus, &pmap->pm_active);
 1001                 if (!CPU_EMPTY(&other_cpus))
 1002                         smp_masked_invlpg(other_cpus, va);
 1003         }
 1004         sched_unpin();
 1005 }
 1006 
 1007 void
 1008 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1009 {
 1010         cpuset_t other_cpus;
 1011         vm_offset_t addr;
 1012         u_int cpuid;
 1013 
 1014         sched_pin();
 1015         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1016                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1017                         invlpg(addr);
 1018                 smp_invlpg_range(sva, eva);
 1019         } else {
 1020                 cpuid = PCPU_GET(cpuid);
 1021                 other_cpus = all_cpus;
 1022                 CPU_CLR(cpuid, &other_cpus);
 1023                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1024                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1025                                 invlpg(addr);
 1026                 CPU_AND(&other_cpus, &pmap->pm_active);
 1027                 if (!CPU_EMPTY(&other_cpus))
 1028                         smp_masked_invlpg_range(other_cpus, sva, eva);
 1029         }
 1030         sched_unpin();
 1031 }
 1032 
 1033 void
 1034 pmap_invalidate_all(pmap_t pmap)
 1035 {
 1036         cpuset_t other_cpus;
 1037         u_int cpuid;
 1038 
 1039         sched_pin();
 1040         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1041                 invltlb();
 1042                 smp_invltlb();
 1043         } else {
 1044                 cpuid = PCPU_GET(cpuid);
 1045                 other_cpus = all_cpus;
 1046                 CPU_CLR(cpuid, &other_cpus);
 1047                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1048                         invltlb();
 1049                 CPU_AND(&other_cpus, &pmap->pm_active);
 1050                 if (!CPU_EMPTY(&other_cpus))
 1051                         smp_masked_invltlb(other_cpus);
 1052         }
 1053         sched_unpin();
 1054 }
 1055 
 1056 void
 1057 pmap_invalidate_cache(void)
 1058 {
 1059 
 1060         sched_pin();
 1061         wbinvd();
 1062         smp_cache_flush();
 1063         sched_unpin();
 1064 }
 1065 
 1066 struct pde_action {
 1067         cpuset_t invalidate;    /* processors that invalidate their TLB */
 1068         vm_offset_t va;
 1069         pd_entry_t *pde;
 1070         pd_entry_t newpde;
 1071         u_int store;            /* processor that updates the PDE */
 1072 };
 1073 
 1074 static void
 1075 pmap_update_pde_kernel(void *arg)
 1076 {
 1077         struct pde_action *act = arg;
 1078         pd_entry_t *pde;
 1079         pmap_t pmap;
 1080 
 1081         if (act->store == PCPU_GET(cpuid)) {
 1082 
 1083                 /*
 1084                  * Elsewhere, this operation requires allpmaps_lock for
 1085                  * synchronization.  Here, it does not because it is being
 1086                  * performed in the context of an all_cpus rendezvous.
 1087                  */
 1088                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1089                         pde = pmap_pde(pmap, act->va);
 1090                         pde_store(pde, act->newpde);
 1091                 }
 1092         }
 1093 }
 1094 
 1095 static void
 1096 pmap_update_pde_user(void *arg)
 1097 {
 1098         struct pde_action *act = arg;
 1099 
 1100         if (act->store == PCPU_GET(cpuid))
 1101                 pde_store(act->pde, act->newpde);
 1102 }
 1103 
 1104 static void
 1105 pmap_update_pde_teardown(void *arg)
 1106 {
 1107         struct pde_action *act = arg;
 1108 
 1109         if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 1110                 pmap_update_pde_invalidate(act->va, act->newpde);
 1111 }
 1112 
 1113 /*
 1114  * Change the page size for the specified virtual address in a way that
 1115  * prevents any possibility of the TLB ever having two entries that map the
 1116  * same virtual address using different page sizes.  This is the recommended
 1117  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
 1118  * machine check exception for a TLB state that is improperly diagnosed as a
 1119  * hardware error.
 1120  */
 1121 static void
 1122 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1123 {
 1124         struct pde_action act;
 1125         cpuset_t active, other_cpus;
 1126         u_int cpuid;
 1127 
 1128         sched_pin();
 1129         cpuid = PCPU_GET(cpuid);
 1130         other_cpus = all_cpus;
 1131         CPU_CLR(cpuid, &other_cpus);
 1132         if (pmap == kernel_pmap)
 1133                 active = all_cpus;
 1134         else
 1135                 active = pmap->pm_active;
 1136         if (CPU_OVERLAP(&active, &other_cpus)) {
 1137                 act.store = cpuid;
 1138                 act.invalidate = active;
 1139                 act.va = va;
 1140                 act.pde = pde;
 1141                 act.newpde = newpde;
 1142                 CPU_SET(cpuid, &active);
 1143                 smp_rendezvous_cpus(active,
 1144                     smp_no_rendevous_barrier, pmap == kernel_pmap ?
 1145                     pmap_update_pde_kernel : pmap_update_pde_user,
 1146                     pmap_update_pde_teardown, &act);
 1147         } else {
 1148                 if (pmap == kernel_pmap)
 1149                         pmap_kenter_pde(va, newpde);
 1150                 else
 1151                         pde_store(pde, newpde);
 1152                 if (CPU_ISSET(cpuid, &active))
 1153                         pmap_update_pde_invalidate(va, newpde);
 1154         }
 1155         sched_unpin();
 1156 }
 1157 #else /* !SMP */
 1158 /*
 1159  * Normal, non-SMP, 486+ invalidation functions.
 1160  * We inline these within pmap.c for speed.
 1161  */
 1162 PMAP_INLINE void
 1163 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1164 {
 1165 
 1166         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1167                 invlpg(va);
 1168 }
 1169 
 1170 PMAP_INLINE void
 1171 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1172 {
 1173         vm_offset_t addr;
 1174 
 1175         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1176                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1177                         invlpg(addr);
 1178 }
 1179 
 1180 PMAP_INLINE void
 1181 pmap_invalidate_all(pmap_t pmap)
 1182 {
 1183 
 1184         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1185                 invltlb();
 1186 }
 1187 
 1188 PMAP_INLINE void
 1189 pmap_invalidate_cache(void)
 1190 {
 1191 
 1192         wbinvd();
 1193 }
 1194 
 1195 static void
 1196 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1197 {
 1198 
 1199         if (pmap == kernel_pmap)
 1200                 pmap_kenter_pde(va, newpde);
 1201         else
 1202                 pde_store(pde, newpde);
 1203         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1204                 pmap_update_pde_invalidate(va, newpde);
 1205 }
 1206 #endif /* !SMP */
 1207 
 1208 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
 1209 
 1210 void
 1211 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
 1212 {
 1213 
 1214         if (force) {
 1215                 sva &= ~(vm_offset_t)cpu_clflush_line_size;
 1216         } else {
 1217                 KASSERT((sva & PAGE_MASK) == 0,
 1218                     ("pmap_invalidate_cache_range: sva not page-aligned"));
 1219                 KASSERT((eva & PAGE_MASK) == 0,
 1220                     ("pmap_invalidate_cache_range: eva not page-aligned"));
 1221         }
 1222 
 1223         if ((cpu_feature & CPUID_SS) != 0 && !force)
 1224                 ; /* If "Self Snoop" is supported and allowed, do nothing. */
 1225         else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 1226             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1227 
 1228 #ifdef DEV_APIC
 1229                 /*
 1230                  * XXX: Some CPUs fault, hang, or trash the local APIC
 1231                  * registers if we use CLFLUSH on the local APIC
 1232                  * range.  The local APIC is always uncached, so we
 1233                  * don't need to flush for that range anyway.
 1234                  */
 1235                 if (pmap_kextract(sva) == lapic_paddr)
 1236                         return;
 1237 #endif
 1238                 /*
 1239                  * Otherwise, do per-cache line flush.  Use the mfence
 1240                  * instruction to insure that previous stores are
 1241                  * included in the write-back.  The processor
 1242                  * propagates flush to other processors in the cache
 1243                  * coherence domain.
 1244                  */
 1245                 mfence();
 1246                 for (; sva < eva; sva += cpu_clflush_line_size)
 1247                         clflush(sva);
 1248                 mfence();
 1249         } else {
 1250 
 1251                 /*
 1252                  * No targeted cache flush methods are supported by CPU,
 1253                  * or the supplied range is bigger than 2MB.
 1254                  * Globally invalidate cache.
 1255                  */
 1256                 pmap_invalidate_cache();
 1257         }
 1258 }
 1259 
 1260 void
 1261 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 1262 {
 1263         int i;
 1264 
 1265         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 1266             (cpu_feature & CPUID_CLFSH) == 0) {
 1267                 pmap_invalidate_cache();
 1268         } else {
 1269                 for (i = 0; i < count; i++)
 1270                         pmap_flush_page(pages[i]);
 1271         }
 1272 }
 1273 
 1274 /*
 1275  * Are we current address space or kernel?  N.B. We return FALSE when
 1276  * a pmap's page table is in use because a kernel thread is borrowing
 1277  * it.  The borrowed page table can change spontaneously, making any
 1278  * dependence on its continued use subject to a race condition.
 1279  */
 1280 static __inline int
 1281 pmap_is_current(pmap_t pmap)
 1282 {
 1283 
 1284         return (pmap == kernel_pmap ||
 1285             (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
 1286             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
 1287 }
 1288 
 1289 /*
 1290  * If the given pmap is not the current or kernel pmap, the returned pte must
 1291  * be released by passing it to pmap_pte_release().
 1292  */
 1293 pt_entry_t *
 1294 pmap_pte(pmap_t pmap, vm_offset_t va)
 1295 {
 1296         pd_entry_t newpf;
 1297         pd_entry_t *pde;
 1298 
 1299         pde = pmap_pde(pmap, va);
 1300         if (*pde & PG_PS)
 1301                 return (pde);
 1302         if (*pde != 0) {
 1303                 /* are we current address space or kernel? */
 1304                 if (pmap_is_current(pmap))
 1305                         return (vtopte(va));
 1306                 mtx_lock(&PMAP2mutex);
 1307                 newpf = *pde & PG_FRAME;
 1308                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1309                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1310                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 1311                 }
 1312                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1313         }
 1314         return (NULL);
 1315 }
 1316 
 1317 /*
 1318  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1319  * being NULL.
 1320  */
 1321 static __inline void
 1322 pmap_pte_release(pt_entry_t *pte)
 1323 {
 1324 
 1325         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
 1326                 mtx_unlock(&PMAP2mutex);
 1327 }
 1328 
 1329 /*
 1330  * NB:  The sequence of updating a page table followed by accesses to the
 1331  * corresponding pages is subject to the situation described in the "AMD64
 1332  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
 1333  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
 1334  * right after modifying the PTE bits is crucial.
 1335  */
 1336 static __inline void
 1337 invlcaddr(void *caddr)
 1338 {
 1339 
 1340         invlpg((u_int)caddr);
 1341 }
 1342 
 1343 /*
 1344  * Super fast pmap_pte routine best used when scanning
 1345  * the pv lists.  This eliminates many coarse-grained
 1346  * invltlb calls.  Note that many of the pv list
 1347  * scans are across different pmaps.  It is very wasteful
 1348  * to do an entire invltlb for checking a single mapping.
 1349  *
 1350  * If the given pmap is not the current pmap, pvh_global_lock
 1351  * must be held and curthread pinned to a CPU.
 1352  */
 1353 static pt_entry_t *
 1354 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1355 {
 1356         pd_entry_t newpf;
 1357         pd_entry_t *pde;
 1358 
 1359         pde = pmap_pde(pmap, va);
 1360         if (*pde & PG_PS)
 1361                 return (pde);
 1362         if (*pde != 0) {
 1363                 /* are we current address space or kernel? */
 1364                 if (pmap_is_current(pmap))
 1365                         return (vtopte(va));
 1366                 rw_assert(&pvh_global_lock, RA_WLOCKED);
 1367                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1368                 newpf = *pde & PG_FRAME;
 1369                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1370                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1371 #ifdef SMP
 1372                         PMAP1cpu = PCPU_GET(cpuid);
 1373 #endif
 1374                         invlcaddr(PADDR1);
 1375                         PMAP1changed++;
 1376                 } else
 1377 #ifdef SMP
 1378                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1379                         PMAP1cpu = PCPU_GET(cpuid);
 1380                         invlcaddr(PADDR1);
 1381                         PMAP1changedcpu++;
 1382                 } else
 1383 #endif
 1384                         PMAP1unchanged++;
 1385                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1386         }
 1387         return (0);
 1388 }
 1389 
 1390 /*
 1391  *      Routine:        pmap_extract
 1392  *      Function:
 1393  *              Extract the physical page address associated
 1394  *              with the given map/virtual_address pair.
 1395  */
 1396 vm_paddr_t 
 1397 pmap_extract(pmap_t pmap, vm_offset_t va)
 1398 {
 1399         vm_paddr_t rtval;
 1400         pt_entry_t *pte;
 1401         pd_entry_t pde;
 1402 
 1403         rtval = 0;
 1404         PMAP_LOCK(pmap);
 1405         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1406         if (pde != 0) {
 1407                 if ((pde & PG_PS) != 0)
 1408                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
 1409                 else {
 1410                         pte = pmap_pte(pmap, va);
 1411                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1412                         pmap_pte_release(pte);
 1413                 }
 1414         }
 1415         PMAP_UNLOCK(pmap);
 1416         return (rtval);
 1417 }
 1418 
 1419 /*
 1420  *      Routine:        pmap_extract_and_hold
 1421  *      Function:
 1422  *              Atomically extract and hold the physical page
 1423  *              with the given pmap and virtual address pair
 1424  *              if that mapping permits the given protection.
 1425  */
 1426 vm_page_t
 1427 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1428 {
 1429         pd_entry_t pde;
 1430         pt_entry_t pte, *ptep;
 1431         vm_page_t m;
 1432         vm_paddr_t pa;
 1433 
 1434         pa = 0;
 1435         m = NULL;
 1436         PMAP_LOCK(pmap);
 1437 retry:
 1438         pde = *pmap_pde(pmap, va);
 1439         if (pde != 0) {
 1440                 if (pde & PG_PS) {
 1441                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1442                                 if (vm_page_pa_tryrelock(pmap, (pde &
 1443                                     PG_PS_FRAME) | (va & PDRMASK), &pa))
 1444                                         goto retry;
 1445                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1446                                     (va & PDRMASK));
 1447                                 vm_page_hold(m);
 1448                         }
 1449                 } else {
 1450                         ptep = pmap_pte(pmap, va);
 1451                         pte = *ptep;
 1452                         pmap_pte_release(ptep);
 1453                         if (pte != 0 &&
 1454                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1455                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 1456                                     &pa))
 1457                                         goto retry;
 1458                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1459                                 vm_page_hold(m);
 1460                         }
 1461                 }
 1462         }
 1463         PA_UNLOCK_COND(pa);
 1464         PMAP_UNLOCK(pmap);
 1465         return (m);
 1466 }
 1467 
 1468 /***************************************************
 1469  * Low level mapping routines.....
 1470  ***************************************************/
 1471 
 1472 /*
 1473  * Add a wired page to the kva.
 1474  * Note: not SMP coherent.
 1475  *
 1476  * This function may be used before pmap_bootstrap() is called.
 1477  */
 1478 PMAP_INLINE void 
 1479 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1480 {
 1481         pt_entry_t *pte;
 1482 
 1483         pte = vtopte(va);
 1484         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1485 }
 1486 
 1487 static __inline void
 1488 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1489 {
 1490         pt_entry_t *pte;
 1491 
 1492         pte = vtopte(va);
 1493         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1494 }
 1495 
 1496 /*
 1497  * Remove a page from the kernel pagetables.
 1498  * Note: not SMP coherent.
 1499  *
 1500  * This function may be used before pmap_bootstrap() is called.
 1501  */
 1502 PMAP_INLINE void
 1503 pmap_kremove(vm_offset_t va)
 1504 {
 1505         pt_entry_t *pte;
 1506 
 1507         pte = vtopte(va);
 1508         pte_clear(pte);
 1509 }
 1510 
 1511 /*
 1512  *      Used to map a range of physical addresses into kernel
 1513  *      virtual address space.
 1514  *
 1515  *      The value passed in '*virt' is a suggested virtual address for
 1516  *      the mapping. Architectures which can support a direct-mapped
 1517  *      physical to virtual region can return the appropriate address
 1518  *      within that region, leaving '*virt' unchanged. Other
 1519  *      architectures should map the pages starting at '*virt' and
 1520  *      update '*virt' with the first usable address after the mapped
 1521  *      region.
 1522  */
 1523 vm_offset_t
 1524 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1525 {
 1526         vm_offset_t va, sva;
 1527         vm_paddr_t superpage_offset;
 1528         pd_entry_t newpde;
 1529 
 1530         va = *virt;
 1531         /*
 1532          * Does the physical address range's size and alignment permit at
 1533          * least one superpage mapping to be created?
 1534          */ 
 1535         superpage_offset = start & PDRMASK;
 1536         if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
 1537                 /*
 1538                  * Increase the starting virtual address so that its alignment
 1539                  * does not preclude the use of superpage mappings.
 1540                  */
 1541                 if ((va & PDRMASK) < superpage_offset)
 1542                         va = (va & ~PDRMASK) + superpage_offset;
 1543                 else if ((va & PDRMASK) > superpage_offset)
 1544                         va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
 1545         }
 1546         sva = va;
 1547         while (start < end) {
 1548                 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
 1549                     pseflag) {
 1550                         KASSERT((va & PDRMASK) == 0,
 1551                             ("pmap_map: misaligned va %#x", va));
 1552                         newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
 1553                         pmap_kenter_pde(va, newpde);
 1554                         va += NBPDR;
 1555                         start += NBPDR;
 1556                 } else {
 1557                         pmap_kenter(va, start);
 1558                         va += PAGE_SIZE;
 1559                         start += PAGE_SIZE;
 1560                 }
 1561         }
 1562         pmap_invalidate_range(kernel_pmap, sva, va);
 1563         *virt = va;
 1564         return (sva);
 1565 }
 1566 
 1567 
 1568 /*
 1569  * Add a list of wired pages to the kva
 1570  * this routine is only used for temporary
 1571  * kernel mappings that do not need to have
 1572  * page modification or references recorded.
 1573  * Note that old mappings are simply written
 1574  * over.  The page *must* be wired.
 1575  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1576  */
 1577 void
 1578 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1579 {
 1580         pt_entry_t *endpte, oldpte, pa, *pte;
 1581         vm_page_t m;
 1582 
 1583         oldpte = 0;
 1584         pte = vtopte(sva);
 1585         endpte = pte + count;
 1586         while (pte < endpte) {
 1587                 m = *ma++;
 1588                 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 1589                 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
 1590                         oldpte |= *pte;
 1591                         pte_store(pte, pa | pgeflag | PG_RW | PG_V);
 1592                 }
 1593                 pte++;
 1594         }
 1595         if (__predict_false((oldpte & PG_V) != 0))
 1596                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1597                     PAGE_SIZE);
 1598 }
 1599 
 1600 /*
 1601  * This routine tears out page mappings from the
 1602  * kernel -- it is meant only for temporary mappings.
 1603  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1604  */
 1605 void
 1606 pmap_qremove(vm_offset_t sva, int count)
 1607 {
 1608         vm_offset_t va;
 1609 
 1610         va = sva;
 1611         while (count-- > 0) {
 1612                 pmap_kremove(va);
 1613                 va += PAGE_SIZE;
 1614         }
 1615         pmap_invalidate_range(kernel_pmap, sva, va);
 1616 }
 1617 
 1618 /***************************************************
 1619  * Page table page management routines.....
 1620  ***************************************************/
 1621 static __inline void
 1622 pmap_free_zero_pages(struct spglist *free)
 1623 {
 1624         vm_page_t m;
 1625 
 1626         while ((m = SLIST_FIRST(free)) != NULL) {
 1627                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
 1628                 /* Preserve the page's PG_ZERO setting. */
 1629                 vm_page_free_toq(m);
 1630         }
 1631 }
 1632 
 1633 /*
 1634  * Schedule the specified unused page table page to be freed.  Specifically,
 1635  * add the page to the specified list of pages that will be released to the
 1636  * physical memory manager after the TLB has been updated.
 1637  */
 1638 static __inline void
 1639 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
 1640     boolean_t set_PG_ZERO)
 1641 {
 1642 
 1643         if (set_PG_ZERO)
 1644                 m->flags |= PG_ZERO;
 1645         else
 1646                 m->flags &= ~PG_ZERO;
 1647         SLIST_INSERT_HEAD(free, m, plinks.s.ss);
 1648 }
 1649 
 1650 /*
 1651  * Inserts the specified page table page into the specified pmap's collection
 1652  * of idle page table pages.  Each of a pmap's page table pages is responsible
 1653  * for mapping a distinct range of virtual addresses.  The pmap's collection is
 1654  * ordered by this virtual address range.
 1655  */
 1656 static __inline int
 1657 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 1658 {
 1659 
 1660         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1661         return (vm_radix_insert(&pmap->pm_root, mpte));
 1662 }
 1663 
 1664 /*
 1665  * Looks for a page table page mapping the specified virtual address in the
 1666  * specified pmap's collection of idle page table pages.  Returns NULL if there
 1667  * is no page table page corresponding to the specified virtual address.
 1668  */
 1669 static __inline vm_page_t
 1670 pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
 1671 {
 1672 
 1673         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1674         return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
 1675 }
 1676 
 1677 /*
 1678  * Removes the specified page table page from the specified pmap's collection
 1679  * of idle page table pages.  The specified page table page must be a member of
 1680  * the pmap's collection.
 1681  */
 1682 static __inline void
 1683 pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
 1684 {
 1685 
 1686         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1687         vm_radix_remove(&pmap->pm_root, mpte->pindex);
 1688 }
 1689 
 1690 /*
 1691  * Decrements a page table page's wire count, which is used to record the
 1692  * number of valid page table entries within the page.  If the wire count
 1693  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 1694  * page table page was unmapped and FALSE otherwise.
 1695  */
 1696 static inline boolean_t
 1697 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1698 {
 1699 
 1700         --m->wire_count;
 1701         if (m->wire_count == 0) {
 1702                 _pmap_unwire_ptp(pmap, m, free);
 1703                 return (TRUE);
 1704         } else
 1705                 return (FALSE);
 1706 }
 1707 
 1708 static void
 1709 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1710 {
 1711         vm_offset_t pteva;
 1712 
 1713         /*
 1714          * unmap the page table page
 1715          */
 1716         pmap->pm_pdir[m->pindex] = 0;
 1717         --pmap->pm_stats.resident_count;
 1718 
 1719         /*
 1720          * This is a release store so that the ordinary store unmapping
 1721          * the page table page is globally performed before TLB shoot-
 1722          * down is begun.
 1723          */
 1724         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1725 
 1726         /*
 1727          * Do an invltlb to make the invalidated mapping
 1728          * take effect immediately.
 1729          */
 1730         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1731         pmap_invalidate_page(pmap, pteva);
 1732 
 1733         /* 
 1734          * Put page on a list so that it is released after
 1735          * *ALL* TLB shootdown is done
 1736          */
 1737         pmap_add_delayed_free_list(m, free, TRUE);
 1738 }
 1739 
 1740 /*
 1741  * After removing a page table entry, this routine is used to
 1742  * conditionally free the page, and manage the hold/wire counts.
 1743  */
 1744 static int
 1745 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
 1746 {
 1747         pd_entry_t ptepde;
 1748         vm_page_t mpte;
 1749 
 1750         if (va >= VM_MAXUSER_ADDRESS)
 1751                 return (0);
 1752         ptepde = *pmap_pde(pmap, va);
 1753         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1754         return (pmap_unwire_ptp(pmap, mpte, free));
 1755 }
 1756 
 1757 /*
 1758  * Initialize the pmap for the swapper process.
 1759  */
 1760 void
 1761 pmap_pinit0(pmap_t pmap)
 1762 {
 1763 
 1764         PMAP_LOCK_INIT(pmap);
 1765         /*
 1766          * Since the page table directory is shared with the kernel pmap,
 1767          * which is already included in the list "allpmaps", this pmap does
 1768          * not need to be inserted into that list.
 1769          */
 1770         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1771 #if defined(PAE) || defined(PAE_TABLES)
 1772         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1773 #endif
 1774         pmap->pm_root.rt_root = 0;
 1775         CPU_ZERO(&pmap->pm_active);
 1776         PCPU_SET(curpmap, pmap);
 1777         TAILQ_INIT(&pmap->pm_pvchunk);
 1778         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1779 }
 1780 
 1781 /*
 1782  * Initialize a preallocated and zeroed pmap structure,
 1783  * such as one in a vmspace structure.
 1784  */
 1785 int
 1786 pmap_pinit(pmap_t pmap)
 1787 {
 1788         vm_page_t m, ptdpg[NPGPTD];
 1789         vm_paddr_t pa;
 1790         int i;
 1791 
 1792         /*
 1793          * No need to allocate page table space yet but we do need a valid
 1794          * page directory table.
 1795          */
 1796         if (pmap->pm_pdir == NULL) {
 1797                 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
 1798                 if (pmap->pm_pdir == NULL)
 1799                         return (0);
 1800 #if defined(PAE) || defined(PAE_TABLES)
 1801                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1802                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1803                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1804                     ("pmap_pinit: pdpt misaligned"));
 1805                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1806                     ("pmap_pinit: pdpt above 4g"));
 1807 #endif
 1808                 pmap->pm_root.rt_root = 0;
 1809         }
 1810         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 1811             ("pmap_pinit: pmap has reserved page table page(s)"));
 1812 
 1813         /*
 1814          * allocate the page directory page(s)
 1815          */
 1816         for (i = 0; i < NPGPTD;) {
 1817                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 1818                     VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1819                 if (m == NULL)
 1820                         VM_WAIT;
 1821                 else {
 1822                         ptdpg[i++] = m;
 1823                 }
 1824         }
 1825 
 1826         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1827 
 1828         for (i = 0; i < NPGPTD; i++)
 1829                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1830                         pagezero(pmap->pm_pdir + (i * NPDEPG));
 1831 
 1832         mtx_lock_spin(&allpmaps_lock);
 1833         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1834         /* Copy the kernel page table directory entries. */
 1835         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1836         mtx_unlock_spin(&allpmaps_lock);
 1837 
 1838         /* install self-referential address mapping entry(s) */
 1839         for (i = 0; i < NPGPTD; i++) {
 1840                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1841                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1842 #if defined(PAE) || defined(PAE_TABLES)
 1843                 pmap->pm_pdpt[i] = pa | PG_V;
 1844 #endif
 1845         }
 1846 
 1847         CPU_ZERO(&pmap->pm_active);
 1848         TAILQ_INIT(&pmap->pm_pvchunk);
 1849         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1850 
 1851         return (1);
 1852 }
 1853 
 1854 /*
 1855  * this routine is called if the page table page is not
 1856  * mapped correctly.
 1857  */
 1858 static vm_page_t
 1859 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
 1860 {
 1861         vm_paddr_t ptepa;
 1862         vm_page_t m;
 1863 
 1864         /*
 1865          * Allocate a page table page.
 1866          */
 1867         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1868             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1869                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1870                         PMAP_UNLOCK(pmap);
 1871                         rw_wunlock(&pvh_global_lock);
 1872                         VM_WAIT;
 1873                         rw_wlock(&pvh_global_lock);
 1874                         PMAP_LOCK(pmap);
 1875                 }
 1876 
 1877                 /*
 1878                  * Indicate the need to retry.  While waiting, the page table
 1879                  * page may have been allocated.
 1880                  */
 1881                 return (NULL);
 1882         }
 1883         if ((m->flags & PG_ZERO) == 0)
 1884                 pmap_zero_page(m);
 1885 
 1886         /*
 1887          * Map the pagetable page into the process address space, if
 1888          * it isn't already there.
 1889          */
 1890 
 1891         pmap->pm_stats.resident_count++;
 1892 
 1893         ptepa = VM_PAGE_TO_PHYS(m);
 1894         pmap->pm_pdir[ptepindex] =
 1895                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1896 
 1897         return (m);
 1898 }
 1899 
 1900 static vm_page_t
 1901 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1902 {
 1903         u_int ptepindex;
 1904         pd_entry_t ptepa;
 1905         vm_page_t m;
 1906 
 1907         /*
 1908          * Calculate pagetable page index
 1909          */
 1910         ptepindex = va >> PDRSHIFT;
 1911 retry:
 1912         /*
 1913          * Get the page directory entry
 1914          */
 1915         ptepa = pmap->pm_pdir[ptepindex];
 1916 
 1917         /*
 1918          * This supports switching from a 4MB page to a
 1919          * normal 4K page.
 1920          */
 1921         if (ptepa & PG_PS) {
 1922                 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
 1923                 ptepa = pmap->pm_pdir[ptepindex];
 1924         }
 1925 
 1926         /*
 1927          * If the page table page is mapped, we just increment the
 1928          * hold count, and activate it.
 1929          */
 1930         if (ptepa) {
 1931                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 1932                 m->wire_count++;
 1933         } else {
 1934                 /*
 1935                  * Here if the pte page isn't mapped, or if it has
 1936                  * been deallocated. 
 1937                  */
 1938                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1939                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 1940                         goto retry;
 1941         }
 1942         return (m);
 1943 }
 1944 
 1945 
 1946 /***************************************************
 1947 * Pmap allocation/deallocation routines.
 1948  ***************************************************/
 1949 
 1950 #ifdef SMP
 1951 /*
 1952  * Deal with a SMP shootdown of other users of the pmap that we are
 1953  * trying to dispose of.  This can be a bit hairy.
 1954  */
 1955 static cpuset_t *lazymask;
 1956 static u_int lazyptd;
 1957 static volatile u_int lazywait;
 1958 
 1959 void pmap_lazyfix_action(void);
 1960 
 1961 void
 1962 pmap_lazyfix_action(void)
 1963 {
 1964 
 1965 #ifdef COUNT_IPIS
 1966         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1967 #endif
 1968         if (rcr3() == lazyptd)
 1969                 load_cr3(curpcb->pcb_cr3);
 1970         CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
 1971         atomic_store_rel_int(&lazywait, 1);
 1972 }
 1973 
 1974 static void
 1975 pmap_lazyfix_self(u_int cpuid)
 1976 {
 1977 
 1978         if (rcr3() == lazyptd)
 1979                 load_cr3(curpcb->pcb_cr3);
 1980         CPU_CLR_ATOMIC(cpuid, lazymask);
 1981 }
 1982 
 1983 
 1984 static void
 1985 pmap_lazyfix(pmap_t pmap)
 1986 {
 1987         cpuset_t mymask, mask;
 1988         u_int cpuid, spins;
 1989         int lsb;
 1990 
 1991         mask = pmap->pm_active;
 1992         while (!CPU_EMPTY(&mask)) {
 1993                 spins = 50000000;
 1994 
 1995                 /* Find least significant set bit. */
 1996                 lsb = CPU_FFS(&mask);
 1997                 MPASS(lsb != 0);
 1998                 lsb--;
 1999                 CPU_SETOF(lsb, &mask);
 2000                 mtx_lock_spin(&smp_ipi_mtx);
 2001 #if defined(PAE) || defined(PAE_TABLES)
 2002                 lazyptd = vtophys(pmap->pm_pdpt);
 2003 #else
 2004                 lazyptd = vtophys(pmap->pm_pdir);
 2005 #endif
 2006                 cpuid = PCPU_GET(cpuid);
 2007 
 2008                 /* Use a cpuset just for having an easy check. */
 2009                 CPU_SETOF(cpuid, &mymask);
 2010                 if (!CPU_CMP(&mask, &mymask)) {
 2011                         lazymask = &pmap->pm_active;
 2012                         pmap_lazyfix_self(cpuid);
 2013                 } else {
 2014                         atomic_store_rel_int((u_int *)&lazymask,
 2015                             (u_int)&pmap->pm_active);
 2016                         atomic_store_rel_int(&lazywait, 0);
 2017                         ipi_selected(mask, IPI_LAZYPMAP);
 2018                         while (lazywait == 0) {
 2019                                 ia32_pause();
 2020                                 if (--spins == 0)
 2021                                         break;
 2022                         }
 2023                 }
 2024                 mtx_unlock_spin(&smp_ipi_mtx);
 2025                 if (spins == 0)
 2026                         printf("pmap_lazyfix: spun for 50000000\n");
 2027                 mask = pmap->pm_active;
 2028         }
 2029 }
 2030 
 2031 #else   /* SMP */
 2032 
 2033 /*
 2034  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 2035  * unlikely to have to even execute this code, including the fact
 2036  * that the cleanup is deferred until the parent does a wait(2), which
 2037  * means that another userland process has run.
 2038  */
 2039 static void
 2040 pmap_lazyfix(pmap_t pmap)
 2041 {
 2042         u_int cr3;
 2043 
 2044         cr3 = vtophys(pmap->pm_pdir);
 2045         if (cr3 == rcr3()) {
 2046                 load_cr3(curpcb->pcb_cr3);
 2047                 CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
 2048         }
 2049 }
 2050 #endif  /* SMP */
 2051 
 2052 /*
 2053  * Release any resources held by the given physical map.
 2054  * Called when a pmap initialized by pmap_pinit is being released.
 2055  * Should only be called if the map contains no valid mappings.
 2056  */
 2057 void
 2058 pmap_release(pmap_t pmap)
 2059 {
 2060         vm_page_t m, ptdpg[NPGPTD];
 2061         int i;
 2062 
 2063         KASSERT(pmap->pm_stats.resident_count == 0,
 2064             ("pmap_release: pmap resident count %ld != 0",
 2065             pmap->pm_stats.resident_count));
 2066         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 2067             ("pmap_release: pmap has reserved page table page(s)"));
 2068 
 2069         pmap_lazyfix(pmap);
 2070         mtx_lock_spin(&allpmaps_lock);
 2071         LIST_REMOVE(pmap, pm_list);
 2072         mtx_unlock_spin(&allpmaps_lock);
 2073 
 2074         for (i = 0; i < NPGPTD; i++)
 2075                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 2076                     PG_FRAME);
 2077 
 2078         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 2079             sizeof(*pmap->pm_pdir));
 2080 
 2081         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 2082 
 2083         for (i = 0; i < NPGPTD; i++) {
 2084                 m = ptdpg[i];
 2085 #if defined(PAE) || defined(PAE_TABLES)
 2086                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 2087                     ("pmap_release: got wrong ptd page"));
 2088 #endif
 2089                 m->wire_count--;
 2090                 atomic_subtract_int(&cnt.v_wire_count, 1);
 2091                 vm_page_free_zero(m);
 2092         }
 2093 }
 2094 
 2095 static int
 2096 kvm_size(SYSCTL_HANDLER_ARGS)
 2097 {
 2098         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 2099 
 2100         return (sysctl_handle_long(oidp, &ksize, 0, req));
 2101 }
 2102 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 2103     0, 0, kvm_size, "IU", "Size of KVM");
 2104 
 2105 static int
 2106 kvm_free(SYSCTL_HANDLER_ARGS)
 2107 {
 2108         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 2109 
 2110         return (sysctl_handle_long(oidp, &kfree, 0, req));
 2111 }
 2112 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 2113     0, 0, kvm_free, "IU", "Amount of KVM free");
 2114 
 2115 /*
 2116  * grow the number of kernel page table entries, if needed
 2117  */
 2118 void
 2119 pmap_growkernel(vm_offset_t addr)
 2120 {
 2121         vm_paddr_t ptppaddr;
 2122         vm_page_t nkpg;
 2123         pd_entry_t newpdir;
 2124 
 2125         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 2126         addr = roundup2(addr, NBPDR);
 2127         if (addr - 1 >= kernel_map->max_offset)
 2128                 addr = kernel_map->max_offset;
 2129         while (kernel_vm_end < addr) {
 2130                 if (pdir_pde(PTD, kernel_vm_end)) {
 2131                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2132                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2133                                 kernel_vm_end = kernel_map->max_offset;
 2134                                 break;
 2135                         }
 2136                         continue;
 2137                 }
 2138 
 2139                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 2140                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 2141                     VM_ALLOC_ZERO);
 2142                 if (nkpg == NULL)
 2143                         panic("pmap_growkernel: no memory to grow kernel");
 2144 
 2145                 nkpt++;
 2146 
 2147                 if ((nkpg->flags & PG_ZERO) == 0)
 2148                         pmap_zero_page(nkpg);
 2149                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 2150                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 2151                 pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
 2152 
 2153                 pmap_kenter_pde(kernel_vm_end, newpdir);
 2154                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2155                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2156                         kernel_vm_end = kernel_map->max_offset;
 2157                         break;
 2158                 }
 2159         }
 2160 }
 2161 
 2162 
 2163 /***************************************************
 2164  * page management routines.
 2165  ***************************************************/
 2166 
 2167 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 2168 CTASSERT(_NPCM == 11);
 2169 CTASSERT(_NPCPV == 336);
 2170 
 2171 static __inline struct pv_chunk *
 2172 pv_to_chunk(pv_entry_t pv)
 2173 {
 2174 
 2175         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 2176 }
 2177 
 2178 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 2179 
 2180 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 2181 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 2182 
 2183 static const uint32_t pc_freemask[_NPCM] = {
 2184         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2185         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2186         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2187         PC_FREE0_9, PC_FREE10
 2188 };
 2189 
 2190 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 2191         "Current number of pv entries");
 2192 
 2193 #ifdef PV_STATS
 2194 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 2195 
 2196 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2197         "Current number of pv entry chunks");
 2198 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2199         "Current number of pv entry chunks allocated");
 2200 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2201         "Current number of pv entry chunks frees");
 2202 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2203         "Number of times tried to get a chunk page but failed.");
 2204 
 2205 static long pv_entry_frees, pv_entry_allocs;
 2206 static int pv_entry_spare;
 2207 
 2208 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2209         "Current number of pv entry frees");
 2210 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2211         "Current number of pv entry allocs");
 2212 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2213         "Current number of spare pv entries");
 2214 #endif
 2215 
 2216 /*
 2217  * We are in a serious low memory condition.  Resort to
 2218  * drastic measures to free some pages so we can allocate
 2219  * another pv entry chunk.
 2220  */
 2221 static vm_page_t
 2222 pmap_pv_reclaim(pmap_t locked_pmap)
 2223 {
 2224         struct pch newtail;
 2225         struct pv_chunk *pc;
 2226         struct md_page *pvh;
 2227         pd_entry_t *pde;
 2228         pmap_t pmap;
 2229         pt_entry_t *pte, tpte;
 2230         pv_entry_t pv;
 2231         vm_offset_t va;
 2232         vm_page_t m, m_pc;
 2233         struct spglist free;
 2234         uint32_t inuse;
 2235         int bit, field, freed;
 2236 
 2237         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 2238         pmap = NULL;
 2239         m_pc = NULL;
 2240         SLIST_INIT(&free);
 2241         TAILQ_INIT(&newtail);
 2242         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
 2243             SLIST_EMPTY(&free))) {
 2244                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2245                 if (pmap != pc->pc_pmap) {
 2246                         if (pmap != NULL) {
 2247                                 pmap_invalidate_all(pmap);
 2248                                 if (pmap != locked_pmap)
 2249                                         PMAP_UNLOCK(pmap);
 2250                         }
 2251                         pmap = pc->pc_pmap;
 2252                         /* Avoid deadlock and lock recursion. */
 2253                         if (pmap > locked_pmap)
 2254                                 PMAP_LOCK(pmap);
 2255                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 2256                                 pmap = NULL;
 2257                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2258                                 continue;
 2259                         }
 2260                 }
 2261 
 2262                 /*
 2263                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 2264                  */
 2265                 freed = 0;
 2266                 for (field = 0; field < _NPCM; field++) {
 2267                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 2268                             inuse != 0; inuse &= ~(1UL << bit)) {
 2269                                 bit = bsfl(inuse);
 2270                                 pv = &pc->pc_pventry[field * 32 + bit];
 2271                                 va = pv->pv_va;
 2272                                 pde = pmap_pde(pmap, va);
 2273                                 if ((*pde & PG_PS) != 0)
 2274                                         continue;
 2275                                 pte = pmap_pte(pmap, va);
 2276                                 tpte = *pte;
 2277                                 if ((tpte & PG_W) == 0)
 2278                                         tpte = pte_load_clear(pte);
 2279                                 pmap_pte_release(pte);
 2280                                 if ((tpte & PG_W) != 0)
 2281                                         continue;
 2282                                 KASSERT(tpte != 0,
 2283                                     ("pmap_pv_reclaim: pmap %p va %x zero pte",
 2284                                     pmap, va));
 2285                                 if ((tpte & PG_G) != 0)
 2286                                         pmap_invalidate_page(pmap, va);
 2287                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2288                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2289                                         vm_page_dirty(m);
 2290                                 if ((tpte & PG_A) != 0)
 2291                                         vm_page_aflag_set(m, PGA_REFERENCED);
 2292                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 2293                                 if (TAILQ_EMPTY(&m->md.pv_list) &&
 2294                                     (m->flags & PG_FICTITIOUS) == 0) {
 2295                                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2296                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 2297                                                 vm_page_aflag_clear(m,
 2298                                                     PGA_WRITEABLE);
 2299                                         }
 2300                                 }
 2301                                 pc->pc_map[field] |= 1UL << bit;
 2302                                 pmap_unuse_pt(pmap, va, &free);
 2303                                 freed++;
 2304                         }
 2305                 }
 2306                 if (freed == 0) {
 2307                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2308                         continue;
 2309                 }
 2310                 /* Every freed mapping is for a 4 KB page. */
 2311                 pmap->pm_stats.resident_count -= freed;
 2312                 PV_STAT(pv_entry_frees += freed);
 2313                 PV_STAT(pv_entry_spare += freed);
 2314                 pv_entry_count -= freed;
 2315                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2316                 for (field = 0; field < _NPCM; field++)
 2317                         if (pc->pc_map[field] != pc_freemask[field]) {
 2318                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2319                                     pc_list);
 2320                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2321 
 2322                                 /*
 2323                                  * One freed pv entry in locked_pmap is
 2324                                  * sufficient.
 2325                                  */
 2326                                 if (pmap == locked_pmap)
 2327                                         goto out;
 2328                                 break;
 2329                         }
 2330                 if (field == _NPCM) {
 2331                         PV_STAT(pv_entry_spare -= _NPCPV);
 2332                         PV_STAT(pc_chunk_count--);
 2333                         PV_STAT(pc_chunk_frees++);
 2334                         /* Entire chunk is free; return it. */
 2335                         m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2336                         pmap_qremove((vm_offset_t)pc, 1);
 2337                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2338                         break;
 2339                 }
 2340         }
 2341 out:
 2342         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 2343         if (pmap != NULL) {
 2344                 pmap_invalidate_all(pmap);
 2345                 if (pmap != locked_pmap)
 2346                         PMAP_UNLOCK(pmap);
 2347         }
 2348         if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
 2349                 m_pc = SLIST_FIRST(&free);
 2350                 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 2351                 /* Recycle a freed page table page. */
 2352                 m_pc->wire_count = 1;
 2353                 atomic_add_int(&cnt.v_wire_count, 1);
 2354         }
 2355         pmap_free_zero_pages(&free);
 2356         return (m_pc);
 2357 }
 2358 
 2359 /*
 2360  * free the pv_entry back to the free list
 2361  */
 2362 static void
 2363 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2364 {
 2365         struct pv_chunk *pc;
 2366         int idx, field, bit;
 2367 
 2368         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2369         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2370         PV_STAT(pv_entry_frees++);
 2371         PV_STAT(pv_entry_spare++);
 2372         pv_entry_count--;
 2373         pc = pv_to_chunk(pv);
 2374         idx = pv - &pc->pc_pventry[0];
 2375         field = idx / 32;
 2376         bit = idx % 32;
 2377         pc->pc_map[field] |= 1ul << bit;
 2378         for (idx = 0; idx < _NPCM; idx++)
 2379                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2380                         /*
 2381                          * 98% of the time, pc is already at the head of the
 2382                          * list.  If it isn't already, move it to the head.
 2383                          */
 2384                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 2385                             pc)) {
 2386                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2387                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2388                                     pc_list);
 2389                         }
 2390                         return;
 2391                 }
 2392         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2393         free_pv_chunk(pc);
 2394 }
 2395 
 2396 static void
 2397 free_pv_chunk(struct pv_chunk *pc)
 2398 {
 2399         vm_page_t m;
 2400 
 2401         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2402         PV_STAT(pv_entry_spare -= _NPCPV);
 2403         PV_STAT(pc_chunk_count--);
 2404         PV_STAT(pc_chunk_frees++);
 2405         /* entire chunk is free, return it */
 2406         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2407         pmap_qremove((vm_offset_t)pc, 1);
 2408         vm_page_unwire(m, 0);
 2409         vm_page_free(m);
 2410         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2411 }
 2412 
 2413 /*
 2414  * get a new pv_entry, allocating a block from the system
 2415  * when needed.
 2416  */
 2417 static pv_entry_t
 2418 get_pv_entry(pmap_t pmap, boolean_t try)
 2419 {
 2420         static const struct timeval printinterval = { 60, 0 };
 2421         static struct timeval lastprint;
 2422         int bit, field;
 2423         pv_entry_t pv;
 2424         struct pv_chunk *pc;
 2425         vm_page_t m;
 2426 
 2427         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2428         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2429         PV_STAT(pv_entry_allocs++);
 2430         pv_entry_count++;
 2431         if (pv_entry_count > pv_entry_high_water)
 2432                 if (ratecheck(&lastprint, &printinterval))
 2433                         printf("Approaching the limit on PV entries, consider "
 2434                             "increasing either the vm.pmap.shpgperproc or the "
 2435                             "vm.pmap.pv_entry_max tunable.\n");
 2436 retry:
 2437         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2438         if (pc != NULL) {
 2439                 for (field = 0; field < _NPCM; field++) {
 2440                         if (pc->pc_map[field]) {
 2441                                 bit = bsfl(pc->pc_map[field]);
 2442                                 break;
 2443                         }
 2444                 }
 2445                 if (field < _NPCM) {
 2446                         pv = &pc->pc_pventry[field * 32 + bit];
 2447                         pc->pc_map[field] &= ~(1ul << bit);
 2448                         /* If this was the last item, move it to tail */
 2449                         for (field = 0; field < _NPCM; field++)
 2450                                 if (pc->pc_map[field] != 0) {
 2451                                         PV_STAT(pv_entry_spare--);
 2452                                         return (pv);    /* not full, return */
 2453                                 }
 2454                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2455                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2456                         PV_STAT(pv_entry_spare--);
 2457                         return (pv);
 2458                 }
 2459         }
 2460         /*
 2461          * Access to the ptelist "pv_vafree" is synchronized by the pvh
 2462          * global lock.  If "pv_vafree" is currently non-empty, it will
 2463          * remain non-empty until pmap_ptelist_alloc() completes.
 2464          */
 2465         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 2466             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2467                 if (try) {
 2468                         pv_entry_count--;
 2469                         PV_STAT(pc_chunk_tryfail++);
 2470                         return (NULL);
 2471                 }
 2472                 m = pmap_pv_reclaim(pmap);
 2473                 if (m == NULL)
 2474                         goto retry;
 2475         }
 2476         PV_STAT(pc_chunk_count++);
 2477         PV_STAT(pc_chunk_allocs++);
 2478         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2479         pmap_qenter((vm_offset_t)pc, &m, 1);
 2480         pc->pc_pmap = pmap;
 2481         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2482         for (field = 1; field < _NPCM; field++)
 2483                 pc->pc_map[field] = pc_freemask[field];
 2484         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 2485         pv = &pc->pc_pventry[0];
 2486         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2487         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2488         return (pv);
 2489 }
 2490 
 2491 static __inline pv_entry_t
 2492 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2493 {
 2494         pv_entry_t pv;
 2495 
 2496         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2497         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 2498                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2499                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 2500                         break;
 2501                 }
 2502         }
 2503         return (pv);
 2504 }
 2505 
 2506 static void
 2507 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2508 {
 2509         struct md_page *pvh;
 2510         pv_entry_t pv;
 2511         vm_offset_t va_last;
 2512         vm_page_t m;
 2513 
 2514         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2515         KASSERT((pa & PDRMASK) == 0,
 2516             ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
 2517 
 2518         /*
 2519          * Transfer the 4mpage's pv entry for this mapping to the first
 2520          * page's pv list.
 2521          */
 2522         pvh = pa_to_pvh(pa);
 2523         va = trunc_4mpage(va);
 2524         pv = pmap_pvh_remove(pvh, pmap, va);
 2525         KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 2526         m = PHYS_TO_VM_PAGE(pa);
 2527         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2528         /* Instantiate the remaining NPTEPG - 1 pv entries. */
 2529         va_last = va + NBPDR - PAGE_SIZE;
 2530         do {
 2531                 m++;
 2532                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2533                     ("pmap_pv_demote_pde: page %p is not managed", m));
 2534                 va += PAGE_SIZE;
 2535                 pmap_insert_entry(pmap, va, m);
 2536         } while (va < va_last);
 2537 }
 2538 
 2539 static void
 2540 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2541 {
 2542         struct md_page *pvh;
 2543         pv_entry_t pv;
 2544         vm_offset_t va_last;
 2545         vm_page_t m;
 2546 
 2547         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2548         KASSERT((pa & PDRMASK) == 0,
 2549             ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
 2550 
 2551         /*
 2552          * Transfer the first page's pv entry for this mapping to the
 2553          * 4mpage's pv list.  Aside from avoiding the cost of a call
 2554          * to get_pv_entry(), a transfer avoids the possibility that
 2555          * get_pv_entry() calls pmap_collect() and that pmap_collect()
 2556          * removes one of the mappings that is being promoted.
 2557          */
 2558         m = PHYS_TO_VM_PAGE(pa);
 2559         va = trunc_4mpage(va);
 2560         pv = pmap_pvh_remove(&m->md, pmap, va);
 2561         KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 2562         pvh = pa_to_pvh(pa);
 2563         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2564         /* Free the remaining NPTEPG - 1 pv entries. */
 2565         va_last = va + NBPDR - PAGE_SIZE;
 2566         do {
 2567                 m++;
 2568                 va += PAGE_SIZE;
 2569                 pmap_pvh_free(&m->md, pmap, va);
 2570         } while (va < va_last);
 2571 }
 2572 
 2573 static void
 2574 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2575 {
 2576         pv_entry_t pv;
 2577 
 2578         pv = pmap_pvh_remove(pvh, pmap, va);
 2579         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2580         free_pv_entry(pmap, pv);
 2581 }
 2582 
 2583 static void
 2584 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2585 {
 2586         struct md_page *pvh;
 2587 
 2588         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2589         pmap_pvh_free(&m->md, pmap, va);
 2590         if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
 2591                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2592                 if (TAILQ_EMPTY(&pvh->pv_list))
 2593                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2594         }
 2595 }
 2596 
 2597 /*
 2598  * Create a pv entry for page at pa for
 2599  * (pmap, va).
 2600  */
 2601 static void
 2602 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2603 {
 2604         pv_entry_t pv;
 2605 
 2606         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2607         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2608         pv = get_pv_entry(pmap, FALSE);
 2609         pv->pv_va = va;
 2610         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2611 }
 2612 
 2613 /*
 2614  * Conditionally create a pv entry.
 2615  */
 2616 static boolean_t
 2617 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2618 {
 2619         pv_entry_t pv;
 2620 
 2621         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2622         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2623         if (pv_entry_count < pv_entry_high_water && 
 2624             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2625                 pv->pv_va = va;
 2626                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2627                 return (TRUE);
 2628         } else
 2629                 return (FALSE);
 2630 }
 2631 
 2632 /*
 2633  * Create the pv entries for each of the pages within a superpage.
 2634  */
 2635 static boolean_t
 2636 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2637 {
 2638         struct md_page *pvh;
 2639         pv_entry_t pv;
 2640 
 2641         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2642         if (pv_entry_count < pv_entry_high_water && 
 2643             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2644                 pv->pv_va = va;
 2645                 pvh = pa_to_pvh(pa);
 2646                 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2647                 return (TRUE);
 2648         } else
 2649                 return (FALSE);
 2650 }
 2651 
 2652 /*
 2653  * Fills a page table page with mappings to consecutive physical pages.
 2654  */
 2655 static void
 2656 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 2657 {
 2658         pt_entry_t *pte;
 2659 
 2660         for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 2661                 *pte = newpte;  
 2662                 newpte += PAGE_SIZE;
 2663         }
 2664 }
 2665 
 2666 /*
 2667  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
 2668  * 2- or 4MB page mapping is invalidated.
 2669  */
 2670 static boolean_t
 2671 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2672 {
 2673         pd_entry_t newpde, oldpde;
 2674         pt_entry_t *firstpte, newpte;
 2675         vm_paddr_t mptepa;
 2676         vm_page_t mpte;
 2677         struct spglist free;
 2678 
 2679         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2680         oldpde = *pde;
 2681         KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 2682             ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 2683         if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
 2684             NULL)
 2685                 pmap_remove_pt_page(pmap, mpte);
 2686         else {
 2687                 KASSERT((oldpde & PG_W) == 0,
 2688                     ("pmap_demote_pde: page table page for a wired mapping"
 2689                     " is missing"));
 2690 
 2691                 /*
 2692                  * Invalidate the 2- or 4MB page mapping and return
 2693                  * "failure" if the mapping was never accessed or the
 2694                  * allocation of the new page table page fails.
 2695                  */
 2696                 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 2697                     va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
 2698                     VM_ALLOC_WIRED)) == NULL) {
 2699                         SLIST_INIT(&free);
 2700                         pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
 2701                         pmap_invalidate_page(pmap, trunc_4mpage(va));
 2702                         pmap_free_zero_pages(&free);
 2703                         CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
 2704                             " in pmap %p", va, pmap);
 2705                         return (FALSE);
 2706                 }
 2707                 if (va < VM_MAXUSER_ADDRESS)
 2708                         pmap->pm_stats.resident_count++;
 2709         }
 2710         mptepa = VM_PAGE_TO_PHYS(mpte);
 2711 
 2712         /*
 2713          * If the page mapping is in the kernel's address space, then the
 2714          * KPTmap can provide access to the page table page.  Otherwise,
 2715          * temporarily map the page table page (mpte) into the kernel's
 2716          * address space at either PADDR1 or PADDR2. 
 2717          */
 2718         if (va >= KERNBASE)
 2719                 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
 2720         else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
 2721                 if ((*PMAP1 & PG_FRAME) != mptepa) {
 2722                         *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2723 #ifdef SMP
 2724                         PMAP1cpu = PCPU_GET(cpuid);
 2725 #endif
 2726                         invlcaddr(PADDR1);
 2727                         PMAP1changed++;
 2728                 } else
 2729 #ifdef SMP
 2730                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 2731                         PMAP1cpu = PCPU_GET(cpuid);
 2732                         invlcaddr(PADDR1);
 2733                         PMAP1changedcpu++;
 2734                 } else
 2735 #endif
 2736                         PMAP1unchanged++;
 2737                 firstpte = PADDR1;
 2738         } else {
 2739                 mtx_lock(&PMAP2mutex);
 2740                 if ((*PMAP2 & PG_FRAME) != mptepa) {
 2741                         *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2742                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 2743                 }
 2744                 firstpte = PADDR2;
 2745         }
 2746         newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 2747         KASSERT((oldpde & PG_A) != 0,
 2748             ("pmap_demote_pde: oldpde is missing PG_A"));
 2749         KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 2750             ("pmap_demote_pde: oldpde is missing PG_M"));
 2751         newpte = oldpde & ~PG_PS;
 2752         if ((newpte & PG_PDE_PAT) != 0)
 2753                 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
 2754 
 2755         /*
 2756          * If the page table page is new, initialize it.
 2757          */
 2758         if (mpte->wire_count == 1) {
 2759                 mpte->wire_count = NPTEPG;
 2760                 pmap_fill_ptp(firstpte, newpte);
 2761         }
 2762         KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 2763             ("pmap_demote_pde: firstpte and newpte map different physical"
 2764             " addresses"));
 2765 
 2766         /*
 2767          * If the mapping has changed attributes, update the page table
 2768          * entries.
 2769          */ 
 2770         if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 2771                 pmap_fill_ptp(firstpte, newpte);
 2772         
 2773         /*
 2774          * Demote the mapping.  This pmap is locked.  The old PDE has
 2775          * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 2776          * set.  Thus, there is no danger of a race with another
 2777          * processor changing the setting of PG_A and/or PG_M between
 2778          * the read above and the store below. 
 2779          */
 2780         if (workaround_erratum383)
 2781                 pmap_update_pde(pmap, va, pde, newpde);
 2782         else if (pmap == kernel_pmap)
 2783                 pmap_kenter_pde(va, newpde);
 2784         else
 2785                 pde_store(pde, newpde); 
 2786         if (firstpte == PADDR2)
 2787                 mtx_unlock(&PMAP2mutex);
 2788 
 2789         /*
 2790          * Invalidate the recursive mapping of the page table page.
 2791          */
 2792         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2793 
 2794         /*
 2795          * Demote the pv entry.  This depends on the earlier demotion
 2796          * of the mapping.  Specifically, the (re)creation of a per-
 2797          * page pv entry might trigger the execution of pmap_collect(),
 2798          * which might reclaim a newly (re)created per-page pv entry
 2799          * and destroy the associated mapping.  In order to destroy
 2800          * the mapping, the PDE must have already changed from mapping
 2801          * the 2mpage to referencing the page table page.
 2802          */
 2803         if ((oldpde & PG_MANAGED) != 0)
 2804                 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
 2805 
 2806         pmap_pde_demotions++;
 2807         CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
 2808             " in pmap %p", va, pmap);
 2809         return (TRUE);
 2810 }
 2811 
 2812 /*
 2813  * Removes a 2- or 4MB page mapping from the kernel pmap.
 2814  */
 2815 static void
 2816 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2817 {
 2818         pd_entry_t newpde;
 2819         vm_paddr_t mptepa;
 2820         vm_page_t mpte;
 2821 
 2822         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2823         mpte = pmap_lookup_pt_page(pmap, va);
 2824         if (mpte == NULL)
 2825                 panic("pmap_remove_kernel_pde: Missing pt page.");
 2826 
 2827         pmap_remove_pt_page(pmap, mpte);
 2828         mptepa = VM_PAGE_TO_PHYS(mpte);
 2829         newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
 2830 
 2831         /*
 2832          * Initialize the page table page.
 2833          */
 2834         pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
 2835 
 2836         /*
 2837          * Remove the mapping.
 2838          */
 2839         if (workaround_erratum383)
 2840                 pmap_update_pde(pmap, va, pde, newpde);
 2841         else 
 2842                 pmap_kenter_pde(va, newpde);
 2843 
 2844         /*
 2845          * Invalidate the recursive mapping of the page table page.
 2846          */
 2847         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2848 }
 2849 
 2850 /*
 2851  * pmap_remove_pde: do the things to unmap a superpage in a process
 2852  */
 2853 static void
 2854 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
 2855     struct spglist *free)
 2856 {
 2857         struct md_page *pvh;
 2858         pd_entry_t oldpde;
 2859         vm_offset_t eva, va;
 2860         vm_page_t m, mpte;
 2861 
 2862         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2863         KASSERT((sva & PDRMASK) == 0,
 2864             ("pmap_remove_pde: sva is not 4mpage aligned"));
 2865         oldpde = pte_load_clear(pdq);
 2866         if (oldpde & PG_W)
 2867                 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 2868 
 2869         /*
 2870          * Machines that don't support invlpg, also don't support
 2871          * PG_G.
 2872          */
 2873         if (oldpde & PG_G)
 2874                 pmap_invalidate_page(kernel_pmap, sva);
 2875         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2876         if (oldpde & PG_MANAGED) {
 2877                 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 2878                 pmap_pvh_free(pvh, pmap, sva);
 2879                 eva = sva + NBPDR;
 2880                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 2881                     va < eva; va += PAGE_SIZE, m++) {
 2882                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2883                                 vm_page_dirty(m);
 2884                         if (oldpde & PG_A)
 2885                                 vm_page_aflag_set(m, PGA_REFERENCED);
 2886                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 2887                             TAILQ_EMPTY(&pvh->pv_list))
 2888                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2889                 }
 2890         }
 2891         if (pmap == kernel_pmap) {
 2892                 pmap_remove_kernel_pde(pmap, pdq, sva);
 2893         } else {
 2894                 mpte = pmap_lookup_pt_page(pmap, sva);
 2895                 if (mpte != NULL) {
 2896                         pmap_remove_pt_page(pmap, mpte);
 2897                         pmap->pm_stats.resident_count--;
 2898                         KASSERT(mpte->wire_count == NPTEPG,
 2899                             ("pmap_remove_pde: pte page wire count error"));
 2900                         mpte->wire_count = 0;
 2901                         pmap_add_delayed_free_list(mpte, free, FALSE);
 2902                         atomic_subtract_int(&cnt.v_wire_count, 1);
 2903                 }
 2904         }
 2905 }
 2906 
 2907 /*
 2908  * pmap_remove_pte: do the things to unmap a page in a process
 2909  */
 2910 static int
 2911 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
 2912     struct spglist *free)
 2913 {
 2914         pt_entry_t oldpte;
 2915         vm_page_t m;
 2916 
 2917         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2918         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2919         oldpte = pte_load_clear(ptq);
 2920         KASSERT(oldpte != 0,
 2921             ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
 2922         if (oldpte & PG_W)
 2923                 pmap->pm_stats.wired_count -= 1;
 2924         /*
 2925          * Machines that don't support invlpg, also don't support
 2926          * PG_G.
 2927          */
 2928         if (oldpte & PG_G)
 2929                 pmap_invalidate_page(kernel_pmap, va);
 2930         pmap->pm_stats.resident_count -= 1;
 2931         if (oldpte & PG_MANAGED) {
 2932                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 2933                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2934                         vm_page_dirty(m);
 2935                 if (oldpte & PG_A)
 2936                         vm_page_aflag_set(m, PGA_REFERENCED);
 2937                 pmap_remove_entry(pmap, m, va);
 2938         }
 2939         return (pmap_unuse_pt(pmap, va, free));
 2940 }
 2941 
 2942 /*
 2943  * Remove a single page from a process address space
 2944  */
 2945 static void
 2946 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
 2947 {
 2948         pt_entry_t *pte;
 2949 
 2950         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2951         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2952         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2953         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2954                 return;
 2955         pmap_remove_pte(pmap, pte, va, free);
 2956         pmap_invalidate_page(pmap, va);
 2957 }
 2958 
 2959 /*
 2960  *      Remove the given range of addresses from the specified map.
 2961  *
 2962  *      It is assumed that the start and end are properly
 2963  *      rounded to the page size.
 2964  */
 2965 void
 2966 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2967 {
 2968         vm_offset_t pdnxt;
 2969         pd_entry_t ptpaddr;
 2970         pt_entry_t *pte;
 2971         struct spglist free;
 2972         int anyvalid;
 2973 
 2974         /*
 2975          * Perform an unsynchronized read.  This is, however, safe.
 2976          */
 2977         if (pmap->pm_stats.resident_count == 0)
 2978                 return;
 2979 
 2980         anyvalid = 0;
 2981         SLIST_INIT(&free);
 2982 
 2983         rw_wlock(&pvh_global_lock);
 2984         sched_pin();
 2985         PMAP_LOCK(pmap);
 2986 
 2987         /*
 2988          * special handling of removing one page.  a very
 2989          * common operation and easy to short circuit some
 2990          * code.
 2991          */
 2992         if ((sva + PAGE_SIZE == eva) && 
 2993             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2994                 pmap_remove_page(pmap, sva, &free);
 2995                 goto out;
 2996         }
 2997 
 2998         for (; sva < eva; sva = pdnxt) {
 2999                 u_int pdirindex;
 3000 
 3001                 /*
 3002                  * Calculate index for next page table.
 3003                  */
 3004                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3005                 if (pdnxt < sva)
 3006                         pdnxt = eva;
 3007                 if (pmap->pm_stats.resident_count == 0)
 3008                         break;
 3009 
 3010                 pdirindex = sva >> PDRSHIFT;
 3011                 ptpaddr = pmap->pm_pdir[pdirindex];
 3012 
 3013                 /*
 3014                  * Weed out invalid mappings. Note: we assume that the page
 3015                  * directory table is always allocated, and in kernel virtual.
 3016                  */
 3017                 if (ptpaddr == 0)
 3018                         continue;
 3019 
 3020                 /*
 3021                  * Check for large page.
 3022                  */
 3023                 if ((ptpaddr & PG_PS) != 0) {
 3024                         /*
 3025                          * Are we removing the entire large page?  If not,
 3026                          * demote the mapping and fall through.
 3027                          */
 3028                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3029                                 /*
 3030                                  * The TLB entry for a PG_G mapping is
 3031                                  * invalidated by pmap_remove_pde().
 3032                                  */
 3033                                 if ((ptpaddr & PG_G) == 0)
 3034                                         anyvalid = 1;
 3035                                 pmap_remove_pde(pmap,
 3036                                     &pmap->pm_pdir[pdirindex], sva, &free);
 3037                                 continue;
 3038                         } else if (!pmap_demote_pde(pmap,
 3039                             &pmap->pm_pdir[pdirindex], sva)) {
 3040                                 /* The large page mapping was destroyed. */
 3041                                 continue;
 3042                         }
 3043                 }
 3044 
 3045                 /*
 3046                  * Limit our scan to either the end of the va represented
 3047                  * by the current page table page, or to the end of the
 3048                  * range being removed.
 3049                  */
 3050                 if (pdnxt > eva)
 3051                         pdnxt = eva;
 3052 
 3053                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3054                     sva += PAGE_SIZE) {
 3055                         if (*pte == 0)
 3056                                 continue;
 3057 
 3058                         /*
 3059                          * The TLB entry for a PG_G mapping is invalidated
 3060                          * by pmap_remove_pte().
 3061                          */
 3062                         if ((*pte & PG_G) == 0)
 3063                                 anyvalid = 1;
 3064                         if (pmap_remove_pte(pmap, pte, sva, &free))
 3065                                 break;
 3066                 }
 3067         }
 3068 out:
 3069         sched_unpin();
 3070         if (anyvalid)
 3071                 pmap_invalidate_all(pmap);
 3072         rw_wunlock(&pvh_global_lock);
 3073         PMAP_UNLOCK(pmap);
 3074         pmap_free_zero_pages(&free);
 3075 }
 3076 
 3077 /*
 3078  *      Routine:        pmap_remove_all
 3079  *      Function:
 3080  *              Removes this physical page from
 3081  *              all physical maps in which it resides.
 3082  *              Reflects back modify bits to the pager.
 3083  *
 3084  *      Notes:
 3085  *              Original versions of this routine were very
 3086  *              inefficient because they iteratively called
 3087  *              pmap_remove (slow...)
 3088  */
 3089 
 3090 void
 3091 pmap_remove_all(vm_page_t m)
 3092 {
 3093         struct md_page *pvh;
 3094         pv_entry_t pv;
 3095         pmap_t pmap;
 3096         pt_entry_t *pte, tpte;
 3097         pd_entry_t *pde;
 3098         vm_offset_t va;
 3099         struct spglist free;
 3100 
 3101         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3102             ("pmap_remove_all: page %p is not managed", m));
 3103         SLIST_INIT(&free);
 3104         rw_wlock(&pvh_global_lock);
 3105         sched_pin();
 3106         if ((m->flags & PG_FICTITIOUS) != 0)
 3107                 goto small_mappings;
 3108         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 3109         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 3110                 va = pv->pv_va;
 3111                 pmap = PV_PMAP(pv);
 3112                 PMAP_LOCK(pmap);
 3113                 pde = pmap_pde(pmap, va);
 3114                 (void)pmap_demote_pde(pmap, pde, va);
 3115                 PMAP_UNLOCK(pmap);
 3116         }
 3117 small_mappings:
 3118         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3119                 pmap = PV_PMAP(pv);
 3120                 PMAP_LOCK(pmap);
 3121                 pmap->pm_stats.resident_count--;
 3122                 pde = pmap_pde(pmap, pv->pv_va);
 3123                 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 3124                     " a 4mpage in page %p's pv list", m));
 3125                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3126                 tpte = pte_load_clear(pte);
 3127                 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
 3128                     pmap, pv->pv_va));
 3129                 if (tpte & PG_W)
 3130                         pmap->pm_stats.wired_count--;
 3131                 if (tpte & PG_A)
 3132                         vm_page_aflag_set(m, PGA_REFERENCED);
 3133 
 3134                 /*
 3135                  * Update the vm_page_t clean and reference bits.
 3136                  */
 3137                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3138                         vm_page_dirty(m);
 3139                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3140                 pmap_invalidate_page(pmap, pv->pv_va);
 3141                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 3142                 free_pv_entry(pmap, pv);
 3143                 PMAP_UNLOCK(pmap);
 3144         }
 3145         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3146         sched_unpin();
 3147         rw_wunlock(&pvh_global_lock);
 3148         pmap_free_zero_pages(&free);
 3149 }
 3150 
 3151 /*
 3152  * pmap_protect_pde: do the things to protect a 4mpage in a process
 3153  */
 3154 static boolean_t
 3155 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 3156 {
 3157         pd_entry_t newpde, oldpde;
 3158         vm_offset_t eva, va;
 3159         vm_page_t m;
 3160         boolean_t anychanged;
 3161 
 3162         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3163         KASSERT((sva & PDRMASK) == 0,
 3164             ("pmap_protect_pde: sva is not 4mpage aligned"));
 3165         anychanged = FALSE;
 3166 retry:
 3167         oldpde = newpde = *pde;
 3168         if (oldpde & PG_MANAGED) {
 3169                 eva = sva + NBPDR;
 3170                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 3171                     va < eva; va += PAGE_SIZE, m++)
 3172                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3173                                 vm_page_dirty(m);
 3174         }
 3175         if ((prot & VM_PROT_WRITE) == 0)
 3176                 newpde &= ~(PG_RW | PG_M);
 3177 #if defined(PAE) || defined(PAE_TABLES)
 3178         if ((prot & VM_PROT_EXECUTE) == 0)
 3179                 newpde |= pg_nx;
 3180 #endif
 3181         if (newpde != oldpde) {
 3182                 if (!pde_cmpset(pde, oldpde, newpde))
 3183                         goto retry;
 3184                 if (oldpde & PG_G)
 3185                         pmap_invalidate_page(pmap, sva);
 3186                 else
 3187                         anychanged = TRUE;
 3188         }
 3189         return (anychanged);
 3190 }
 3191 
 3192 /*
 3193  *      Set the physical protection on the
 3194  *      specified range of this map as requested.
 3195  */
 3196 void
 3197 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3198 {
 3199         vm_offset_t pdnxt;
 3200         pd_entry_t ptpaddr;
 3201         pt_entry_t *pte;
 3202         boolean_t anychanged, pv_lists_locked;
 3203 
 3204         KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
 3205         if (prot == VM_PROT_NONE) {
 3206                 pmap_remove(pmap, sva, eva);
 3207                 return;
 3208         }
 3209 
 3210 #if defined(PAE) || defined(PAE_TABLES)
 3211         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 3212             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 3213                 return;
 3214 #else
 3215         if (prot & VM_PROT_WRITE)
 3216                 return;
 3217 #endif
 3218 
 3219         if (pmap_is_current(pmap))
 3220                 pv_lists_locked = FALSE;
 3221         else {
 3222                 pv_lists_locked = TRUE;
 3223 resume:
 3224                 rw_wlock(&pvh_global_lock);
 3225                 sched_pin();
 3226         }
 3227         anychanged = FALSE;
 3228 
 3229         PMAP_LOCK(pmap);
 3230         for (; sva < eva; sva = pdnxt) {
 3231                 pt_entry_t obits, pbits;
 3232                 u_int pdirindex;
 3233 
 3234                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3235                 if (pdnxt < sva)
 3236                         pdnxt = eva;
 3237 
 3238                 pdirindex = sva >> PDRSHIFT;
 3239                 ptpaddr = pmap->pm_pdir[pdirindex];
 3240 
 3241                 /*
 3242                  * Weed out invalid mappings. Note: we assume that the page
 3243                  * directory table is always allocated, and in kernel virtual.
 3244                  */
 3245                 if (ptpaddr == 0)
 3246                         continue;
 3247 
 3248                 /*
 3249                  * Check for large page.
 3250                  */
 3251                 if ((ptpaddr & PG_PS) != 0) {
 3252                         /*
 3253                          * Are we protecting the entire large page?  If not,
 3254                          * demote the mapping and fall through.
 3255                          */
 3256                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3257                                 /*
 3258                                  * The TLB entry for a PG_G mapping is
 3259                                  * invalidated by pmap_protect_pde().
 3260                                  */
 3261                                 if (pmap_protect_pde(pmap,
 3262                                     &pmap->pm_pdir[pdirindex], sva, prot))
 3263                                         anychanged = TRUE;
 3264                                 continue;
 3265                         } else {
 3266                                 if (!pv_lists_locked) {
 3267                                         pv_lists_locked = TRUE;
 3268                                         if (!rw_try_wlock(&pvh_global_lock)) {
 3269                                                 if (anychanged)
 3270                                                         pmap_invalidate_all(
 3271                                                             pmap);
 3272                                                 PMAP_UNLOCK(pmap);
 3273                                                 goto resume;
 3274                                         }
 3275                                         sched_pin();
 3276                                 }
 3277                                 if (!pmap_demote_pde(pmap,
 3278                                     &pmap->pm_pdir[pdirindex], sva)) {
 3279                                         /*
 3280                                          * The large page mapping was
 3281                                          * destroyed.
 3282                                          */
 3283                                         continue;
 3284                                 }
 3285                         }
 3286                 }
 3287 
 3288                 if (pdnxt > eva)
 3289                         pdnxt = eva;
 3290 
 3291                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3292                     sva += PAGE_SIZE) {
 3293                         vm_page_t m;
 3294 
 3295 retry:
 3296                         /*
 3297                          * Regardless of whether a pte is 32 or 64 bits in
 3298                          * size, PG_RW, PG_A, and PG_M are among the least
 3299                          * significant 32 bits.
 3300                          */
 3301                         obits = pbits = *pte;
 3302                         if ((pbits & PG_V) == 0)
 3303                                 continue;
 3304 
 3305                         if ((prot & VM_PROT_WRITE) == 0) {
 3306                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 3307                                     (PG_MANAGED | PG_M | PG_RW)) {
 3308                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3309                                         vm_page_dirty(m);
 3310                                 }
 3311                                 pbits &= ~(PG_RW | PG_M);
 3312                         }
 3313 #if defined(PAE) || defined(PAE_TABLES)
 3314                         if ((prot & VM_PROT_EXECUTE) == 0)
 3315                                 pbits |= pg_nx;
 3316 #endif
 3317 
 3318                         if (pbits != obits) {
 3319 #if defined(PAE) || defined(PAE_TABLES)
 3320                                 if (!atomic_cmpset_64(pte, obits, pbits))
 3321                                         goto retry;
 3322 #else
 3323                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 3324                                     pbits))
 3325                                         goto retry;
 3326 #endif
 3327                                 if (obits & PG_G)
 3328                                         pmap_invalidate_page(pmap, sva);
 3329                                 else
 3330                                         anychanged = TRUE;
 3331                         }
 3332                 }
 3333         }
 3334         if (anychanged)
 3335                 pmap_invalidate_all(pmap);
 3336         if (pv_lists_locked) {
 3337                 sched_unpin();
 3338                 rw_wunlock(&pvh_global_lock);
 3339         }
 3340         PMAP_UNLOCK(pmap);
 3341 }
 3342 
 3343 /*
 3344  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
 3345  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
 3346  * For promotion to occur, two conditions must be met: (1) the 4KB page
 3347  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
 3348  * mappings must have identical characteristics.
 3349  *
 3350  * Managed (PG_MANAGED) mappings within the kernel address space are not
 3351  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
 3352  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
 3353  * pmap.
 3354  */
 3355 static void
 3356 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 3357 {
 3358         pd_entry_t newpde;
 3359         pt_entry_t *firstpte, oldpte, pa, *pte;
 3360         vm_offset_t oldpteva;
 3361         vm_page_t mpte;
 3362 
 3363         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3364 
 3365         /*
 3366          * Examine the first PTE in the specified PTP.  Abort if this PTE is
 3367          * either invalid, unused, or does not map the first 4KB physical page
 3368          * within a 2- or 4MB page.
 3369          */
 3370         firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
 3371 setpde:
 3372         newpde = *firstpte;
 3373         if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 3374                 pmap_pde_p_failures++;
 3375                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3376                     " in pmap %p", va, pmap);
 3377                 return;
 3378         }
 3379         if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
 3380                 pmap_pde_p_failures++;
 3381                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3382                     " in pmap %p", va, pmap);
 3383                 return;
 3384         }
 3385         if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 3386                 /*
 3387                  * When PG_M is already clear, PG_RW can be cleared without
 3388                  * a TLB invalidation.
 3389                  */
 3390                 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
 3391                     ~PG_RW))  
 3392                         goto setpde;
 3393                 newpde &= ~PG_RW;
 3394         }
 3395 
 3396         /* 
 3397          * Examine each of the other PTEs in the specified PTP.  Abort if this
 3398          * PTE maps an unexpected 4KB physical page or does not have identical
 3399          * characteristics to the first PTE.
 3400          */
 3401         pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 3402         for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 3403 setpte:
 3404                 oldpte = *pte;
 3405                 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 3406                         pmap_pde_p_failures++;
 3407                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3408                             " in pmap %p", va, pmap);
 3409                         return;
 3410                 }
 3411                 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 3412                         /*
 3413                          * When PG_M is already clear, PG_RW can be cleared
 3414                          * without a TLB invalidation.
 3415                          */
 3416                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3417                             oldpte & ~PG_RW))
 3418                                 goto setpte;
 3419                         oldpte &= ~PG_RW;
 3420                         oldpteva = (oldpte & PG_FRAME & PDRMASK) |
 3421                             (va & ~PDRMASK);
 3422                         CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
 3423                             " in pmap %p", oldpteva, pmap);
 3424                 }
 3425                 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 3426                         pmap_pde_p_failures++;
 3427                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3428                             " in pmap %p", va, pmap);
 3429                         return;
 3430                 }
 3431                 pa -= PAGE_SIZE;
 3432         }
 3433 
 3434         /*
 3435          * Save the page table page in its current state until the PDE
 3436          * mapping the superpage is demoted by pmap_demote_pde() or
 3437          * destroyed by pmap_remove_pde(). 
 3438          */
 3439         mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 3440         KASSERT(mpte >= vm_page_array &&
 3441             mpte < &vm_page_array[vm_page_array_size],
 3442             ("pmap_promote_pde: page table page is out of range"));
 3443         KASSERT(mpte->pindex == va >> PDRSHIFT,
 3444             ("pmap_promote_pde: page table page's pindex is wrong"));
 3445         if (pmap_insert_pt_page(pmap, mpte)) {
 3446                 pmap_pde_p_failures++;
 3447                 CTR2(KTR_PMAP,
 3448                     "pmap_promote_pde: failure for va %#x in pmap %p", va,
 3449                     pmap);
 3450                 return;
 3451         }
 3452 
 3453         /*
 3454          * Promote the pv entries.
 3455          */
 3456         if ((newpde & PG_MANAGED) != 0)
 3457                 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
 3458 
 3459         /*
 3460          * Propagate the PAT index to its proper position.
 3461          */
 3462         if ((newpde & PG_PTE_PAT) != 0)
 3463                 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
 3464 
 3465         /*
 3466          * Map the superpage.
 3467          */
 3468         if (workaround_erratum383)
 3469                 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 3470         else if (pmap == kernel_pmap)
 3471                 pmap_kenter_pde(va, PG_PS | newpde);
 3472         else
 3473                 pde_store(pde, PG_PS | newpde);
 3474 
 3475         pmap_pde_promotions++;
 3476         CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
 3477             " in pmap %p", va, pmap);
 3478 }
 3479 
 3480 /*
 3481  *      Insert the given physical page (p) at
 3482  *      the specified virtual address (v) in the
 3483  *      target physical map with the protection requested.
 3484  *
 3485  *      If specified, the page will be wired down, meaning
 3486  *      that the related pte can not be reclaimed.
 3487  *
 3488  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3489  *      or lose information.  That is, this routine must actually
 3490  *      insert this page into the given map NOW.
 3491  */
 3492 int
 3493 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 3494     u_int flags, int8_t psind)
 3495 {
 3496         pd_entry_t *pde;
 3497         pt_entry_t *pte;
 3498         pt_entry_t newpte, origpte;
 3499         pv_entry_t pv;
 3500         vm_paddr_t opa, pa;
 3501         vm_page_t mpte, om;
 3502         boolean_t invlva, wired;
 3503 
 3504         va = trunc_page(va);
 3505         mpte = NULL;
 3506         wired = (flags & PMAP_ENTER_WIRED) != 0;
 3507 
 3508         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 3509         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 3510             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 3511             va));
 3512         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 3513                 VM_OBJECT_ASSERT_LOCKED(m->object);
 3514 
 3515         rw_wlock(&pvh_global_lock);
 3516         PMAP_LOCK(pmap);
 3517         sched_pin();
 3518 
 3519         /*
 3520          * In the case that a page table page is not
 3521          * resident, we are creating it here.
 3522          */
 3523         if (va < VM_MAXUSER_ADDRESS) {
 3524                 mpte = pmap_allocpte(pmap, va, flags);
 3525                 if (mpte == NULL) {
 3526                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 3527                             ("pmap_allocpte failed with sleep allowed"));
 3528                         sched_unpin();
 3529                         rw_wunlock(&pvh_global_lock);
 3530                         PMAP_UNLOCK(pmap);
 3531                         return (KERN_RESOURCE_SHORTAGE);
 3532                 }
 3533         }
 3534 
 3535         pde = pmap_pde(pmap, va);
 3536         if ((*pde & PG_PS) != 0)
 3537                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 3538         pte = pmap_pte_quick(pmap, va);
 3539 
 3540         /*
 3541          * Page Directory table entry not valid, we need a new PT page
 3542          */
 3543         if (pte == NULL) {
 3544                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 3545                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 3546         }
 3547 
 3548         pa = VM_PAGE_TO_PHYS(m);
 3549         om = NULL;
 3550         origpte = *pte;
 3551         opa = origpte & PG_FRAME;
 3552 
 3553         /*
 3554          * Mapping has not changed, must be protection or wiring change.
 3555          */
 3556         if (origpte && (opa == pa)) {
 3557                 /*
 3558                  * Wiring change, just update stats. We don't worry about
 3559                  * wiring PT pages as they remain resident as long as there
 3560                  * are valid mappings in them. Hence, if a user page is wired,
 3561                  * the PT page will be also.
 3562                  */
 3563                 if (wired && ((origpte & PG_W) == 0))
 3564                         pmap->pm_stats.wired_count++;
 3565                 else if (!wired && (origpte & PG_W))
 3566                         pmap->pm_stats.wired_count--;
 3567 
 3568                 /*
 3569                  * Remove extra pte reference
 3570                  */
 3571                 if (mpte)
 3572                         mpte->wire_count--;
 3573 
 3574                 if (origpte & PG_MANAGED) {
 3575                         om = m;
 3576                         pa |= PG_MANAGED;
 3577                 }
 3578                 goto validate;
 3579         } 
 3580 
 3581         pv = NULL;
 3582 
 3583         /*
 3584          * Mapping has changed, invalidate old range and fall through to
 3585          * handle validating new mapping.
 3586          */
 3587         if (opa) {
 3588                 if (origpte & PG_W)
 3589                         pmap->pm_stats.wired_count--;
 3590                 if (origpte & PG_MANAGED) {
 3591                         om = PHYS_TO_VM_PAGE(opa);
 3592                         pv = pmap_pvh_remove(&om->md, pmap, va);
 3593                 }
 3594                 if (mpte != NULL) {
 3595                         mpte->wire_count--;
 3596                         KASSERT(mpte->wire_count > 0,
 3597                             ("pmap_enter: missing reference to page table page,"
 3598                              " va: 0x%x", va));
 3599                 }
 3600         } else
 3601                 pmap->pm_stats.resident_count++;
 3602 
 3603         /*
 3604          * Enter on the PV list if part of our managed memory.
 3605          */
 3606         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3607                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3608                     ("pmap_enter: managed mapping within the clean submap"));
 3609                 if (pv == NULL)
 3610                         pv = get_pv_entry(pmap, FALSE);
 3611                 pv->pv_va = va;
 3612                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 3613                 pa |= PG_MANAGED;
 3614         } else if (pv != NULL)
 3615                 free_pv_entry(pmap, pv);
 3616 
 3617         /*
 3618          * Increment counters
 3619          */
 3620         if (wired)
 3621                 pmap->pm_stats.wired_count++;
 3622 
 3623 validate:
 3624         /*
 3625          * Now validate mapping with desired protection/wiring.
 3626          */
 3627         newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
 3628         if ((prot & VM_PROT_WRITE) != 0) {
 3629                 newpte |= PG_RW;
 3630                 if ((newpte & PG_MANAGED) != 0)
 3631                         vm_page_aflag_set(m, PGA_WRITEABLE);
 3632         }
 3633 #if defined(PAE) || defined(PAE_TABLES)
 3634         if ((prot & VM_PROT_EXECUTE) == 0)
 3635                 newpte |= pg_nx;
 3636 #endif
 3637         if (wired)
 3638                 newpte |= PG_W;
 3639         if (va < VM_MAXUSER_ADDRESS)
 3640                 newpte |= PG_U;
 3641         if (pmap == kernel_pmap)
 3642                 newpte |= pgeflag;
 3643 
 3644         /*
 3645          * if the mapping or permission bits are different, we need
 3646          * to update the pte.
 3647          */
 3648         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 3649                 newpte |= PG_A;
 3650                 if ((flags & VM_PROT_WRITE) != 0)
 3651                         newpte |= PG_M;
 3652                 if (origpte & PG_V) {
 3653                         invlva = FALSE;
 3654                         origpte = pte_load_store(pte, newpte);
 3655                         if (origpte & PG_A) {
 3656                                 if (origpte & PG_MANAGED)
 3657                                         vm_page_aflag_set(om, PGA_REFERENCED);
 3658                                 if (opa != VM_PAGE_TO_PHYS(m))
 3659                                         invlva = TRUE;
 3660 #if defined(PAE) || defined(PAE_TABLES)
 3661                                 if ((origpte & PG_NX) == 0 &&
 3662                                     (newpte & PG_NX) != 0)
 3663                                         invlva = TRUE;
 3664 #endif
 3665                         }
 3666                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3667                                 if ((origpte & PG_MANAGED) != 0)
 3668                                         vm_page_dirty(om);
 3669                                 if ((prot & VM_PROT_WRITE) == 0)
 3670                                         invlva = TRUE;
 3671                         }
 3672                         if ((origpte & PG_MANAGED) != 0 &&
 3673                             TAILQ_EMPTY(&om->md.pv_list) &&
 3674                             ((om->flags & PG_FICTITIOUS) != 0 ||
 3675                             TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 3676                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 3677                         if (invlva)
 3678                                 pmap_invalidate_page(pmap, va);
 3679                 } else
 3680                         pte_store(pte, newpte);
 3681         }
 3682 
 3683         /*
 3684          * If both the page table page and the reservation are fully
 3685          * populated, then attempt promotion.
 3686          */
 3687         if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 3688             pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
 3689             vm_reserv_level_iffullpop(m) == 0)
 3690                 pmap_promote_pde(pmap, pde, va);
 3691 
 3692         sched_unpin();
 3693         rw_wunlock(&pvh_global_lock);
 3694         PMAP_UNLOCK(pmap);
 3695         return (KERN_SUCCESS);
 3696 }
 3697 
 3698 /*
 3699  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
 3700  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
 3701  * blocking, (2) a mapping already exists at the specified virtual address, or
 3702  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
 3703  */
 3704 static boolean_t
 3705 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3706 {
 3707         pd_entry_t *pde, newpde;
 3708 
 3709         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3710         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3711         pde = pmap_pde(pmap, va);
 3712         if (*pde != 0) {
 3713                 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3714                     " in pmap %p", va, pmap);
 3715                 return (FALSE);
 3716         }
 3717         newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
 3718             PG_PS | PG_V;
 3719         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3720                 newpde |= PG_MANAGED;
 3721 
 3722                 /*
 3723                  * Abort this mapping if its PV entry could not be created.
 3724                  */
 3725                 if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
 3726                         CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3727                             " in pmap %p", va, pmap);
 3728                         return (FALSE);
 3729                 }
 3730         }
 3731 #if defined(PAE) || defined(PAE_TABLES)
 3732         if ((prot & VM_PROT_EXECUTE) == 0)
 3733                 newpde |= pg_nx;
 3734 #endif
 3735         if (va < VM_MAXUSER_ADDRESS)
 3736                 newpde |= PG_U;
 3737 
 3738         /*
 3739          * Increment counters.
 3740          */
 3741         pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 3742 
 3743         /*
 3744          * Map the superpage.
 3745          */
 3746         pde_store(pde, newpde);
 3747 
 3748         pmap_pde_mappings++;
 3749         CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 3750             " in pmap %p", va, pmap);
 3751         return (TRUE);
 3752 }
 3753 
 3754 /*
 3755  * Maps a sequence of resident pages belonging to the same object.
 3756  * The sequence begins with the given page m_start.  This page is
 3757  * mapped at the given virtual address start.  Each subsequent page is
 3758  * mapped at a virtual address that is offset from start by the same
 3759  * amount as the page is offset from m_start within the object.  The
 3760  * last page in the sequence is the page with the largest offset from
 3761  * m_start that can be mapped at a virtual address less than the given
 3762  * virtual address end.  Not every virtual page between start and end
 3763  * is mapped; only those for which a resident page exists with the
 3764  * corresponding offset from m_start are mapped.
 3765  */
 3766 void
 3767 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3768     vm_page_t m_start, vm_prot_t prot)
 3769 {
 3770         vm_offset_t va;
 3771         vm_page_t m, mpte;
 3772         vm_pindex_t diff, psize;
 3773 
 3774         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 3775 
 3776         psize = atop(end - start);
 3777         mpte = NULL;
 3778         m = m_start;
 3779         rw_wlock(&pvh_global_lock);
 3780         PMAP_LOCK(pmap);
 3781         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3782                 va = start + ptoa(diff);
 3783                 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 3784                     m->psind == 1 && pg_ps_enabled &&
 3785                     pmap_enter_pde(pmap, va, m, prot))
 3786                         m = &m[NBPDR / PAGE_SIZE - 1];
 3787                 else
 3788                         mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 3789                             mpte);
 3790                 m = TAILQ_NEXT(m, listq);
 3791         }
 3792         rw_wunlock(&pvh_global_lock);
 3793         PMAP_UNLOCK(pmap);
 3794 }
 3795 
 3796 /*
 3797  * this code makes some *MAJOR* assumptions:
 3798  * 1. Current pmap & pmap exists.
 3799  * 2. Not wired.
 3800  * 3. Read access.
 3801  * 4. No page table pages.
 3802  * but is *MUCH* faster than pmap_enter...
 3803  */
 3804 
 3805 void
 3806 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3807 {
 3808 
 3809         rw_wlock(&pvh_global_lock);
 3810         PMAP_LOCK(pmap);
 3811         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 3812         rw_wunlock(&pvh_global_lock);
 3813         PMAP_UNLOCK(pmap);
 3814 }
 3815 
 3816 static vm_page_t
 3817 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 3818     vm_prot_t prot, vm_page_t mpte)
 3819 {
 3820         pt_entry_t *pte;
 3821         vm_paddr_t pa;
 3822         struct spglist free;
 3823 
 3824         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 3825             (m->oflags & VPO_UNMANAGED) != 0,
 3826             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 3827         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3828         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3829 
 3830         /*
 3831          * In the case that a page table page is not
 3832          * resident, we are creating it here.
 3833          */
 3834         if (va < VM_MAXUSER_ADDRESS) {
 3835                 u_int ptepindex;
 3836                 pd_entry_t ptepa;
 3837 
 3838                 /*
 3839                  * Calculate pagetable page index
 3840                  */
 3841                 ptepindex = va >> PDRSHIFT;
 3842                 if (mpte && (mpte->pindex == ptepindex)) {
 3843                         mpte->wire_count++;
 3844                 } else {
 3845                         /*
 3846                          * Get the page directory entry
 3847                          */
 3848                         ptepa = pmap->pm_pdir[ptepindex];
 3849 
 3850                         /*
 3851                          * If the page table page is mapped, we just increment
 3852                          * the hold count, and activate it.
 3853                          */
 3854                         if (ptepa) {
 3855                                 if (ptepa & PG_PS)
 3856                                         return (NULL);
 3857                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 3858                                 mpte->wire_count++;
 3859                         } else {
 3860                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3861                                     PMAP_ENTER_NOSLEEP);
 3862                                 if (mpte == NULL)
 3863                                         return (mpte);
 3864                         }
 3865                 }
 3866         } else {
 3867                 mpte = NULL;
 3868         }
 3869 
 3870         /*
 3871          * This call to vtopte makes the assumption that we are
 3872          * entering the page into the current pmap.  In order to support
 3873          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3874          * But that isn't as quick as vtopte.
 3875          */
 3876         pte = vtopte(va);
 3877         if (*pte) {
 3878                 if (mpte != NULL) {
 3879                         mpte->wire_count--;
 3880                         mpte = NULL;
 3881                 }
 3882                 return (mpte);
 3883         }
 3884 
 3885         /*
 3886          * Enter on the PV list if part of our managed memory.
 3887          */
 3888         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 3889             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3890                 if (mpte != NULL) {
 3891                         SLIST_INIT(&free);
 3892                         if (pmap_unwire_ptp(pmap, mpte, &free)) {
 3893                                 pmap_invalidate_page(pmap, va);
 3894                                 pmap_free_zero_pages(&free);
 3895                         }
 3896                         
 3897                         mpte = NULL;
 3898                 }
 3899                 return (mpte);
 3900         }
 3901 
 3902         /*
 3903          * Increment counters
 3904          */
 3905         pmap->pm_stats.resident_count++;
 3906 
 3907         pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 3908 #if defined(PAE) || defined(PAE_TABLES)
 3909         if ((prot & VM_PROT_EXECUTE) == 0)
 3910                 pa |= pg_nx;
 3911 #endif
 3912 
 3913         /*
 3914          * Now validate mapping with RO protection
 3915          */
 3916         if ((m->oflags & VPO_UNMANAGED) != 0)
 3917                 pte_store(pte, pa | PG_V | PG_U);
 3918         else
 3919                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3920         return (mpte);
 3921 }
 3922 
 3923 /*
 3924  * Make a temporary mapping for a physical address.  This is only intended
 3925  * to be used for panic dumps.
 3926  */
 3927 void *
 3928 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3929 {
 3930         vm_offset_t va;
 3931 
 3932         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3933         pmap_kenter(va, pa);
 3934         invlpg(va);
 3935         return ((void *)crashdumpmap);
 3936 }
 3937 
 3938 /*
 3939  * This code maps large physical mmap regions into the
 3940  * processor address space.  Note that some shortcuts
 3941  * are taken, but the code works.
 3942  */
 3943 void
 3944 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3945     vm_pindex_t pindex, vm_size_t size)
 3946 {
 3947         pd_entry_t *pde;
 3948         vm_paddr_t pa, ptepa;
 3949         vm_page_t p;
 3950         int pat_mode;
 3951 
 3952         VM_OBJECT_ASSERT_WLOCKED(object);
 3953         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3954             ("pmap_object_init_pt: non-device object"));
 3955         if (pseflag && 
 3956             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3957                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3958                         return;
 3959                 p = vm_page_lookup(object, pindex);
 3960                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3961                     ("pmap_object_init_pt: invalid page %p", p));
 3962                 pat_mode = p->md.pat_mode;
 3963 
 3964                 /*
 3965                  * Abort the mapping if the first page is not physically
 3966                  * aligned to a 2/4MB page boundary.
 3967                  */
 3968                 ptepa = VM_PAGE_TO_PHYS(p);
 3969                 if (ptepa & (NBPDR - 1))
 3970                         return;
 3971 
 3972                 /*
 3973                  * Skip the first page.  Abort the mapping if the rest of
 3974                  * the pages are not physically contiguous or have differing
 3975                  * memory attributes.
 3976                  */
 3977                 p = TAILQ_NEXT(p, listq);
 3978                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3979                     pa += PAGE_SIZE) {
 3980                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3981                             ("pmap_object_init_pt: invalid page %p", p));
 3982                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3983                             pat_mode != p->md.pat_mode)
 3984                                 return;
 3985                         p = TAILQ_NEXT(p, listq);
 3986                 }
 3987 
 3988                 /*
 3989                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3990                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3991                  * "pa" will not affect the termination of this loop.
 3992                  */
 3993                 PMAP_LOCK(pmap);
 3994                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3995                     size; pa += NBPDR) {
 3996                         pde = pmap_pde(pmap, addr);
 3997                         if (*pde == 0) {
 3998                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3999                                     PG_U | PG_RW | PG_V);
 4000                                 pmap->pm_stats.resident_count += NBPDR /
 4001                                     PAGE_SIZE;
 4002                                 pmap_pde_mappings++;
 4003                         }
 4004                         /* Else continue on if the PDE is already valid. */
 4005                         addr += NBPDR;
 4006                 }
 4007                 PMAP_UNLOCK(pmap);
 4008         }
 4009 }
 4010 
 4011 /*
 4012  *      Clear the wired attribute from the mappings for the specified range of
 4013  *      addresses in the given pmap.  Every valid mapping within that range
 4014  *      must have the wired attribute set.  In contrast, invalid mappings
 4015  *      cannot have the wired attribute set, so they are ignored.
 4016  *
 4017  *      The wired attribute of the page table entry is not a hardware feature,
 4018  *      so there is no need to invalidate any TLB entries.
 4019  */
 4020 void
 4021 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 4022 {
 4023         vm_offset_t pdnxt;
 4024         pd_entry_t *pde;
 4025         pt_entry_t *pte;
 4026         boolean_t pv_lists_locked;
 4027 
 4028         if (pmap_is_current(pmap))
 4029                 pv_lists_locked = FALSE;
 4030         else {
 4031                 pv_lists_locked = TRUE;
 4032 resume:
 4033                 rw_wlock(&pvh_global_lock);
 4034                 sched_pin();
 4035         }
 4036         PMAP_LOCK(pmap);
 4037         for (; sva < eva; sva = pdnxt) {
 4038                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 4039                 if (pdnxt < sva)
 4040                         pdnxt = eva;
 4041                 pde = pmap_pde(pmap, sva);
 4042                 if ((*pde & PG_V) == 0)
 4043                         continue;
 4044                 if ((*pde & PG_PS) != 0) {
 4045                         if ((*pde & PG_W) == 0)
 4046                                 panic("pmap_unwire: pde %#jx is missing PG_W",
 4047                                     (uintmax_t)*pde);
 4048 
 4049                         /*
 4050                          * Are we unwiring the entire large page?  If not,
 4051                          * demote the mapping and fall through.
 4052                          */
 4053                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 4054                                 /*
 4055                                  * Regardless of whether a pde (or pte) is 32
 4056                                  * or 64 bits in size, PG_W is among the least
 4057                                  * significant 32 bits.
 4058                                  */
 4059                                 atomic_clear_int((u_int *)pde, PG_W);
 4060                                 pmap->pm_stats.wired_count -= NBPDR /
 4061                                     PAGE_SIZE;
 4062                                 continue;
 4063                         } else {
 4064                                 if (!pv_lists_locked) {
 4065                                         pv_lists_locked = TRUE;
 4066                                         if (!rw_try_wlock(&pvh_global_lock)) {
 4067                                                 PMAP_UNLOCK(pmap);
 4068                                                 /* Repeat sva. */
 4069                                                 goto resume;
 4070                                         }
 4071                                         sched_pin();
 4072                                 }
 4073                                 if (!pmap_demote_pde(pmap, pde, sva))
 4074                                         panic("pmap_unwire: demotion failed");
 4075                         }
 4076                 }
 4077                 if (pdnxt > eva)
 4078                         pdnxt = eva;
 4079                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 4080                     sva += PAGE_SIZE) {
 4081                         if ((*pte & PG_V) == 0)
 4082                                 continue;
 4083                         if ((*pte & PG_W) == 0)
 4084                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 4085                                     (uintmax_t)*pte);
 4086 
 4087                         /*
 4088                          * PG_W must be cleared atomically.  Although the pmap
 4089                          * lock synchronizes access to PG_W, another processor
 4090                          * could be setting PG_M and/or PG_A concurrently.
 4091                          *
 4092                          * PG_W is among the least significant 32 bits.
 4093                          */
 4094                         atomic_clear_int((u_int *)pte, PG_W);
 4095                         pmap->pm_stats.wired_count--;
 4096                 }
 4097         }
 4098         if (pv_lists_locked) {
 4099                 sched_unpin();
 4100                 rw_wunlock(&pvh_global_lock);
 4101         }
 4102         PMAP_UNLOCK(pmap);
 4103 }
 4104 
 4105 
 4106 /*
 4107  *      Copy the range specified by src_addr/len
 4108  *      from the source map to the range dst_addr/len
 4109  *      in the destination map.
 4110  *
 4111  *      This routine is only advisory and need not do anything.
 4112  */
 4113 
 4114 void
 4115 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 4116     vm_offset_t src_addr)
 4117 {
 4118         struct spglist free;
 4119         vm_offset_t addr;
 4120         vm_offset_t end_addr = src_addr + len;
 4121         vm_offset_t pdnxt;
 4122 
 4123         if (dst_addr != src_addr)
 4124                 return;
 4125 
 4126         if (!pmap_is_current(src_pmap))
 4127                 return;
 4128 
 4129         rw_wlock(&pvh_global_lock);
 4130         if (dst_pmap < src_pmap) {
 4131                 PMAP_LOCK(dst_pmap);
 4132                 PMAP_LOCK(src_pmap);
 4133         } else {
 4134                 PMAP_LOCK(src_pmap);
 4135                 PMAP_LOCK(dst_pmap);
 4136         }
 4137         sched_pin();
 4138         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 4139                 pt_entry_t *src_pte, *dst_pte;
 4140                 vm_page_t dstmpte, srcmpte;
 4141                 pd_entry_t srcptepaddr;
 4142                 u_int ptepindex;
 4143 
 4144                 KASSERT(addr < UPT_MIN_ADDRESS,
 4145                     ("pmap_copy: invalid to pmap_copy page tables"));
 4146 
 4147                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 4148                 if (pdnxt < addr)
 4149                         pdnxt = end_addr;
 4150                 ptepindex = addr >> PDRSHIFT;
 4151 
 4152                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 4153                 if (srcptepaddr == 0)
 4154                         continue;
 4155                         
 4156                 if (srcptepaddr & PG_PS) {
 4157                         if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
 4158                                 continue;
 4159                         if (dst_pmap->pm_pdir[ptepindex] == 0 &&
 4160                             ((srcptepaddr & PG_MANAGED) == 0 ||
 4161                             pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 4162                             PG_PS_FRAME))) {
 4163                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 4164                                     ~PG_W;
 4165                                 dst_pmap->pm_stats.resident_count +=
 4166                                     NBPDR / PAGE_SIZE;
 4167                         }
 4168                         continue;
 4169                 }
 4170 
 4171                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 4172                 KASSERT(srcmpte->wire_count > 0,
 4173                     ("pmap_copy: source page table page is unused"));
 4174 
 4175                 if (pdnxt > end_addr)
 4176                         pdnxt = end_addr;
 4177 
 4178                 src_pte = vtopte(addr);
 4179                 while (addr < pdnxt) {
 4180                         pt_entry_t ptetemp;
 4181                         ptetemp = *src_pte;
 4182                         /*
 4183                          * we only virtual copy managed pages
 4184                          */
 4185                         if ((ptetemp & PG_MANAGED) != 0) {
 4186                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 4187                                     PMAP_ENTER_NOSLEEP);
 4188                                 if (dstmpte == NULL)
 4189                                         goto out;
 4190                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 4191                                 if (*dst_pte == 0 &&
 4192                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 4193                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 4194                                         /*
 4195                                          * Clear the wired, modified, and
 4196                                          * accessed (referenced) bits
 4197                                          * during the copy.
 4198                                          */
 4199                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 4200                                             PG_A);
 4201                                         dst_pmap->pm_stats.resident_count++;
 4202                                 } else {
 4203                                         SLIST_INIT(&free);
 4204                                         if (pmap_unwire_ptp(dst_pmap, dstmpte,
 4205                                             &free)) {
 4206                                                 pmap_invalidate_page(dst_pmap,
 4207                                                     addr);
 4208                                                 pmap_free_zero_pages(&free);
 4209                                         }
 4210                                         goto out;
 4211                                 }
 4212                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 4213                                         break;
 4214                         }
 4215                         addr += PAGE_SIZE;
 4216                         src_pte++;
 4217                 }
 4218         }
 4219 out:
 4220         sched_unpin();
 4221         rw_wunlock(&pvh_global_lock);
 4222         PMAP_UNLOCK(src_pmap);
 4223         PMAP_UNLOCK(dst_pmap);
 4224 }       
 4225 
 4226 static __inline void
 4227 pagezero(void *page)
 4228 {
 4229 #if defined(I686_CPU)
 4230         if (cpu_class == CPUCLASS_686) {
 4231 #if defined(CPU_ENABLE_SSE)
 4232                 if (cpu_feature & CPUID_SSE2)
 4233                         sse2_pagezero(page);
 4234                 else
 4235 #endif
 4236                         i686_pagezero(page);
 4237         } else
 4238 #endif
 4239                 bzero(page, PAGE_SIZE);
 4240 }
 4241 
 4242 /*
 4243  *      pmap_zero_page zeros the specified hardware page by mapping 
 4244  *      the page into KVM and using bzero to clear its contents.
 4245  */
 4246 void
 4247 pmap_zero_page(vm_page_t m)
 4248 {
 4249         struct sysmaps *sysmaps;
 4250 
 4251         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4252         mtx_lock(&sysmaps->lock);
 4253         if (*sysmaps->CMAP2)
 4254                 panic("pmap_zero_page: CMAP2 busy");
 4255         sched_pin();
 4256         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4257             pmap_cache_bits(m->md.pat_mode, 0);
 4258         invlcaddr(sysmaps->CADDR2);
 4259         pagezero(sysmaps->CADDR2);
 4260         *sysmaps->CMAP2 = 0;
 4261         sched_unpin();
 4262         mtx_unlock(&sysmaps->lock);
 4263 }
 4264 
 4265 /*
 4266  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4267  *      the page into KVM and using bzero to clear its contents.
 4268  *
 4269  *      off and size may not cover an area beyond a single hardware page.
 4270  */
 4271 void
 4272 pmap_zero_page_area(vm_page_t m, int off, int size)
 4273 {
 4274         struct sysmaps *sysmaps;
 4275 
 4276         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4277         mtx_lock(&sysmaps->lock);
 4278         if (*sysmaps->CMAP2)
 4279                 panic("pmap_zero_page_area: CMAP2 busy");
 4280         sched_pin();
 4281         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4282             pmap_cache_bits(m->md.pat_mode, 0);
 4283         invlcaddr(sysmaps->CADDR2);
 4284         if (off == 0 && size == PAGE_SIZE) 
 4285                 pagezero(sysmaps->CADDR2);
 4286         else
 4287                 bzero((char *)sysmaps->CADDR2 + off, size);
 4288         *sysmaps->CMAP2 = 0;
 4289         sched_unpin();
 4290         mtx_unlock(&sysmaps->lock);
 4291 }
 4292 
 4293 /*
 4294  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4295  *      the page into KVM and using bzero to clear its contents.  This
 4296  *      is intended to be called from the vm_pagezero process only and
 4297  *      outside of Giant.
 4298  */
 4299 void
 4300 pmap_zero_page_idle(vm_page_t m)
 4301 {
 4302 
 4303         if (*CMAP3)
 4304                 panic("pmap_zero_page_idle: CMAP3 busy");
 4305         sched_pin();
 4306         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4307             pmap_cache_bits(m->md.pat_mode, 0);
 4308         invlcaddr(CADDR3);
 4309         pagezero(CADDR3);
 4310         *CMAP3 = 0;
 4311         sched_unpin();
 4312 }
 4313 
 4314 /*
 4315  *      pmap_copy_page copies the specified (machine independent)
 4316  *      page by mapping the page into virtual memory and using
 4317  *      bcopy to copy the page, one machine dependent page at a
 4318  *      time.
 4319  */
 4320 void
 4321 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4322 {
 4323         struct sysmaps *sysmaps;
 4324 
 4325         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4326         mtx_lock(&sysmaps->lock);
 4327         if (*sysmaps->CMAP1)
 4328                 panic("pmap_copy_page: CMAP1 busy");
 4329         if (*sysmaps->CMAP2)
 4330                 panic("pmap_copy_page: CMAP2 busy");
 4331         sched_pin();
 4332         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
 4333             pmap_cache_bits(src->md.pat_mode, 0);
 4334         invlcaddr(sysmaps->CADDR1);
 4335         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
 4336             pmap_cache_bits(dst->md.pat_mode, 0);
 4337         invlcaddr(sysmaps->CADDR2);
 4338         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 4339         *sysmaps->CMAP1 = 0;
 4340         *sysmaps->CMAP2 = 0;
 4341         sched_unpin();
 4342         mtx_unlock(&sysmaps->lock);
 4343 }
 4344 
 4345 int unmapped_buf_allowed = 1;
 4346 
 4347 void
 4348 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 4349     vm_offset_t b_offset, int xfersize)
 4350 {
 4351         struct sysmaps *sysmaps;
 4352         vm_page_t a_pg, b_pg;
 4353         char *a_cp, *b_cp;
 4354         vm_offset_t a_pg_offset, b_pg_offset;
 4355         int cnt;
 4356 
 4357         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4358         mtx_lock(&sysmaps->lock);
 4359         if (*sysmaps->CMAP1 != 0)
 4360                 panic("pmap_copy_pages: CMAP1 busy");
 4361         if (*sysmaps->CMAP2 != 0)
 4362                 panic("pmap_copy_pages: CMAP2 busy");
 4363         sched_pin();
 4364         while (xfersize > 0) {
 4365                 a_pg = ma[a_offset >> PAGE_SHIFT];
 4366                 a_pg_offset = a_offset & PAGE_MASK;
 4367                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 4368                 b_pg = mb[b_offset >> PAGE_SHIFT];
 4369                 b_pg_offset = b_offset & PAGE_MASK;
 4370                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 4371                 *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
 4372                     pmap_cache_bits(a_pg->md.pat_mode, 0);
 4373                 invlcaddr(sysmaps->CADDR1);
 4374                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
 4375                     PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
 4376                 invlcaddr(sysmaps->CADDR2);
 4377                 a_cp = sysmaps->CADDR1 + a_pg_offset;
 4378                 b_cp = sysmaps->CADDR2 + b_pg_offset;
 4379                 bcopy(a_cp, b_cp, cnt);
 4380                 a_offset += cnt;
 4381                 b_offset += cnt;
 4382                 xfersize -= cnt;
 4383         }
 4384         *sysmaps->CMAP1 = 0;
 4385         *sysmaps->CMAP2 = 0;
 4386         sched_unpin();
 4387         mtx_unlock(&sysmaps->lock);
 4388 }
 4389 
 4390 /*
 4391  * Returns true if the pmap's pv is one of the first
 4392  * 16 pvs linked to from this page.  This count may
 4393  * be changed upwards or downwards in the future; it
 4394  * is only necessary that true be returned for a small
 4395  * subset of pmaps for proper page aging.
 4396  */
 4397 boolean_t
 4398 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4399 {
 4400         struct md_page *pvh;
 4401         pv_entry_t pv;
 4402         int loops = 0;
 4403         boolean_t rv;
 4404 
 4405         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4406             ("pmap_page_exists_quick: page %p is not managed", m));
 4407         rv = FALSE;
 4408         rw_wlock(&pvh_global_lock);
 4409         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4410                 if (PV_PMAP(pv) == pmap) {
 4411                         rv = TRUE;
 4412                         break;
 4413                 }
 4414                 loops++;
 4415                 if (loops >= 16)
 4416                         break;
 4417         }
 4418         if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 4419                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4420                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4421                         if (PV_PMAP(pv) == pmap) {
 4422                                 rv = TRUE;
 4423                                 break;
 4424                         }
 4425                         loops++;
 4426                         if (loops >= 16)
 4427                                 break;
 4428                 }
 4429         }
 4430         rw_wunlock(&pvh_global_lock);
 4431         return (rv);
 4432 }
 4433 
 4434 /*
 4435  *      pmap_page_wired_mappings:
 4436  *
 4437  *      Return the number of managed mappings to the given physical page
 4438  *      that are wired.
 4439  */
 4440 int
 4441 pmap_page_wired_mappings(vm_page_t m)
 4442 {
 4443         int count;
 4444 
 4445         count = 0;
 4446         if ((m->oflags & VPO_UNMANAGED) != 0)
 4447                 return (count);
 4448         rw_wlock(&pvh_global_lock);
 4449         count = pmap_pvh_wired_mappings(&m->md, count);
 4450         if ((m->flags & PG_FICTITIOUS) == 0) {
 4451             count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
 4452                 count);
 4453         }
 4454         rw_wunlock(&pvh_global_lock);
 4455         return (count);
 4456 }
 4457 
 4458 /*
 4459  *      pmap_pvh_wired_mappings:
 4460  *
 4461  *      Return the updated number "count" of managed mappings that are wired.
 4462  */
 4463 static int
 4464 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
 4465 {
 4466         pmap_t pmap;
 4467         pt_entry_t *pte;
 4468         pv_entry_t pv;
 4469 
 4470         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4471         sched_pin();
 4472         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4473                 pmap = PV_PMAP(pv);
 4474                 PMAP_LOCK(pmap);
 4475                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4476                 if ((*pte & PG_W) != 0)
 4477                         count++;
 4478                 PMAP_UNLOCK(pmap);
 4479         }
 4480         sched_unpin();
 4481         return (count);
 4482 }
 4483 
 4484 /*
 4485  * Returns TRUE if the given page is mapped individually or as part of
 4486  * a 4mpage.  Otherwise, returns FALSE.
 4487  */
 4488 boolean_t
 4489 pmap_page_is_mapped(vm_page_t m)
 4490 {
 4491         boolean_t rv;
 4492 
 4493         if ((m->oflags & VPO_UNMANAGED) != 0)
 4494                 return (FALSE);
 4495         rw_wlock(&pvh_global_lock);
 4496         rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 4497             ((m->flags & PG_FICTITIOUS) == 0 &&
 4498             !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 4499         rw_wunlock(&pvh_global_lock);
 4500         return (rv);
 4501 }
 4502 
 4503 /*
 4504  * Remove all pages from specified address space
 4505  * this aids process exit speeds.  Also, this code
 4506  * is special cased for current process only, but
 4507  * can have the more generic (and slightly slower)
 4508  * mode enabled.  This is much faster than pmap_remove
 4509  * in the case of running down an entire address space.
 4510  */
 4511 void
 4512 pmap_remove_pages(pmap_t pmap)
 4513 {
 4514         pt_entry_t *pte, tpte;
 4515         vm_page_t m, mpte, mt;
 4516         pv_entry_t pv;
 4517         struct md_page *pvh;
 4518         struct pv_chunk *pc, *npc;
 4519         struct spglist free;
 4520         int field, idx;
 4521         int32_t bit;
 4522         uint32_t inuse, bitmask;
 4523         int allfree;
 4524 
 4525         if (pmap != PCPU_GET(curpmap)) {
 4526                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 4527                 return;
 4528         }
 4529         SLIST_INIT(&free);
 4530         rw_wlock(&pvh_global_lock);
 4531         PMAP_LOCK(pmap);
 4532         sched_pin();
 4533         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 4534                 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
 4535                     pc->pc_pmap));
 4536                 allfree = 1;
 4537                 for (field = 0; field < _NPCM; field++) {
 4538                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 4539                         while (inuse != 0) {
 4540                                 bit = bsfl(inuse);
 4541                                 bitmask = 1UL << bit;
 4542                                 idx = field * 32 + bit;
 4543                                 pv = &pc->pc_pventry[idx];
 4544                                 inuse &= ~bitmask;
 4545 
 4546                                 pte = pmap_pde(pmap, pv->pv_va);
 4547                                 tpte = *pte;
 4548                                 if ((tpte & PG_PS) == 0) {
 4549                                         pte = vtopte(pv->pv_va);
 4550                                         tpte = *pte & ~PG_PTE_PAT;
 4551                                 }
 4552 
 4553                                 if (tpte == 0) {
 4554                                         printf(
 4555                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 4556                                             pte, pv->pv_va);
 4557                                         panic("bad pte");
 4558                                 }
 4559 
 4560 /*
 4561  * We cannot remove wired pages from a process' mapping at this time
 4562  */
 4563                                 if (tpte & PG_W) {
 4564                                         allfree = 0;
 4565                                         continue;
 4566                                 }
 4567 
 4568                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 4569                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 4570                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 4571                                     m, (uintmax_t)m->phys_addr,
 4572                                     (uintmax_t)tpte));
 4573 
 4574                                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 4575                                     m < &vm_page_array[vm_page_array_size],
 4576                                     ("pmap_remove_pages: bad tpte %#jx",
 4577                                     (uintmax_t)tpte));
 4578 
 4579                                 pte_clear(pte);
 4580 
 4581                                 /*
 4582                                  * Update the vm_page_t clean/reference bits.
 4583                                  */
 4584                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4585                                         if ((tpte & PG_PS) != 0) {
 4586                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4587                                                         vm_page_dirty(mt);
 4588                                         } else
 4589                                                 vm_page_dirty(m);
 4590                                 }
 4591 
 4592                                 /* Mark free */
 4593                                 PV_STAT(pv_entry_frees++);
 4594                                 PV_STAT(pv_entry_spare++);
 4595                                 pv_entry_count--;
 4596                                 pc->pc_map[field] |= bitmask;
 4597                                 if ((tpte & PG_PS) != 0) {
 4598                                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 4599                                         pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 4600                                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4601                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 4602                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4603                                                         if (TAILQ_EMPTY(&mt->md.pv_list))
 4604                                                                 vm_page_aflag_clear(mt, PGA_WRITEABLE);
 4605                                         }
 4606                                         mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
 4607                                         if (mpte != NULL) {
 4608                                                 pmap_remove_pt_page(pmap, mpte);
 4609                                                 pmap->pm_stats.resident_count--;
 4610                                                 KASSERT(mpte->wire_count == NPTEPG,
 4611                                                     ("pmap_remove_pages: pte page wire count error"));
 4612                                                 mpte->wire_count = 0;
 4613                                                 pmap_add_delayed_free_list(mpte, &free, FALSE);
 4614                                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 4615                                         }
 4616                                 } else {
 4617                                         pmap->pm_stats.resident_count--;
 4618                                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4619                                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 4620                                             (m->flags & PG_FICTITIOUS) == 0) {
 4621                                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4622                                                 if (TAILQ_EMPTY(&pvh->pv_list))
 4623                                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4624                                         }
 4625                                         pmap_unuse_pt(pmap, pv->pv_va, &free);
 4626                                 }
 4627                         }
 4628                 }
 4629                 if (allfree) {
 4630                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 4631                         free_pv_chunk(pc);
 4632                 }
 4633         }
 4634         sched_unpin();
 4635         pmap_invalidate_all(pmap);
 4636         rw_wunlock(&pvh_global_lock);
 4637         PMAP_UNLOCK(pmap);
 4638         pmap_free_zero_pages(&free);
 4639 }
 4640 
 4641 /*
 4642  *      pmap_is_modified:
 4643  *
 4644  *      Return whether or not the specified physical page was modified
 4645  *      in any physical maps.
 4646  */
 4647 boolean_t
 4648 pmap_is_modified(vm_page_t m)
 4649 {
 4650         boolean_t rv;
 4651 
 4652         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4653             ("pmap_is_modified: page %p is not managed", m));
 4654 
 4655         /*
 4656          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4657          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 4658          * is clear, no PTEs can have PG_M set.
 4659          */
 4660         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4661         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4662                 return (FALSE);
 4663         rw_wlock(&pvh_global_lock);
 4664         rv = pmap_is_modified_pvh(&m->md) ||
 4665             ((m->flags & PG_FICTITIOUS) == 0 &&
 4666             pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4667         rw_wunlock(&pvh_global_lock);
 4668         return (rv);
 4669 }
 4670 
 4671 /*
 4672  * Returns TRUE if any of the given mappings were used to modify
 4673  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
 4674  * mappings are supported.
 4675  */
 4676 static boolean_t
 4677 pmap_is_modified_pvh(struct md_page *pvh)
 4678 {
 4679         pv_entry_t pv;
 4680         pt_entry_t *pte;
 4681         pmap_t pmap;
 4682         boolean_t rv;
 4683 
 4684         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4685         rv = FALSE;
 4686         sched_pin();
 4687         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4688                 pmap = PV_PMAP(pv);
 4689                 PMAP_LOCK(pmap);
 4690                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4691                 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
 4692                 PMAP_UNLOCK(pmap);
 4693                 if (rv)
 4694                         break;
 4695         }
 4696         sched_unpin();
 4697         return (rv);
 4698 }
 4699 
 4700 /*
 4701  *      pmap_is_prefaultable:
 4702  *
 4703  *      Return whether or not the specified virtual address is elgible
 4704  *      for prefault.
 4705  */
 4706 boolean_t
 4707 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 4708 {
 4709         pd_entry_t *pde;
 4710         pt_entry_t *pte;
 4711         boolean_t rv;
 4712 
 4713         rv = FALSE;
 4714         PMAP_LOCK(pmap);
 4715         pde = pmap_pde(pmap, addr);
 4716         if (*pde != 0 && (*pde & PG_PS) == 0) {
 4717                 pte = vtopte(addr);
 4718                 rv = *pte == 0;
 4719         }
 4720         PMAP_UNLOCK(pmap);
 4721         return (rv);
 4722 }
 4723 
 4724 /*
 4725  *      pmap_is_referenced:
 4726  *
 4727  *      Return whether or not the specified physical page was referenced
 4728  *      in any physical maps.
 4729  */
 4730 boolean_t
 4731 pmap_is_referenced(vm_page_t m)
 4732 {
 4733         boolean_t rv;
 4734 
 4735         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4736             ("pmap_is_referenced: page %p is not managed", m));
 4737         rw_wlock(&pvh_global_lock);
 4738         rv = pmap_is_referenced_pvh(&m->md) ||
 4739             ((m->flags & PG_FICTITIOUS) == 0 &&
 4740             pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4741         rw_wunlock(&pvh_global_lock);
 4742         return (rv);
 4743 }
 4744 
 4745 /*
 4746  * Returns TRUE if any of the given mappings were referenced and FALSE
 4747  * otherwise.  Both page and 4mpage mappings are supported.
 4748  */
 4749 static boolean_t
 4750 pmap_is_referenced_pvh(struct md_page *pvh)
 4751 {
 4752         pv_entry_t pv;
 4753         pt_entry_t *pte;
 4754         pmap_t pmap;
 4755         boolean_t rv;
 4756 
 4757         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4758         rv = FALSE;
 4759         sched_pin();
 4760         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4761                 pmap = PV_PMAP(pv);
 4762                 PMAP_LOCK(pmap);
 4763                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4764                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 4765                 PMAP_UNLOCK(pmap);
 4766                 if (rv)
 4767                         break;
 4768         }
 4769         sched_unpin();
 4770         return (rv);
 4771 }
 4772 
 4773 /*
 4774  * Clear the write and modified bits in each of the given page's mappings.
 4775  */
 4776 void
 4777 pmap_remove_write(vm_page_t m)
 4778 {
 4779         struct md_page *pvh;
 4780         pv_entry_t next_pv, pv;
 4781         pmap_t pmap;
 4782         pd_entry_t *pde;
 4783         pt_entry_t oldpte, *pte;
 4784         vm_offset_t va;
 4785 
 4786         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4787             ("pmap_remove_write: page %p is not managed", m));
 4788 
 4789         /*
 4790          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4791          * set by another thread while the object is locked.  Thus,
 4792          * if PGA_WRITEABLE is clear, no page table entries need updating.
 4793          */
 4794         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4795         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4796                 return;
 4797         rw_wlock(&pvh_global_lock);
 4798         sched_pin();
 4799         if ((m->flags & PG_FICTITIOUS) != 0)
 4800                 goto small_mappings;
 4801         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4802         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 4803                 va = pv->pv_va;
 4804                 pmap = PV_PMAP(pv);
 4805                 PMAP_LOCK(pmap);
 4806                 pde = pmap_pde(pmap, va);
 4807                 if ((*pde & PG_RW) != 0)
 4808                         (void)pmap_demote_pde(pmap, pde, va);
 4809                 PMAP_UNLOCK(pmap);
 4810         }
 4811 small_mappings:
 4812         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4813                 pmap = PV_PMAP(pv);
 4814                 PMAP_LOCK(pmap);
 4815                 pde = pmap_pde(pmap, pv->pv_va);
 4816                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
 4817                     " a 4mpage in page %p's pv list", m));
 4818                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4819 retry:
 4820                 oldpte = *pte;
 4821                 if ((oldpte & PG_RW) != 0) {
 4822                         /*
 4823                          * Regardless of whether a pte is 32 or 64 bits
 4824                          * in size, PG_RW and PG_M are among the least
 4825                          * significant 32 bits.
 4826                          */
 4827                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 4828                             oldpte & ~(PG_RW | PG_M)))
 4829                                 goto retry;
 4830                         if ((oldpte & PG_M) != 0)
 4831                                 vm_page_dirty(m);
 4832                         pmap_invalidate_page(pmap, pv->pv_va);
 4833                 }
 4834                 PMAP_UNLOCK(pmap);
 4835         }
 4836         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4837         sched_unpin();
 4838         rw_wunlock(&pvh_global_lock);
 4839 }
 4840 
 4841 #define PMAP_TS_REFERENCED_MAX  5
 4842 
 4843 /*
 4844  *      pmap_ts_referenced:
 4845  *
 4846  *      Return a count of reference bits for a page, clearing those bits.
 4847  *      It is not necessary for every reference bit to be cleared, but it
 4848  *      is necessary that 0 only be returned when there are truly no
 4849  *      reference bits set.
 4850  *
 4851  *      XXX: The exact number of bits to check and clear is a matter that
 4852  *      should be tested and standardized at some point in the future for
 4853  *      optimal aging of shared pages.
 4854  */
 4855 int
 4856 pmap_ts_referenced(vm_page_t m)
 4857 {
 4858         struct md_page *pvh;
 4859         pv_entry_t pv, pvf;
 4860         pmap_t pmap;
 4861         pd_entry_t *pde;
 4862         pt_entry_t *pte;
 4863         vm_paddr_t pa;
 4864         int rtval = 0;
 4865 
 4866         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4867             ("pmap_ts_referenced: page %p is not managed", m));
 4868         pa = VM_PAGE_TO_PHYS(m);
 4869         pvh = pa_to_pvh(pa);
 4870         rw_wlock(&pvh_global_lock);
 4871         sched_pin();
 4872         if ((m->flags & PG_FICTITIOUS) != 0 ||
 4873             (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
 4874                 goto small_mappings;
 4875         pv = pvf;
 4876         do {
 4877                 pmap = PV_PMAP(pv);
 4878                 PMAP_LOCK(pmap);
 4879                 pde = pmap_pde(pmap, pv->pv_va);
 4880                 if ((*pde & PG_A) != 0) {
 4881                         /*
 4882                          * Since this reference bit is shared by either 1024
 4883                          * or 512 4KB pages, it should not be cleared every
 4884                          * time it is tested.  Apply a simple "hash" function
 4885                          * on the physical page number, the virtual superpage
 4886                          * number, and the pmap address to select one 4KB page
 4887                          * out of the 1024 or 512 on which testing the
 4888                          * reference bit will result in clearing that bit.
 4889                          * This function is designed to avoid the selection of
 4890                          * the same 4KB page for every 2- or 4MB page mapping.
 4891                          *
 4892                          * On demotion, a mapping that hasn't been referenced
 4893                          * is simply destroyed.  To avoid the possibility of a
 4894                          * subsequent page fault on a demoted wired mapping,
 4895                          * always leave its reference bit set.  Moreover,
 4896                          * since the superpage is wired, the current state of
 4897                          * its reference bit won't affect page replacement.
 4898                          */
 4899                         if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
 4900                             (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
 4901                             (*pde & PG_W) == 0) {
 4902                                 atomic_clear_int((u_int *)pde, PG_A);
 4903                                 pmap_invalidate_page(pmap, pv->pv_va);
 4904                         }
 4905                         rtval++;
 4906                 }
 4907                 PMAP_UNLOCK(pmap);
 4908                 /* Rotate the PV list if it has more than one entry. */
 4909                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4910                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4911                         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 4912                 }
 4913                 if (rtval >= PMAP_TS_REFERENCED_MAX)
 4914                         goto out;
 4915         } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
 4916 small_mappings:
 4917         if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
 4918                 goto out;
 4919         pv = pvf;
 4920         do {
 4921                 pmap = PV_PMAP(pv);
 4922                 PMAP_LOCK(pmap);
 4923                 pde = pmap_pde(pmap, pv->pv_va);
 4924                 KASSERT((*pde & PG_PS) == 0,
 4925                     ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
 4926                     m));
 4927                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4928                 if ((*pte & PG_A) != 0) {
 4929                         atomic_clear_int((u_int *)pte, PG_A);
 4930                         pmap_invalidate_page(pmap, pv->pv_va);
 4931                         rtval++;
 4932                 }
 4933                 PMAP_UNLOCK(pmap);
 4934                 /* Rotate the PV list if it has more than one entry. */
 4935                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4936                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4937                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 4938                 }
 4939         } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
 4940             PMAP_TS_REFERENCED_MAX);
 4941 out:
 4942         sched_unpin();
 4943         rw_wunlock(&pvh_global_lock);
 4944         return (rtval);
 4945 }
 4946 
 4947 /*
 4948  *      Apply the given advice to the specified range of addresses within the
 4949  *      given pmap.  Depending on the advice, clear the referenced and/or
 4950  *      modified flags in each mapping and set the mapped page's dirty field.
 4951  */
 4952 void
 4953 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 4954 {
 4955         pd_entry_t oldpde, *pde;
 4956         pt_entry_t *pte;
 4957         vm_offset_t pdnxt;
 4958         vm_page_t m;
 4959         boolean_t anychanged, pv_lists_locked;
 4960 
 4961         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 4962                 return;
 4963         if (pmap_is_current(pmap))
 4964                 pv_lists_locked = FALSE;
 4965         else {
 4966                 pv_lists_locked = TRUE;
 4967 resume:
 4968                 rw_wlock(&pvh_global_lock);
 4969                 sched_pin();
 4970         }
 4971         anychanged = FALSE;
 4972         PMAP_LOCK(pmap);
 4973         for (; sva < eva; sva = pdnxt) {
 4974                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 4975                 if (pdnxt < sva)
 4976                         pdnxt = eva;
 4977                 pde = pmap_pde(pmap, sva);
 4978                 oldpde = *pde;
 4979                 if ((oldpde & PG_V) == 0)
 4980                         continue;
 4981                 else if ((oldpde & PG_PS) != 0) {
 4982                         if ((oldpde & PG_MANAGED) == 0)
 4983                                 continue;
 4984                         if (!pv_lists_locked) {
 4985                                 pv_lists_locked = TRUE;
 4986                                 if (!rw_try_wlock(&pvh_global_lock)) {
 4987                                         if (anychanged)
 4988                                                 pmap_invalidate_all(pmap);
 4989                                         PMAP_UNLOCK(pmap);
 4990                                         goto resume;
 4991                                 }
 4992                                 sched_pin();
 4993                         }
 4994                         if (!pmap_demote_pde(pmap, pde, sva)) {
 4995                                 /*
 4996                                  * The large page mapping was destroyed.
 4997                                  */
 4998                                 continue;
 4999                         }
 5000 
 5001                         /*
 5002                          * Unless the page mappings are wired, remove the
 5003                          * mapping to a single page so that a subsequent
 5004                          * access may repromote.  Since the underlying page
 5005                          * table page is fully populated, this removal never
 5006                          * frees a page table page.
 5007                          */
 5008                         if ((oldpde & PG_W) == 0) {
 5009                                 pte = pmap_pte_quick(pmap, sva);
 5010                                 KASSERT((*pte & PG_V) != 0,
 5011                                     ("pmap_advise: invalid PTE"));
 5012                                 pmap_remove_pte(pmap, pte, sva, NULL);
 5013                                 anychanged = TRUE;
 5014                         }
 5015                 }
 5016                 if (pdnxt > eva)
 5017                         pdnxt = eva;
 5018                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 5019                     sva += PAGE_SIZE) {
 5020                         if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
 5021                             PG_V))
 5022                                 continue;
 5023                         else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 5024                                 if (advice == MADV_DONTNEED) {
 5025                                         /*
 5026                                          * Future calls to pmap_is_modified()
 5027                                          * can be avoided by making the page
 5028                                          * dirty now.
 5029                                          */
 5030                                         m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 5031                                         vm_page_dirty(m);
 5032                                 }
 5033                                 atomic_clear_int((u_int *)pte, PG_M | PG_A);
 5034                         } else if ((*pte & PG_A) != 0)
 5035                                 atomic_clear_int((u_int *)pte, PG_A);
 5036                         else
 5037                                 continue;
 5038                         if ((*pte & PG_G) != 0)
 5039                                 pmap_invalidate_page(pmap, sva);
 5040                         else
 5041                                 anychanged = TRUE;
 5042                 }
 5043         }
 5044         if (anychanged)
 5045                 pmap_invalidate_all(pmap);
 5046         if (pv_lists_locked) {
 5047                 sched_unpin();
 5048                 rw_wunlock(&pvh_global_lock);
 5049         }
 5050         PMAP_UNLOCK(pmap);
 5051 }
 5052 
 5053 /*
 5054  *      Clear the modify bits on the specified physical page.
 5055  */
 5056 void
 5057 pmap_clear_modify(vm_page_t m)
 5058 {
 5059         struct md_page *pvh;
 5060         pv_entry_t next_pv, pv;
 5061         pmap_t pmap;
 5062         pd_entry_t oldpde, *pde;
 5063         pt_entry_t oldpte, *pte;
 5064         vm_offset_t va;
 5065 
 5066         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 5067             ("pmap_clear_modify: page %p is not managed", m));
 5068         VM_OBJECT_ASSERT_WLOCKED(m->object);
 5069         KASSERT(!vm_page_xbusied(m),
 5070             ("pmap_clear_modify: page %p is exclusive busied", m));
 5071 
 5072         /*
 5073          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 5074          * If the object containing the page is locked and the page is not
 5075          * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
 5076          */
 5077         if ((m->aflags & PGA_WRITEABLE) == 0)
 5078                 return;
 5079         rw_wlock(&pvh_global_lock);
 5080         sched_pin();
 5081         if ((m->flags & PG_FICTITIOUS) != 0)
 5082                 goto small_mappings;
 5083         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 5084         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 5085                 va = pv->pv_va;
 5086                 pmap = PV_PMAP(pv);
 5087                 PMAP_LOCK(pmap);
 5088                 pde = pmap_pde(pmap, va);
 5089                 oldpde = *pde;
 5090                 if ((oldpde & PG_RW) != 0) {
 5091                         if (pmap_demote_pde(pmap, pde, va)) {
 5092                                 if ((oldpde & PG_W) == 0) {
 5093                                         /*
 5094                                          * Write protect the mapping to a
 5095                                          * single page so that a subsequent
 5096                                          * write access may repromote.
 5097                                          */
 5098                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 5099                                             PG_PS_FRAME);
 5100                                         pte = pmap_pte_quick(pmap, va);
 5101                                         oldpte = *pte;
 5102                                         if ((oldpte & PG_V) != 0) {
 5103                                                 /*
 5104                                                  * Regardless of whether a pte is 32 or 64 bits
 5105                                                  * in size, PG_RW and PG_M are among the least
 5106                                                  * significant 32 bits.
 5107                                                  */
 5108                                                 while (!atomic_cmpset_int((u_int *)pte,
 5109                                                     oldpte,
 5110                                                     oldpte & ~(PG_M | PG_RW)))
 5111                                                         oldpte = *pte;
 5112                                                 vm_page_dirty(m);
 5113                                                 pmap_invalidate_page(pmap, va);
 5114                                         }
 5115                                 }
 5116                         }
 5117                 }
 5118                 PMAP_UNLOCK(pmap);
 5119         }
 5120 small_mappings:
 5121         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 5122                 pmap = PV_PMAP(pv);
 5123                 PMAP_LOCK(pmap);
 5124                 pde = pmap_pde(pmap, pv->pv_va);
 5125                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 5126                     " a 4mpage in page %p's pv list", m));
 5127                 pte = pmap_pte_quick(pmap, pv->pv_va);
 5128                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 5129                         /*
 5130                          * Regardless of whether a pte is 32 or 64 bits
 5131                          * in size, PG_M is among the least significant
 5132                          * 32 bits. 
 5133                          */
 5134                         atomic_clear_int((u_int *)pte, PG_M);
 5135                         pmap_invalidate_page(pmap, pv->pv_va);
 5136                 }
 5137                 PMAP_UNLOCK(pmap);
 5138         }
 5139         sched_unpin();
 5140         rw_wunlock(&pvh_global_lock);
 5141 }
 5142 
 5143 /*
 5144  * Miscellaneous support routines follow
 5145  */
 5146 
 5147 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 5148 static __inline void
 5149 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
 5150 {
 5151         u_int opte, npte;
 5152 
 5153         /*
 5154          * The cache mode bits are all in the low 32-bits of the
 5155          * PTE, so we can just spin on updating the low 32-bits.
 5156          */
 5157         do {
 5158                 opte = *(u_int *)pte;
 5159                 npte = opte & ~PG_PTE_CACHE;
 5160                 npte |= cache_bits;
 5161         } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 5162 }
 5163 
 5164 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
 5165 static __inline void
 5166 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
 5167 {
 5168         u_int opde, npde;
 5169 
 5170         /*
 5171          * The cache mode bits are all in the low 32-bits of the
 5172          * PDE, so we can just spin on updating the low 32-bits.
 5173          */
 5174         do {
 5175                 opde = *(u_int *)pde;
 5176                 npde = opde & ~PG_PDE_CACHE;
 5177                 npde |= cache_bits;
 5178         } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 5179 }
 5180 
 5181 /*
 5182  * Map a set of physical memory pages into the kernel virtual
 5183  * address space. Return a pointer to where it is mapped. This
 5184  * routine is intended to be used for mapping device memory,
 5185  * NOT real memory.
 5186  */
 5187 void *
 5188 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 5189 {
 5190         struct pmap_preinit_mapping *ppim;
 5191         vm_offset_t va, offset;
 5192         vm_size_t tmpsize;
 5193         int i;
 5194 
 5195         offset = pa & PAGE_MASK;
 5196         size = round_page(offset + size);
 5197         pa = pa & PG_FRAME;
 5198 
 5199         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 5200                 va = KERNBASE + pa;
 5201         else if (!pmap_initialized) {
 5202                 va = 0;
 5203                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5204                         ppim = pmap_preinit_mapping + i;
 5205                         if (ppim->va == 0) {
 5206                                 ppim->pa = pa;
 5207                                 ppim->sz = size;
 5208                                 ppim->mode = mode;
 5209                                 ppim->va = virtual_avail;
 5210                                 virtual_avail += size;
 5211                                 va = ppim->va;
 5212                                 break;
 5213                         }
 5214                 }
 5215                 if (va == 0)
 5216                         panic("%s: too many preinit mappings", __func__);
 5217         } else {
 5218                 /*
 5219                  * If we have a preinit mapping, re-use it.
 5220                  */
 5221                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5222                         ppim = pmap_preinit_mapping + i;
 5223                         if (ppim->pa == pa && ppim->sz == size &&
 5224                             ppim->mode == mode)
 5225                                 return ((void *)(ppim->va + offset));
 5226                 }
 5227                 va = kva_alloc(size);
 5228                 if (va == 0)
 5229                         panic("%s: Couldn't allocate KVA", __func__);
 5230         }
 5231         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 5232                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 5233         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 5234         pmap_invalidate_cache_range(va, va + size, FALSE);
 5235         return ((void *)(va + offset));
 5236 }
 5237 
 5238 void *
 5239 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 5240 {
 5241 
 5242         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 5243 }
 5244 
 5245 void *
 5246 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 5247 {
 5248 
 5249         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 5250 }
 5251 
 5252 void
 5253 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 5254 {
 5255         struct pmap_preinit_mapping *ppim;
 5256         vm_offset_t offset;
 5257         int i;
 5258 
 5259         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 5260                 return;
 5261         offset = va & PAGE_MASK;
 5262         size = round_page(offset + size);
 5263         va = trunc_page(va);
 5264         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5265                 ppim = pmap_preinit_mapping + i;
 5266                 if (ppim->va == va && ppim->sz == size) {
 5267                         if (pmap_initialized)
 5268                                 return;
 5269                         ppim->pa = 0;
 5270                         ppim->va = 0;
 5271                         ppim->sz = 0;
 5272                         ppim->mode = 0;
 5273                         if (va + size == virtual_avail)
 5274                                 virtual_avail = va;
 5275                         return;
 5276                 }
 5277         }
 5278         if (pmap_initialized)
 5279                 kva_free(va, size);
 5280 }
 5281 
 5282 /*
 5283  * Sets the memory attribute for the specified page.
 5284  */
 5285 void
 5286 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 5287 {
 5288 
 5289         m->md.pat_mode = ma;
 5290         if ((m->flags & PG_FICTITIOUS) != 0)
 5291                 return;
 5292 
 5293         /*
 5294          * If "m" is a normal page, flush it from the cache.
 5295          * See pmap_invalidate_cache_range().
 5296          *
 5297          * First, try to find an existing mapping of the page by sf
 5298          * buffer. sf_buf_invalidate_cache() modifies mapping and
 5299          * flushes the cache.
 5300          */    
 5301         if (sf_buf_invalidate_cache(m))
 5302                 return;
 5303 
 5304         /*
 5305          * If page is not mapped by sf buffer, but CPU does not
 5306          * support self snoop, map the page transient and do
 5307          * invalidation. In the worst case, whole cache is flushed by
 5308          * pmap_invalidate_cache_range().
 5309          */
 5310         if ((cpu_feature & CPUID_SS) == 0)
 5311                 pmap_flush_page(m);
 5312 }
 5313 
 5314 static void
 5315 pmap_flush_page(vm_page_t m)
 5316 {
 5317         struct sysmaps *sysmaps;
 5318         vm_offset_t sva, eva;
 5319 
 5320         if ((cpu_feature & CPUID_CLFSH) != 0) {
 5321                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 5322                 mtx_lock(&sysmaps->lock);
 5323                 if (*sysmaps->CMAP2)
 5324                         panic("pmap_flush_page: CMAP2 busy");
 5325                 sched_pin();
 5326                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
 5327                     PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
 5328                 invlcaddr(sysmaps->CADDR2);
 5329                 sva = (vm_offset_t)sysmaps->CADDR2;
 5330                 eva = sva + PAGE_SIZE;
 5331 
 5332                 /*
 5333                  * Use mfence despite the ordering implied by
 5334                  * mtx_{un,}lock() because clflush is not guaranteed
 5335                  * to be ordered by any other instruction.
 5336                  */
 5337                 mfence();
 5338                 for (; sva < eva; sva += cpu_clflush_line_size)
 5339                         clflush(sva);
 5340                 mfence();
 5341                 *sysmaps->CMAP2 = 0;
 5342                 sched_unpin();
 5343                 mtx_unlock(&sysmaps->lock);
 5344         } else
 5345                 pmap_invalidate_cache();
 5346 }
 5347 
 5348 /*
 5349  * Changes the specified virtual address range's memory type to that given by
 5350  * the parameter "mode".  The specified virtual address range must be
 5351  * completely contained within either the kernel map.
 5352  *
 5353  * Returns zero if the change completed successfully, and either EINVAL or
 5354  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 5355  * of the virtual address range was not mapped, and ENOMEM is returned if
 5356  * there was insufficient memory available to complete the change.
 5357  */
 5358 int
 5359 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 5360 {
 5361         vm_offset_t base, offset, tmpva;
 5362         pd_entry_t *pde;
 5363         pt_entry_t *pte;
 5364         int cache_bits_pte, cache_bits_pde;
 5365         boolean_t changed;
 5366 
 5367         base = trunc_page(va);
 5368         offset = va & PAGE_MASK;
 5369         size = round_page(offset + size);
 5370 
 5371         /*
 5372          * Only supported on kernel virtual addresses above the recursive map.
 5373          */
 5374         if (base < VM_MIN_KERNEL_ADDRESS)
 5375                 return (EINVAL);
 5376 
 5377         cache_bits_pde = pmap_cache_bits(mode, 1);
 5378         cache_bits_pte = pmap_cache_bits(mode, 0);
 5379         changed = FALSE;
 5380 
 5381         /*
 5382          * Pages that aren't mapped aren't supported.  Also break down
 5383          * 2/4MB pages into 4KB pages if required.
 5384          */
 5385         PMAP_LOCK(kernel_pmap);
 5386         for (tmpva = base; tmpva < base + size; ) {
 5387                 pde = pmap_pde(kernel_pmap, tmpva);
 5388                 if (*pde == 0) {
 5389                         PMAP_UNLOCK(kernel_pmap);
 5390                         return (EINVAL);
 5391                 }
 5392                 if (*pde & PG_PS) {
 5393                         /*
 5394                          * If the current 2/4MB page already has
 5395                          * the required memory type, then we need not
 5396                          * demote this page.  Just increment tmpva to
 5397                          * the next 2/4MB page frame.
 5398                          */
 5399                         if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
 5400                                 tmpva = trunc_4mpage(tmpva) + NBPDR;
 5401                                 continue;
 5402                         }
 5403 
 5404                         /*
 5405                          * If the current offset aligns with a 2/4MB
 5406                          * page frame and there is at least 2/4MB left
 5407                          * within the range, then we need not break
 5408                          * down this page into 4KB pages.
 5409                          */
 5410                         if ((tmpva & PDRMASK) == 0 &&
 5411                             tmpva + PDRMASK < base + size) {
 5412                                 tmpva += NBPDR;
 5413                                 continue;
 5414                         }
 5415                         if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
 5416                                 PMAP_UNLOCK(kernel_pmap);
 5417                                 return (ENOMEM);
 5418                         }
 5419                 }
 5420                 pte = vtopte(tmpva);
 5421                 if (*pte == 0) {
 5422                         PMAP_UNLOCK(kernel_pmap);
 5423                         return (EINVAL);
 5424                 }
 5425                 tmpva += PAGE_SIZE;
 5426         }
 5427         PMAP_UNLOCK(kernel_pmap);
 5428 
 5429         /*
 5430          * Ok, all the pages exist, so run through them updating their
 5431          * cache mode if required.
 5432          */
 5433         for (tmpva = base; tmpva < base + size; ) {
 5434                 pde = pmap_pde(kernel_pmap, tmpva);
 5435                 if (*pde & PG_PS) {
 5436                         if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
 5437                                 pmap_pde_attr(pde, cache_bits_pde);
 5438                                 changed = TRUE;
 5439                         }
 5440                         tmpva = trunc_4mpage(tmpva) + NBPDR;
 5441                 } else {
 5442                         pte = vtopte(tmpva);
 5443                         if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
 5444                                 pmap_pte_attr(pte, cache_bits_pte);
 5445                                 changed = TRUE;
 5446                         }
 5447                         tmpva += PAGE_SIZE;
 5448                 }
 5449         }
 5450 
 5451         /*
 5452          * Flush CPU caches to make sure any data isn't cached that
 5453          * shouldn't be, etc.
 5454          */
 5455         if (changed) {
 5456                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 5457                 pmap_invalidate_cache_range(base, tmpva, FALSE);
 5458         }
 5459         return (0);
 5460 }
 5461 
 5462 /*
 5463  * perform the pmap work for mincore
 5464  */
 5465 int
 5466 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 5467 {
 5468         pd_entry_t *pdep;
 5469         pt_entry_t *ptep, pte;
 5470         vm_paddr_t pa;
 5471         int val;
 5472 
 5473         PMAP_LOCK(pmap);
 5474 retry:
 5475         pdep = pmap_pde(pmap, addr);
 5476         if (*pdep != 0) {
 5477                 if (*pdep & PG_PS) {
 5478                         pte = *pdep;
 5479                         /* Compute the physical address of the 4KB page. */
 5480                         pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 5481                             PG_FRAME;
 5482                         val = MINCORE_SUPER;
 5483                 } else {
 5484                         ptep = pmap_pte(pmap, addr);
 5485                         pte = *ptep;
 5486                         pmap_pte_release(ptep);
 5487                         pa = pte & PG_FRAME;
 5488                         val = 0;
 5489                 }
 5490         } else {
 5491                 pte = 0;
 5492                 pa = 0;
 5493                 val = 0;
 5494         }
 5495         if ((pte & PG_V) != 0) {
 5496                 val |= MINCORE_INCORE;
 5497                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 5498                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 5499                 if ((pte & PG_A) != 0)
 5500                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 5501         }
 5502         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 5503             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 5504             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 5505                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 5506                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 5507                         goto retry;
 5508         } else
 5509                 PA_UNLOCK_COND(*locked_pa);
 5510         PMAP_UNLOCK(pmap);
 5511         return (val);
 5512 }
 5513 
 5514 void
 5515 pmap_activate(struct thread *td)
 5516 {
 5517         pmap_t  pmap, oldpmap;
 5518         u_int   cpuid;
 5519         u_int32_t  cr3;
 5520 
 5521         critical_enter();
 5522         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 5523         oldpmap = PCPU_GET(curpmap);
 5524         cpuid = PCPU_GET(cpuid);
 5525 #if defined(SMP)
 5526         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 5527         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 5528 #else
 5529         CPU_CLR(cpuid, &oldpmap->pm_active);
 5530         CPU_SET(cpuid, &pmap->pm_active);
 5531 #endif
 5532 #if defined(PAE) || defined(PAE_TABLES)
 5533         cr3 = vtophys(pmap->pm_pdpt);
 5534 #else
 5535         cr3 = vtophys(pmap->pm_pdir);
 5536 #endif
 5537         /*
 5538          * pmap_activate is for the current thread on the current cpu
 5539          */
 5540         td->td_pcb->pcb_cr3 = cr3;
 5541         load_cr3(cr3);
 5542         PCPU_SET(curpmap, pmap);
 5543         critical_exit();
 5544 }
 5545 
 5546 void
 5547 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 5548 {
 5549 }
 5550 
 5551 /*
 5552  *      Increase the starting virtual address of the given mapping if a
 5553  *      different alignment might result in more superpage mappings.
 5554  */
 5555 void
 5556 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 5557     vm_offset_t *addr, vm_size_t size)
 5558 {
 5559         vm_offset_t superpage_offset;
 5560 
 5561         if (size < NBPDR)
 5562                 return;
 5563         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 5564                 offset += ptoa(object->pg_color);
 5565         superpage_offset = offset & PDRMASK;
 5566         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 5567             (*addr & PDRMASK) == superpage_offset)
 5568                 return;
 5569         if ((*addr & PDRMASK) < superpage_offset)
 5570                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 5571         else
 5572                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 5573 }
 5574 
 5575 
 5576 #if defined(PMAP_DEBUG)
 5577 pmap_pid_dump(int pid)
 5578 {
 5579         pmap_t pmap;
 5580         struct proc *p;
 5581         int npte = 0;
 5582         int index;
 5583 
 5584         sx_slock(&allproc_lock);
 5585         FOREACH_PROC_IN_SYSTEM(p) {
 5586                 if (p->p_pid != pid)
 5587                         continue;
 5588 
 5589                 if (p->p_vmspace) {
 5590                         int i,j;
 5591                         index = 0;
 5592                         pmap = vmspace_pmap(p->p_vmspace);
 5593                         for (i = 0; i < NPDEPTD; i++) {
 5594                                 pd_entry_t *pde;
 5595                                 pt_entry_t *pte;
 5596                                 vm_offset_t base = i << PDRSHIFT;
 5597                                 
 5598                                 pde = &pmap->pm_pdir[i];
 5599                                 if (pde && pmap_pde_v(pde)) {
 5600                                         for (j = 0; j < NPTEPG; j++) {
 5601                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 5602                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 5603                                                         if (index) {
 5604                                                                 index = 0;
 5605                                                                 printf("\n");
 5606                                                         }
 5607                                                         sx_sunlock(&allproc_lock);
 5608                                                         return (npte);
 5609                                                 }
 5610                                                 pte = pmap_pte(pmap, va);
 5611                                                 if (pte && pmap_pte_v(pte)) {
 5612                                                         pt_entry_t pa;
 5613                                                         vm_page_t m;
 5614                                                         pa = *pte;
 5615                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 5616                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 5617                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 5618                                                         npte++;
 5619                                                         index++;
 5620                                                         if (index >= 2) {
 5621                                                                 index = 0;
 5622                                                                 printf("\n");
 5623                                                         } else {
 5624                                                                 printf(" ");
 5625                                                         }
 5626                                                 }
 5627                                         }
 5628                                 }
 5629                         }
 5630                 }
 5631         }
 5632         sx_sunlock(&allproc_lock);
 5633         return (npte);
 5634 }
 5635 #endif
 5636 
 5637 #if defined(DEBUG)
 5638 
 5639 static void     pads(pmap_t pm);
 5640 void            pmap_pvdump(vm_paddr_t pa);
 5641 
 5642 /* print address space of pmap*/
 5643 static void
 5644 pads(pmap_t pm)
 5645 {
 5646         int i, j;
 5647         vm_paddr_t va;
 5648         pt_entry_t *ptep;
 5649 
 5650         if (pm == kernel_pmap)
 5651                 return;
 5652         for (i = 0; i < NPDEPTD; i++)
 5653                 if (pm->pm_pdir[i])
 5654                         for (j = 0; j < NPTEPG; j++) {
 5655                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 5656                                 if (pm == kernel_pmap && va < KERNBASE)
 5657                                         continue;
 5658                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 5659                                         continue;
 5660                                 ptep = pmap_pte(pm, va);
 5661                                 if (pmap_pte_v(ptep))
 5662                                         printf("%x:%x ", va, *ptep);
 5663                         };
 5664 
 5665 }
 5666 
 5667 void
 5668 pmap_pvdump(vm_paddr_t pa)
 5669 {
 5670         pv_entry_t pv;
 5671         pmap_t pmap;
 5672         vm_page_t m;
 5673 
 5674         printf("pa %x", pa);
 5675         m = PHYS_TO_VM_PAGE(pa);
 5676         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 5677                 pmap = PV_PMAP(pv);
 5678                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 5679                 pads(pmap);
 5680         }
 5681         printf(" ");
 5682 }
 5683 #endif

Cache object: b15c1b9cebb2fad35d7b7375e884769d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.