The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/11.0/sys/i386/i386/pmap.c 297974 2016-04-14 17:04:06Z pfg $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      Since the information managed by this module is
   84  *      also stored by the logical address mapping module,
   85  *      this module may throw away valid virtual-to-physical
   86  *      mappings at almost any time.  However, invalidations
   87  *      of virtual-to-physical mappings must be done as
   88  *      requested.
   89  *
   90  *      In order to cope with hardware architectures which
   91  *      make virtual-to-physical map invalidates expensive,
   92  *      this module may delay invalidate or reduced protection
   93  *      operations until such time as they are actually
   94  *      necessary.  This module is given full information as
   95  *      to which processors are currently using which maps,
   96  *      and to when physical maps must be made correct.
   97  */
   98 
   99 #include "opt_apic.h"
  100 #include "opt_cpu.h"
  101 #include "opt_pmap.h"
  102 #include "opt_smp.h"
  103 #include "opt_xbox.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/kernel.h>
  108 #include <sys/ktr.h>
  109 #include <sys/lock.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mman.h>
  112 #include <sys/msgbuf.h>
  113 #include <sys/mutex.h>
  114 #include <sys/proc.h>
  115 #include <sys/rwlock.h>
  116 #include <sys/sf_buf.h>
  117 #include <sys/sx.h>
  118 #include <sys/vmmeter.h>
  119 #include <sys/sched.h>
  120 #include <sys/sysctl.h>
  121 #include <sys/smp.h>
  122 
  123 #include <vm/vm.h>
  124 #include <vm/vm_param.h>
  125 #include <vm/vm_kern.h>
  126 #include <vm/vm_page.h>
  127 #include <vm/vm_map.h>
  128 #include <vm/vm_object.h>
  129 #include <vm/vm_extern.h>
  130 #include <vm/vm_pageout.h>
  131 #include <vm/vm_pager.h>
  132 #include <vm/vm_phys.h>
  133 #include <vm/vm_radix.h>
  134 #include <vm/vm_reserv.h>
  135 #include <vm/uma.h>
  136 
  137 #ifdef DEV_APIC
  138 #include <sys/bus.h>
  139 #include <machine/intr_machdep.h>
  140 #include <x86/apicvar.h>
  141 #endif
  142 #include <machine/cpu.h>
  143 #include <machine/cputypes.h>
  144 #include <machine/md_var.h>
  145 #include <machine/pcb.h>
  146 #include <machine/specialreg.h>
  147 #ifdef SMP
  148 #include <machine/smp.h>
  149 #endif
  150 
  151 #ifdef XBOX
  152 #include <machine/xbox.h>
  153 #endif
  154 
  155 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  156 #define CPU_ENABLE_SSE
  157 #endif
  158 
  159 #ifndef PMAP_SHPGPERPROC
  160 #define PMAP_SHPGPERPROC 200
  161 #endif
  162 
  163 #if !defined(DIAGNOSTIC)
  164 #ifdef __GNUC_GNU_INLINE__
  165 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  166 #else
  167 #define PMAP_INLINE     extern inline
  168 #endif
  169 #else
  170 #define PMAP_INLINE
  171 #endif
  172 
  173 #ifdef PV_STATS
  174 #define PV_STAT(x)      do { x ; } while (0)
  175 #else
  176 #define PV_STAT(x)      do { } while (0)
  177 #endif
  178 
  179 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  180 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  181 
  182 /*
  183  * Get PDEs and PTEs for user/kernel address space
  184  */
  185 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  186 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  187 
  188 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  189 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  190 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  191 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  192 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  193 
  194 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  195     atomic_clear_int((u_int *)(pte), PG_W))
  196 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  197 
  198 struct pmap kernel_pmap_store;
  199 LIST_HEAD(pmaplist, pmap);
  200 static struct pmaplist allpmaps;
  201 static struct mtx allpmaps_lock;
  202 
  203 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  204 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  205 int pgeflag = 0;                /* PG_G or-in */
  206 int pseflag = 0;                /* PG_PS or-in */
  207 
  208 static int nkpt = NKPT;
  209 vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
  210 extern u_int32_t KERNend;
  211 extern u_int32_t KPTphys;
  212 
  213 #if defined(PAE) || defined(PAE_TABLES)
  214 pt_entry_t pg_nx;
  215 static uma_zone_t pdptzone;
  216 #endif
  217 
  218 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  219 
  220 static int pat_works = 1;
  221 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
  222     "Is page attribute table fully functional?");
  223 
  224 static int pg_ps_enabled = 1;
  225 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  226     &pg_ps_enabled, 0, "Are large page mappings enabled?");
  227 
  228 #define PAT_INDEX_SIZE  8
  229 static int pat_index[PAT_INDEX_SIZE];   /* cache mode to PAT index conversion */
  230 
  231 /*
  232  * pmap_mapdev support pre initialization (i.e. console)
  233  */
  234 #define PMAP_PREINIT_MAPPING_COUNT      8
  235 static struct pmap_preinit_mapping {
  236         vm_paddr_t      pa;
  237         vm_offset_t     va;
  238         vm_size_t       sz;
  239         int             mode;
  240 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
  241 static int pmap_initialized;
  242 
  243 static struct rwlock_padalign pvh_global_lock;
  244 
  245 /*
  246  * Data for the pv entry allocation mechanism
  247  */
  248 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  249 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  250 static struct md_page *pv_table;
  251 static int shpgperproc = PMAP_SHPGPERPROC;
  252 
  253 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  254 int pv_maxchunks;                       /* How many chunks we have KVA for */
  255 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  256 
  257 /*
  258  * All those kernel PT submaps that BSD is so fond of
  259  */
  260 struct sysmaps {
  261         struct  mtx lock;
  262         pt_entry_t *CMAP1;
  263         pt_entry_t *CMAP2;
  264         caddr_t CADDR1;
  265         caddr_t CADDR2;
  266 };
  267 static struct sysmaps sysmaps_pcpu[MAXCPU];
  268 pt_entry_t *CMAP3;
  269 static pd_entry_t *KPTD;
  270 caddr_t ptvmmap = 0;
  271 caddr_t CADDR3;
  272 struct msgbuf *msgbufp = NULL;
  273 
  274 /*
  275  * Crashdump maps.
  276  */
  277 static caddr_t crashdumpmap;
  278 
  279 static pt_entry_t *PMAP1 = NULL, *PMAP2;
  280 static pt_entry_t *PADDR1 = NULL, *PADDR2;
  281 #ifdef SMP
  282 static int PMAP1cpu;
  283 static int PMAP1changedcpu;
  284 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  285            &PMAP1changedcpu, 0,
  286            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  287 #endif
  288 static int PMAP1changed;
  289 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  290            &PMAP1changed, 0,
  291            "Number of times pmap_pte_quick changed PMAP1");
  292 static int PMAP1unchanged;
  293 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  294            &PMAP1unchanged, 0,
  295            "Number of times pmap_pte_quick didn't change PMAP1");
  296 static struct mtx PMAP2mutex;
  297 
  298 static void     free_pv_chunk(struct pv_chunk *pc);
  299 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  300 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  301 static void     pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  302 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  303 static void     pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  304 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  305 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  306                     vm_offset_t va);
  307 static int      pmap_pvh_wired_mappings(struct md_page *pvh, int count);
  308 
  309 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  310 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
  311     vm_prot_t prot);
  312 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  313     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  314 static void pmap_flush_page(vm_page_t m);
  315 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
  316 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
  317 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
  318 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
  319 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  320 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
  321 static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
  322 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
  323 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  324 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
  325     vm_prot_t prot);
  326 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
  327 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
  328     struct spglist *free);
  329 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  330     struct spglist *free);
  331 static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
  332 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  333     struct spglist *free);
  334 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  335                                         vm_offset_t va);
  336 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  337 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  338     vm_page_t m);
  339 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
  340     pd_entry_t newpde);
  341 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
  342 
  343 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  344 
  345 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
  346 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
  347 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  348 static void pmap_pte_release(pt_entry_t *pte);
  349 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
  350 #if defined(PAE) || defined(PAE_TABLES)
  351 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
  352     int wait);
  353 #endif
  354 static void pmap_set_pg(void);
  355 
  356 static __inline void pagezero(void *page);
  357 
  358 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  359 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  360 
  361 /*
  362  * If you get an error here, then you set KVA_PAGES wrong! See the
  363  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  364  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  365  */
  366 CTASSERT(KERNBASE % (1 << 24) == 0);
  367 
  368 /*
  369  *      Bootstrap the system enough to run with virtual memory.
  370  *
  371  *      On the i386 this is called after mapping has already been enabled
  372  *      and just syncs the pmap module with what has already been done.
  373  *      [We can't call it easily with mapping off since the kernel is not
  374  *      mapped with PA == VA, hence we would have to relocate every address
  375  *      from the linked base (virtual) address "KERNBASE" to the actual
  376  *      (physical) address starting relative to 0]
  377  */
  378 void
  379 pmap_bootstrap(vm_paddr_t firstaddr)
  380 {
  381         vm_offset_t va;
  382         pt_entry_t *pte, *unused;
  383         struct sysmaps *sysmaps;
  384         int i;
  385 
  386         /*
  387          * Add a physical memory segment (vm_phys_seg) corresponding to the
  388          * preallocated kernel page table pages so that vm_page structures
  389          * representing these pages will be created.  The vm_page structures
  390          * are required for promotion of the corresponding kernel virtual
  391          * addresses to superpage mappings.
  392          */
  393         vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
  394 
  395         /*
  396          * Initialize the first available kernel virtual address.  However,
  397          * using "firstaddr" may waste a few pages of the kernel virtual
  398          * address space, because locore may not have mapped every physical
  399          * page that it allocated.  Preferably, locore would provide a first
  400          * unused virtual address in addition to "firstaddr".
  401          */
  402         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  403 
  404         virtual_end = VM_MAX_KERNEL_ADDRESS;
  405 
  406         /*
  407          * Initialize the kernel pmap (which is statically allocated).
  408          */
  409         PMAP_LOCK_INIT(kernel_pmap);
  410         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  411 #if defined(PAE) || defined(PAE_TABLES)
  412         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  413 #endif
  414         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  415         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  416 
  417         /*
  418          * Initialize the global pv list lock.
  419          */
  420         rw_init(&pvh_global_lock, "pmap pv global");
  421 
  422         LIST_INIT(&allpmaps);
  423 
  424         /*
  425          * Request a spin mutex so that changes to allpmaps cannot be
  426          * preempted by smp_rendezvous_cpus().  Otherwise,
  427          * pmap_update_pde_kernel() could access allpmaps while it is
  428          * being changed.
  429          */
  430         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  431         mtx_lock_spin(&allpmaps_lock);
  432         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  433         mtx_unlock_spin(&allpmaps_lock);
  434 
  435         /*
  436          * Reserve some special page table entries/VA space for temporary
  437          * mapping of pages.
  438          */
  439 #define SYSMAP(c, p, v, n)      \
  440         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  441 
  442         va = virtual_avail;
  443         pte = vtopte(va);
  444 
  445         /*
  446          * CMAP1/CMAP2 are used for zeroing and copying pages.
  447          * CMAP3 is used for the idle process page zeroing.
  448          */
  449         for (i = 0; i < MAXCPU; i++) {
  450                 sysmaps = &sysmaps_pcpu[i];
  451                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  452                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  453                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  454         }
  455         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  456 
  457         /*
  458          * Crashdump maps.
  459          */
  460         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  461 
  462         /*
  463          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  464          */
  465         SYSMAP(caddr_t, unused, ptvmmap, 1)
  466 
  467         /*
  468          * msgbufp is used to map the system message buffer.
  469          */
  470         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  471 
  472         /*
  473          * KPTmap is used by pmap_kextract().
  474          *
  475          * KPTmap is first initialized by locore.  However, that initial
  476          * KPTmap can only support NKPT page table pages.  Here, a larger
  477          * KPTmap is created that can support KVA_PAGES page table pages.
  478          */
  479         SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
  480 
  481         for (i = 0; i < NKPT; i++)
  482                 KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
  483 
  484         /*
  485          * Adjust the start of the KPTD and KPTmap so that the implementation
  486          * of pmap_kextract() and pmap_growkernel() can be made simpler.
  487          */
  488         KPTD -= KPTDI;
  489         KPTmap -= i386_btop(KPTDI << PDRSHIFT);
  490 
  491         /*
  492          * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
  493          * respectively.
  494          */
  495         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  496         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  497 
  498         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  499 
  500         virtual_avail = va;
  501 
  502         /*
  503          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  504          * physical memory region that is used by the ACPI wakeup code.  This
  505          * mapping must not have PG_G set. 
  506          */
  507 #ifdef XBOX
  508         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  509          * an early stadium, we cannot yet neatly map video memory ... :-(
  510          * Better fixes are very welcome! */
  511         if (!arch_i386_is_xbox)
  512 #endif
  513         for (i = 1; i < NKPT; i++)
  514                 PTD[i] = 0;
  515 
  516         /* Initialize the PAT MSR if present. */
  517         pmap_init_pat();
  518 
  519         /* Turn on PG_G on kernel page(s) */
  520         pmap_set_pg();
  521 }
  522 
  523 static void
  524 pmap_init_qpages(void)
  525 {
  526         struct pcpu *pc;
  527         int i;
  528 
  529         CPU_FOREACH(i) {
  530                 pc = pcpu_find(i);
  531                 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
  532                 if (pc->pc_qmap_addr == 0)
  533                         panic("pmap_init_qpages: unable to allocate KVA");
  534         }
  535 }
  536 
  537 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_qpages, NULL);
  538 
  539 /*
  540  * Setup the PAT MSR.
  541  */
  542 void
  543 pmap_init_pat(void)
  544 {
  545         int pat_table[PAT_INDEX_SIZE];
  546         uint64_t pat_msr;
  547         u_long cr0, cr4;
  548         int i;
  549 
  550         /* Set default PAT index table. */
  551         for (i = 0; i < PAT_INDEX_SIZE; i++)
  552                 pat_table[i] = -1;
  553         pat_table[PAT_WRITE_BACK] = 0;
  554         pat_table[PAT_WRITE_THROUGH] = 1;
  555         pat_table[PAT_UNCACHEABLE] = 3;
  556         pat_table[PAT_WRITE_COMBINING] = 3;
  557         pat_table[PAT_WRITE_PROTECTED] = 3;
  558         pat_table[PAT_UNCACHED] = 3;
  559 
  560         /* Bail if this CPU doesn't implement PAT. */
  561         if ((cpu_feature & CPUID_PAT) == 0) {
  562                 for (i = 0; i < PAT_INDEX_SIZE; i++)
  563                         pat_index[i] = pat_table[i];
  564                 pat_works = 0;
  565                 return;
  566         }
  567 
  568         /*
  569          * Due to some Intel errata, we can only safely use the lower 4
  570          * PAT entries.
  571          *
  572          *   Intel Pentium III Processor Specification Update
  573          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  574          * or Mode C Paging)
  575          *
  576          *   Intel Pentium IV  Processor Specification Update
  577          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  578          */
  579         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  580             !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
  581                 pat_works = 0;
  582 
  583         /* Initialize default PAT entries. */
  584         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
  585             PAT_VALUE(1, PAT_WRITE_THROUGH) |
  586             PAT_VALUE(2, PAT_UNCACHED) |
  587             PAT_VALUE(3, PAT_UNCACHEABLE) |
  588             PAT_VALUE(4, PAT_WRITE_BACK) |
  589             PAT_VALUE(5, PAT_WRITE_THROUGH) |
  590             PAT_VALUE(6, PAT_UNCACHED) |
  591             PAT_VALUE(7, PAT_UNCACHEABLE);
  592 
  593         if (pat_works) {
  594                 /*
  595                  * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
  596                  * Program 5 and 6 as WP and WC.
  597                  * Leave 4 and 7 as WB and UC.
  598                  */
  599                 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
  600                 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
  601                     PAT_VALUE(6, PAT_WRITE_COMBINING);
  602                 pat_table[PAT_UNCACHED] = 2;
  603                 pat_table[PAT_WRITE_PROTECTED] = 5;
  604                 pat_table[PAT_WRITE_COMBINING] = 6;
  605         } else {
  606                 /*
  607                  * Just replace PAT Index 2 with WC instead of UC-.
  608                  */
  609                 pat_msr &= ~PAT_MASK(2);
  610                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  611                 pat_table[PAT_WRITE_COMBINING] = 2;
  612         }
  613 
  614         /* Disable PGE. */
  615         cr4 = rcr4();
  616         load_cr4(cr4 & ~CR4_PGE);
  617 
  618         /* Disable caches (CD = 1, NW = 0). */
  619         cr0 = rcr0();
  620         load_cr0((cr0 & ~CR0_NW) | CR0_CD);
  621 
  622         /* Flushes caches and TLBs. */
  623         wbinvd();
  624         invltlb();
  625 
  626         /* Update PAT and index table. */
  627         wrmsr(MSR_PAT, pat_msr);
  628         for (i = 0; i < PAT_INDEX_SIZE; i++)
  629                 pat_index[i] = pat_table[i];
  630 
  631         /* Flush caches and TLBs again. */
  632         wbinvd();
  633         invltlb();
  634 
  635         /* Restore caches and PGE. */
  636         load_cr0(cr0);
  637         load_cr4(cr4);
  638 }
  639 
  640 /*
  641  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  642  */
  643 static void
  644 pmap_set_pg(void)
  645 {
  646         pt_entry_t *pte;
  647         vm_offset_t va, endva;
  648 
  649         if (pgeflag == 0)
  650                 return;
  651 
  652         endva = KERNBASE + KERNend;
  653 
  654         if (pseflag) {
  655                 va = KERNBASE + KERNLOAD;
  656                 while (va  < endva) {
  657                         pdir_pde(PTD, va) |= pgeflag;
  658                         invltlb();      /* Flush non-PG_G entries. */
  659                         va += NBPDR;
  660                 }
  661         } else {
  662                 va = (vm_offset_t)btext;
  663                 while (va < endva) {
  664                         pte = vtopte(va);
  665                         if (*pte)
  666                                 *pte |= pgeflag;
  667                         invltlb();      /* Flush non-PG_G entries. */
  668                         va += PAGE_SIZE;
  669                 }
  670         }
  671 }
  672 
  673 /*
  674  * Initialize a vm_page's machine-dependent fields.
  675  */
  676 void
  677 pmap_page_init(vm_page_t m)
  678 {
  679 
  680         TAILQ_INIT(&m->md.pv_list);
  681         m->md.pat_mode = PAT_WRITE_BACK;
  682 }
  683 
  684 #if defined(PAE) || defined(PAE_TABLES)
  685 static void *
  686 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
  687 {
  688 
  689         /* Inform UMA that this allocator uses kernel_map/object. */
  690         *flags = UMA_SLAB_KERNEL;
  691         return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
  692             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  693 }
  694 #endif
  695 
  696 /*
  697  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
  698  * Requirements:
  699  *  - Must deal with pages in order to ensure that none of the PG_* bits
  700  *    are ever set, PG_V in particular.
  701  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  702  *    on PAE systems.  This should be ok.
  703  *  - Assumes nothing will ever test these addresses for 0 to indicate
  704  *    no mapping instead of correctly checking PG_V.
  705  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  706  * Because PG_V is never set, there can be no mappings to invalidate.
  707  */
  708 static vm_offset_t
  709 pmap_ptelist_alloc(vm_offset_t *head)
  710 {
  711         pt_entry_t *pte;
  712         vm_offset_t va;
  713 
  714         va = *head;
  715         if (va == 0)
  716                 panic("pmap_ptelist_alloc: exhausted ptelist KVA");
  717         pte = vtopte(va);
  718         *head = *pte;
  719         if (*head & PG_V)
  720                 panic("pmap_ptelist_alloc: va with PG_V set!");
  721         *pte = 0;
  722         return (va);
  723 }
  724 
  725 static void
  726 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  727 {
  728         pt_entry_t *pte;
  729 
  730         if (va & PG_V)
  731                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  732         pte = vtopte(va);
  733         *pte = *head;           /* virtual! PG_V is 0 though */
  734         *head = va;
  735 }
  736 
  737 static void
  738 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  739 {
  740         int i;
  741         vm_offset_t va;
  742 
  743         *head = 0;
  744         for (i = npages - 1; i >= 0; i--) {
  745                 va = (vm_offset_t)base + i * PAGE_SIZE;
  746                 pmap_ptelist_free(head, va);
  747         }
  748 }
  749 
  750 
  751 /*
  752  *      Initialize the pmap module.
  753  *      Called by vm_init, to initialize any structures that the pmap
  754  *      system needs to map virtual memory.
  755  */
  756 void
  757 pmap_init(void)
  758 {
  759         struct pmap_preinit_mapping *ppim;
  760         vm_page_t mpte;
  761         vm_size_t s;
  762         int i, pv_npg;
  763 
  764         /*
  765          * Initialize the vm page array entries for the kernel pmap's
  766          * page table pages.
  767          */ 
  768         for (i = 0; i < NKPT; i++) {
  769                 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
  770                 KASSERT(mpte >= vm_page_array &&
  771                     mpte < &vm_page_array[vm_page_array_size],
  772                     ("pmap_init: page table page is out of range"));
  773                 mpte->pindex = i + KPTDI;
  774                 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
  775         }
  776 
  777         /*
  778          * Initialize the address space (zone) for the pv entries.  Set a
  779          * high water mark so that the system can recover from excessive
  780          * numbers of pv entries.
  781          */
  782         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  783         pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
  784         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  785         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  786         pv_entry_high_water = 9 * (pv_entry_max / 10);
  787 
  788         /*
  789          * If the kernel is running on a virtual machine, then it must assume
  790          * that MCA is enabled by the hypervisor.  Moreover, the kernel must
  791          * be prepared for the hypervisor changing the vendor and family that
  792          * are reported by CPUID.  Consequently, the workaround for AMD Family
  793          * 10h Erratum 383 is enabled if the processor's feature set does not
  794          * include at least one feature that is only supported by older Intel
  795          * or newer AMD processors.
  796          */
  797         if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
  798             (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
  799             CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
  800             AMDID2_FMA4)) == 0)
  801                 workaround_erratum383 = 1;
  802 
  803         /*
  804          * Are large page mappings supported and enabled?
  805          */
  806         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  807         if (pseflag == 0)
  808                 pg_ps_enabled = 0;
  809         else if (pg_ps_enabled) {
  810                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
  811                     ("pmap_init: can't assign to pagesizes[1]"));
  812                 pagesizes[1] = NBPDR;
  813         }
  814 
  815         /*
  816          * Calculate the size of the pv head table for superpages.
  817          * Handle the possibility that "vm_phys_segs[...].end" is zero.
  818          */
  819         pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
  820             PAGE_SIZE) / NBPDR + 1;
  821 
  822         /*
  823          * Allocate memory for the pv head table for superpages.
  824          */
  825         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  826         s = round_page(s);
  827         pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
  828             M_WAITOK | M_ZERO);
  829         for (i = 0; i < pv_npg; i++)
  830                 TAILQ_INIT(&pv_table[i].pv_list);
  831 
  832         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  833         pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
  834         if (pv_chunkbase == NULL)
  835                 panic("pmap_init: not enough kvm for pv chunks");
  836         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  837 #if defined(PAE) || defined(PAE_TABLES)
  838         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  839             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  840             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  841         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  842 #endif
  843 
  844         pmap_initialized = 1;
  845         if (!bootverbose)
  846                 return;
  847         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
  848                 ppim = pmap_preinit_mapping + i;
  849                 if (ppim->va == 0)
  850                         continue;
  851                 printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
  852                     (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
  853         }
  854 }
  855 
  856 
  857 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  858         "Max number of PV entries");
  859 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  860         "Page share factor per proc");
  861 
  862 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  863     "2/4MB page mapping counters");
  864 
  865 static u_long pmap_pde_demotions;
  866 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
  867     &pmap_pde_demotions, 0, "2/4MB page demotions");
  868 
  869 static u_long pmap_pde_mappings;
  870 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  871     &pmap_pde_mappings, 0, "2/4MB page mappings");
  872 
  873 static u_long pmap_pde_p_failures;
  874 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
  875     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
  876 
  877 static u_long pmap_pde_promotions;
  878 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
  879     &pmap_pde_promotions, 0, "2/4MB page promotions");
  880 
  881 /***************************************************
  882  * Low level helper routines.....
  883  ***************************************************/
  884 
  885 /*
  886  * Determine the appropriate bits to set in a PTE or PDE for a specified
  887  * caching mode.
  888  */
  889 int
  890 pmap_cache_bits(int mode, boolean_t is_pde)
  891 {
  892         int cache_bits, pat_flag, pat_idx;
  893 
  894         if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
  895                 panic("Unknown caching mode %d\n", mode);
  896 
  897         /* The PAT bit is different for PTE's and PDE's. */
  898         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  899 
  900         /* Map the caching mode to a PAT index. */
  901         pat_idx = pat_index[mode];
  902 
  903         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  904         cache_bits = 0;
  905         if (pat_idx & 0x4)
  906                 cache_bits |= pat_flag;
  907         if (pat_idx & 0x2)
  908                 cache_bits |= PG_NC_PCD;
  909         if (pat_idx & 0x1)
  910                 cache_bits |= PG_NC_PWT;
  911         return (cache_bits);
  912 }
  913 
  914 /*
  915  * The caller is responsible for maintaining TLB consistency.
  916  */
  917 static void
  918 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
  919 {
  920         pd_entry_t *pde;
  921         pmap_t pmap;
  922         boolean_t PTD_updated;
  923 
  924         PTD_updated = FALSE;
  925         mtx_lock_spin(&allpmaps_lock);
  926         LIST_FOREACH(pmap, &allpmaps, pm_list) {
  927                 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
  928                     PG_FRAME))
  929                         PTD_updated = TRUE;
  930                 pde = pmap_pde(pmap, va);
  931                 pde_store(pde, newpde);
  932         }
  933         mtx_unlock_spin(&allpmaps_lock);
  934         KASSERT(PTD_updated,
  935             ("pmap_kenter_pde: current page table is not in allpmaps"));
  936 }
  937 
  938 /*
  939  * After changing the page size for the specified virtual address in the page
  940  * table, flush the corresponding entries from the processor's TLB.  Only the
  941  * calling processor's TLB is affected.
  942  *
  943  * The calling thread must be pinned to a processor.
  944  */
  945 static void
  946 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
  947 {
  948         u_long cr4;
  949 
  950         if ((newpde & PG_PS) == 0)
  951                 /* Demotion: flush a specific 2MB page mapping. */
  952                 invlpg(va);
  953         else if ((newpde & PG_G) == 0)
  954                 /*
  955                  * Promotion: flush every 4KB page mapping from the TLB
  956                  * because there are too many to flush individually.
  957                  */
  958                 invltlb();
  959         else {
  960                 /*
  961                  * Promotion: flush every 4KB page mapping from the TLB,
  962                  * including any global (PG_G) mappings.
  963                  */
  964                 cr4 = rcr4();
  965                 load_cr4(cr4 & ~CR4_PGE);
  966                 /*
  967                  * Although preemption at this point could be detrimental to
  968                  * performance, it would not lead to an error.  PG_G is simply
  969                  * ignored if CR4.PGE is clear.  Moreover, in case this block
  970                  * is re-entered, the load_cr4() either above or below will
  971                  * modify CR4.PGE flushing the TLB.
  972                  */
  973                 load_cr4(cr4 | CR4_PGE);
  974         }
  975 }
  976 
  977 void
  978 invltlb_glob(void)
  979 {
  980         uint64_t cr4;
  981 
  982         if (pgeflag == 0) {
  983                 invltlb();
  984         } else {
  985                 cr4 = rcr4();
  986                 load_cr4(cr4 & ~CR4_PGE);
  987                 load_cr4(cr4 | CR4_PGE);
  988         }
  989 }
  990 
  991 
  992 #ifdef SMP
  993 /*
  994  * For SMP, these functions have to use the IPI mechanism for coherence.
  995  *
  996  * N.B.: Before calling any of the following TLB invalidation functions,
  997  * the calling processor must ensure that all stores updating a non-
  998  * kernel page table are globally performed.  Otherwise, another
  999  * processor could cache an old, pre-update entry without being
 1000  * invalidated.  This can happen one of two ways: (1) The pmap becomes
 1001  * active on another processor after its pm_active field is checked by
 1002  * one of the following functions but before a store updating the page
 1003  * table is globally performed. (2) The pmap becomes active on another
 1004  * processor before its pm_active field is checked but due to
 1005  * speculative loads one of the following functions stills reads the
 1006  * pmap as inactive on the other processor.
 1007  * 
 1008  * The kernel page table is exempt because its pm_active field is
 1009  * immutable.  The kernel page table is always active on every
 1010  * processor.
 1011  */
 1012 void
 1013 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1014 {
 1015         cpuset_t *mask, other_cpus;
 1016         u_int cpuid;
 1017 
 1018         sched_pin();
 1019         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1020                 invlpg(va);
 1021                 mask = &all_cpus;
 1022         } else {
 1023                 cpuid = PCPU_GET(cpuid);
 1024                 other_cpus = all_cpus;
 1025                 CPU_CLR(cpuid, &other_cpus);
 1026                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1027                         invlpg(va);
 1028                 CPU_AND(&other_cpus, &pmap->pm_active);
 1029                 mask = &other_cpus;
 1030         }
 1031         smp_masked_invlpg(*mask, va);
 1032         sched_unpin();
 1033 }
 1034 
 1035 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
 1036 #define PMAP_INVLPG_THRESHOLD   (4 * 1024 * PAGE_SIZE)
 1037 
 1038 void
 1039 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1040 {
 1041         cpuset_t *mask, other_cpus;
 1042         vm_offset_t addr;
 1043         u_int cpuid;
 1044 
 1045         if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
 1046                 pmap_invalidate_all(pmap);
 1047                 return;
 1048         }
 1049 
 1050         sched_pin();
 1051         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1052                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1053                         invlpg(addr);
 1054                 mask = &all_cpus;
 1055         } else {
 1056                 cpuid = PCPU_GET(cpuid);
 1057                 other_cpus = all_cpus;
 1058                 CPU_CLR(cpuid, &other_cpus);
 1059                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1060                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1061                                 invlpg(addr);
 1062                 CPU_AND(&other_cpus, &pmap->pm_active);
 1063                 mask = &other_cpus;
 1064         }
 1065         smp_masked_invlpg_range(*mask, sva, eva);
 1066         sched_unpin();
 1067 }
 1068 
 1069 void
 1070 pmap_invalidate_all(pmap_t pmap)
 1071 {
 1072         cpuset_t *mask, other_cpus;
 1073         u_int cpuid;
 1074 
 1075         sched_pin();
 1076         if (pmap == kernel_pmap) {
 1077                 invltlb_glob();
 1078                 mask = &all_cpus;
 1079         } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1080                 invltlb();
 1081                 mask = &all_cpus;
 1082         } else {
 1083                 cpuid = PCPU_GET(cpuid);
 1084                 other_cpus = all_cpus;
 1085                 CPU_CLR(cpuid, &other_cpus);
 1086                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1087                         invltlb();
 1088                 CPU_AND(&other_cpus, &pmap->pm_active);
 1089                 mask = &other_cpus;
 1090         }
 1091         smp_masked_invltlb(*mask, pmap);
 1092         sched_unpin();
 1093 }
 1094 
 1095 void
 1096 pmap_invalidate_cache(void)
 1097 {
 1098 
 1099         sched_pin();
 1100         wbinvd();
 1101         smp_cache_flush();
 1102         sched_unpin();
 1103 }
 1104 
 1105 struct pde_action {
 1106         cpuset_t invalidate;    /* processors that invalidate their TLB */
 1107         vm_offset_t va;
 1108         pd_entry_t *pde;
 1109         pd_entry_t newpde;
 1110         u_int store;            /* processor that updates the PDE */
 1111 };
 1112 
 1113 static void
 1114 pmap_update_pde_kernel(void *arg)
 1115 {
 1116         struct pde_action *act = arg;
 1117         pd_entry_t *pde;
 1118         pmap_t pmap;
 1119 
 1120         if (act->store == PCPU_GET(cpuid)) {
 1121 
 1122                 /*
 1123                  * Elsewhere, this operation requires allpmaps_lock for
 1124                  * synchronization.  Here, it does not because it is being
 1125                  * performed in the context of an all_cpus rendezvous.
 1126                  */
 1127                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1128                         pde = pmap_pde(pmap, act->va);
 1129                         pde_store(pde, act->newpde);
 1130                 }
 1131         }
 1132 }
 1133 
 1134 static void
 1135 pmap_update_pde_user(void *arg)
 1136 {
 1137         struct pde_action *act = arg;
 1138 
 1139         if (act->store == PCPU_GET(cpuid))
 1140                 pde_store(act->pde, act->newpde);
 1141 }
 1142 
 1143 static void
 1144 pmap_update_pde_teardown(void *arg)
 1145 {
 1146         struct pde_action *act = arg;
 1147 
 1148         if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 1149                 pmap_update_pde_invalidate(act->va, act->newpde);
 1150 }
 1151 
 1152 /*
 1153  * Change the page size for the specified virtual address in a way that
 1154  * prevents any possibility of the TLB ever having two entries that map the
 1155  * same virtual address using different page sizes.  This is the recommended
 1156  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
 1157  * machine check exception for a TLB state that is improperly diagnosed as a
 1158  * hardware error.
 1159  */
 1160 static void
 1161 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1162 {
 1163         struct pde_action act;
 1164         cpuset_t active, other_cpus;
 1165         u_int cpuid;
 1166 
 1167         sched_pin();
 1168         cpuid = PCPU_GET(cpuid);
 1169         other_cpus = all_cpus;
 1170         CPU_CLR(cpuid, &other_cpus);
 1171         if (pmap == kernel_pmap)
 1172                 active = all_cpus;
 1173         else
 1174                 active = pmap->pm_active;
 1175         if (CPU_OVERLAP(&active, &other_cpus)) {
 1176                 act.store = cpuid;
 1177                 act.invalidate = active;
 1178                 act.va = va;
 1179                 act.pde = pde;
 1180                 act.newpde = newpde;
 1181                 CPU_SET(cpuid, &active);
 1182                 smp_rendezvous_cpus(active,
 1183                     smp_no_rendevous_barrier, pmap == kernel_pmap ?
 1184                     pmap_update_pde_kernel : pmap_update_pde_user,
 1185                     pmap_update_pde_teardown, &act);
 1186         } else {
 1187                 if (pmap == kernel_pmap)
 1188                         pmap_kenter_pde(va, newpde);
 1189                 else
 1190                         pde_store(pde, newpde);
 1191                 if (CPU_ISSET(cpuid, &active))
 1192                         pmap_update_pde_invalidate(va, newpde);
 1193         }
 1194         sched_unpin();
 1195 }
 1196 #else /* !SMP */
 1197 /*
 1198  * Normal, non-SMP, 486+ invalidation functions.
 1199  * We inline these within pmap.c for speed.
 1200  */
 1201 PMAP_INLINE void
 1202 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1203 {
 1204 
 1205         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1206                 invlpg(va);
 1207 }
 1208 
 1209 PMAP_INLINE void
 1210 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1211 {
 1212         vm_offset_t addr;
 1213 
 1214         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1215                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1216                         invlpg(addr);
 1217 }
 1218 
 1219 PMAP_INLINE void
 1220 pmap_invalidate_all(pmap_t pmap)
 1221 {
 1222 
 1223         if (pmap == kernel_pmap)
 1224                 invltlb_glob();
 1225         else if (!CPU_EMPTY(&pmap->pm_active))
 1226                 invltlb();
 1227 }
 1228 
 1229 PMAP_INLINE void
 1230 pmap_invalidate_cache(void)
 1231 {
 1232 
 1233         wbinvd();
 1234 }
 1235 
 1236 static void
 1237 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1238 {
 1239 
 1240         if (pmap == kernel_pmap)
 1241                 pmap_kenter_pde(va, newpde);
 1242         else
 1243                 pde_store(pde, newpde);
 1244         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1245                 pmap_update_pde_invalidate(va, newpde);
 1246 }
 1247 #endif /* !SMP */
 1248 
 1249 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
 1250 
 1251 void
 1252 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
 1253 {
 1254 
 1255         if (force) {
 1256                 sva &= ~(vm_offset_t)cpu_clflush_line_size;
 1257         } else {
 1258                 KASSERT((sva & PAGE_MASK) == 0,
 1259                     ("pmap_invalidate_cache_range: sva not page-aligned"));
 1260                 KASSERT((eva & PAGE_MASK) == 0,
 1261                     ("pmap_invalidate_cache_range: eva not page-aligned"));
 1262         }
 1263 
 1264         if ((cpu_feature & CPUID_SS) != 0 && !force)
 1265                 ; /* If "Self Snoop" is supported and allowed, do nothing. */
 1266         else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
 1267             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1268 #ifdef DEV_APIC
 1269                 /*
 1270                  * XXX: Some CPUs fault, hang, or trash the local APIC
 1271                  * registers if we use CLFLUSH on the local APIC
 1272                  * range.  The local APIC is always uncached, so we
 1273                  * don't need to flush for that range anyway.
 1274                  */
 1275                 if (pmap_kextract(sva) == lapic_paddr)
 1276                         return;
 1277 #endif
 1278                 /*
 1279                  * Otherwise, do per-cache line flush.  Use the mfence
 1280                  * instruction to insure that previous stores are
 1281                  * included in the write-back.  The processor
 1282                  * propagates flush to other processors in the cache
 1283                  * coherence domain.
 1284                  */
 1285                 mfence();
 1286                 for (; sva < eva; sva += cpu_clflush_line_size)
 1287                         clflushopt(sva);
 1288                 mfence();
 1289         } else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 1290             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1291 #ifdef DEV_APIC
 1292                 if (pmap_kextract(sva) == lapic_paddr)
 1293                         return;
 1294 #endif
 1295                 /*
 1296                  * Writes are ordered by CLFLUSH on Intel CPUs.
 1297                  */
 1298                 if (cpu_vendor_id != CPU_VENDOR_INTEL)
 1299                         mfence();
 1300                 for (; sva < eva; sva += cpu_clflush_line_size)
 1301                         clflush(sva);
 1302                 if (cpu_vendor_id != CPU_VENDOR_INTEL)
 1303                         mfence();
 1304         } else {
 1305 
 1306                 /*
 1307                  * No targeted cache flush methods are supported by CPU,
 1308                  * or the supplied range is bigger than 2MB.
 1309                  * Globally invalidate cache.
 1310                  */
 1311                 pmap_invalidate_cache();
 1312         }
 1313 }
 1314 
 1315 void
 1316 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 1317 {
 1318         int i;
 1319 
 1320         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 1321             (cpu_feature & CPUID_CLFSH) == 0) {
 1322                 pmap_invalidate_cache();
 1323         } else {
 1324                 for (i = 0; i < count; i++)
 1325                         pmap_flush_page(pages[i]);
 1326         }
 1327 }
 1328 
 1329 /*
 1330  * Are we current address space or kernel?
 1331  */
 1332 static __inline int
 1333 pmap_is_current(pmap_t pmap)
 1334 {
 1335 
 1336         return (pmap == kernel_pmap || pmap ==
 1337             vmspace_pmap(curthread->td_proc->p_vmspace));
 1338 }
 1339 
 1340 /*
 1341  * If the given pmap is not the current or kernel pmap, the returned pte must
 1342  * be released by passing it to pmap_pte_release().
 1343  */
 1344 pt_entry_t *
 1345 pmap_pte(pmap_t pmap, vm_offset_t va)
 1346 {
 1347         pd_entry_t newpf;
 1348         pd_entry_t *pde;
 1349 
 1350         pde = pmap_pde(pmap, va);
 1351         if (*pde & PG_PS)
 1352                 return (pde);
 1353         if (*pde != 0) {
 1354                 /* are we current address space or kernel? */
 1355                 if (pmap_is_current(pmap))
 1356                         return (vtopte(va));
 1357                 mtx_lock(&PMAP2mutex);
 1358                 newpf = *pde & PG_FRAME;
 1359                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1360                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1361                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 1362                 }
 1363                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1364         }
 1365         return (NULL);
 1366 }
 1367 
 1368 /*
 1369  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1370  * being NULL.
 1371  */
 1372 static __inline void
 1373 pmap_pte_release(pt_entry_t *pte)
 1374 {
 1375 
 1376         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
 1377                 mtx_unlock(&PMAP2mutex);
 1378 }
 1379 
 1380 /*
 1381  * NB:  The sequence of updating a page table followed by accesses to the
 1382  * corresponding pages is subject to the situation described in the "AMD64
 1383  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
 1384  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
 1385  * right after modifying the PTE bits is crucial.
 1386  */
 1387 static __inline void
 1388 invlcaddr(void *caddr)
 1389 {
 1390 
 1391         invlpg((u_int)caddr);
 1392 }
 1393 
 1394 /*
 1395  * Super fast pmap_pte routine best used when scanning
 1396  * the pv lists.  This eliminates many coarse-grained
 1397  * invltlb calls.  Note that many of the pv list
 1398  * scans are across different pmaps.  It is very wasteful
 1399  * to do an entire invltlb for checking a single mapping.
 1400  *
 1401  * If the given pmap is not the current pmap, pvh_global_lock
 1402  * must be held and curthread pinned to a CPU.
 1403  */
 1404 static pt_entry_t *
 1405 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1406 {
 1407         pd_entry_t newpf;
 1408         pd_entry_t *pde;
 1409 
 1410         pde = pmap_pde(pmap, va);
 1411         if (*pde & PG_PS)
 1412                 return (pde);
 1413         if (*pde != 0) {
 1414                 /* are we current address space or kernel? */
 1415                 if (pmap_is_current(pmap))
 1416                         return (vtopte(va));
 1417                 rw_assert(&pvh_global_lock, RA_WLOCKED);
 1418                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1419                 newpf = *pde & PG_FRAME;
 1420                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1421                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1422 #ifdef SMP
 1423                         PMAP1cpu = PCPU_GET(cpuid);
 1424 #endif
 1425                         invlcaddr(PADDR1);
 1426                         PMAP1changed++;
 1427                 } else
 1428 #ifdef SMP
 1429                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1430                         PMAP1cpu = PCPU_GET(cpuid);
 1431                         invlcaddr(PADDR1);
 1432                         PMAP1changedcpu++;
 1433                 } else
 1434 #endif
 1435                         PMAP1unchanged++;
 1436                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1437         }
 1438         return (0);
 1439 }
 1440 
 1441 /*
 1442  *      Routine:        pmap_extract
 1443  *      Function:
 1444  *              Extract the physical page address associated
 1445  *              with the given map/virtual_address pair.
 1446  */
 1447 vm_paddr_t 
 1448 pmap_extract(pmap_t pmap, vm_offset_t va)
 1449 {
 1450         vm_paddr_t rtval;
 1451         pt_entry_t *pte;
 1452         pd_entry_t pde;
 1453 
 1454         rtval = 0;
 1455         PMAP_LOCK(pmap);
 1456         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1457         if (pde != 0) {
 1458                 if ((pde & PG_PS) != 0)
 1459                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
 1460                 else {
 1461                         pte = pmap_pte(pmap, va);
 1462                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1463                         pmap_pte_release(pte);
 1464                 }
 1465         }
 1466         PMAP_UNLOCK(pmap);
 1467         return (rtval);
 1468 }
 1469 
 1470 /*
 1471  *      Routine:        pmap_extract_and_hold
 1472  *      Function:
 1473  *              Atomically extract and hold the physical page
 1474  *              with the given pmap and virtual address pair
 1475  *              if that mapping permits the given protection.
 1476  */
 1477 vm_page_t
 1478 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1479 {
 1480         pd_entry_t pde;
 1481         pt_entry_t pte, *ptep;
 1482         vm_page_t m;
 1483         vm_paddr_t pa;
 1484 
 1485         pa = 0;
 1486         m = NULL;
 1487         PMAP_LOCK(pmap);
 1488 retry:
 1489         pde = *pmap_pde(pmap, va);
 1490         if (pde != 0) {
 1491                 if (pde & PG_PS) {
 1492                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1493                                 if (vm_page_pa_tryrelock(pmap, (pde &
 1494                                     PG_PS_FRAME) | (va & PDRMASK), &pa))
 1495                                         goto retry;
 1496                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1497                                     (va & PDRMASK));
 1498                                 vm_page_hold(m);
 1499                         }
 1500                 } else {
 1501                         ptep = pmap_pte(pmap, va);
 1502                         pte = *ptep;
 1503                         pmap_pte_release(ptep);
 1504                         if (pte != 0 &&
 1505                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1506                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 1507                                     &pa))
 1508                                         goto retry;
 1509                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1510                                 vm_page_hold(m);
 1511                         }
 1512                 }
 1513         }
 1514         PA_UNLOCK_COND(pa);
 1515         PMAP_UNLOCK(pmap);
 1516         return (m);
 1517 }
 1518 
 1519 /***************************************************
 1520  * Low level mapping routines.....
 1521  ***************************************************/
 1522 
 1523 /*
 1524  * Add a wired page to the kva.
 1525  * Note: not SMP coherent.
 1526  *
 1527  * This function may be used before pmap_bootstrap() is called.
 1528  */
 1529 PMAP_INLINE void 
 1530 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1531 {
 1532         pt_entry_t *pte;
 1533 
 1534         pte = vtopte(va);
 1535         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1536 }
 1537 
 1538 static __inline void
 1539 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1540 {
 1541         pt_entry_t *pte;
 1542 
 1543         pte = vtopte(va);
 1544         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1545 }
 1546 
 1547 /*
 1548  * Remove a page from the kernel pagetables.
 1549  * Note: not SMP coherent.
 1550  *
 1551  * This function may be used before pmap_bootstrap() is called.
 1552  */
 1553 PMAP_INLINE void
 1554 pmap_kremove(vm_offset_t va)
 1555 {
 1556         pt_entry_t *pte;
 1557 
 1558         pte = vtopte(va);
 1559         pte_clear(pte);
 1560 }
 1561 
 1562 /*
 1563  *      Used to map a range of physical addresses into kernel
 1564  *      virtual address space.
 1565  *
 1566  *      The value passed in '*virt' is a suggested virtual address for
 1567  *      the mapping. Architectures which can support a direct-mapped
 1568  *      physical to virtual region can return the appropriate address
 1569  *      within that region, leaving '*virt' unchanged. Other
 1570  *      architectures should map the pages starting at '*virt' and
 1571  *      update '*virt' with the first usable address after the mapped
 1572  *      region.
 1573  */
 1574 vm_offset_t
 1575 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1576 {
 1577         vm_offset_t va, sva;
 1578         vm_paddr_t superpage_offset;
 1579         pd_entry_t newpde;
 1580 
 1581         va = *virt;
 1582         /*
 1583          * Does the physical address range's size and alignment permit at
 1584          * least one superpage mapping to be created?
 1585          */ 
 1586         superpage_offset = start & PDRMASK;
 1587         if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
 1588                 /*
 1589                  * Increase the starting virtual address so that its alignment
 1590                  * does not preclude the use of superpage mappings.
 1591                  */
 1592                 if ((va & PDRMASK) < superpage_offset)
 1593                         va = (va & ~PDRMASK) + superpage_offset;
 1594                 else if ((va & PDRMASK) > superpage_offset)
 1595                         va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
 1596         }
 1597         sva = va;
 1598         while (start < end) {
 1599                 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
 1600                     pseflag) {
 1601                         KASSERT((va & PDRMASK) == 0,
 1602                             ("pmap_map: misaligned va %#x", va));
 1603                         newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
 1604                         pmap_kenter_pde(va, newpde);
 1605                         va += NBPDR;
 1606                         start += NBPDR;
 1607                 } else {
 1608                         pmap_kenter(va, start);
 1609                         va += PAGE_SIZE;
 1610                         start += PAGE_SIZE;
 1611                 }
 1612         }
 1613         pmap_invalidate_range(kernel_pmap, sva, va);
 1614         *virt = va;
 1615         return (sva);
 1616 }
 1617 
 1618 
 1619 /*
 1620  * Add a list of wired pages to the kva
 1621  * this routine is only used for temporary
 1622  * kernel mappings that do not need to have
 1623  * page modification or references recorded.
 1624  * Note that old mappings are simply written
 1625  * over.  The page *must* be wired.
 1626  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1627  */
 1628 void
 1629 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1630 {
 1631         pt_entry_t *endpte, oldpte, pa, *pte;
 1632         vm_page_t m;
 1633 
 1634         oldpte = 0;
 1635         pte = vtopte(sva);
 1636         endpte = pte + count;
 1637         while (pte < endpte) {
 1638                 m = *ma++;
 1639                 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 1640                 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
 1641                         oldpte |= *pte;
 1642                         pte_store(pte, pa | pgeflag | PG_RW | PG_V);
 1643                 }
 1644                 pte++;
 1645         }
 1646         if (__predict_false((oldpte & PG_V) != 0))
 1647                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1648                     PAGE_SIZE);
 1649 }
 1650 
 1651 /*
 1652  * This routine tears out page mappings from the
 1653  * kernel -- it is meant only for temporary mappings.
 1654  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1655  */
 1656 void
 1657 pmap_qremove(vm_offset_t sva, int count)
 1658 {
 1659         vm_offset_t va;
 1660 
 1661         va = sva;
 1662         while (count-- > 0) {
 1663                 pmap_kremove(va);
 1664                 va += PAGE_SIZE;
 1665         }
 1666         pmap_invalidate_range(kernel_pmap, sva, va);
 1667 }
 1668 
 1669 /***************************************************
 1670  * Page table page management routines.....
 1671  ***************************************************/
 1672 static __inline void
 1673 pmap_free_zero_pages(struct spglist *free)
 1674 {
 1675         vm_page_t m;
 1676 
 1677         while ((m = SLIST_FIRST(free)) != NULL) {
 1678                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
 1679                 /* Preserve the page's PG_ZERO setting. */
 1680                 vm_page_free_toq(m);
 1681         }
 1682 }
 1683 
 1684 /*
 1685  * Schedule the specified unused page table page to be freed.  Specifically,
 1686  * add the page to the specified list of pages that will be released to the
 1687  * physical memory manager after the TLB has been updated.
 1688  */
 1689 static __inline void
 1690 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
 1691     boolean_t set_PG_ZERO)
 1692 {
 1693 
 1694         if (set_PG_ZERO)
 1695                 m->flags |= PG_ZERO;
 1696         else
 1697                 m->flags &= ~PG_ZERO;
 1698         SLIST_INSERT_HEAD(free, m, plinks.s.ss);
 1699 }
 1700 
 1701 /*
 1702  * Inserts the specified page table page into the specified pmap's collection
 1703  * of idle page table pages.  Each of a pmap's page table pages is responsible
 1704  * for mapping a distinct range of virtual addresses.  The pmap's collection is
 1705  * ordered by this virtual address range.
 1706  */
 1707 static __inline int
 1708 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 1709 {
 1710 
 1711         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1712         return (vm_radix_insert(&pmap->pm_root, mpte));
 1713 }
 1714 
 1715 /*
 1716  * Looks for a page table page mapping the specified virtual address in the
 1717  * specified pmap's collection of idle page table pages.  Returns NULL if there
 1718  * is no page table page corresponding to the specified virtual address.
 1719  */
 1720 static __inline vm_page_t
 1721 pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
 1722 {
 1723 
 1724         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1725         return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
 1726 }
 1727 
 1728 /*
 1729  * Removes the specified page table page from the specified pmap's collection
 1730  * of idle page table pages.  The specified page table page must be a member of
 1731  * the pmap's collection.
 1732  */
 1733 static __inline void
 1734 pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
 1735 {
 1736 
 1737         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1738         vm_radix_remove(&pmap->pm_root, mpte->pindex);
 1739 }
 1740 
 1741 /*
 1742  * Decrements a page table page's wire count, which is used to record the
 1743  * number of valid page table entries within the page.  If the wire count
 1744  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 1745  * page table page was unmapped and FALSE otherwise.
 1746  */
 1747 static inline boolean_t
 1748 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1749 {
 1750 
 1751         --m->wire_count;
 1752         if (m->wire_count == 0) {
 1753                 _pmap_unwire_ptp(pmap, m, free);
 1754                 return (TRUE);
 1755         } else
 1756                 return (FALSE);
 1757 }
 1758 
 1759 static void
 1760 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1761 {
 1762         vm_offset_t pteva;
 1763 
 1764         /*
 1765          * unmap the page table page
 1766          */
 1767         pmap->pm_pdir[m->pindex] = 0;
 1768         --pmap->pm_stats.resident_count;
 1769 
 1770         /*
 1771          * This is a release store so that the ordinary store unmapping
 1772          * the page table page is globally performed before TLB shoot-
 1773          * down is begun.
 1774          */
 1775         atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
 1776 
 1777         /*
 1778          * Do an invltlb to make the invalidated mapping
 1779          * take effect immediately.
 1780          */
 1781         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1782         pmap_invalidate_page(pmap, pteva);
 1783 
 1784         /* 
 1785          * Put page on a list so that it is released after
 1786          * *ALL* TLB shootdown is done
 1787          */
 1788         pmap_add_delayed_free_list(m, free, TRUE);
 1789 }
 1790 
 1791 /*
 1792  * After removing a page table entry, this routine is used to
 1793  * conditionally free the page, and manage the hold/wire counts.
 1794  */
 1795 static int
 1796 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
 1797 {
 1798         pd_entry_t ptepde;
 1799         vm_page_t mpte;
 1800 
 1801         if (va >= VM_MAXUSER_ADDRESS)
 1802                 return (0);
 1803         ptepde = *pmap_pde(pmap, va);
 1804         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1805         return (pmap_unwire_ptp(pmap, mpte, free));
 1806 }
 1807 
 1808 /*
 1809  * Initialize the pmap for the swapper process.
 1810  */
 1811 void
 1812 pmap_pinit0(pmap_t pmap)
 1813 {
 1814 
 1815         PMAP_LOCK_INIT(pmap);
 1816         /*
 1817          * Since the page table directory is shared with the kernel pmap,
 1818          * which is already included in the list "allpmaps", this pmap does
 1819          * not need to be inserted into that list.
 1820          */
 1821         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1822 #if defined(PAE) || defined(PAE_TABLES)
 1823         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1824 #endif
 1825         pmap->pm_root.rt_root = 0;
 1826         CPU_ZERO(&pmap->pm_active);
 1827         PCPU_SET(curpmap, pmap);
 1828         TAILQ_INIT(&pmap->pm_pvchunk);
 1829         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1830 }
 1831 
 1832 /*
 1833  * Initialize a preallocated and zeroed pmap structure,
 1834  * such as one in a vmspace structure.
 1835  */
 1836 int
 1837 pmap_pinit(pmap_t pmap)
 1838 {
 1839         vm_page_t m, ptdpg[NPGPTD];
 1840         vm_paddr_t pa;
 1841         int i;
 1842 
 1843         /*
 1844          * No need to allocate page table space yet but we do need a valid
 1845          * page directory table.
 1846          */
 1847         if (pmap->pm_pdir == NULL) {
 1848                 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
 1849                 if (pmap->pm_pdir == NULL)
 1850                         return (0);
 1851 #if defined(PAE) || defined(PAE_TABLES)
 1852                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1853                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1854                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1855                     ("pmap_pinit: pdpt misaligned"));
 1856                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1857                     ("pmap_pinit: pdpt above 4g"));
 1858 #endif
 1859                 pmap->pm_root.rt_root = 0;
 1860         }
 1861         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 1862             ("pmap_pinit: pmap has reserved page table page(s)"));
 1863 
 1864         /*
 1865          * allocate the page directory page(s)
 1866          */
 1867         for (i = 0; i < NPGPTD;) {
 1868                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 1869                     VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1870                 if (m == NULL)
 1871                         VM_WAIT;
 1872                 else {
 1873                         ptdpg[i++] = m;
 1874                 }
 1875         }
 1876 
 1877         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1878 
 1879         for (i = 0; i < NPGPTD; i++)
 1880                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1881                         pagezero(pmap->pm_pdir + (i * NPDEPG));
 1882 
 1883         mtx_lock_spin(&allpmaps_lock);
 1884         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1885         /* Copy the kernel page table directory entries. */
 1886         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1887         mtx_unlock_spin(&allpmaps_lock);
 1888 
 1889         /* install self-referential address mapping entry(s) */
 1890         for (i = 0; i < NPGPTD; i++) {
 1891                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1892                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1893 #if defined(PAE) || defined(PAE_TABLES)
 1894                 pmap->pm_pdpt[i] = pa | PG_V;
 1895 #endif
 1896         }
 1897 
 1898         CPU_ZERO(&pmap->pm_active);
 1899         TAILQ_INIT(&pmap->pm_pvchunk);
 1900         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1901 
 1902         return (1);
 1903 }
 1904 
 1905 /*
 1906  * this routine is called if the page table page is not
 1907  * mapped correctly.
 1908  */
 1909 static vm_page_t
 1910 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
 1911 {
 1912         vm_paddr_t ptepa;
 1913         vm_page_t m;
 1914 
 1915         /*
 1916          * Allocate a page table page.
 1917          */
 1918         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1919             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1920                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1921                         PMAP_UNLOCK(pmap);
 1922                         rw_wunlock(&pvh_global_lock);
 1923                         VM_WAIT;
 1924                         rw_wlock(&pvh_global_lock);
 1925                         PMAP_LOCK(pmap);
 1926                 }
 1927 
 1928                 /*
 1929                  * Indicate the need to retry.  While waiting, the page table
 1930                  * page may have been allocated.
 1931                  */
 1932                 return (NULL);
 1933         }
 1934         if ((m->flags & PG_ZERO) == 0)
 1935                 pmap_zero_page(m);
 1936 
 1937         /*
 1938          * Map the pagetable page into the process address space, if
 1939          * it isn't already there.
 1940          */
 1941 
 1942         pmap->pm_stats.resident_count++;
 1943 
 1944         ptepa = VM_PAGE_TO_PHYS(m);
 1945         pmap->pm_pdir[ptepindex] =
 1946                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1947 
 1948         return (m);
 1949 }
 1950 
 1951 static vm_page_t
 1952 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1953 {
 1954         u_int ptepindex;
 1955         pd_entry_t ptepa;
 1956         vm_page_t m;
 1957 
 1958         /*
 1959          * Calculate pagetable page index
 1960          */
 1961         ptepindex = va >> PDRSHIFT;
 1962 retry:
 1963         /*
 1964          * Get the page directory entry
 1965          */
 1966         ptepa = pmap->pm_pdir[ptepindex];
 1967 
 1968         /*
 1969          * This supports switching from a 4MB page to a
 1970          * normal 4K page.
 1971          */
 1972         if (ptepa & PG_PS) {
 1973                 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
 1974                 ptepa = pmap->pm_pdir[ptepindex];
 1975         }
 1976 
 1977         /*
 1978          * If the page table page is mapped, we just increment the
 1979          * hold count, and activate it.
 1980          */
 1981         if (ptepa) {
 1982                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 1983                 m->wire_count++;
 1984         } else {
 1985                 /*
 1986                  * Here if the pte page isn't mapped, or if it has
 1987                  * been deallocated. 
 1988                  */
 1989                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1990                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 1991                         goto retry;
 1992         }
 1993         return (m);
 1994 }
 1995 
 1996 
 1997 /***************************************************
 1998 * Pmap allocation/deallocation routines.
 1999  ***************************************************/
 2000 
 2001 /*
 2002  * Release any resources held by the given physical map.
 2003  * Called when a pmap initialized by pmap_pinit is being released.
 2004  * Should only be called if the map contains no valid mappings.
 2005  */
 2006 void
 2007 pmap_release(pmap_t pmap)
 2008 {
 2009         vm_page_t m, ptdpg[NPGPTD];
 2010         int i;
 2011 
 2012         KASSERT(pmap->pm_stats.resident_count == 0,
 2013             ("pmap_release: pmap resident count %ld != 0",
 2014             pmap->pm_stats.resident_count));
 2015         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 2016             ("pmap_release: pmap has reserved page table page(s)"));
 2017         KASSERT(CPU_EMPTY(&pmap->pm_active),
 2018             ("releasing active pmap %p", pmap));
 2019 
 2020         mtx_lock_spin(&allpmaps_lock);
 2021         LIST_REMOVE(pmap, pm_list);
 2022         mtx_unlock_spin(&allpmaps_lock);
 2023 
 2024         for (i = 0; i < NPGPTD; i++)
 2025                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 2026                     PG_FRAME);
 2027 
 2028         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 2029             sizeof(*pmap->pm_pdir));
 2030 
 2031         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 2032 
 2033         for (i = 0; i < NPGPTD; i++) {
 2034                 m = ptdpg[i];
 2035 #if defined(PAE) || defined(PAE_TABLES)
 2036                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 2037                     ("pmap_release: got wrong ptd page"));
 2038 #endif
 2039                 m->wire_count--;
 2040                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 2041                 vm_page_free_zero(m);
 2042         }
 2043 }
 2044 
 2045 static int
 2046 kvm_size(SYSCTL_HANDLER_ARGS)
 2047 {
 2048         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 2049 
 2050         return (sysctl_handle_long(oidp, &ksize, 0, req));
 2051 }
 2052 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 2053     0, 0, kvm_size, "IU", "Size of KVM");
 2054 
 2055 static int
 2056 kvm_free(SYSCTL_HANDLER_ARGS)
 2057 {
 2058         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 2059 
 2060         return (sysctl_handle_long(oidp, &kfree, 0, req));
 2061 }
 2062 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 2063     0, 0, kvm_free, "IU", "Amount of KVM free");
 2064 
 2065 /*
 2066  * grow the number of kernel page table entries, if needed
 2067  */
 2068 void
 2069 pmap_growkernel(vm_offset_t addr)
 2070 {
 2071         vm_paddr_t ptppaddr;
 2072         vm_page_t nkpg;
 2073         pd_entry_t newpdir;
 2074 
 2075         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 2076         addr = roundup2(addr, NBPDR);
 2077         if (addr - 1 >= kernel_map->max_offset)
 2078                 addr = kernel_map->max_offset;
 2079         while (kernel_vm_end < addr) {
 2080                 if (pdir_pde(PTD, kernel_vm_end)) {
 2081                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2082                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2083                                 kernel_vm_end = kernel_map->max_offset;
 2084                                 break;
 2085                         }
 2086                         continue;
 2087                 }
 2088 
 2089                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 2090                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 2091                     VM_ALLOC_ZERO);
 2092                 if (nkpg == NULL)
 2093                         panic("pmap_growkernel: no memory to grow kernel");
 2094 
 2095                 nkpt++;
 2096 
 2097                 if ((nkpg->flags & PG_ZERO) == 0)
 2098                         pmap_zero_page(nkpg);
 2099                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 2100                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 2101                 pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
 2102 
 2103                 pmap_kenter_pde(kernel_vm_end, newpdir);
 2104                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2105                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2106                         kernel_vm_end = kernel_map->max_offset;
 2107                         break;
 2108                 }
 2109         }
 2110 }
 2111 
 2112 
 2113 /***************************************************
 2114  * page management routines.
 2115  ***************************************************/
 2116 
 2117 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 2118 CTASSERT(_NPCM == 11);
 2119 CTASSERT(_NPCPV == 336);
 2120 
 2121 static __inline struct pv_chunk *
 2122 pv_to_chunk(pv_entry_t pv)
 2123 {
 2124 
 2125         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 2126 }
 2127 
 2128 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 2129 
 2130 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 2131 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 2132 
 2133 static const uint32_t pc_freemask[_NPCM] = {
 2134         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2135         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2136         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2137         PC_FREE0_9, PC_FREE10
 2138 };
 2139 
 2140 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 2141         "Current number of pv entries");
 2142 
 2143 #ifdef PV_STATS
 2144 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 2145 
 2146 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2147         "Current number of pv entry chunks");
 2148 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2149         "Current number of pv entry chunks allocated");
 2150 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2151         "Current number of pv entry chunks frees");
 2152 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2153         "Number of times tried to get a chunk page but failed.");
 2154 
 2155 static long pv_entry_frees, pv_entry_allocs;
 2156 static int pv_entry_spare;
 2157 
 2158 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2159         "Current number of pv entry frees");
 2160 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2161         "Current number of pv entry allocs");
 2162 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2163         "Current number of spare pv entries");
 2164 #endif
 2165 
 2166 /*
 2167  * We are in a serious low memory condition.  Resort to
 2168  * drastic measures to free some pages so we can allocate
 2169  * another pv entry chunk.
 2170  */
 2171 static vm_page_t
 2172 pmap_pv_reclaim(pmap_t locked_pmap)
 2173 {
 2174         struct pch newtail;
 2175         struct pv_chunk *pc;
 2176         struct md_page *pvh;
 2177         pd_entry_t *pde;
 2178         pmap_t pmap;
 2179         pt_entry_t *pte, tpte;
 2180         pv_entry_t pv;
 2181         vm_offset_t va;
 2182         vm_page_t m, m_pc;
 2183         struct spglist free;
 2184         uint32_t inuse;
 2185         int bit, field, freed;
 2186 
 2187         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 2188         pmap = NULL;
 2189         m_pc = NULL;
 2190         SLIST_INIT(&free);
 2191         TAILQ_INIT(&newtail);
 2192         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
 2193             SLIST_EMPTY(&free))) {
 2194                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2195                 if (pmap != pc->pc_pmap) {
 2196                         if (pmap != NULL) {
 2197                                 pmap_invalidate_all(pmap);
 2198                                 if (pmap != locked_pmap)
 2199                                         PMAP_UNLOCK(pmap);
 2200                         }
 2201                         pmap = pc->pc_pmap;
 2202                         /* Avoid deadlock and lock recursion. */
 2203                         if (pmap > locked_pmap)
 2204                                 PMAP_LOCK(pmap);
 2205                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 2206                                 pmap = NULL;
 2207                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2208                                 continue;
 2209                         }
 2210                 }
 2211 
 2212                 /*
 2213                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 2214                  */
 2215                 freed = 0;
 2216                 for (field = 0; field < _NPCM; field++) {
 2217                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 2218                             inuse != 0; inuse &= ~(1UL << bit)) {
 2219                                 bit = bsfl(inuse);
 2220                                 pv = &pc->pc_pventry[field * 32 + bit];
 2221                                 va = pv->pv_va;
 2222                                 pde = pmap_pde(pmap, va);
 2223                                 if ((*pde & PG_PS) != 0)
 2224                                         continue;
 2225                                 pte = pmap_pte(pmap, va);
 2226                                 tpte = *pte;
 2227                                 if ((tpte & PG_W) == 0)
 2228                                         tpte = pte_load_clear(pte);
 2229                                 pmap_pte_release(pte);
 2230                                 if ((tpte & PG_W) != 0)
 2231                                         continue;
 2232                                 KASSERT(tpte != 0,
 2233                                     ("pmap_pv_reclaim: pmap %p va %x zero pte",
 2234                                     pmap, va));
 2235                                 if ((tpte & PG_G) != 0)
 2236                                         pmap_invalidate_page(pmap, va);
 2237                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2238                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2239                                         vm_page_dirty(m);
 2240                                 if ((tpte & PG_A) != 0)
 2241                                         vm_page_aflag_set(m, PGA_REFERENCED);
 2242                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 2243                                 if (TAILQ_EMPTY(&m->md.pv_list) &&
 2244                                     (m->flags & PG_FICTITIOUS) == 0) {
 2245                                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2246                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 2247                                                 vm_page_aflag_clear(m,
 2248                                                     PGA_WRITEABLE);
 2249                                         }
 2250                                 }
 2251                                 pc->pc_map[field] |= 1UL << bit;
 2252                                 pmap_unuse_pt(pmap, va, &free);
 2253                                 freed++;
 2254                         }
 2255                 }
 2256                 if (freed == 0) {
 2257                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2258                         continue;
 2259                 }
 2260                 /* Every freed mapping is for a 4 KB page. */
 2261                 pmap->pm_stats.resident_count -= freed;
 2262                 PV_STAT(pv_entry_frees += freed);
 2263                 PV_STAT(pv_entry_spare += freed);
 2264                 pv_entry_count -= freed;
 2265                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2266                 for (field = 0; field < _NPCM; field++)
 2267                         if (pc->pc_map[field] != pc_freemask[field]) {
 2268                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2269                                     pc_list);
 2270                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2271 
 2272                                 /*
 2273                                  * One freed pv entry in locked_pmap is
 2274                                  * sufficient.
 2275                                  */
 2276                                 if (pmap == locked_pmap)
 2277                                         goto out;
 2278                                 break;
 2279                         }
 2280                 if (field == _NPCM) {
 2281                         PV_STAT(pv_entry_spare -= _NPCPV);
 2282                         PV_STAT(pc_chunk_count--);
 2283                         PV_STAT(pc_chunk_frees++);
 2284                         /* Entire chunk is free; return it. */
 2285                         m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2286                         pmap_qremove((vm_offset_t)pc, 1);
 2287                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2288                         break;
 2289                 }
 2290         }
 2291 out:
 2292         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 2293         if (pmap != NULL) {
 2294                 pmap_invalidate_all(pmap);
 2295                 if (pmap != locked_pmap)
 2296                         PMAP_UNLOCK(pmap);
 2297         }
 2298         if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
 2299                 m_pc = SLIST_FIRST(&free);
 2300                 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 2301                 /* Recycle a freed page table page. */
 2302                 m_pc->wire_count = 1;
 2303                 atomic_add_int(&vm_cnt.v_wire_count, 1);
 2304         }
 2305         pmap_free_zero_pages(&free);
 2306         return (m_pc);
 2307 }
 2308 
 2309 /*
 2310  * free the pv_entry back to the free list
 2311  */
 2312 static void
 2313 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2314 {
 2315         struct pv_chunk *pc;
 2316         int idx, field, bit;
 2317 
 2318         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2319         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2320         PV_STAT(pv_entry_frees++);
 2321         PV_STAT(pv_entry_spare++);
 2322         pv_entry_count--;
 2323         pc = pv_to_chunk(pv);
 2324         idx = pv - &pc->pc_pventry[0];
 2325         field = idx / 32;
 2326         bit = idx % 32;
 2327         pc->pc_map[field] |= 1ul << bit;
 2328         for (idx = 0; idx < _NPCM; idx++)
 2329                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2330                         /*
 2331                          * 98% of the time, pc is already at the head of the
 2332                          * list.  If it isn't already, move it to the head.
 2333                          */
 2334                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 2335                             pc)) {
 2336                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2337                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2338                                     pc_list);
 2339                         }
 2340                         return;
 2341                 }
 2342         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2343         free_pv_chunk(pc);
 2344 }
 2345 
 2346 static void
 2347 free_pv_chunk(struct pv_chunk *pc)
 2348 {
 2349         vm_page_t m;
 2350 
 2351         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2352         PV_STAT(pv_entry_spare -= _NPCPV);
 2353         PV_STAT(pc_chunk_count--);
 2354         PV_STAT(pc_chunk_frees++);
 2355         /* entire chunk is free, return it */
 2356         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2357         pmap_qremove((vm_offset_t)pc, 1);
 2358         vm_page_unwire(m, PQ_NONE);
 2359         vm_page_free(m);
 2360         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2361 }
 2362 
 2363 /*
 2364  * get a new pv_entry, allocating a block from the system
 2365  * when needed.
 2366  */
 2367 static pv_entry_t
 2368 get_pv_entry(pmap_t pmap, boolean_t try)
 2369 {
 2370         static const struct timeval printinterval = { 60, 0 };
 2371         static struct timeval lastprint;
 2372         int bit, field;
 2373         pv_entry_t pv;
 2374         struct pv_chunk *pc;
 2375         vm_page_t m;
 2376 
 2377         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2378         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2379         PV_STAT(pv_entry_allocs++);
 2380         pv_entry_count++;
 2381         if (pv_entry_count > pv_entry_high_water)
 2382                 if (ratecheck(&lastprint, &printinterval))
 2383                         printf("Approaching the limit on PV entries, consider "
 2384                             "increasing either the vm.pmap.shpgperproc or the "
 2385                             "vm.pmap.pv_entry_max tunable.\n");
 2386 retry:
 2387         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2388         if (pc != NULL) {
 2389                 for (field = 0; field < _NPCM; field++) {
 2390                         if (pc->pc_map[field]) {
 2391                                 bit = bsfl(pc->pc_map[field]);
 2392                                 break;
 2393                         }
 2394                 }
 2395                 if (field < _NPCM) {
 2396                         pv = &pc->pc_pventry[field * 32 + bit];
 2397                         pc->pc_map[field] &= ~(1ul << bit);
 2398                         /* If this was the last item, move it to tail */
 2399                         for (field = 0; field < _NPCM; field++)
 2400                                 if (pc->pc_map[field] != 0) {
 2401                                         PV_STAT(pv_entry_spare--);
 2402                                         return (pv);    /* not full, return */
 2403                                 }
 2404                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2405                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2406                         PV_STAT(pv_entry_spare--);
 2407                         return (pv);
 2408                 }
 2409         }
 2410         /*
 2411          * Access to the ptelist "pv_vafree" is synchronized by the pvh
 2412          * global lock.  If "pv_vafree" is currently non-empty, it will
 2413          * remain non-empty until pmap_ptelist_alloc() completes.
 2414          */
 2415         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 2416             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2417                 if (try) {
 2418                         pv_entry_count--;
 2419                         PV_STAT(pc_chunk_tryfail++);
 2420                         return (NULL);
 2421                 }
 2422                 m = pmap_pv_reclaim(pmap);
 2423                 if (m == NULL)
 2424                         goto retry;
 2425         }
 2426         PV_STAT(pc_chunk_count++);
 2427         PV_STAT(pc_chunk_allocs++);
 2428         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2429         pmap_qenter((vm_offset_t)pc, &m, 1);
 2430         pc->pc_pmap = pmap;
 2431         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2432         for (field = 1; field < _NPCM; field++)
 2433                 pc->pc_map[field] = pc_freemask[field];
 2434         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 2435         pv = &pc->pc_pventry[0];
 2436         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2437         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2438         return (pv);
 2439 }
 2440 
 2441 static __inline pv_entry_t
 2442 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2443 {
 2444         pv_entry_t pv;
 2445 
 2446         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2447         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 2448                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2449                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 2450                         break;
 2451                 }
 2452         }
 2453         return (pv);
 2454 }
 2455 
 2456 static void
 2457 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2458 {
 2459         struct md_page *pvh;
 2460         pv_entry_t pv;
 2461         vm_offset_t va_last;
 2462         vm_page_t m;
 2463 
 2464         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2465         KASSERT((pa & PDRMASK) == 0,
 2466             ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
 2467 
 2468         /*
 2469          * Transfer the 4mpage's pv entry for this mapping to the first
 2470          * page's pv list.
 2471          */
 2472         pvh = pa_to_pvh(pa);
 2473         va = trunc_4mpage(va);
 2474         pv = pmap_pvh_remove(pvh, pmap, va);
 2475         KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 2476         m = PHYS_TO_VM_PAGE(pa);
 2477         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2478         /* Instantiate the remaining NPTEPG - 1 pv entries. */
 2479         va_last = va + NBPDR - PAGE_SIZE;
 2480         do {
 2481                 m++;
 2482                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2483                     ("pmap_pv_demote_pde: page %p is not managed", m));
 2484                 va += PAGE_SIZE;
 2485                 pmap_insert_entry(pmap, va, m);
 2486         } while (va < va_last);
 2487 }
 2488 
 2489 static void
 2490 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2491 {
 2492         struct md_page *pvh;
 2493         pv_entry_t pv;
 2494         vm_offset_t va_last;
 2495         vm_page_t m;
 2496 
 2497         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2498         KASSERT((pa & PDRMASK) == 0,
 2499             ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
 2500 
 2501         /*
 2502          * Transfer the first page's pv entry for this mapping to the
 2503          * 4mpage's pv list.  Aside from avoiding the cost of a call
 2504          * to get_pv_entry(), a transfer avoids the possibility that
 2505          * get_pv_entry() calls pmap_collect() and that pmap_collect()
 2506          * removes one of the mappings that is being promoted.
 2507          */
 2508         m = PHYS_TO_VM_PAGE(pa);
 2509         va = trunc_4mpage(va);
 2510         pv = pmap_pvh_remove(&m->md, pmap, va);
 2511         KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 2512         pvh = pa_to_pvh(pa);
 2513         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2514         /* Free the remaining NPTEPG - 1 pv entries. */
 2515         va_last = va + NBPDR - PAGE_SIZE;
 2516         do {
 2517                 m++;
 2518                 va += PAGE_SIZE;
 2519                 pmap_pvh_free(&m->md, pmap, va);
 2520         } while (va < va_last);
 2521 }
 2522 
 2523 static void
 2524 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2525 {
 2526         pv_entry_t pv;
 2527 
 2528         pv = pmap_pvh_remove(pvh, pmap, va);
 2529         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2530         free_pv_entry(pmap, pv);
 2531 }
 2532 
 2533 static void
 2534 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2535 {
 2536         struct md_page *pvh;
 2537 
 2538         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2539         pmap_pvh_free(&m->md, pmap, va);
 2540         if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
 2541                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2542                 if (TAILQ_EMPTY(&pvh->pv_list))
 2543                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2544         }
 2545 }
 2546 
 2547 /*
 2548  * Create a pv entry for page at pa for
 2549  * (pmap, va).
 2550  */
 2551 static void
 2552 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2553 {
 2554         pv_entry_t pv;
 2555 
 2556         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2557         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2558         pv = get_pv_entry(pmap, FALSE);
 2559         pv->pv_va = va;
 2560         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2561 }
 2562 
 2563 /*
 2564  * Conditionally create a pv entry.
 2565  */
 2566 static boolean_t
 2567 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2568 {
 2569         pv_entry_t pv;
 2570 
 2571         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2572         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2573         if (pv_entry_count < pv_entry_high_water && 
 2574             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2575                 pv->pv_va = va;
 2576                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2577                 return (TRUE);
 2578         } else
 2579                 return (FALSE);
 2580 }
 2581 
 2582 /*
 2583  * Create the pv entries for each of the pages within a superpage.
 2584  */
 2585 static boolean_t
 2586 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2587 {
 2588         struct md_page *pvh;
 2589         pv_entry_t pv;
 2590 
 2591         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2592         if (pv_entry_count < pv_entry_high_water && 
 2593             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2594                 pv->pv_va = va;
 2595                 pvh = pa_to_pvh(pa);
 2596                 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2597                 return (TRUE);
 2598         } else
 2599                 return (FALSE);
 2600 }
 2601 
 2602 /*
 2603  * Fills a page table page with mappings to consecutive physical pages.
 2604  */
 2605 static void
 2606 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 2607 {
 2608         pt_entry_t *pte;
 2609 
 2610         for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 2611                 *pte = newpte;  
 2612                 newpte += PAGE_SIZE;
 2613         }
 2614 }
 2615 
 2616 /*
 2617  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
 2618  * 2- or 4MB page mapping is invalidated.
 2619  */
 2620 static boolean_t
 2621 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2622 {
 2623         pd_entry_t newpde, oldpde;
 2624         pt_entry_t *firstpte, newpte;
 2625         vm_paddr_t mptepa;
 2626         vm_page_t mpte;
 2627         struct spglist free;
 2628 
 2629         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2630         oldpde = *pde;
 2631         KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 2632             ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 2633         if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
 2634             NULL)
 2635                 pmap_remove_pt_page(pmap, mpte);
 2636         else {
 2637                 KASSERT((oldpde & PG_W) == 0,
 2638                     ("pmap_demote_pde: page table page for a wired mapping"
 2639                     " is missing"));
 2640 
 2641                 /*
 2642                  * Invalidate the 2- or 4MB page mapping and return
 2643                  * "failure" if the mapping was never accessed or the
 2644                  * allocation of the new page table page fails.
 2645                  */
 2646                 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 2647                     va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
 2648                     VM_ALLOC_WIRED)) == NULL) {
 2649                         SLIST_INIT(&free);
 2650                         pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
 2651                         pmap_invalidate_page(pmap, trunc_4mpage(va));
 2652                         pmap_free_zero_pages(&free);
 2653                         CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
 2654                             " in pmap %p", va, pmap);
 2655                         return (FALSE);
 2656                 }
 2657                 if (va < VM_MAXUSER_ADDRESS)
 2658                         pmap->pm_stats.resident_count++;
 2659         }
 2660         mptepa = VM_PAGE_TO_PHYS(mpte);
 2661 
 2662         /*
 2663          * If the page mapping is in the kernel's address space, then the
 2664          * KPTmap can provide access to the page table page.  Otherwise,
 2665          * temporarily map the page table page (mpte) into the kernel's
 2666          * address space at either PADDR1 or PADDR2. 
 2667          */
 2668         if (va >= KERNBASE)
 2669                 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
 2670         else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
 2671                 if ((*PMAP1 & PG_FRAME) != mptepa) {
 2672                         *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2673 #ifdef SMP
 2674                         PMAP1cpu = PCPU_GET(cpuid);
 2675 #endif
 2676                         invlcaddr(PADDR1);
 2677                         PMAP1changed++;
 2678                 } else
 2679 #ifdef SMP
 2680                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 2681                         PMAP1cpu = PCPU_GET(cpuid);
 2682                         invlcaddr(PADDR1);
 2683                         PMAP1changedcpu++;
 2684                 } else
 2685 #endif
 2686                         PMAP1unchanged++;
 2687                 firstpte = PADDR1;
 2688         } else {
 2689                 mtx_lock(&PMAP2mutex);
 2690                 if ((*PMAP2 & PG_FRAME) != mptepa) {
 2691                         *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2692                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 2693                 }
 2694                 firstpte = PADDR2;
 2695         }
 2696         newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 2697         KASSERT((oldpde & PG_A) != 0,
 2698             ("pmap_demote_pde: oldpde is missing PG_A"));
 2699         KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 2700             ("pmap_demote_pde: oldpde is missing PG_M"));
 2701         newpte = oldpde & ~PG_PS;
 2702         if ((newpte & PG_PDE_PAT) != 0)
 2703                 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
 2704 
 2705         /*
 2706          * If the page table page is new, initialize it.
 2707          */
 2708         if (mpte->wire_count == 1) {
 2709                 mpte->wire_count = NPTEPG;
 2710                 pmap_fill_ptp(firstpte, newpte);
 2711         }
 2712         KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 2713             ("pmap_demote_pde: firstpte and newpte map different physical"
 2714             " addresses"));
 2715 
 2716         /*
 2717          * If the mapping has changed attributes, update the page table
 2718          * entries.
 2719          */ 
 2720         if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 2721                 pmap_fill_ptp(firstpte, newpte);
 2722         
 2723         /*
 2724          * Demote the mapping.  This pmap is locked.  The old PDE has
 2725          * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 2726          * set.  Thus, there is no danger of a race with another
 2727          * processor changing the setting of PG_A and/or PG_M between
 2728          * the read above and the store below. 
 2729          */
 2730         if (workaround_erratum383)
 2731                 pmap_update_pde(pmap, va, pde, newpde);
 2732         else if (pmap == kernel_pmap)
 2733                 pmap_kenter_pde(va, newpde);
 2734         else
 2735                 pde_store(pde, newpde); 
 2736         if (firstpte == PADDR2)
 2737                 mtx_unlock(&PMAP2mutex);
 2738 
 2739         /*
 2740          * Invalidate the recursive mapping of the page table page.
 2741          */
 2742         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2743 
 2744         /*
 2745          * Demote the pv entry.  This depends on the earlier demotion
 2746          * of the mapping.  Specifically, the (re)creation of a per-
 2747          * page pv entry might trigger the execution of pmap_collect(),
 2748          * which might reclaim a newly (re)created per-page pv entry
 2749          * and destroy the associated mapping.  In order to destroy
 2750          * the mapping, the PDE must have already changed from mapping
 2751          * the 2mpage to referencing the page table page.
 2752          */
 2753         if ((oldpde & PG_MANAGED) != 0)
 2754                 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
 2755 
 2756         pmap_pde_demotions++;
 2757         CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
 2758             " in pmap %p", va, pmap);
 2759         return (TRUE);
 2760 }
 2761 
 2762 /*
 2763  * Removes a 2- or 4MB page mapping from the kernel pmap.
 2764  */
 2765 static void
 2766 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2767 {
 2768         pd_entry_t newpde;
 2769         vm_paddr_t mptepa;
 2770         vm_page_t mpte;
 2771 
 2772         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2773         mpte = pmap_lookup_pt_page(pmap, va);
 2774         if (mpte == NULL)
 2775                 panic("pmap_remove_kernel_pde: Missing pt page.");
 2776 
 2777         pmap_remove_pt_page(pmap, mpte);
 2778         mptepa = VM_PAGE_TO_PHYS(mpte);
 2779         newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
 2780 
 2781         /*
 2782          * Initialize the page table page.
 2783          */
 2784         pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
 2785 
 2786         /*
 2787          * Remove the mapping.
 2788          */
 2789         if (workaround_erratum383)
 2790                 pmap_update_pde(pmap, va, pde, newpde);
 2791         else 
 2792                 pmap_kenter_pde(va, newpde);
 2793 
 2794         /*
 2795          * Invalidate the recursive mapping of the page table page.
 2796          */
 2797         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2798 }
 2799 
 2800 /*
 2801  * pmap_remove_pde: do the things to unmap a superpage in a process
 2802  */
 2803 static void
 2804 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
 2805     struct spglist *free)
 2806 {
 2807         struct md_page *pvh;
 2808         pd_entry_t oldpde;
 2809         vm_offset_t eva, va;
 2810         vm_page_t m, mpte;
 2811 
 2812         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2813         KASSERT((sva & PDRMASK) == 0,
 2814             ("pmap_remove_pde: sva is not 4mpage aligned"));
 2815         oldpde = pte_load_clear(pdq);
 2816         if (oldpde & PG_W)
 2817                 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 2818 
 2819         /*
 2820          * Machines that don't support invlpg, also don't support
 2821          * PG_G.
 2822          */
 2823         if (oldpde & PG_G)
 2824                 pmap_invalidate_page(kernel_pmap, sva);
 2825         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2826         if (oldpde & PG_MANAGED) {
 2827                 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 2828                 pmap_pvh_free(pvh, pmap, sva);
 2829                 eva = sva + NBPDR;
 2830                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 2831                     va < eva; va += PAGE_SIZE, m++) {
 2832                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2833                                 vm_page_dirty(m);
 2834                         if (oldpde & PG_A)
 2835                                 vm_page_aflag_set(m, PGA_REFERENCED);
 2836                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 2837                             TAILQ_EMPTY(&pvh->pv_list))
 2838                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2839                 }
 2840         }
 2841         if (pmap == kernel_pmap) {
 2842                 pmap_remove_kernel_pde(pmap, pdq, sva);
 2843         } else {
 2844                 mpte = pmap_lookup_pt_page(pmap, sva);
 2845                 if (mpte != NULL) {
 2846                         pmap_remove_pt_page(pmap, mpte);
 2847                         pmap->pm_stats.resident_count--;
 2848                         KASSERT(mpte->wire_count == NPTEPG,
 2849                             ("pmap_remove_pde: pte page wire count error"));
 2850                         mpte->wire_count = 0;
 2851                         pmap_add_delayed_free_list(mpte, free, FALSE);
 2852                         atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 2853                 }
 2854         }
 2855 }
 2856 
 2857 /*
 2858  * pmap_remove_pte: do the things to unmap a page in a process
 2859  */
 2860 static int
 2861 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
 2862     struct spglist *free)
 2863 {
 2864         pt_entry_t oldpte;
 2865         vm_page_t m;
 2866 
 2867         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2868         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2869         oldpte = pte_load_clear(ptq);
 2870         KASSERT(oldpte != 0,
 2871             ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
 2872         if (oldpte & PG_W)
 2873                 pmap->pm_stats.wired_count -= 1;
 2874         /*
 2875          * Machines that don't support invlpg, also don't support
 2876          * PG_G.
 2877          */
 2878         if (oldpte & PG_G)
 2879                 pmap_invalidate_page(kernel_pmap, va);
 2880         pmap->pm_stats.resident_count -= 1;
 2881         if (oldpte & PG_MANAGED) {
 2882                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 2883                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2884                         vm_page_dirty(m);
 2885                 if (oldpte & PG_A)
 2886                         vm_page_aflag_set(m, PGA_REFERENCED);
 2887                 pmap_remove_entry(pmap, m, va);
 2888         }
 2889         return (pmap_unuse_pt(pmap, va, free));
 2890 }
 2891 
 2892 /*
 2893  * Remove a single page from a process address space
 2894  */
 2895 static void
 2896 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
 2897 {
 2898         pt_entry_t *pte;
 2899 
 2900         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2901         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2902         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2903         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2904                 return;
 2905         pmap_remove_pte(pmap, pte, va, free);
 2906         pmap_invalidate_page(pmap, va);
 2907 }
 2908 
 2909 /*
 2910  *      Remove the given range of addresses from the specified map.
 2911  *
 2912  *      It is assumed that the start and end are properly
 2913  *      rounded to the page size.
 2914  */
 2915 void
 2916 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2917 {
 2918         vm_offset_t pdnxt;
 2919         pd_entry_t ptpaddr;
 2920         pt_entry_t *pte;
 2921         struct spglist free;
 2922         int anyvalid;
 2923 
 2924         /*
 2925          * Perform an unsynchronized read.  This is, however, safe.
 2926          */
 2927         if (pmap->pm_stats.resident_count == 0)
 2928                 return;
 2929 
 2930         anyvalid = 0;
 2931         SLIST_INIT(&free);
 2932 
 2933         rw_wlock(&pvh_global_lock);
 2934         sched_pin();
 2935         PMAP_LOCK(pmap);
 2936 
 2937         /*
 2938          * special handling of removing one page.  a very
 2939          * common operation and easy to short circuit some
 2940          * code.
 2941          */
 2942         if ((sva + PAGE_SIZE == eva) && 
 2943             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2944                 pmap_remove_page(pmap, sva, &free);
 2945                 goto out;
 2946         }
 2947 
 2948         for (; sva < eva; sva = pdnxt) {
 2949                 u_int pdirindex;
 2950 
 2951                 /*
 2952                  * Calculate index for next page table.
 2953                  */
 2954                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2955                 if (pdnxt < sva)
 2956                         pdnxt = eva;
 2957                 if (pmap->pm_stats.resident_count == 0)
 2958                         break;
 2959 
 2960                 pdirindex = sva >> PDRSHIFT;
 2961                 ptpaddr = pmap->pm_pdir[pdirindex];
 2962 
 2963                 /*
 2964                  * Weed out invalid mappings. Note: we assume that the page
 2965                  * directory table is always allocated, and in kernel virtual.
 2966                  */
 2967                 if (ptpaddr == 0)
 2968                         continue;
 2969 
 2970                 /*
 2971                  * Check for large page.
 2972                  */
 2973                 if ((ptpaddr & PG_PS) != 0) {
 2974                         /*
 2975                          * Are we removing the entire large page?  If not,
 2976                          * demote the mapping and fall through.
 2977                          */
 2978                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 2979                                 /*
 2980                                  * The TLB entry for a PG_G mapping is
 2981                                  * invalidated by pmap_remove_pde().
 2982                                  */
 2983                                 if ((ptpaddr & PG_G) == 0)
 2984                                         anyvalid = 1;
 2985                                 pmap_remove_pde(pmap,
 2986                                     &pmap->pm_pdir[pdirindex], sva, &free);
 2987                                 continue;
 2988                         } else if (!pmap_demote_pde(pmap,
 2989                             &pmap->pm_pdir[pdirindex], sva)) {
 2990                                 /* The large page mapping was destroyed. */
 2991                                 continue;
 2992                         }
 2993                 }
 2994 
 2995                 /*
 2996                  * Limit our scan to either the end of the va represented
 2997                  * by the current page table page, or to the end of the
 2998                  * range being removed.
 2999                  */
 3000                 if (pdnxt > eva)
 3001                         pdnxt = eva;
 3002 
 3003                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3004                     sva += PAGE_SIZE) {
 3005                         if (*pte == 0)
 3006                                 continue;
 3007 
 3008                         /*
 3009                          * The TLB entry for a PG_G mapping is invalidated
 3010                          * by pmap_remove_pte().
 3011                          */
 3012                         if ((*pte & PG_G) == 0)
 3013                                 anyvalid = 1;
 3014                         if (pmap_remove_pte(pmap, pte, sva, &free))
 3015                                 break;
 3016                 }
 3017         }
 3018 out:
 3019         sched_unpin();
 3020         if (anyvalid)
 3021                 pmap_invalidate_all(pmap);
 3022         rw_wunlock(&pvh_global_lock);
 3023         PMAP_UNLOCK(pmap);
 3024         pmap_free_zero_pages(&free);
 3025 }
 3026 
 3027 /*
 3028  *      Routine:        pmap_remove_all
 3029  *      Function:
 3030  *              Removes this physical page from
 3031  *              all physical maps in which it resides.
 3032  *              Reflects back modify bits to the pager.
 3033  *
 3034  *      Notes:
 3035  *              Original versions of this routine were very
 3036  *              inefficient because they iteratively called
 3037  *              pmap_remove (slow...)
 3038  */
 3039 
 3040 void
 3041 pmap_remove_all(vm_page_t m)
 3042 {
 3043         struct md_page *pvh;
 3044         pv_entry_t pv;
 3045         pmap_t pmap;
 3046         pt_entry_t *pte, tpte;
 3047         pd_entry_t *pde;
 3048         vm_offset_t va;
 3049         struct spglist free;
 3050 
 3051         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3052             ("pmap_remove_all: page %p is not managed", m));
 3053         SLIST_INIT(&free);
 3054         rw_wlock(&pvh_global_lock);
 3055         sched_pin();
 3056         if ((m->flags & PG_FICTITIOUS) != 0)
 3057                 goto small_mappings;
 3058         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 3059         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 3060                 va = pv->pv_va;
 3061                 pmap = PV_PMAP(pv);
 3062                 PMAP_LOCK(pmap);
 3063                 pde = pmap_pde(pmap, va);
 3064                 (void)pmap_demote_pde(pmap, pde, va);
 3065                 PMAP_UNLOCK(pmap);
 3066         }
 3067 small_mappings:
 3068         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3069                 pmap = PV_PMAP(pv);
 3070                 PMAP_LOCK(pmap);
 3071                 pmap->pm_stats.resident_count--;
 3072                 pde = pmap_pde(pmap, pv->pv_va);
 3073                 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 3074                     " a 4mpage in page %p's pv list", m));
 3075                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3076                 tpte = pte_load_clear(pte);
 3077                 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
 3078                     pmap, pv->pv_va));
 3079                 if (tpte & PG_W)
 3080                         pmap->pm_stats.wired_count--;
 3081                 if (tpte & PG_A)
 3082                         vm_page_aflag_set(m, PGA_REFERENCED);
 3083 
 3084                 /*
 3085                  * Update the vm_page_t clean and reference bits.
 3086                  */
 3087                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3088                         vm_page_dirty(m);
 3089                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3090                 pmap_invalidate_page(pmap, pv->pv_va);
 3091                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 3092                 free_pv_entry(pmap, pv);
 3093                 PMAP_UNLOCK(pmap);
 3094         }
 3095         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3096         sched_unpin();
 3097         rw_wunlock(&pvh_global_lock);
 3098         pmap_free_zero_pages(&free);
 3099 }
 3100 
 3101 /*
 3102  * pmap_protect_pde: do the things to protect a 4mpage in a process
 3103  */
 3104 static boolean_t
 3105 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 3106 {
 3107         pd_entry_t newpde, oldpde;
 3108         vm_offset_t eva, va;
 3109         vm_page_t m;
 3110         boolean_t anychanged;
 3111 
 3112         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3113         KASSERT((sva & PDRMASK) == 0,
 3114             ("pmap_protect_pde: sva is not 4mpage aligned"));
 3115         anychanged = FALSE;
 3116 retry:
 3117         oldpde = newpde = *pde;
 3118         if (oldpde & PG_MANAGED) {
 3119                 eva = sva + NBPDR;
 3120                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 3121                     va < eva; va += PAGE_SIZE, m++)
 3122                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3123                                 vm_page_dirty(m);
 3124         }
 3125         if ((prot & VM_PROT_WRITE) == 0)
 3126                 newpde &= ~(PG_RW | PG_M);
 3127 #if defined(PAE) || defined(PAE_TABLES)
 3128         if ((prot & VM_PROT_EXECUTE) == 0)
 3129                 newpde |= pg_nx;
 3130 #endif
 3131         if (newpde != oldpde) {
 3132                 if (!pde_cmpset(pde, oldpde, newpde))
 3133                         goto retry;
 3134                 if (oldpde & PG_G)
 3135                         pmap_invalidate_page(pmap, sva);
 3136                 else
 3137                         anychanged = TRUE;
 3138         }
 3139         return (anychanged);
 3140 }
 3141 
 3142 /*
 3143  *      Set the physical protection on the
 3144  *      specified range of this map as requested.
 3145  */
 3146 void
 3147 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3148 {
 3149         vm_offset_t pdnxt;
 3150         pd_entry_t ptpaddr;
 3151         pt_entry_t *pte;
 3152         boolean_t anychanged, pv_lists_locked;
 3153 
 3154         KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
 3155         if (prot == VM_PROT_NONE) {
 3156                 pmap_remove(pmap, sva, eva);
 3157                 return;
 3158         }
 3159 
 3160 #if defined(PAE) || defined(PAE_TABLES)
 3161         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 3162             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 3163                 return;
 3164 #else
 3165         if (prot & VM_PROT_WRITE)
 3166                 return;
 3167 #endif
 3168 
 3169         if (pmap_is_current(pmap))
 3170                 pv_lists_locked = FALSE;
 3171         else {
 3172                 pv_lists_locked = TRUE;
 3173 resume:
 3174                 rw_wlock(&pvh_global_lock);
 3175                 sched_pin();
 3176         }
 3177         anychanged = FALSE;
 3178 
 3179         PMAP_LOCK(pmap);
 3180         for (; sva < eva; sva = pdnxt) {
 3181                 pt_entry_t obits, pbits;
 3182                 u_int pdirindex;
 3183 
 3184                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3185                 if (pdnxt < sva)
 3186                         pdnxt = eva;
 3187 
 3188                 pdirindex = sva >> PDRSHIFT;
 3189                 ptpaddr = pmap->pm_pdir[pdirindex];
 3190 
 3191                 /*
 3192                  * Weed out invalid mappings. Note: we assume that the page
 3193                  * directory table is always allocated, and in kernel virtual.
 3194                  */
 3195                 if (ptpaddr == 0)
 3196                         continue;
 3197 
 3198                 /*
 3199                  * Check for large page.
 3200                  */
 3201                 if ((ptpaddr & PG_PS) != 0) {
 3202                         /*
 3203                          * Are we protecting the entire large page?  If not,
 3204                          * demote the mapping and fall through.
 3205                          */
 3206                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3207                                 /*
 3208                                  * The TLB entry for a PG_G mapping is
 3209                                  * invalidated by pmap_protect_pde().
 3210                                  */
 3211                                 if (pmap_protect_pde(pmap,
 3212                                     &pmap->pm_pdir[pdirindex], sva, prot))
 3213                                         anychanged = TRUE;
 3214                                 continue;
 3215                         } else {
 3216                                 if (!pv_lists_locked) {
 3217                                         pv_lists_locked = TRUE;
 3218                                         if (!rw_try_wlock(&pvh_global_lock)) {
 3219                                                 if (anychanged)
 3220                                                         pmap_invalidate_all(
 3221                                                             pmap);
 3222                                                 PMAP_UNLOCK(pmap);
 3223                                                 goto resume;
 3224                                         }
 3225                                         sched_pin();
 3226                                 }
 3227                                 if (!pmap_demote_pde(pmap,
 3228                                     &pmap->pm_pdir[pdirindex], sva)) {
 3229                                         /*
 3230                                          * The large page mapping was
 3231                                          * destroyed.
 3232                                          */
 3233                                         continue;
 3234                                 }
 3235                         }
 3236                 }
 3237 
 3238                 if (pdnxt > eva)
 3239                         pdnxt = eva;
 3240 
 3241                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3242                     sva += PAGE_SIZE) {
 3243                         vm_page_t m;
 3244 
 3245 retry:
 3246                         /*
 3247                          * Regardless of whether a pte is 32 or 64 bits in
 3248                          * size, PG_RW, PG_A, and PG_M are among the least
 3249                          * significant 32 bits.
 3250                          */
 3251                         obits = pbits = *pte;
 3252                         if ((pbits & PG_V) == 0)
 3253                                 continue;
 3254 
 3255                         if ((prot & VM_PROT_WRITE) == 0) {
 3256                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 3257                                     (PG_MANAGED | PG_M | PG_RW)) {
 3258                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3259                                         vm_page_dirty(m);
 3260                                 }
 3261                                 pbits &= ~(PG_RW | PG_M);
 3262                         }
 3263 #if defined(PAE) || defined(PAE_TABLES)
 3264                         if ((prot & VM_PROT_EXECUTE) == 0)
 3265                                 pbits |= pg_nx;
 3266 #endif
 3267 
 3268                         if (pbits != obits) {
 3269 #if defined(PAE) || defined(PAE_TABLES)
 3270                                 if (!atomic_cmpset_64(pte, obits, pbits))
 3271                                         goto retry;
 3272 #else
 3273                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 3274                                     pbits))
 3275                                         goto retry;
 3276 #endif
 3277                                 if (obits & PG_G)
 3278                                         pmap_invalidate_page(pmap, sva);
 3279                                 else
 3280                                         anychanged = TRUE;
 3281                         }
 3282                 }
 3283         }
 3284         if (anychanged)
 3285                 pmap_invalidate_all(pmap);
 3286         if (pv_lists_locked) {
 3287                 sched_unpin();
 3288                 rw_wunlock(&pvh_global_lock);
 3289         }
 3290         PMAP_UNLOCK(pmap);
 3291 }
 3292 
 3293 /*
 3294  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
 3295  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
 3296  * For promotion to occur, two conditions must be met: (1) the 4KB page
 3297  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
 3298  * mappings must have identical characteristics.
 3299  *
 3300  * Managed (PG_MANAGED) mappings within the kernel address space are not
 3301  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
 3302  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
 3303  * pmap.
 3304  */
 3305 static void
 3306 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 3307 {
 3308         pd_entry_t newpde;
 3309         pt_entry_t *firstpte, oldpte, pa, *pte;
 3310         vm_offset_t oldpteva;
 3311         vm_page_t mpte;
 3312 
 3313         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3314 
 3315         /*
 3316          * Examine the first PTE in the specified PTP.  Abort if this PTE is
 3317          * either invalid, unused, or does not map the first 4KB physical page
 3318          * within a 2- or 4MB page.
 3319          */
 3320         firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
 3321 setpde:
 3322         newpde = *firstpte;
 3323         if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 3324                 pmap_pde_p_failures++;
 3325                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3326                     " in pmap %p", va, pmap);
 3327                 return;
 3328         }
 3329         if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
 3330                 pmap_pde_p_failures++;
 3331                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3332                     " in pmap %p", va, pmap);
 3333                 return;
 3334         }
 3335         if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 3336                 /*
 3337                  * When PG_M is already clear, PG_RW can be cleared without
 3338                  * a TLB invalidation.
 3339                  */
 3340                 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
 3341                     ~PG_RW))  
 3342                         goto setpde;
 3343                 newpde &= ~PG_RW;
 3344         }
 3345 
 3346         /* 
 3347          * Examine each of the other PTEs in the specified PTP.  Abort if this
 3348          * PTE maps an unexpected 4KB physical page or does not have identical
 3349          * characteristics to the first PTE.
 3350          */
 3351         pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 3352         for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 3353 setpte:
 3354                 oldpte = *pte;
 3355                 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 3356                         pmap_pde_p_failures++;
 3357                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3358                             " in pmap %p", va, pmap);
 3359                         return;
 3360                 }
 3361                 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 3362                         /*
 3363                          * When PG_M is already clear, PG_RW can be cleared
 3364                          * without a TLB invalidation.
 3365                          */
 3366                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3367                             oldpte & ~PG_RW))
 3368                                 goto setpte;
 3369                         oldpte &= ~PG_RW;
 3370                         oldpteva = (oldpte & PG_FRAME & PDRMASK) |
 3371                             (va & ~PDRMASK);
 3372                         CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
 3373                             " in pmap %p", oldpteva, pmap);
 3374                 }
 3375                 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 3376                         pmap_pde_p_failures++;
 3377                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3378                             " in pmap %p", va, pmap);
 3379                         return;
 3380                 }
 3381                 pa -= PAGE_SIZE;
 3382         }
 3383 
 3384         /*
 3385          * Save the page table page in its current state until the PDE
 3386          * mapping the superpage is demoted by pmap_demote_pde() or
 3387          * destroyed by pmap_remove_pde(). 
 3388          */
 3389         mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 3390         KASSERT(mpte >= vm_page_array &&
 3391             mpte < &vm_page_array[vm_page_array_size],
 3392             ("pmap_promote_pde: page table page is out of range"));
 3393         KASSERT(mpte->pindex == va >> PDRSHIFT,
 3394             ("pmap_promote_pde: page table page's pindex is wrong"));
 3395         if (pmap_insert_pt_page(pmap, mpte)) {
 3396                 pmap_pde_p_failures++;
 3397                 CTR2(KTR_PMAP,
 3398                     "pmap_promote_pde: failure for va %#x in pmap %p", va,
 3399                     pmap);
 3400                 return;
 3401         }
 3402 
 3403         /*
 3404          * Promote the pv entries.
 3405          */
 3406         if ((newpde & PG_MANAGED) != 0)
 3407                 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
 3408 
 3409         /*
 3410          * Propagate the PAT index to its proper position.
 3411          */
 3412         if ((newpde & PG_PTE_PAT) != 0)
 3413                 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
 3414 
 3415         /*
 3416          * Map the superpage.
 3417          */
 3418         if (workaround_erratum383)
 3419                 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 3420         else if (pmap == kernel_pmap)
 3421                 pmap_kenter_pde(va, PG_PS | newpde);
 3422         else
 3423                 pde_store(pde, PG_PS | newpde);
 3424 
 3425         pmap_pde_promotions++;
 3426         CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
 3427             " in pmap %p", va, pmap);
 3428 }
 3429 
 3430 /*
 3431  *      Insert the given physical page (p) at
 3432  *      the specified virtual address (v) in the
 3433  *      target physical map with the protection requested.
 3434  *
 3435  *      If specified, the page will be wired down, meaning
 3436  *      that the related pte can not be reclaimed.
 3437  *
 3438  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3439  *      or lose information.  That is, this routine must actually
 3440  *      insert this page into the given map NOW.
 3441  */
 3442 int
 3443 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 3444     u_int flags, int8_t psind)
 3445 {
 3446         pd_entry_t *pde;
 3447         pt_entry_t *pte;
 3448         pt_entry_t newpte, origpte;
 3449         pv_entry_t pv;
 3450         vm_paddr_t opa, pa;
 3451         vm_page_t mpte, om;
 3452         boolean_t invlva, wired;
 3453 
 3454         va = trunc_page(va);
 3455         mpte = NULL;
 3456         wired = (flags & PMAP_ENTER_WIRED) != 0;
 3457 
 3458         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 3459         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 3460             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 3461             va));
 3462         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 3463                 VM_OBJECT_ASSERT_LOCKED(m->object);
 3464 
 3465         rw_wlock(&pvh_global_lock);
 3466         PMAP_LOCK(pmap);
 3467         sched_pin();
 3468 
 3469         /*
 3470          * In the case that a page table page is not
 3471          * resident, we are creating it here.
 3472          */
 3473         if (va < VM_MAXUSER_ADDRESS) {
 3474                 mpte = pmap_allocpte(pmap, va, flags);
 3475                 if (mpte == NULL) {
 3476                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 3477                             ("pmap_allocpte failed with sleep allowed"));
 3478                         sched_unpin();
 3479                         rw_wunlock(&pvh_global_lock);
 3480                         PMAP_UNLOCK(pmap);
 3481                         return (KERN_RESOURCE_SHORTAGE);
 3482                 }
 3483         }
 3484 
 3485         pde = pmap_pde(pmap, va);
 3486         if ((*pde & PG_PS) != 0)
 3487                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 3488         pte = pmap_pte_quick(pmap, va);
 3489 
 3490         /*
 3491          * Page Directory table entry not valid, we need a new PT page
 3492          */
 3493         if (pte == NULL) {
 3494                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 3495                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 3496         }
 3497 
 3498         pa = VM_PAGE_TO_PHYS(m);
 3499         om = NULL;
 3500         origpte = *pte;
 3501         opa = origpte & PG_FRAME;
 3502 
 3503         /*
 3504          * Mapping has not changed, must be protection or wiring change.
 3505          */
 3506         if (origpte && (opa == pa)) {
 3507                 /*
 3508                  * Wiring change, just update stats. We don't worry about
 3509                  * wiring PT pages as they remain resident as long as there
 3510                  * are valid mappings in them. Hence, if a user page is wired,
 3511                  * the PT page will be also.
 3512                  */
 3513                 if (wired && ((origpte & PG_W) == 0))
 3514                         pmap->pm_stats.wired_count++;
 3515                 else if (!wired && (origpte & PG_W))
 3516                         pmap->pm_stats.wired_count--;
 3517 
 3518                 /*
 3519                  * Remove extra pte reference
 3520                  */
 3521                 if (mpte)
 3522                         mpte->wire_count--;
 3523 
 3524                 if (origpte & PG_MANAGED) {
 3525                         om = m;
 3526                         pa |= PG_MANAGED;
 3527                 }
 3528                 goto validate;
 3529         } 
 3530 
 3531         pv = NULL;
 3532 
 3533         /*
 3534          * Mapping has changed, invalidate old range and fall through to
 3535          * handle validating new mapping.
 3536          */
 3537         if (opa) {
 3538                 if (origpte & PG_W)
 3539                         pmap->pm_stats.wired_count--;
 3540                 if (origpte & PG_MANAGED) {
 3541                         om = PHYS_TO_VM_PAGE(opa);
 3542                         pv = pmap_pvh_remove(&om->md, pmap, va);
 3543                 }
 3544                 if (mpte != NULL) {
 3545                         mpte->wire_count--;
 3546                         KASSERT(mpte->wire_count > 0,
 3547                             ("pmap_enter: missing reference to page table page,"
 3548                              " va: 0x%x", va));
 3549                 }
 3550         } else
 3551                 pmap->pm_stats.resident_count++;
 3552 
 3553         /*
 3554          * Enter on the PV list if part of our managed memory.
 3555          */
 3556         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3557                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3558                     ("pmap_enter: managed mapping within the clean submap"));
 3559                 if (pv == NULL)
 3560                         pv = get_pv_entry(pmap, FALSE);
 3561                 pv->pv_va = va;
 3562                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 3563                 pa |= PG_MANAGED;
 3564         } else if (pv != NULL)
 3565                 free_pv_entry(pmap, pv);
 3566 
 3567         /*
 3568          * Increment counters
 3569          */
 3570         if (wired)
 3571                 pmap->pm_stats.wired_count++;
 3572 
 3573 validate:
 3574         /*
 3575          * Now validate mapping with desired protection/wiring.
 3576          */
 3577         newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
 3578         if ((prot & VM_PROT_WRITE) != 0) {
 3579                 newpte |= PG_RW;
 3580                 if ((newpte & PG_MANAGED) != 0)
 3581                         vm_page_aflag_set(m, PGA_WRITEABLE);
 3582         }
 3583 #if defined(PAE) || defined(PAE_TABLES)
 3584         if ((prot & VM_PROT_EXECUTE) == 0)
 3585                 newpte |= pg_nx;
 3586 #endif
 3587         if (wired)
 3588                 newpte |= PG_W;
 3589         if (va < VM_MAXUSER_ADDRESS)
 3590                 newpte |= PG_U;
 3591         if (pmap == kernel_pmap)
 3592                 newpte |= pgeflag;
 3593 
 3594         /*
 3595          * if the mapping or permission bits are different, we need
 3596          * to update the pte.
 3597          */
 3598         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 3599                 newpte |= PG_A;
 3600                 if ((flags & VM_PROT_WRITE) != 0)
 3601                         newpte |= PG_M;
 3602                 if (origpte & PG_V) {
 3603                         invlva = FALSE;
 3604                         origpte = pte_load_store(pte, newpte);
 3605                         if (origpte & PG_A) {
 3606                                 if (origpte & PG_MANAGED)
 3607                                         vm_page_aflag_set(om, PGA_REFERENCED);
 3608                                 if (opa != VM_PAGE_TO_PHYS(m))
 3609                                         invlva = TRUE;
 3610 #if defined(PAE) || defined(PAE_TABLES)
 3611                                 if ((origpte & PG_NX) == 0 &&
 3612                                     (newpte & PG_NX) != 0)
 3613                                         invlva = TRUE;
 3614 #endif
 3615                         }
 3616                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3617                                 if ((origpte & PG_MANAGED) != 0)
 3618                                         vm_page_dirty(om);
 3619                                 if ((prot & VM_PROT_WRITE) == 0)
 3620                                         invlva = TRUE;
 3621                         }
 3622                         if ((origpte & PG_MANAGED) != 0 &&
 3623                             TAILQ_EMPTY(&om->md.pv_list) &&
 3624                             ((om->flags & PG_FICTITIOUS) != 0 ||
 3625                             TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 3626                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 3627                         if (invlva)
 3628                                 pmap_invalidate_page(pmap, va);
 3629                 } else
 3630                         pte_store(pte, newpte);
 3631         }
 3632 
 3633         /*
 3634          * If both the page table page and the reservation are fully
 3635          * populated, then attempt promotion.
 3636          */
 3637         if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 3638             pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
 3639             vm_reserv_level_iffullpop(m) == 0)
 3640                 pmap_promote_pde(pmap, pde, va);
 3641 
 3642         sched_unpin();
 3643         rw_wunlock(&pvh_global_lock);
 3644         PMAP_UNLOCK(pmap);
 3645         return (KERN_SUCCESS);
 3646 }
 3647 
 3648 /*
 3649  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
 3650  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
 3651  * blocking, (2) a mapping already exists at the specified virtual address, or
 3652  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
 3653  */
 3654 static boolean_t
 3655 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3656 {
 3657         pd_entry_t *pde, newpde;
 3658 
 3659         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3660         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3661         pde = pmap_pde(pmap, va);
 3662         if (*pde != 0) {
 3663                 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3664                     " in pmap %p", va, pmap);
 3665                 return (FALSE);
 3666         }
 3667         newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
 3668             PG_PS | PG_V;
 3669         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3670                 newpde |= PG_MANAGED;
 3671 
 3672                 /*
 3673                  * Abort this mapping if its PV entry could not be created.
 3674                  */
 3675                 if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
 3676                         CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3677                             " in pmap %p", va, pmap);
 3678                         return (FALSE);
 3679                 }
 3680         }
 3681 #if defined(PAE) || defined(PAE_TABLES)
 3682         if ((prot & VM_PROT_EXECUTE) == 0)
 3683                 newpde |= pg_nx;
 3684 #endif
 3685         if (va < VM_MAXUSER_ADDRESS)
 3686                 newpde |= PG_U;
 3687 
 3688         /*
 3689          * Increment counters.
 3690          */
 3691         pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 3692 
 3693         /*
 3694          * Map the superpage.
 3695          */
 3696         pde_store(pde, newpde);
 3697 
 3698         pmap_pde_mappings++;
 3699         CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 3700             " in pmap %p", va, pmap);
 3701         return (TRUE);
 3702 }
 3703 
 3704 /*
 3705  * Maps a sequence of resident pages belonging to the same object.
 3706  * The sequence begins with the given page m_start.  This page is
 3707  * mapped at the given virtual address start.  Each subsequent page is
 3708  * mapped at a virtual address that is offset from start by the same
 3709  * amount as the page is offset from m_start within the object.  The
 3710  * last page in the sequence is the page with the largest offset from
 3711  * m_start that can be mapped at a virtual address less than the given
 3712  * virtual address end.  Not every virtual page between start and end
 3713  * is mapped; only those for which a resident page exists with the
 3714  * corresponding offset from m_start are mapped.
 3715  */
 3716 void
 3717 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3718     vm_page_t m_start, vm_prot_t prot)
 3719 {
 3720         vm_offset_t va;
 3721         vm_page_t m, mpte;
 3722         vm_pindex_t diff, psize;
 3723 
 3724         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 3725 
 3726         psize = atop(end - start);
 3727         mpte = NULL;
 3728         m = m_start;
 3729         rw_wlock(&pvh_global_lock);
 3730         PMAP_LOCK(pmap);
 3731         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3732                 va = start + ptoa(diff);
 3733                 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 3734                     m->psind == 1 && pg_ps_enabled &&
 3735                     pmap_enter_pde(pmap, va, m, prot))
 3736                         m = &m[NBPDR / PAGE_SIZE - 1];
 3737                 else
 3738                         mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 3739                             mpte);
 3740                 m = TAILQ_NEXT(m, listq);
 3741         }
 3742         rw_wunlock(&pvh_global_lock);
 3743         PMAP_UNLOCK(pmap);
 3744 }
 3745 
 3746 /*
 3747  * this code makes some *MAJOR* assumptions:
 3748  * 1. Current pmap & pmap exists.
 3749  * 2. Not wired.
 3750  * 3. Read access.
 3751  * 4. No page table pages.
 3752  * but is *MUCH* faster than pmap_enter...
 3753  */
 3754 
 3755 void
 3756 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3757 {
 3758 
 3759         rw_wlock(&pvh_global_lock);
 3760         PMAP_LOCK(pmap);
 3761         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 3762         rw_wunlock(&pvh_global_lock);
 3763         PMAP_UNLOCK(pmap);
 3764 }
 3765 
 3766 static vm_page_t
 3767 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 3768     vm_prot_t prot, vm_page_t mpte)
 3769 {
 3770         pt_entry_t *pte;
 3771         vm_paddr_t pa;
 3772         struct spglist free;
 3773 
 3774         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 3775             (m->oflags & VPO_UNMANAGED) != 0,
 3776             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 3777         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3778         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3779 
 3780         /*
 3781          * In the case that a page table page is not
 3782          * resident, we are creating it here.
 3783          */
 3784         if (va < VM_MAXUSER_ADDRESS) {
 3785                 u_int ptepindex;
 3786                 pd_entry_t ptepa;
 3787 
 3788                 /*
 3789                  * Calculate pagetable page index
 3790                  */
 3791                 ptepindex = va >> PDRSHIFT;
 3792                 if (mpte && (mpte->pindex == ptepindex)) {
 3793                         mpte->wire_count++;
 3794                 } else {
 3795                         /*
 3796                          * Get the page directory entry
 3797                          */
 3798                         ptepa = pmap->pm_pdir[ptepindex];
 3799 
 3800                         /*
 3801                          * If the page table page is mapped, we just increment
 3802                          * the hold count, and activate it.
 3803                          */
 3804                         if (ptepa) {
 3805                                 if (ptepa & PG_PS)
 3806                                         return (NULL);
 3807                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 3808                                 mpte->wire_count++;
 3809                         } else {
 3810                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3811                                     PMAP_ENTER_NOSLEEP);
 3812                                 if (mpte == NULL)
 3813                                         return (mpte);
 3814                         }
 3815                 }
 3816         } else {
 3817                 mpte = NULL;
 3818         }
 3819 
 3820         /*
 3821          * This call to vtopte makes the assumption that we are
 3822          * entering the page into the current pmap.  In order to support
 3823          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3824          * But that isn't as quick as vtopte.
 3825          */
 3826         pte = vtopte(va);
 3827         if (*pte) {
 3828                 if (mpte != NULL) {
 3829                         mpte->wire_count--;
 3830                         mpte = NULL;
 3831                 }
 3832                 return (mpte);
 3833         }
 3834 
 3835         /*
 3836          * Enter on the PV list if part of our managed memory.
 3837          */
 3838         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 3839             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3840                 if (mpte != NULL) {
 3841                         SLIST_INIT(&free);
 3842                         if (pmap_unwire_ptp(pmap, mpte, &free)) {
 3843                                 pmap_invalidate_page(pmap, va);
 3844                                 pmap_free_zero_pages(&free);
 3845                         }
 3846                         
 3847                         mpte = NULL;
 3848                 }
 3849                 return (mpte);
 3850         }
 3851 
 3852         /*
 3853          * Increment counters
 3854          */
 3855         pmap->pm_stats.resident_count++;
 3856 
 3857         pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 3858 #if defined(PAE) || defined(PAE_TABLES)
 3859         if ((prot & VM_PROT_EXECUTE) == 0)
 3860                 pa |= pg_nx;
 3861 #endif
 3862 
 3863         /*
 3864          * Now validate mapping with RO protection
 3865          */
 3866         if ((m->oflags & VPO_UNMANAGED) != 0)
 3867                 pte_store(pte, pa | PG_V | PG_U);
 3868         else
 3869                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3870         return (mpte);
 3871 }
 3872 
 3873 /*
 3874  * Make a temporary mapping for a physical address.  This is only intended
 3875  * to be used for panic dumps.
 3876  */
 3877 void *
 3878 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3879 {
 3880         vm_offset_t va;
 3881 
 3882         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3883         pmap_kenter(va, pa);
 3884         invlpg(va);
 3885         return ((void *)crashdumpmap);
 3886 }
 3887 
 3888 /*
 3889  * This code maps large physical mmap regions into the
 3890  * processor address space.  Note that some shortcuts
 3891  * are taken, but the code works.
 3892  */
 3893 void
 3894 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3895     vm_pindex_t pindex, vm_size_t size)
 3896 {
 3897         pd_entry_t *pde;
 3898         vm_paddr_t pa, ptepa;
 3899         vm_page_t p;
 3900         int pat_mode;
 3901 
 3902         VM_OBJECT_ASSERT_WLOCKED(object);
 3903         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3904             ("pmap_object_init_pt: non-device object"));
 3905         if (pseflag && 
 3906             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3907                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3908                         return;
 3909                 p = vm_page_lookup(object, pindex);
 3910                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3911                     ("pmap_object_init_pt: invalid page %p", p));
 3912                 pat_mode = p->md.pat_mode;
 3913 
 3914                 /*
 3915                  * Abort the mapping if the first page is not physically
 3916                  * aligned to a 2/4MB page boundary.
 3917                  */
 3918                 ptepa = VM_PAGE_TO_PHYS(p);
 3919                 if (ptepa & (NBPDR - 1))
 3920                         return;
 3921 
 3922                 /*
 3923                  * Skip the first page.  Abort the mapping if the rest of
 3924                  * the pages are not physically contiguous or have differing
 3925                  * memory attributes.
 3926                  */
 3927                 p = TAILQ_NEXT(p, listq);
 3928                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3929                     pa += PAGE_SIZE) {
 3930                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3931                             ("pmap_object_init_pt: invalid page %p", p));
 3932                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3933                             pat_mode != p->md.pat_mode)
 3934                                 return;
 3935                         p = TAILQ_NEXT(p, listq);
 3936                 }
 3937 
 3938                 /*
 3939                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3940                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3941                  * "pa" will not affect the termination of this loop.
 3942                  */
 3943                 PMAP_LOCK(pmap);
 3944                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3945                     size; pa += NBPDR) {
 3946                         pde = pmap_pde(pmap, addr);
 3947                         if (*pde == 0) {
 3948                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3949                                     PG_U | PG_RW | PG_V);
 3950                                 pmap->pm_stats.resident_count += NBPDR /
 3951                                     PAGE_SIZE;
 3952                                 pmap_pde_mappings++;
 3953                         }
 3954                         /* Else continue on if the PDE is already valid. */
 3955                         addr += NBPDR;
 3956                 }
 3957                 PMAP_UNLOCK(pmap);
 3958         }
 3959 }
 3960 
 3961 /*
 3962  *      Clear the wired attribute from the mappings for the specified range of
 3963  *      addresses in the given pmap.  Every valid mapping within that range
 3964  *      must have the wired attribute set.  In contrast, invalid mappings
 3965  *      cannot have the wired attribute set, so they are ignored.
 3966  *
 3967  *      The wired attribute of the page table entry is not a hardware feature,
 3968  *      so there is no need to invalidate any TLB entries.
 3969  */
 3970 void
 3971 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 3972 {
 3973         vm_offset_t pdnxt;
 3974         pd_entry_t *pde;
 3975         pt_entry_t *pte;
 3976         boolean_t pv_lists_locked;
 3977 
 3978         if (pmap_is_current(pmap))
 3979                 pv_lists_locked = FALSE;
 3980         else {
 3981                 pv_lists_locked = TRUE;
 3982 resume:
 3983                 rw_wlock(&pvh_global_lock);
 3984                 sched_pin();
 3985         }
 3986         PMAP_LOCK(pmap);
 3987         for (; sva < eva; sva = pdnxt) {
 3988                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3989                 if (pdnxt < sva)
 3990                         pdnxt = eva;
 3991                 pde = pmap_pde(pmap, sva);
 3992                 if ((*pde & PG_V) == 0)
 3993                         continue;
 3994                 if ((*pde & PG_PS) != 0) {
 3995                         if ((*pde & PG_W) == 0)
 3996                                 panic("pmap_unwire: pde %#jx is missing PG_W",
 3997                                     (uintmax_t)*pde);
 3998 
 3999                         /*
 4000                          * Are we unwiring the entire large page?  If not,
 4001                          * demote the mapping and fall through.
 4002                          */
 4003                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 4004                                 /*
 4005                                  * Regardless of whether a pde (or pte) is 32
 4006                                  * or 64 bits in size, PG_W is among the least
 4007                                  * significant 32 bits.
 4008                                  */
 4009                                 atomic_clear_int((u_int *)pde, PG_W);
 4010                                 pmap->pm_stats.wired_count -= NBPDR /
 4011                                     PAGE_SIZE;
 4012                                 continue;
 4013                         } else {
 4014                                 if (!pv_lists_locked) {
 4015                                         pv_lists_locked = TRUE;
 4016                                         if (!rw_try_wlock(&pvh_global_lock)) {
 4017                                                 PMAP_UNLOCK(pmap);
 4018                                                 /* Repeat sva. */
 4019                                                 goto resume;
 4020                                         }
 4021                                         sched_pin();
 4022                                 }
 4023                                 if (!pmap_demote_pde(pmap, pde, sva))
 4024                                         panic("pmap_unwire: demotion failed");
 4025                         }
 4026                 }
 4027                 if (pdnxt > eva)
 4028                         pdnxt = eva;
 4029                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 4030                     sva += PAGE_SIZE) {
 4031                         if ((*pte & PG_V) == 0)
 4032                                 continue;
 4033                         if ((*pte & PG_W) == 0)
 4034                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 4035                                     (uintmax_t)*pte);
 4036 
 4037                         /*
 4038                          * PG_W must be cleared atomically.  Although the pmap
 4039                          * lock synchronizes access to PG_W, another processor
 4040                          * could be setting PG_M and/or PG_A concurrently.
 4041                          *
 4042                          * PG_W is among the least significant 32 bits.
 4043                          */
 4044                         atomic_clear_int((u_int *)pte, PG_W);
 4045                         pmap->pm_stats.wired_count--;
 4046                 }
 4047         }
 4048         if (pv_lists_locked) {
 4049                 sched_unpin();
 4050                 rw_wunlock(&pvh_global_lock);
 4051         }
 4052         PMAP_UNLOCK(pmap);
 4053 }
 4054 
 4055 
 4056 /*
 4057  *      Copy the range specified by src_addr/len
 4058  *      from the source map to the range dst_addr/len
 4059  *      in the destination map.
 4060  *
 4061  *      This routine is only advisory and need not do anything.
 4062  */
 4063 
 4064 void
 4065 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 4066     vm_offset_t src_addr)
 4067 {
 4068         struct spglist free;
 4069         vm_offset_t addr;
 4070         vm_offset_t end_addr = src_addr + len;
 4071         vm_offset_t pdnxt;
 4072 
 4073         if (dst_addr != src_addr)
 4074                 return;
 4075 
 4076         if (!pmap_is_current(src_pmap))
 4077                 return;
 4078 
 4079         rw_wlock(&pvh_global_lock);
 4080         if (dst_pmap < src_pmap) {
 4081                 PMAP_LOCK(dst_pmap);
 4082                 PMAP_LOCK(src_pmap);
 4083         } else {
 4084                 PMAP_LOCK(src_pmap);
 4085                 PMAP_LOCK(dst_pmap);
 4086         }
 4087         sched_pin();
 4088         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 4089                 pt_entry_t *src_pte, *dst_pte;
 4090                 vm_page_t dstmpte, srcmpte;
 4091                 pd_entry_t srcptepaddr;
 4092                 u_int ptepindex;
 4093 
 4094                 KASSERT(addr < UPT_MIN_ADDRESS,
 4095                     ("pmap_copy: invalid to pmap_copy page tables"));
 4096 
 4097                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 4098                 if (pdnxt < addr)
 4099                         pdnxt = end_addr;
 4100                 ptepindex = addr >> PDRSHIFT;
 4101 
 4102                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 4103                 if (srcptepaddr == 0)
 4104                         continue;
 4105                         
 4106                 if (srcptepaddr & PG_PS) {
 4107                         if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
 4108                                 continue;
 4109                         if (dst_pmap->pm_pdir[ptepindex] == 0 &&
 4110                             ((srcptepaddr & PG_MANAGED) == 0 ||
 4111                             pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 4112                             PG_PS_FRAME))) {
 4113                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 4114                                     ~PG_W;
 4115                                 dst_pmap->pm_stats.resident_count +=
 4116                                     NBPDR / PAGE_SIZE;
 4117                                 pmap_pde_mappings++;
 4118                         }
 4119                         continue;
 4120                 }
 4121 
 4122                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 4123                 KASSERT(srcmpte->wire_count > 0,
 4124                     ("pmap_copy: source page table page is unused"));
 4125 
 4126                 if (pdnxt > end_addr)
 4127                         pdnxt = end_addr;
 4128 
 4129                 src_pte = vtopte(addr);
 4130                 while (addr < pdnxt) {
 4131                         pt_entry_t ptetemp;
 4132                         ptetemp = *src_pte;
 4133                         /*
 4134                          * we only virtual copy managed pages
 4135                          */
 4136                         if ((ptetemp & PG_MANAGED) != 0) {
 4137                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 4138                                     PMAP_ENTER_NOSLEEP);
 4139                                 if (dstmpte == NULL)
 4140                                         goto out;
 4141                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 4142                                 if (*dst_pte == 0 &&
 4143                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 4144                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 4145                                         /*
 4146                                          * Clear the wired, modified, and
 4147                                          * accessed (referenced) bits
 4148                                          * during the copy.
 4149                                          */
 4150                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 4151                                             PG_A);
 4152                                         dst_pmap->pm_stats.resident_count++;
 4153                                 } else {
 4154                                         SLIST_INIT(&free);
 4155                                         if (pmap_unwire_ptp(dst_pmap, dstmpte,
 4156                                             &free)) {
 4157                                                 pmap_invalidate_page(dst_pmap,
 4158                                                     addr);
 4159                                                 pmap_free_zero_pages(&free);
 4160                                         }
 4161                                         goto out;
 4162                                 }
 4163                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 4164                                         break;
 4165                         }
 4166                         addr += PAGE_SIZE;
 4167                         src_pte++;
 4168                 }
 4169         }
 4170 out:
 4171         sched_unpin();
 4172         rw_wunlock(&pvh_global_lock);
 4173         PMAP_UNLOCK(src_pmap);
 4174         PMAP_UNLOCK(dst_pmap);
 4175 }       
 4176 
 4177 static __inline void
 4178 pagezero(void *page)
 4179 {
 4180 #if defined(I686_CPU)
 4181         if (cpu_class == CPUCLASS_686) {
 4182 #if defined(CPU_ENABLE_SSE)
 4183                 if (cpu_feature & CPUID_SSE2)
 4184                         sse2_pagezero(page);
 4185                 else
 4186 #endif
 4187                         i686_pagezero(page);
 4188         } else
 4189 #endif
 4190                 bzero(page, PAGE_SIZE);
 4191 }
 4192 
 4193 /*
 4194  *      pmap_zero_page zeros the specified hardware page by mapping 
 4195  *      the page into KVM and using bzero to clear its contents.
 4196  */
 4197 void
 4198 pmap_zero_page(vm_page_t m)
 4199 {
 4200         struct sysmaps *sysmaps;
 4201 
 4202         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4203         mtx_lock(&sysmaps->lock);
 4204         if (*sysmaps->CMAP2)
 4205                 panic("pmap_zero_page: CMAP2 busy");
 4206         sched_pin();
 4207         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4208             pmap_cache_bits(m->md.pat_mode, 0);
 4209         invlcaddr(sysmaps->CADDR2);
 4210         pagezero(sysmaps->CADDR2);
 4211         *sysmaps->CMAP2 = 0;
 4212         sched_unpin();
 4213         mtx_unlock(&sysmaps->lock);
 4214 }
 4215 
 4216 /*
 4217  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4218  *      the page into KVM and using bzero to clear its contents.
 4219  *
 4220  *      off and size may not cover an area beyond a single hardware page.
 4221  */
 4222 void
 4223 pmap_zero_page_area(vm_page_t m, int off, int size)
 4224 {
 4225         struct sysmaps *sysmaps;
 4226 
 4227         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4228         mtx_lock(&sysmaps->lock);
 4229         if (*sysmaps->CMAP2)
 4230                 panic("pmap_zero_page_area: CMAP2 busy");
 4231         sched_pin();
 4232         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4233             pmap_cache_bits(m->md.pat_mode, 0);
 4234         invlcaddr(sysmaps->CADDR2);
 4235         if (off == 0 && size == PAGE_SIZE) 
 4236                 pagezero(sysmaps->CADDR2);
 4237         else
 4238                 bzero((char *)sysmaps->CADDR2 + off, size);
 4239         *sysmaps->CMAP2 = 0;
 4240         sched_unpin();
 4241         mtx_unlock(&sysmaps->lock);
 4242 }
 4243 
 4244 /*
 4245  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4246  *      the page into KVM and using bzero to clear its contents.  This
 4247  *      is intended to be called from the vm_pagezero process only and
 4248  *      outside of Giant.
 4249  */
 4250 void
 4251 pmap_zero_page_idle(vm_page_t m)
 4252 {
 4253 
 4254         if (*CMAP3)
 4255                 panic("pmap_zero_page_idle: CMAP3 busy");
 4256         sched_pin();
 4257         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4258             pmap_cache_bits(m->md.pat_mode, 0);
 4259         invlcaddr(CADDR3);
 4260         pagezero(CADDR3);
 4261         *CMAP3 = 0;
 4262         sched_unpin();
 4263 }
 4264 
 4265 /*
 4266  *      pmap_copy_page copies the specified (machine independent)
 4267  *      page by mapping the page into virtual memory and using
 4268  *      bcopy to copy the page, one machine dependent page at a
 4269  *      time.
 4270  */
 4271 void
 4272 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4273 {
 4274         struct sysmaps *sysmaps;
 4275 
 4276         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4277         mtx_lock(&sysmaps->lock);
 4278         if (*sysmaps->CMAP1)
 4279                 panic("pmap_copy_page: CMAP1 busy");
 4280         if (*sysmaps->CMAP2)
 4281                 panic("pmap_copy_page: CMAP2 busy");
 4282         sched_pin();
 4283         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
 4284             pmap_cache_bits(src->md.pat_mode, 0);
 4285         invlcaddr(sysmaps->CADDR1);
 4286         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
 4287             pmap_cache_bits(dst->md.pat_mode, 0);
 4288         invlcaddr(sysmaps->CADDR2);
 4289         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 4290         *sysmaps->CMAP1 = 0;
 4291         *sysmaps->CMAP2 = 0;
 4292         sched_unpin();
 4293         mtx_unlock(&sysmaps->lock);
 4294 }
 4295 
 4296 int unmapped_buf_allowed = 1;
 4297 
 4298 void
 4299 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 4300     vm_offset_t b_offset, int xfersize)
 4301 {
 4302         struct sysmaps *sysmaps;
 4303         vm_page_t a_pg, b_pg;
 4304         char *a_cp, *b_cp;
 4305         vm_offset_t a_pg_offset, b_pg_offset;
 4306         int cnt;
 4307 
 4308         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4309         mtx_lock(&sysmaps->lock);
 4310         if (*sysmaps->CMAP1 != 0)
 4311                 panic("pmap_copy_pages: CMAP1 busy");
 4312         if (*sysmaps->CMAP2 != 0)
 4313                 panic("pmap_copy_pages: CMAP2 busy");
 4314         sched_pin();
 4315         while (xfersize > 0) {
 4316                 a_pg = ma[a_offset >> PAGE_SHIFT];
 4317                 a_pg_offset = a_offset & PAGE_MASK;
 4318                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 4319                 b_pg = mb[b_offset >> PAGE_SHIFT];
 4320                 b_pg_offset = b_offset & PAGE_MASK;
 4321                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 4322                 *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
 4323                     pmap_cache_bits(a_pg->md.pat_mode, 0);
 4324                 invlcaddr(sysmaps->CADDR1);
 4325                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
 4326                     PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
 4327                 invlcaddr(sysmaps->CADDR2);
 4328                 a_cp = sysmaps->CADDR1 + a_pg_offset;
 4329                 b_cp = sysmaps->CADDR2 + b_pg_offset;
 4330                 bcopy(a_cp, b_cp, cnt);
 4331                 a_offset += cnt;
 4332                 b_offset += cnt;
 4333                 xfersize -= cnt;
 4334         }
 4335         *sysmaps->CMAP1 = 0;
 4336         *sysmaps->CMAP2 = 0;
 4337         sched_unpin();
 4338         mtx_unlock(&sysmaps->lock);
 4339 }
 4340 
 4341 /*
 4342  * Returns true if the pmap's pv is one of the first
 4343  * 16 pvs linked to from this page.  This count may
 4344  * be changed upwards or downwards in the future; it
 4345  * is only necessary that true be returned for a small
 4346  * subset of pmaps for proper page aging.
 4347  */
 4348 boolean_t
 4349 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4350 {
 4351         struct md_page *pvh;
 4352         pv_entry_t pv;
 4353         int loops = 0;
 4354         boolean_t rv;
 4355 
 4356         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4357             ("pmap_page_exists_quick: page %p is not managed", m));
 4358         rv = FALSE;
 4359         rw_wlock(&pvh_global_lock);
 4360         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4361                 if (PV_PMAP(pv) == pmap) {
 4362                         rv = TRUE;
 4363                         break;
 4364                 }
 4365                 loops++;
 4366                 if (loops >= 16)
 4367                         break;
 4368         }
 4369         if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 4370                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4371                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4372                         if (PV_PMAP(pv) == pmap) {
 4373                                 rv = TRUE;
 4374                                 break;
 4375                         }
 4376                         loops++;
 4377                         if (loops >= 16)
 4378                                 break;
 4379                 }
 4380         }
 4381         rw_wunlock(&pvh_global_lock);
 4382         return (rv);
 4383 }
 4384 
 4385 /*
 4386  *      pmap_page_wired_mappings:
 4387  *
 4388  *      Return the number of managed mappings to the given physical page
 4389  *      that are wired.
 4390  */
 4391 int
 4392 pmap_page_wired_mappings(vm_page_t m)
 4393 {
 4394         int count;
 4395 
 4396         count = 0;
 4397         if ((m->oflags & VPO_UNMANAGED) != 0)
 4398                 return (count);
 4399         rw_wlock(&pvh_global_lock);
 4400         count = pmap_pvh_wired_mappings(&m->md, count);
 4401         if ((m->flags & PG_FICTITIOUS) == 0) {
 4402             count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
 4403                 count);
 4404         }
 4405         rw_wunlock(&pvh_global_lock);
 4406         return (count);
 4407 }
 4408 
 4409 /*
 4410  *      pmap_pvh_wired_mappings:
 4411  *
 4412  *      Return the updated number "count" of managed mappings that are wired.
 4413  */
 4414 static int
 4415 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
 4416 {
 4417         pmap_t pmap;
 4418         pt_entry_t *pte;
 4419         pv_entry_t pv;
 4420 
 4421         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4422         sched_pin();
 4423         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4424                 pmap = PV_PMAP(pv);
 4425                 PMAP_LOCK(pmap);
 4426                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4427                 if ((*pte & PG_W) != 0)
 4428                         count++;
 4429                 PMAP_UNLOCK(pmap);
 4430         }
 4431         sched_unpin();
 4432         return (count);
 4433 }
 4434 
 4435 /*
 4436  * Returns TRUE if the given page is mapped individually or as part of
 4437  * a 4mpage.  Otherwise, returns FALSE.
 4438  */
 4439 boolean_t
 4440 pmap_page_is_mapped(vm_page_t m)
 4441 {
 4442         boolean_t rv;
 4443 
 4444         if ((m->oflags & VPO_UNMANAGED) != 0)
 4445                 return (FALSE);
 4446         rw_wlock(&pvh_global_lock);
 4447         rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 4448             ((m->flags & PG_FICTITIOUS) == 0 &&
 4449             !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 4450         rw_wunlock(&pvh_global_lock);
 4451         return (rv);
 4452 }
 4453 
 4454 /*
 4455  * Remove all pages from specified address space
 4456  * this aids process exit speeds.  Also, this code
 4457  * is special cased for current process only, but
 4458  * can have the more generic (and slightly slower)
 4459  * mode enabled.  This is much faster than pmap_remove
 4460  * in the case of running down an entire address space.
 4461  */
 4462 void
 4463 pmap_remove_pages(pmap_t pmap)
 4464 {
 4465         pt_entry_t *pte, tpte;
 4466         vm_page_t m, mpte, mt;
 4467         pv_entry_t pv;
 4468         struct md_page *pvh;
 4469         struct pv_chunk *pc, *npc;
 4470         struct spglist free;
 4471         int field, idx;
 4472         int32_t bit;
 4473         uint32_t inuse, bitmask;
 4474         int allfree;
 4475 
 4476         if (pmap != PCPU_GET(curpmap)) {
 4477                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 4478                 return;
 4479         }
 4480         SLIST_INIT(&free);
 4481         rw_wlock(&pvh_global_lock);
 4482         PMAP_LOCK(pmap);
 4483         sched_pin();
 4484         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 4485                 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
 4486                     pc->pc_pmap));
 4487                 allfree = 1;
 4488                 for (field = 0; field < _NPCM; field++) {
 4489                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 4490                         while (inuse != 0) {
 4491                                 bit = bsfl(inuse);
 4492                                 bitmask = 1UL << bit;
 4493                                 idx = field * 32 + bit;
 4494                                 pv = &pc->pc_pventry[idx];
 4495                                 inuse &= ~bitmask;
 4496 
 4497                                 pte = pmap_pde(pmap, pv->pv_va);
 4498                                 tpte = *pte;
 4499                                 if ((tpte & PG_PS) == 0) {
 4500                                         pte = vtopte(pv->pv_va);
 4501                                         tpte = *pte & ~PG_PTE_PAT;
 4502                                 }
 4503 
 4504                                 if (tpte == 0) {
 4505                                         printf(
 4506                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 4507                                             pte, pv->pv_va);
 4508                                         panic("bad pte");
 4509                                 }
 4510 
 4511 /*
 4512  * We cannot remove wired pages from a process' mapping at this time
 4513  */
 4514                                 if (tpte & PG_W) {
 4515                                         allfree = 0;
 4516                                         continue;
 4517                                 }
 4518 
 4519                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 4520                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 4521                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 4522                                     m, (uintmax_t)m->phys_addr,
 4523                                     (uintmax_t)tpte));
 4524 
 4525                                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 4526                                     m < &vm_page_array[vm_page_array_size],
 4527                                     ("pmap_remove_pages: bad tpte %#jx",
 4528                                     (uintmax_t)tpte));
 4529 
 4530                                 pte_clear(pte);
 4531 
 4532                                 /*
 4533                                  * Update the vm_page_t clean/reference bits.
 4534                                  */
 4535                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4536                                         if ((tpte & PG_PS) != 0) {
 4537                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4538                                                         vm_page_dirty(mt);
 4539                                         } else
 4540                                                 vm_page_dirty(m);
 4541                                 }
 4542 
 4543                                 /* Mark free */
 4544                                 PV_STAT(pv_entry_frees++);
 4545                                 PV_STAT(pv_entry_spare++);
 4546                                 pv_entry_count--;
 4547                                 pc->pc_map[field] |= bitmask;
 4548                                 if ((tpte & PG_PS) != 0) {
 4549                                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 4550                                         pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 4551                                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4552                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 4553                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4554                                                         if (TAILQ_EMPTY(&mt->md.pv_list))
 4555                                                                 vm_page_aflag_clear(mt, PGA_WRITEABLE);
 4556                                         }
 4557                                         mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
 4558                                         if (mpte != NULL) {
 4559                                                 pmap_remove_pt_page(pmap, mpte);
 4560                                                 pmap->pm_stats.resident_count--;
 4561                                                 KASSERT(mpte->wire_count == NPTEPG,
 4562                                                     ("pmap_remove_pages: pte page wire count error"));
 4563                                                 mpte->wire_count = 0;
 4564                                                 pmap_add_delayed_free_list(mpte, &free, FALSE);
 4565                                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 4566                                         }
 4567                                 } else {
 4568                                         pmap->pm_stats.resident_count--;
 4569                                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4570                                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 4571                                             (m->flags & PG_FICTITIOUS) == 0) {
 4572                                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4573                                                 if (TAILQ_EMPTY(&pvh->pv_list))
 4574                                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4575                                         }
 4576                                         pmap_unuse_pt(pmap, pv->pv_va, &free);
 4577                                 }
 4578                         }
 4579                 }
 4580                 if (allfree) {
 4581                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 4582                         free_pv_chunk(pc);
 4583                 }
 4584         }
 4585         sched_unpin();
 4586         pmap_invalidate_all(pmap);
 4587         rw_wunlock(&pvh_global_lock);
 4588         PMAP_UNLOCK(pmap);
 4589         pmap_free_zero_pages(&free);
 4590 }
 4591 
 4592 /*
 4593  *      pmap_is_modified:
 4594  *
 4595  *      Return whether or not the specified physical page was modified
 4596  *      in any physical maps.
 4597  */
 4598 boolean_t
 4599 pmap_is_modified(vm_page_t m)
 4600 {
 4601         boolean_t rv;
 4602 
 4603         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4604             ("pmap_is_modified: page %p is not managed", m));
 4605 
 4606         /*
 4607          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4608          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 4609          * is clear, no PTEs can have PG_M set.
 4610          */
 4611         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4612         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4613                 return (FALSE);
 4614         rw_wlock(&pvh_global_lock);
 4615         rv = pmap_is_modified_pvh(&m->md) ||
 4616             ((m->flags & PG_FICTITIOUS) == 0 &&
 4617             pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4618         rw_wunlock(&pvh_global_lock);
 4619         return (rv);
 4620 }
 4621 
 4622 /*
 4623  * Returns TRUE if any of the given mappings were used to modify
 4624  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
 4625  * mappings are supported.
 4626  */
 4627 static boolean_t
 4628 pmap_is_modified_pvh(struct md_page *pvh)
 4629 {
 4630         pv_entry_t pv;
 4631         pt_entry_t *pte;
 4632         pmap_t pmap;
 4633         boolean_t rv;
 4634 
 4635         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4636         rv = FALSE;
 4637         sched_pin();
 4638         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4639                 pmap = PV_PMAP(pv);
 4640                 PMAP_LOCK(pmap);
 4641                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4642                 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
 4643                 PMAP_UNLOCK(pmap);
 4644                 if (rv)
 4645                         break;
 4646         }
 4647         sched_unpin();
 4648         return (rv);
 4649 }
 4650 
 4651 /*
 4652  *      pmap_is_prefaultable:
 4653  *
 4654  *      Return whether or not the specified virtual address is elgible
 4655  *      for prefault.
 4656  */
 4657 boolean_t
 4658 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 4659 {
 4660         pd_entry_t *pde;
 4661         pt_entry_t *pte;
 4662         boolean_t rv;
 4663 
 4664         rv = FALSE;
 4665         PMAP_LOCK(pmap);
 4666         pde = pmap_pde(pmap, addr);
 4667         if (*pde != 0 && (*pde & PG_PS) == 0) {
 4668                 pte = vtopte(addr);
 4669                 rv = *pte == 0;
 4670         }
 4671         PMAP_UNLOCK(pmap);
 4672         return (rv);
 4673 }
 4674 
 4675 /*
 4676  *      pmap_is_referenced:
 4677  *
 4678  *      Return whether or not the specified physical page was referenced
 4679  *      in any physical maps.
 4680  */
 4681 boolean_t
 4682 pmap_is_referenced(vm_page_t m)
 4683 {
 4684         boolean_t rv;
 4685 
 4686         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4687             ("pmap_is_referenced: page %p is not managed", m));
 4688         rw_wlock(&pvh_global_lock);
 4689         rv = pmap_is_referenced_pvh(&m->md) ||
 4690             ((m->flags & PG_FICTITIOUS) == 0 &&
 4691             pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4692         rw_wunlock(&pvh_global_lock);
 4693         return (rv);
 4694 }
 4695 
 4696 /*
 4697  * Returns TRUE if any of the given mappings were referenced and FALSE
 4698  * otherwise.  Both page and 4mpage mappings are supported.
 4699  */
 4700 static boolean_t
 4701 pmap_is_referenced_pvh(struct md_page *pvh)
 4702 {
 4703         pv_entry_t pv;
 4704         pt_entry_t *pte;
 4705         pmap_t pmap;
 4706         boolean_t rv;
 4707 
 4708         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4709         rv = FALSE;
 4710         sched_pin();
 4711         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4712                 pmap = PV_PMAP(pv);
 4713                 PMAP_LOCK(pmap);
 4714                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4715                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 4716                 PMAP_UNLOCK(pmap);
 4717                 if (rv)
 4718                         break;
 4719         }
 4720         sched_unpin();
 4721         return (rv);
 4722 }
 4723 
 4724 /*
 4725  * Clear the write and modified bits in each of the given page's mappings.
 4726  */
 4727 void
 4728 pmap_remove_write(vm_page_t m)
 4729 {
 4730         struct md_page *pvh;
 4731         pv_entry_t next_pv, pv;
 4732         pmap_t pmap;
 4733         pd_entry_t *pde;
 4734         pt_entry_t oldpte, *pte;
 4735         vm_offset_t va;
 4736 
 4737         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4738             ("pmap_remove_write: page %p is not managed", m));
 4739 
 4740         /*
 4741          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4742          * set by another thread while the object is locked.  Thus,
 4743          * if PGA_WRITEABLE is clear, no page table entries need updating.
 4744          */
 4745         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4746         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4747                 return;
 4748         rw_wlock(&pvh_global_lock);
 4749         sched_pin();
 4750         if ((m->flags & PG_FICTITIOUS) != 0)
 4751                 goto small_mappings;
 4752         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4753         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 4754                 va = pv->pv_va;
 4755                 pmap = PV_PMAP(pv);
 4756                 PMAP_LOCK(pmap);
 4757                 pde = pmap_pde(pmap, va);
 4758                 if ((*pde & PG_RW) != 0)
 4759                         (void)pmap_demote_pde(pmap, pde, va);
 4760                 PMAP_UNLOCK(pmap);
 4761         }
 4762 small_mappings:
 4763         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4764                 pmap = PV_PMAP(pv);
 4765                 PMAP_LOCK(pmap);
 4766                 pde = pmap_pde(pmap, pv->pv_va);
 4767                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
 4768                     " a 4mpage in page %p's pv list", m));
 4769                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4770 retry:
 4771                 oldpte = *pte;
 4772                 if ((oldpte & PG_RW) != 0) {
 4773                         /*
 4774                          * Regardless of whether a pte is 32 or 64 bits
 4775                          * in size, PG_RW and PG_M are among the least
 4776                          * significant 32 bits.
 4777                          */
 4778                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 4779                             oldpte & ~(PG_RW | PG_M)))
 4780                                 goto retry;
 4781                         if ((oldpte & PG_M) != 0)
 4782                                 vm_page_dirty(m);
 4783                         pmap_invalidate_page(pmap, pv->pv_va);
 4784                 }
 4785                 PMAP_UNLOCK(pmap);
 4786         }
 4787         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4788         sched_unpin();
 4789         rw_wunlock(&pvh_global_lock);
 4790 }
 4791 
 4792 #define PMAP_TS_REFERENCED_MAX  5
 4793 
 4794 /*
 4795  *      pmap_ts_referenced:
 4796  *
 4797  *      Return a count of reference bits for a page, clearing those bits.
 4798  *      It is not necessary for every reference bit to be cleared, but it
 4799  *      is necessary that 0 only be returned when there are truly no
 4800  *      reference bits set.
 4801  *
 4802  *      XXX: The exact number of bits to check and clear is a matter that
 4803  *      should be tested and standardized at some point in the future for
 4804  *      optimal aging of shared pages.
 4805  */
 4806 int
 4807 pmap_ts_referenced(vm_page_t m)
 4808 {
 4809         struct md_page *pvh;
 4810         pv_entry_t pv, pvf;
 4811         pmap_t pmap;
 4812         pd_entry_t *pde;
 4813         pt_entry_t *pte;
 4814         vm_paddr_t pa;
 4815         int rtval = 0;
 4816 
 4817         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4818             ("pmap_ts_referenced: page %p is not managed", m));
 4819         pa = VM_PAGE_TO_PHYS(m);
 4820         pvh = pa_to_pvh(pa);
 4821         rw_wlock(&pvh_global_lock);
 4822         sched_pin();
 4823         if ((m->flags & PG_FICTITIOUS) != 0 ||
 4824             (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
 4825                 goto small_mappings;
 4826         pv = pvf;
 4827         do {
 4828                 pmap = PV_PMAP(pv);
 4829                 PMAP_LOCK(pmap);
 4830                 pde = pmap_pde(pmap, pv->pv_va);
 4831                 if ((*pde & PG_A) != 0) {
 4832                         /*
 4833                          * Since this reference bit is shared by either 1024
 4834                          * or 512 4KB pages, it should not be cleared every
 4835                          * time it is tested.  Apply a simple "hash" function
 4836                          * on the physical page number, the virtual superpage
 4837                          * number, and the pmap address to select one 4KB page
 4838                          * out of the 1024 or 512 on which testing the
 4839                          * reference bit will result in clearing that bit.
 4840                          * This function is designed to avoid the selection of
 4841                          * the same 4KB page for every 2- or 4MB page mapping.
 4842                          *
 4843                          * On demotion, a mapping that hasn't been referenced
 4844                          * is simply destroyed.  To avoid the possibility of a
 4845                          * subsequent page fault on a demoted wired mapping,
 4846                          * always leave its reference bit set.  Moreover,
 4847                          * since the superpage is wired, the current state of
 4848                          * its reference bit won't affect page replacement.
 4849                          */
 4850                         if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
 4851                             (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
 4852                             (*pde & PG_W) == 0) {
 4853                                 atomic_clear_int((u_int *)pde, PG_A);
 4854                                 pmap_invalidate_page(pmap, pv->pv_va);
 4855                         }
 4856                         rtval++;
 4857                 }
 4858                 PMAP_UNLOCK(pmap);
 4859                 /* Rotate the PV list if it has more than one entry. */
 4860                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4861                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4862                         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 4863                 }
 4864                 if (rtval >= PMAP_TS_REFERENCED_MAX)
 4865                         goto out;
 4866         } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
 4867 small_mappings:
 4868         if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
 4869                 goto out;
 4870         pv = pvf;
 4871         do {
 4872                 pmap = PV_PMAP(pv);
 4873                 PMAP_LOCK(pmap);
 4874                 pde = pmap_pde(pmap, pv->pv_va);
 4875                 KASSERT((*pde & PG_PS) == 0,
 4876                     ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
 4877                     m));
 4878                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4879                 if ((*pte & PG_A) != 0) {
 4880                         atomic_clear_int((u_int *)pte, PG_A);
 4881                         pmap_invalidate_page(pmap, pv->pv_va);
 4882                         rtval++;
 4883                 }
 4884                 PMAP_UNLOCK(pmap);
 4885                 /* Rotate the PV list if it has more than one entry. */
 4886                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4887                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4888                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 4889                 }
 4890         } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
 4891             PMAP_TS_REFERENCED_MAX);
 4892 out:
 4893         sched_unpin();
 4894         rw_wunlock(&pvh_global_lock);
 4895         return (rtval);
 4896 }
 4897 
 4898 /*
 4899  *      Apply the given advice to the specified range of addresses within the
 4900  *      given pmap.  Depending on the advice, clear the referenced and/or
 4901  *      modified flags in each mapping and set the mapped page's dirty field.
 4902  */
 4903 void
 4904 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 4905 {
 4906         pd_entry_t oldpde, *pde;
 4907         pt_entry_t *pte;
 4908         vm_offset_t pdnxt;
 4909         vm_page_t m;
 4910         boolean_t anychanged, pv_lists_locked;
 4911 
 4912         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 4913                 return;
 4914         if (pmap_is_current(pmap))
 4915                 pv_lists_locked = FALSE;
 4916         else {
 4917                 pv_lists_locked = TRUE;
 4918 resume:
 4919                 rw_wlock(&pvh_global_lock);
 4920                 sched_pin();
 4921         }
 4922         anychanged = FALSE;
 4923         PMAP_LOCK(pmap);
 4924         for (; sva < eva; sva = pdnxt) {
 4925                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 4926                 if (pdnxt < sva)
 4927                         pdnxt = eva;
 4928                 pde = pmap_pde(pmap, sva);
 4929                 oldpde = *pde;
 4930                 if ((oldpde & PG_V) == 0)
 4931                         continue;
 4932                 else if ((oldpde & PG_PS) != 0) {
 4933                         if ((oldpde & PG_MANAGED) == 0)
 4934                                 continue;
 4935                         if (!pv_lists_locked) {
 4936                                 pv_lists_locked = TRUE;
 4937                                 if (!rw_try_wlock(&pvh_global_lock)) {
 4938                                         if (anychanged)
 4939                                                 pmap_invalidate_all(pmap);
 4940                                         PMAP_UNLOCK(pmap);
 4941                                         goto resume;
 4942                                 }
 4943                                 sched_pin();
 4944                         }
 4945                         if (!pmap_demote_pde(pmap, pde, sva)) {
 4946                                 /*
 4947                                  * The large page mapping was destroyed.
 4948                                  */
 4949                                 continue;
 4950                         }
 4951 
 4952                         /*
 4953                          * Unless the page mappings are wired, remove the
 4954                          * mapping to a single page so that a subsequent
 4955                          * access may repromote.  Since the underlying page
 4956                          * table page is fully populated, this removal never
 4957                          * frees a page table page.
 4958                          */
 4959                         if ((oldpde & PG_W) == 0) {
 4960                                 pte = pmap_pte_quick(pmap, sva);
 4961                                 KASSERT((*pte & PG_V) != 0,
 4962                                     ("pmap_advise: invalid PTE"));
 4963                                 pmap_remove_pte(pmap, pte, sva, NULL);
 4964                                 anychanged = TRUE;
 4965                         }
 4966                 }
 4967                 if (pdnxt > eva)
 4968                         pdnxt = eva;
 4969                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 4970                     sva += PAGE_SIZE) {
 4971                         if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
 4972                             PG_V))
 4973                                 continue;
 4974                         else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4975                                 if (advice == MADV_DONTNEED) {
 4976                                         /*
 4977                                          * Future calls to pmap_is_modified()
 4978                                          * can be avoided by making the page
 4979                                          * dirty now.
 4980                                          */
 4981                                         m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 4982                                         vm_page_dirty(m);
 4983                                 }
 4984                                 atomic_clear_int((u_int *)pte, PG_M | PG_A);
 4985                         } else if ((*pte & PG_A) != 0)
 4986                                 atomic_clear_int((u_int *)pte, PG_A);
 4987                         else
 4988                                 continue;
 4989                         if ((*pte & PG_G) != 0)
 4990                                 pmap_invalidate_page(pmap, sva);
 4991                         else
 4992                                 anychanged = TRUE;
 4993                 }
 4994         }
 4995         if (anychanged)
 4996                 pmap_invalidate_all(pmap);
 4997         if (pv_lists_locked) {
 4998                 sched_unpin();
 4999                 rw_wunlock(&pvh_global_lock);
 5000         }
 5001         PMAP_UNLOCK(pmap);
 5002 }
 5003 
 5004 /*
 5005  *      Clear the modify bits on the specified physical page.
 5006  */
 5007 void
 5008 pmap_clear_modify(vm_page_t m)
 5009 {
 5010         struct md_page *pvh;
 5011         pv_entry_t next_pv, pv;
 5012         pmap_t pmap;
 5013         pd_entry_t oldpde, *pde;
 5014         pt_entry_t oldpte, *pte;
 5015         vm_offset_t va;
 5016 
 5017         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 5018             ("pmap_clear_modify: page %p is not managed", m));
 5019         VM_OBJECT_ASSERT_WLOCKED(m->object);
 5020         KASSERT(!vm_page_xbusied(m),
 5021             ("pmap_clear_modify: page %p is exclusive busied", m));
 5022 
 5023         /*
 5024          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 5025          * If the object containing the page is locked and the page is not
 5026          * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
 5027          */
 5028         if ((m->aflags & PGA_WRITEABLE) == 0)
 5029                 return;
 5030         rw_wlock(&pvh_global_lock);
 5031         sched_pin();
 5032         if ((m->flags & PG_FICTITIOUS) != 0)
 5033                 goto small_mappings;
 5034         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 5035         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 5036                 va = pv->pv_va;
 5037                 pmap = PV_PMAP(pv);
 5038                 PMAP_LOCK(pmap);
 5039                 pde = pmap_pde(pmap, va);
 5040                 oldpde = *pde;
 5041                 if ((oldpde & PG_RW) != 0) {
 5042                         if (pmap_demote_pde(pmap, pde, va)) {
 5043                                 if ((oldpde & PG_W) == 0) {
 5044                                         /*
 5045                                          * Write protect the mapping to a
 5046                                          * single page so that a subsequent
 5047                                          * write access may repromote.
 5048                                          */
 5049                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 5050                                             PG_PS_FRAME);
 5051                                         pte = pmap_pte_quick(pmap, va);
 5052                                         oldpte = *pte;
 5053                                         if ((oldpte & PG_V) != 0) {
 5054                                                 /*
 5055                                                  * Regardless of whether a pte is 32 or 64 bits
 5056                                                  * in size, PG_RW and PG_M are among the least
 5057                                                  * significant 32 bits.
 5058                                                  */
 5059                                                 while (!atomic_cmpset_int((u_int *)pte,
 5060                                                     oldpte,
 5061                                                     oldpte & ~(PG_M | PG_RW)))
 5062                                                         oldpte = *pte;
 5063                                                 vm_page_dirty(m);
 5064                                                 pmap_invalidate_page(pmap, va);
 5065                                         }
 5066                                 }
 5067                         }
 5068                 }
 5069                 PMAP_UNLOCK(pmap);
 5070         }
 5071 small_mappings:
 5072         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 5073                 pmap = PV_PMAP(pv);
 5074                 PMAP_LOCK(pmap);
 5075                 pde = pmap_pde(pmap, pv->pv_va);
 5076                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 5077                     " a 4mpage in page %p's pv list", m));
 5078                 pte = pmap_pte_quick(pmap, pv->pv_va);
 5079                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 5080                         /*
 5081                          * Regardless of whether a pte is 32 or 64 bits
 5082                          * in size, PG_M is among the least significant
 5083                          * 32 bits. 
 5084                          */
 5085                         atomic_clear_int((u_int *)pte, PG_M);
 5086                         pmap_invalidate_page(pmap, pv->pv_va);
 5087                 }
 5088                 PMAP_UNLOCK(pmap);
 5089         }
 5090         sched_unpin();
 5091         rw_wunlock(&pvh_global_lock);
 5092 }
 5093 
 5094 /*
 5095  * Miscellaneous support routines follow
 5096  */
 5097 
 5098 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 5099 static __inline void
 5100 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
 5101 {
 5102         u_int opte, npte;
 5103 
 5104         /*
 5105          * The cache mode bits are all in the low 32-bits of the
 5106          * PTE, so we can just spin on updating the low 32-bits.
 5107          */
 5108         do {
 5109                 opte = *(u_int *)pte;
 5110                 npte = opte & ~PG_PTE_CACHE;
 5111                 npte |= cache_bits;
 5112         } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 5113 }
 5114 
 5115 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
 5116 static __inline void
 5117 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
 5118 {
 5119         u_int opde, npde;
 5120 
 5121         /*
 5122          * The cache mode bits are all in the low 32-bits of the
 5123          * PDE, so we can just spin on updating the low 32-bits.
 5124          */
 5125         do {
 5126                 opde = *(u_int *)pde;
 5127                 npde = opde & ~PG_PDE_CACHE;
 5128                 npde |= cache_bits;
 5129         } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 5130 }
 5131 
 5132 /*
 5133  * Map a set of physical memory pages into the kernel virtual
 5134  * address space. Return a pointer to where it is mapped. This
 5135  * routine is intended to be used for mapping device memory,
 5136  * NOT real memory.
 5137  */
 5138 void *
 5139 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 5140 {
 5141         struct pmap_preinit_mapping *ppim;
 5142         vm_offset_t va, offset;
 5143         vm_size_t tmpsize;
 5144         int i;
 5145 
 5146         offset = pa & PAGE_MASK;
 5147         size = round_page(offset + size);
 5148         pa = pa & PG_FRAME;
 5149 
 5150         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 5151                 va = KERNBASE + pa;
 5152         else if (!pmap_initialized) {
 5153                 va = 0;
 5154                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5155                         ppim = pmap_preinit_mapping + i;
 5156                         if (ppim->va == 0) {
 5157                                 ppim->pa = pa;
 5158                                 ppim->sz = size;
 5159                                 ppim->mode = mode;
 5160                                 ppim->va = virtual_avail;
 5161                                 virtual_avail += size;
 5162                                 va = ppim->va;
 5163                                 break;
 5164                         }
 5165                 }
 5166                 if (va == 0)
 5167                         panic("%s: too many preinit mappings", __func__);
 5168         } else {
 5169                 /*
 5170                  * If we have a preinit mapping, re-use it.
 5171                  */
 5172                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5173                         ppim = pmap_preinit_mapping + i;
 5174                         if (ppim->pa == pa && ppim->sz == size &&
 5175                             ppim->mode == mode)
 5176                                 return ((void *)(ppim->va + offset));
 5177                 }
 5178                 va = kva_alloc(size);
 5179                 if (va == 0)
 5180                         panic("%s: Couldn't allocate KVA", __func__);
 5181         }
 5182         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 5183                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 5184         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 5185         pmap_invalidate_cache_range(va, va + size, FALSE);
 5186         return ((void *)(va + offset));
 5187 }
 5188 
 5189 void *
 5190 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 5191 {
 5192 
 5193         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 5194 }
 5195 
 5196 void *
 5197 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 5198 {
 5199 
 5200         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 5201 }
 5202 
 5203 void
 5204 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 5205 {
 5206         struct pmap_preinit_mapping *ppim;
 5207         vm_offset_t offset;
 5208         int i;
 5209 
 5210         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 5211                 return;
 5212         offset = va & PAGE_MASK;
 5213         size = round_page(offset + size);
 5214         va = trunc_page(va);
 5215         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5216                 ppim = pmap_preinit_mapping + i;
 5217                 if (ppim->va == va && ppim->sz == size) {
 5218                         if (pmap_initialized)
 5219                                 return;
 5220                         ppim->pa = 0;
 5221                         ppim->va = 0;
 5222                         ppim->sz = 0;
 5223                         ppim->mode = 0;
 5224                         if (va + size == virtual_avail)
 5225                                 virtual_avail = va;
 5226                         return;
 5227                 }
 5228         }
 5229         if (pmap_initialized)
 5230                 kva_free(va, size);
 5231 }
 5232 
 5233 /*
 5234  * Sets the memory attribute for the specified page.
 5235  */
 5236 void
 5237 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 5238 {
 5239 
 5240         m->md.pat_mode = ma;
 5241         if ((m->flags & PG_FICTITIOUS) != 0)
 5242                 return;
 5243 
 5244         /*
 5245          * If "m" is a normal page, flush it from the cache.
 5246          * See pmap_invalidate_cache_range().
 5247          *
 5248          * First, try to find an existing mapping of the page by sf
 5249          * buffer. sf_buf_invalidate_cache() modifies mapping and
 5250          * flushes the cache.
 5251          */    
 5252         if (sf_buf_invalidate_cache(m))
 5253                 return;
 5254 
 5255         /*
 5256          * If page is not mapped by sf buffer, but CPU does not
 5257          * support self snoop, map the page transient and do
 5258          * invalidation. In the worst case, whole cache is flushed by
 5259          * pmap_invalidate_cache_range().
 5260          */
 5261         if ((cpu_feature & CPUID_SS) == 0)
 5262                 pmap_flush_page(m);
 5263 }
 5264 
 5265 static void
 5266 pmap_flush_page(vm_page_t m)
 5267 {
 5268         struct sysmaps *sysmaps;
 5269         vm_offset_t sva, eva;
 5270         bool useclflushopt;
 5271 
 5272         useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
 5273         if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
 5274                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 5275                 mtx_lock(&sysmaps->lock);
 5276                 if (*sysmaps->CMAP2)
 5277                         panic("pmap_flush_page: CMAP2 busy");
 5278                 sched_pin();
 5279                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
 5280                     PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
 5281                 invlcaddr(sysmaps->CADDR2);
 5282                 sva = (vm_offset_t)sysmaps->CADDR2;
 5283                 eva = sva + PAGE_SIZE;
 5284 
 5285                 /*
 5286                  * Use mfence despite the ordering implied by
 5287                  * mtx_{un,}lock() because clflush on non-Intel CPUs
 5288                  * and clflushopt are not guaranteed to be ordered by
 5289                  * any other instruction.
 5290                  */
 5291                 if (useclflushopt || cpu_vendor_id != CPU_VENDOR_INTEL)
 5292                         mfence();
 5293                 for (; sva < eva; sva += cpu_clflush_line_size) {
 5294                         if (useclflushopt)
 5295                                 clflushopt(sva);
 5296                         else
 5297                                 clflush(sva);
 5298                 }
 5299                 if (useclflushopt || cpu_vendor_id != CPU_VENDOR_INTEL)
 5300                         mfence();
 5301                 *sysmaps->CMAP2 = 0;
 5302                 sched_unpin();
 5303                 mtx_unlock(&sysmaps->lock);
 5304         } else
 5305                 pmap_invalidate_cache();
 5306 }
 5307 
 5308 /*
 5309  * Changes the specified virtual address range's memory type to that given by
 5310  * the parameter "mode".  The specified virtual address range must be
 5311  * completely contained within either the kernel map.
 5312  *
 5313  * Returns zero if the change completed successfully, and either EINVAL or
 5314  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 5315  * of the virtual address range was not mapped, and ENOMEM is returned if
 5316  * there was insufficient memory available to complete the change.
 5317  */
 5318 int
 5319 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 5320 {
 5321         vm_offset_t base, offset, tmpva;
 5322         pd_entry_t *pde;
 5323         pt_entry_t *pte;
 5324         int cache_bits_pte, cache_bits_pde;
 5325         boolean_t changed;
 5326 
 5327         base = trunc_page(va);
 5328         offset = va & PAGE_MASK;
 5329         size = round_page(offset + size);
 5330 
 5331         /*
 5332          * Only supported on kernel virtual addresses above the recursive map.
 5333          */
 5334         if (base < VM_MIN_KERNEL_ADDRESS)
 5335                 return (EINVAL);
 5336 
 5337         cache_bits_pde = pmap_cache_bits(mode, 1);
 5338         cache_bits_pte = pmap_cache_bits(mode, 0);
 5339         changed = FALSE;
 5340 
 5341         /*
 5342          * Pages that aren't mapped aren't supported.  Also break down
 5343          * 2/4MB pages into 4KB pages if required.
 5344          */
 5345         PMAP_LOCK(kernel_pmap);
 5346         for (tmpva = base; tmpva < base + size; ) {
 5347                 pde = pmap_pde(kernel_pmap, tmpva);
 5348                 if (*pde == 0) {
 5349                         PMAP_UNLOCK(kernel_pmap);
 5350                         return (EINVAL);
 5351                 }
 5352                 if (*pde & PG_PS) {
 5353                         /*
 5354                          * If the current 2/4MB page already has
 5355                          * the required memory type, then we need not
 5356                          * demote this page.  Just increment tmpva to
 5357                          * the next 2/4MB page frame.
 5358                          */
 5359                         if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
 5360                                 tmpva = trunc_4mpage(tmpva) + NBPDR;
 5361                                 continue;
 5362                         }
 5363 
 5364                         /*
 5365                          * If the current offset aligns with a 2/4MB
 5366                          * page frame and there is at least 2/4MB left
 5367                          * within the range, then we need not break
 5368                          * down this page into 4KB pages.
 5369                          */
 5370                         if ((tmpva & PDRMASK) == 0 &&
 5371                             tmpva + PDRMASK < base + size) {
 5372                                 tmpva += NBPDR;
 5373                                 continue;
 5374                         }
 5375                         if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
 5376                                 PMAP_UNLOCK(kernel_pmap);
 5377                                 return (ENOMEM);
 5378                         }
 5379                 }
 5380                 pte = vtopte(tmpva);
 5381                 if (*pte == 0) {
 5382                         PMAP_UNLOCK(kernel_pmap);
 5383                         return (EINVAL);
 5384                 }
 5385                 tmpva += PAGE_SIZE;
 5386         }
 5387         PMAP_UNLOCK(kernel_pmap);
 5388 
 5389         /*
 5390          * Ok, all the pages exist, so run through them updating their
 5391          * cache mode if required.
 5392          */
 5393         for (tmpva = base; tmpva < base + size; ) {
 5394                 pde = pmap_pde(kernel_pmap, tmpva);
 5395                 if (*pde & PG_PS) {
 5396                         if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
 5397                                 pmap_pde_attr(pde, cache_bits_pde);
 5398                                 changed = TRUE;
 5399                         }
 5400                         tmpva = trunc_4mpage(tmpva) + NBPDR;
 5401                 } else {
 5402                         pte = vtopte(tmpva);
 5403                         if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
 5404                                 pmap_pte_attr(pte, cache_bits_pte);
 5405                                 changed = TRUE;
 5406                         }
 5407                         tmpva += PAGE_SIZE;
 5408                 }
 5409         }
 5410 
 5411         /*
 5412          * Flush CPU caches to make sure any data isn't cached that
 5413          * shouldn't be, etc.
 5414          */
 5415         if (changed) {
 5416                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 5417                 pmap_invalidate_cache_range(base, tmpva, FALSE);
 5418         }
 5419         return (0);
 5420 }
 5421 
 5422 /*
 5423  * perform the pmap work for mincore
 5424  */
 5425 int
 5426 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 5427 {
 5428         pd_entry_t *pdep;
 5429         pt_entry_t *ptep, pte;
 5430         vm_paddr_t pa;
 5431         int val;
 5432 
 5433         PMAP_LOCK(pmap);
 5434 retry:
 5435         pdep = pmap_pde(pmap, addr);
 5436         if (*pdep != 0) {
 5437                 if (*pdep & PG_PS) {
 5438                         pte = *pdep;
 5439                         /* Compute the physical address of the 4KB page. */
 5440                         pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 5441                             PG_FRAME;
 5442                         val = MINCORE_SUPER;
 5443                 } else {
 5444                         ptep = pmap_pte(pmap, addr);
 5445                         pte = *ptep;
 5446                         pmap_pte_release(ptep);
 5447                         pa = pte & PG_FRAME;
 5448                         val = 0;
 5449                 }
 5450         } else {
 5451                 pte = 0;
 5452                 pa = 0;
 5453                 val = 0;
 5454         }
 5455         if ((pte & PG_V) != 0) {
 5456                 val |= MINCORE_INCORE;
 5457                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 5458                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 5459                 if ((pte & PG_A) != 0)
 5460                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 5461         }
 5462         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 5463             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 5464             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 5465                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 5466                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 5467                         goto retry;
 5468         } else
 5469                 PA_UNLOCK_COND(*locked_pa);
 5470         PMAP_UNLOCK(pmap);
 5471         return (val);
 5472 }
 5473 
 5474 void
 5475 pmap_activate(struct thread *td)
 5476 {
 5477         pmap_t  pmap, oldpmap;
 5478         u_int   cpuid;
 5479         u_int32_t  cr3;
 5480 
 5481         critical_enter();
 5482         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 5483         oldpmap = PCPU_GET(curpmap);
 5484         cpuid = PCPU_GET(cpuid);
 5485 #if defined(SMP)
 5486         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 5487         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 5488 #else
 5489         CPU_CLR(cpuid, &oldpmap->pm_active);
 5490         CPU_SET(cpuid, &pmap->pm_active);
 5491 #endif
 5492 #if defined(PAE) || defined(PAE_TABLES)
 5493         cr3 = vtophys(pmap->pm_pdpt);
 5494 #else
 5495         cr3 = vtophys(pmap->pm_pdir);
 5496 #endif
 5497         /*
 5498          * pmap_activate is for the current thread on the current cpu
 5499          */
 5500         td->td_pcb->pcb_cr3 = cr3;
 5501         load_cr3(cr3);
 5502         PCPU_SET(curpmap, pmap);
 5503         critical_exit();
 5504 }
 5505 
 5506 void
 5507 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 5508 {
 5509 }
 5510 
 5511 /*
 5512  *      Increase the starting virtual address of the given mapping if a
 5513  *      different alignment might result in more superpage mappings.
 5514  */
 5515 void
 5516 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 5517     vm_offset_t *addr, vm_size_t size)
 5518 {
 5519         vm_offset_t superpage_offset;
 5520 
 5521         if (size < NBPDR)
 5522                 return;
 5523         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 5524                 offset += ptoa(object->pg_color);
 5525         superpage_offset = offset & PDRMASK;
 5526         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 5527             (*addr & PDRMASK) == superpage_offset)
 5528                 return;
 5529         if ((*addr & PDRMASK) < superpage_offset)
 5530                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 5531         else
 5532                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 5533 }
 5534 
 5535 vm_offset_t
 5536 pmap_quick_enter_page(vm_page_t m)
 5537 {
 5538         vm_offset_t qaddr;
 5539         pt_entry_t *pte;
 5540 
 5541         critical_enter();
 5542         qaddr = PCPU_GET(qmap_addr);
 5543         pte = vtopte(qaddr);
 5544 
 5545         KASSERT(*pte == 0, ("pmap_quick_enter_page: PTE busy"));
 5546         *pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 5547             pmap_cache_bits(pmap_page_get_memattr(m), 0);
 5548         invlpg(qaddr);
 5549 
 5550         return (qaddr);
 5551 }
 5552 
 5553 void
 5554 pmap_quick_remove_page(vm_offset_t addr)
 5555 {
 5556         vm_offset_t qaddr;
 5557         pt_entry_t *pte;
 5558 
 5559         qaddr = PCPU_GET(qmap_addr);
 5560         pte = vtopte(qaddr);
 5561 
 5562         KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
 5563         KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
 5564 
 5565         *pte = 0;
 5566         critical_exit();
 5567 }
 5568 
 5569 #if defined(PMAP_DEBUG)
 5570 pmap_pid_dump(int pid)
 5571 {
 5572         pmap_t pmap;
 5573         struct proc *p;
 5574         int npte = 0;
 5575         int index;
 5576 
 5577         sx_slock(&allproc_lock);
 5578         FOREACH_PROC_IN_SYSTEM(p) {
 5579                 if (p->p_pid != pid)
 5580                         continue;
 5581 
 5582                 if (p->p_vmspace) {
 5583                         int i,j;
 5584                         index = 0;
 5585                         pmap = vmspace_pmap(p->p_vmspace);
 5586                         for (i = 0; i < NPDEPTD; i++) {
 5587                                 pd_entry_t *pde;
 5588                                 pt_entry_t *pte;
 5589                                 vm_offset_t base = i << PDRSHIFT;
 5590                                 
 5591                                 pde = &pmap->pm_pdir[i];
 5592                                 if (pde && pmap_pde_v(pde)) {
 5593                                         for (j = 0; j < NPTEPG; j++) {
 5594                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 5595                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 5596                                                         if (index) {
 5597                                                                 index = 0;
 5598                                                                 printf("\n");
 5599                                                         }
 5600                                                         sx_sunlock(&allproc_lock);
 5601                                                         return (npte);
 5602                                                 }
 5603                                                 pte = pmap_pte(pmap, va);
 5604                                                 if (pte && pmap_pte_v(pte)) {
 5605                                                         pt_entry_t pa;
 5606                                                         vm_page_t m;
 5607                                                         pa = *pte;
 5608                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 5609                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 5610                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 5611                                                         npte++;
 5612                                                         index++;
 5613                                                         if (index >= 2) {
 5614                                                                 index = 0;
 5615                                                                 printf("\n");
 5616                                                         } else {
 5617                                                                 printf(" ");
 5618                                                         }
 5619                                                 }
 5620                                         }
 5621                                 }
 5622                         }
 5623                 }
 5624         }
 5625         sx_sunlock(&allproc_lock);
 5626         return (npte);
 5627 }
 5628 #endif

Cache object: 4d7c0df02ad76bce08f6e79f26c8b05c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.