The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/11.1/sys/i386/i386/pmap.c 330908 2018-03-14 04:00:00Z gordon $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      Since the information managed by this module is
   84  *      also stored by the logical address mapping module,
   85  *      this module may throw away valid virtual-to-physical
   86  *      mappings at almost any time.  However, invalidations
   87  *      of virtual-to-physical mappings must be done as
   88  *      requested.
   89  *
   90  *      In order to cope with hardware architectures which
   91  *      make virtual-to-physical map invalidates expensive,
   92  *      this module may delay invalidate or reduced protection
   93  *      operations until such time as they are actually
   94  *      necessary.  This module is given full information as
   95  *      to which processors are currently using which maps,
   96  *      and to when physical maps must be made correct.
   97  */
   98 
   99 #include "opt_apic.h"
  100 #include "opt_cpu.h"
  101 #include "opt_pmap.h"
  102 #include "opt_smp.h"
  103 #include "opt_xbox.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/kernel.h>
  108 #include <sys/ktr.h>
  109 #include <sys/lock.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mman.h>
  112 #include <sys/msgbuf.h>
  113 #include <sys/mutex.h>
  114 #include <sys/proc.h>
  115 #include <sys/rwlock.h>
  116 #include <sys/sf_buf.h>
  117 #include <sys/sx.h>
  118 #include <sys/vmmeter.h>
  119 #include <sys/sched.h>
  120 #include <sys/sysctl.h>
  121 #include <sys/smp.h>
  122 
  123 #include <vm/vm.h>
  124 #include <vm/vm_param.h>
  125 #include <vm/vm_kern.h>
  126 #include <vm/vm_page.h>
  127 #include <vm/vm_map.h>
  128 #include <vm/vm_object.h>
  129 #include <vm/vm_extern.h>
  130 #include <vm/vm_pageout.h>
  131 #include <vm/vm_pager.h>
  132 #include <vm/vm_phys.h>
  133 #include <vm/vm_radix.h>
  134 #include <vm/vm_reserv.h>
  135 #include <vm/uma.h>
  136 
  137 #ifdef DEV_APIC
  138 #include <sys/bus.h>
  139 #include <machine/intr_machdep.h>
  140 #include <x86/apicvar.h>
  141 #endif
  142 #include <machine/cpu.h>
  143 #include <machine/cputypes.h>
  144 #include <machine/md_var.h>
  145 #include <machine/pcb.h>
  146 #include <machine/specialreg.h>
  147 #ifdef SMP
  148 #include <machine/smp.h>
  149 #endif
  150 
  151 #ifdef XBOX
  152 #include <machine/xbox.h>
  153 #endif
  154 
  155 #ifndef PMAP_SHPGPERPROC
  156 #define PMAP_SHPGPERPROC 200
  157 #endif
  158 
  159 #if !defined(DIAGNOSTIC)
  160 #ifdef __GNUC_GNU_INLINE__
  161 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  162 #else
  163 #define PMAP_INLINE     extern inline
  164 #endif
  165 #else
  166 #define PMAP_INLINE
  167 #endif
  168 
  169 #ifdef PV_STATS
  170 #define PV_STAT(x)      do { x ; } while (0)
  171 #else
  172 #define PV_STAT(x)      do { } while (0)
  173 #endif
  174 
  175 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  176 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  177 
  178 /*
  179  * Get PDEs and PTEs for user/kernel address space
  180  */
  181 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  182 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  183 
  184 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  185 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  186 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  187 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  188 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  189 
  190 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  191     atomic_clear_int((u_int *)(pte), PG_W))
  192 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  193 
  194 struct pmap kernel_pmap_store;
  195 LIST_HEAD(pmaplist, pmap);
  196 static struct pmaplist allpmaps;
  197 static struct mtx allpmaps_lock;
  198 
  199 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  200 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  201 int pgeflag = 0;                /* PG_G or-in */
  202 int pseflag = 0;                /* PG_PS or-in */
  203 
  204 static int nkpt = NKPT;
  205 vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
  206 extern u_int32_t KERNend;
  207 extern u_int32_t KPTphys;
  208 
  209 #if defined(PAE) || defined(PAE_TABLES)
  210 pt_entry_t pg_nx;
  211 static uma_zone_t pdptzone;
  212 #endif
  213 
  214 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  215 
  216 static int pat_works = 1;
  217 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
  218     "Is page attribute table fully functional?");
  219 
  220 static int pg_ps_enabled = 1;
  221 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  222     &pg_ps_enabled, 0, "Are large page mappings enabled?");
  223 
  224 #define PAT_INDEX_SIZE  8
  225 static int pat_index[PAT_INDEX_SIZE];   /* cache mode to PAT index conversion */
  226 
  227 /*
  228  * pmap_mapdev support pre initialization (i.e. console)
  229  */
  230 #define PMAP_PREINIT_MAPPING_COUNT      8
  231 static struct pmap_preinit_mapping {
  232         vm_paddr_t      pa;
  233         vm_offset_t     va;
  234         vm_size_t       sz;
  235         int             mode;
  236 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
  237 static int pmap_initialized;
  238 
  239 static struct rwlock_padalign pvh_global_lock;
  240 
  241 /*
  242  * Data for the pv entry allocation mechanism
  243  */
  244 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  245 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  246 static struct md_page *pv_table;
  247 static int shpgperproc = PMAP_SHPGPERPROC;
  248 
  249 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  250 int pv_maxchunks;                       /* How many chunks we have KVA for */
  251 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  252 
  253 /*
  254  * All those kernel PT submaps that BSD is so fond of
  255  */
  256 pt_entry_t *CMAP3;
  257 static pd_entry_t *KPTD;
  258 caddr_t ptvmmap = 0;
  259 caddr_t CADDR3;
  260 struct msgbuf *msgbufp = NULL;
  261 
  262 /*
  263  * Crashdump maps.
  264  */
  265 static caddr_t crashdumpmap;
  266 
  267 static pt_entry_t *PMAP1 = NULL, *PMAP2;
  268 static pt_entry_t *PADDR1 = NULL, *PADDR2;
  269 #ifdef SMP
  270 static int PMAP1cpu;
  271 static int PMAP1changedcpu;
  272 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  273            &PMAP1changedcpu, 0,
  274            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  275 #endif
  276 static int PMAP1changed;
  277 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  278            &PMAP1changed, 0,
  279            "Number of times pmap_pte_quick changed PMAP1");
  280 static int PMAP1unchanged;
  281 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  282            &PMAP1unchanged, 0,
  283            "Number of times pmap_pte_quick didn't change PMAP1");
  284 static struct mtx PMAP2mutex;
  285 
  286 int pti;
  287 
  288 static void     free_pv_chunk(struct pv_chunk *pc);
  289 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  290 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  291 static void     pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  292 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  293 static void     pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  294 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  295 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  296                     vm_offset_t va);
  297 static int      pmap_pvh_wired_mappings(struct md_page *pvh, int count);
  298 
  299 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  300 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
  301     vm_prot_t prot);
  302 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  303     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  304 static void pmap_flush_page(vm_page_t m);
  305 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
  306 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
  307                     pd_entry_t pde);
  308 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
  309 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
  310 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
  311 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  312 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
  313 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
  314 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  315 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
  316     vm_prot_t prot);
  317 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
  318 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
  319     struct spglist *free);
  320 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  321     struct spglist *free);
  322 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
  323 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  324     struct spglist *free);
  325 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  326                                         vm_offset_t va);
  327 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  328 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  329     vm_page_t m);
  330 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
  331     pd_entry_t newpde);
  332 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
  333 
  334 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
  335 
  336 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
  337 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
  338 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  339 static void pmap_pte_release(pt_entry_t *pte);
  340 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
  341 #if defined(PAE) || defined(PAE_TABLES)
  342 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
  343     int wait);
  344 #endif
  345 static void pmap_set_pg(void);
  346 
  347 static __inline void pagezero(void *page);
  348 
  349 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  350 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  351 
  352 /*
  353  * If you get an error here, then you set KVA_PAGES wrong! See the
  354  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  355  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  356  */
  357 CTASSERT(KERNBASE % (1 << 24) == 0);
  358 
  359 /*
  360  *      Bootstrap the system enough to run with virtual memory.
  361  *
  362  *      On the i386 this is called after mapping has already been enabled
  363  *      and just syncs the pmap module with what has already been done.
  364  *      [We can't call it easily with mapping off since the kernel is not
  365  *      mapped with PA == VA, hence we would have to relocate every address
  366  *      from the linked base (virtual) address "KERNBASE" to the actual
  367  *      (physical) address starting relative to 0]
  368  */
  369 void
  370 pmap_bootstrap(vm_paddr_t firstaddr)
  371 {
  372         vm_offset_t va;
  373         pt_entry_t *pte, *unused;
  374         struct pcpu *pc;
  375         int i;
  376 
  377         /*
  378          * Add a physical memory segment (vm_phys_seg) corresponding to the
  379          * preallocated kernel page table pages so that vm_page structures
  380          * representing these pages will be created.  The vm_page structures
  381          * are required for promotion of the corresponding kernel virtual
  382          * addresses to superpage mappings.
  383          */
  384         vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
  385 
  386         /*
  387          * Initialize the first available kernel virtual address.  However,
  388          * using "firstaddr" may waste a few pages of the kernel virtual
  389          * address space, because locore may not have mapped every physical
  390          * page that it allocated.  Preferably, locore would provide a first
  391          * unused virtual address in addition to "firstaddr".
  392          */
  393         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  394 
  395         virtual_end = VM_MAX_KERNEL_ADDRESS;
  396 
  397         /*
  398          * Initialize the kernel pmap (which is statically allocated).
  399          */
  400         PMAP_LOCK_INIT(kernel_pmap);
  401         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  402 #if defined(PAE) || defined(PAE_TABLES)
  403         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  404 #endif
  405         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  406         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  407 
  408         /*
  409          * Initialize the global pv list lock.
  410          */
  411         rw_init(&pvh_global_lock, "pmap pv global");
  412 
  413         LIST_INIT(&allpmaps);
  414 
  415         /*
  416          * Request a spin mutex so that changes to allpmaps cannot be
  417          * preempted by smp_rendezvous_cpus().  Otherwise,
  418          * pmap_update_pde_kernel() could access allpmaps while it is
  419          * being changed.
  420          */
  421         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  422         mtx_lock_spin(&allpmaps_lock);
  423         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  424         mtx_unlock_spin(&allpmaps_lock);
  425 
  426         /*
  427          * Reserve some special page table entries/VA space for temporary
  428          * mapping of pages.
  429          */
  430 #define SYSMAP(c, p, v, n)      \
  431         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  432 
  433         va = virtual_avail;
  434         pte = vtopte(va);
  435 
  436 
  437         /*
  438          * Initialize temporary map objects on the current CPU for use
  439          * during early boot.
  440          * CMAP1/CMAP2 are used for zeroing and copying pages.
  441          * CMAP3 is used for the idle process page zeroing.
  442          */
  443         pc = get_pcpu();
  444         mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
  445         SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
  446         SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
  447         SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
  448 
  449         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  450 
  451         /*
  452          * Crashdump maps.
  453          */
  454         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  455 
  456         /*
  457          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  458          */
  459         SYSMAP(caddr_t, unused, ptvmmap, 1)
  460 
  461         /*
  462          * msgbufp is used to map the system message buffer.
  463          */
  464         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  465 
  466         /*
  467          * KPTmap is used by pmap_kextract().
  468          *
  469          * KPTmap is first initialized by locore.  However, that initial
  470          * KPTmap can only support NKPT page table pages.  Here, a larger
  471          * KPTmap is created that can support KVA_PAGES page table pages.
  472          */
  473         SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
  474 
  475         for (i = 0; i < NKPT; i++)
  476                 KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
  477 
  478         /*
  479          * Adjust the start of the KPTD and KPTmap so that the implementation
  480          * of pmap_kextract() and pmap_growkernel() can be made simpler.
  481          */
  482         KPTD -= KPTDI;
  483         KPTmap -= i386_btop(KPTDI << PDRSHIFT);
  484 
  485         /*
  486          * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
  487          * respectively.
  488          */
  489         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  490         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  491 
  492         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  493 
  494         virtual_avail = va;
  495 
  496         /*
  497          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  498          * physical memory region that is used by the ACPI wakeup code.  This
  499          * mapping must not have PG_G set. 
  500          */
  501 #ifdef XBOX
  502         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  503          * an early stadium, we cannot yet neatly map video memory ... :-(
  504          * Better fixes are very welcome! */
  505         if (!arch_i386_is_xbox)
  506 #endif
  507         for (i = 1; i < NKPT; i++)
  508                 PTD[i] = 0;
  509 
  510         /*
  511          * Initialize the PAT MSR if present.
  512          * pmap_init_pat() clears and sets CR4_PGE, which, as a
  513          * side-effect, invalidates stale PG_G TLB entries that might
  514          * have been created in our pre-boot environment.  We assume
  515          * that PAT support implies PGE and in reverse, PGE presence
  516          * comes with PAT.  Both features were added for Pentium Pro.
  517          */
  518         pmap_init_pat();
  519 
  520         /* Turn on PG_G on kernel page(s) */
  521         pmap_set_pg();
  522 }
  523 
  524 static void
  525 pmap_init_reserved_pages(void)
  526 {
  527         struct pcpu *pc;
  528         vm_offset_t pages;
  529         int i;
  530 
  531         CPU_FOREACH(i) {
  532                 pc = pcpu_find(i);
  533                 /*
  534                  * Skip if the mapping has already been initialized,
  535                  * i.e. this is the BSP.
  536                  */
  537                 if (pc->pc_cmap_addr1 != 0)
  538                         continue;
  539                 mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
  540                 pages = kva_alloc(PAGE_SIZE * 3);
  541                 if (pages == 0)
  542                         panic("%s: unable to allocate KVA", __func__);
  543                 pc->pc_cmap_pte1 = vtopte(pages);
  544                 pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
  545                 pc->pc_cmap_addr1 = (caddr_t)pages;
  546                 pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
  547                 pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
  548         }
  549 }
  550  
  551 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
  552 
  553 /*
  554  * Setup the PAT MSR.
  555  */
  556 void
  557 pmap_init_pat(void)
  558 {
  559         int pat_table[PAT_INDEX_SIZE];
  560         uint64_t pat_msr;
  561         u_long cr0, cr4;
  562         int i;
  563 
  564         /* Set default PAT index table. */
  565         for (i = 0; i < PAT_INDEX_SIZE; i++)
  566                 pat_table[i] = -1;
  567         pat_table[PAT_WRITE_BACK] = 0;
  568         pat_table[PAT_WRITE_THROUGH] = 1;
  569         pat_table[PAT_UNCACHEABLE] = 3;
  570         pat_table[PAT_WRITE_COMBINING] = 3;
  571         pat_table[PAT_WRITE_PROTECTED] = 3;
  572         pat_table[PAT_UNCACHED] = 3;
  573 
  574         /*
  575          * Bail if this CPU doesn't implement PAT.
  576          * We assume that PAT support implies PGE.
  577          */
  578         if ((cpu_feature & CPUID_PAT) == 0) {
  579                 for (i = 0; i < PAT_INDEX_SIZE; i++)
  580                         pat_index[i] = pat_table[i];
  581                 pat_works = 0;
  582                 return;
  583         }
  584 
  585         /*
  586          * Due to some Intel errata, we can only safely use the lower 4
  587          * PAT entries.
  588          *
  589          *   Intel Pentium III Processor Specification Update
  590          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  591          * or Mode C Paging)
  592          *
  593          *   Intel Pentium IV  Processor Specification Update
  594          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  595          */
  596         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  597             !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
  598                 pat_works = 0;
  599 
  600         /* Initialize default PAT entries. */
  601         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
  602             PAT_VALUE(1, PAT_WRITE_THROUGH) |
  603             PAT_VALUE(2, PAT_UNCACHED) |
  604             PAT_VALUE(3, PAT_UNCACHEABLE) |
  605             PAT_VALUE(4, PAT_WRITE_BACK) |
  606             PAT_VALUE(5, PAT_WRITE_THROUGH) |
  607             PAT_VALUE(6, PAT_UNCACHED) |
  608             PAT_VALUE(7, PAT_UNCACHEABLE);
  609 
  610         if (pat_works) {
  611                 /*
  612                  * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
  613                  * Program 5 and 6 as WP and WC.
  614                  * Leave 4 and 7 as WB and UC.
  615                  */
  616                 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
  617                 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
  618                     PAT_VALUE(6, PAT_WRITE_COMBINING);
  619                 pat_table[PAT_UNCACHED] = 2;
  620                 pat_table[PAT_WRITE_PROTECTED] = 5;
  621                 pat_table[PAT_WRITE_COMBINING] = 6;
  622         } else {
  623                 /*
  624                  * Just replace PAT Index 2 with WC instead of UC-.
  625                  */
  626                 pat_msr &= ~PAT_MASK(2);
  627                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  628                 pat_table[PAT_WRITE_COMBINING] = 2;
  629         }
  630 
  631         /* Disable PGE. */
  632         cr4 = rcr4();
  633         load_cr4(cr4 & ~CR4_PGE);
  634 
  635         /* Disable caches (CD = 1, NW = 0). */
  636         cr0 = rcr0();
  637         load_cr0((cr0 & ~CR0_NW) | CR0_CD);
  638 
  639         /* Flushes caches and TLBs. */
  640         wbinvd();
  641         invltlb();
  642 
  643         /* Update PAT and index table. */
  644         wrmsr(MSR_PAT, pat_msr);
  645         for (i = 0; i < PAT_INDEX_SIZE; i++)
  646                 pat_index[i] = pat_table[i];
  647 
  648         /* Flush caches and TLBs again. */
  649         wbinvd();
  650         invltlb();
  651 
  652         /* Restore caches and PGE. */
  653         load_cr0(cr0);
  654         load_cr4(cr4);
  655 }
  656 
  657 /*
  658  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  659  */
  660 static void
  661 pmap_set_pg(void)
  662 {
  663         pt_entry_t *pte;
  664         vm_offset_t va, endva;
  665 
  666         if (pgeflag == 0)
  667                 return;
  668 
  669         endva = KERNBASE + KERNend;
  670 
  671         if (pseflag) {
  672                 va = KERNBASE + KERNLOAD;
  673                 while (va  < endva) {
  674                         pdir_pde(PTD, va) |= pgeflag;
  675                         invltlb();      /* Flush non-PG_G entries. */
  676                         va += NBPDR;
  677                 }
  678         } else {
  679                 va = (vm_offset_t)btext;
  680                 while (va < endva) {
  681                         pte = vtopte(va);
  682                         if (*pte)
  683                                 *pte |= pgeflag;
  684                         invltlb();      /* Flush non-PG_G entries. */
  685                         va += PAGE_SIZE;
  686                 }
  687         }
  688 }
  689 
  690 /*
  691  * Initialize a vm_page's machine-dependent fields.
  692  */
  693 void
  694 pmap_page_init(vm_page_t m)
  695 {
  696 
  697         TAILQ_INIT(&m->md.pv_list);
  698         m->md.pat_mode = PAT_WRITE_BACK;
  699 }
  700 
  701 #if defined(PAE) || defined(PAE_TABLES)
  702 static void *
  703 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
  704 {
  705 
  706         /* Inform UMA that this allocator uses kernel_map/object. */
  707         *flags = UMA_SLAB_KERNEL;
  708         return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
  709             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  710 }
  711 #endif
  712 
  713 /*
  714  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
  715  * Requirements:
  716  *  - Must deal with pages in order to ensure that none of the PG_* bits
  717  *    are ever set, PG_V in particular.
  718  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  719  *    on PAE systems.  This should be ok.
  720  *  - Assumes nothing will ever test these addresses for 0 to indicate
  721  *    no mapping instead of correctly checking PG_V.
  722  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  723  * Because PG_V is never set, there can be no mappings to invalidate.
  724  */
  725 static vm_offset_t
  726 pmap_ptelist_alloc(vm_offset_t *head)
  727 {
  728         pt_entry_t *pte;
  729         vm_offset_t va;
  730 
  731         va = *head;
  732         if (va == 0)
  733                 panic("pmap_ptelist_alloc: exhausted ptelist KVA");
  734         pte = vtopte(va);
  735         *head = *pte;
  736         if (*head & PG_V)
  737                 panic("pmap_ptelist_alloc: va with PG_V set!");
  738         *pte = 0;
  739         return (va);
  740 }
  741 
  742 static void
  743 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  744 {
  745         pt_entry_t *pte;
  746 
  747         if (va & PG_V)
  748                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  749         pte = vtopte(va);
  750         *pte = *head;           /* virtual! PG_V is 0 though */
  751         *head = va;
  752 }
  753 
  754 static void
  755 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  756 {
  757         int i;
  758         vm_offset_t va;
  759 
  760         *head = 0;
  761         for (i = npages - 1; i >= 0; i--) {
  762                 va = (vm_offset_t)base + i * PAGE_SIZE;
  763                 pmap_ptelist_free(head, va);
  764         }
  765 }
  766 
  767 
  768 /*
  769  *      Initialize the pmap module.
  770  *      Called by vm_init, to initialize any structures that the pmap
  771  *      system needs to map virtual memory.
  772  */
  773 void
  774 pmap_init(void)
  775 {
  776         struct pmap_preinit_mapping *ppim;
  777         vm_page_t mpte;
  778         vm_size_t s;
  779         int i, pv_npg;
  780 
  781         /*
  782          * Initialize the vm page array entries for the kernel pmap's
  783          * page table pages.
  784          */ 
  785         for (i = 0; i < NKPT; i++) {
  786                 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
  787                 KASSERT(mpte >= vm_page_array &&
  788                     mpte < &vm_page_array[vm_page_array_size],
  789                     ("pmap_init: page table page is out of range"));
  790                 mpte->pindex = i + KPTDI;
  791                 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
  792         }
  793 
  794         /*
  795          * Initialize the address space (zone) for the pv entries.  Set a
  796          * high water mark so that the system can recover from excessive
  797          * numbers of pv entries.
  798          */
  799         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  800         pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
  801         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  802         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  803         pv_entry_high_water = 9 * (pv_entry_max / 10);
  804 
  805         /*
  806          * If the kernel is running on a virtual machine, then it must assume
  807          * that MCA is enabled by the hypervisor.  Moreover, the kernel must
  808          * be prepared for the hypervisor changing the vendor and family that
  809          * are reported by CPUID.  Consequently, the workaround for AMD Family
  810          * 10h Erratum 383 is enabled if the processor's feature set does not
  811          * include at least one feature that is only supported by older Intel
  812          * or newer AMD processors.
  813          */
  814         if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
  815             (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
  816             CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
  817             AMDID2_FMA4)) == 0)
  818                 workaround_erratum383 = 1;
  819 
  820         /*
  821          * Are large page mappings supported and enabled?
  822          */
  823         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  824         if (pseflag == 0)
  825                 pg_ps_enabled = 0;
  826         else if (pg_ps_enabled) {
  827                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
  828                     ("pmap_init: can't assign to pagesizes[1]"));
  829                 pagesizes[1] = NBPDR;
  830         }
  831 
  832         /*
  833          * Calculate the size of the pv head table for superpages.
  834          * Handle the possibility that "vm_phys_segs[...].end" is zero.
  835          */
  836         pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
  837             PAGE_SIZE) / NBPDR + 1;
  838 
  839         /*
  840          * Allocate memory for the pv head table for superpages.
  841          */
  842         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  843         s = round_page(s);
  844         pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
  845             M_WAITOK | M_ZERO);
  846         for (i = 0; i < pv_npg; i++)
  847                 TAILQ_INIT(&pv_table[i].pv_list);
  848 
  849         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  850         pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
  851         if (pv_chunkbase == NULL)
  852                 panic("pmap_init: not enough kvm for pv chunks");
  853         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  854 #if defined(PAE) || defined(PAE_TABLES)
  855         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  856             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  857             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  858         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  859 #endif
  860 
  861         pmap_initialized = 1;
  862         if (!bootverbose)
  863                 return;
  864         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
  865                 ppim = pmap_preinit_mapping + i;
  866                 if (ppim->va == 0)
  867                         continue;
  868                 printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
  869                     (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
  870         }
  871 }
  872 
  873 
  874 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  875         "Max number of PV entries");
  876 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  877         "Page share factor per proc");
  878 
  879 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  880     "2/4MB page mapping counters");
  881 
  882 static u_long pmap_pde_demotions;
  883 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
  884     &pmap_pde_demotions, 0, "2/4MB page demotions");
  885 
  886 static u_long pmap_pde_mappings;
  887 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  888     &pmap_pde_mappings, 0, "2/4MB page mappings");
  889 
  890 static u_long pmap_pde_p_failures;
  891 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
  892     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
  893 
  894 static u_long pmap_pde_promotions;
  895 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
  896     &pmap_pde_promotions, 0, "2/4MB page promotions");
  897 
  898 /***************************************************
  899  * Low level helper routines.....
  900  ***************************************************/
  901 
  902 /*
  903  * Determine the appropriate bits to set in a PTE or PDE for a specified
  904  * caching mode.
  905  */
  906 int
  907 pmap_cache_bits(int mode, boolean_t is_pde)
  908 {
  909         int cache_bits, pat_flag, pat_idx;
  910 
  911         if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
  912                 panic("Unknown caching mode %d\n", mode);
  913 
  914         /* The PAT bit is different for PTE's and PDE's. */
  915         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  916 
  917         /* Map the caching mode to a PAT index. */
  918         pat_idx = pat_index[mode];
  919 
  920         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  921         cache_bits = 0;
  922         if (pat_idx & 0x4)
  923                 cache_bits |= pat_flag;
  924         if (pat_idx & 0x2)
  925                 cache_bits |= PG_NC_PCD;
  926         if (pat_idx & 0x1)
  927                 cache_bits |= PG_NC_PWT;
  928         return (cache_bits);
  929 }
  930 
  931 /*
  932  * The caller is responsible for maintaining TLB consistency.
  933  */
  934 static void
  935 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
  936 {
  937         pd_entry_t *pde;
  938         pmap_t pmap;
  939         boolean_t PTD_updated;
  940 
  941         PTD_updated = FALSE;
  942         mtx_lock_spin(&allpmaps_lock);
  943         LIST_FOREACH(pmap, &allpmaps, pm_list) {
  944                 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
  945                     PG_FRAME))
  946                         PTD_updated = TRUE;
  947                 pde = pmap_pde(pmap, va);
  948                 pde_store(pde, newpde);
  949         }
  950         mtx_unlock_spin(&allpmaps_lock);
  951         KASSERT(PTD_updated,
  952             ("pmap_kenter_pde: current page table is not in allpmaps"));
  953 }
  954 
  955 /*
  956  * After changing the page size for the specified virtual address in the page
  957  * table, flush the corresponding entries from the processor's TLB.  Only the
  958  * calling processor's TLB is affected.
  959  *
  960  * The calling thread must be pinned to a processor.
  961  */
  962 static void
  963 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
  964 {
  965         u_long cr4;
  966 
  967         if ((newpde & PG_PS) == 0)
  968                 /* Demotion: flush a specific 2MB page mapping. */
  969                 invlpg(va);
  970         else if ((newpde & PG_G) == 0)
  971                 /*
  972                  * Promotion: flush every 4KB page mapping from the TLB
  973                  * because there are too many to flush individually.
  974                  */
  975                 invltlb();
  976         else {
  977                 /*
  978                  * Promotion: flush every 4KB page mapping from the TLB,
  979                  * including any global (PG_G) mappings.
  980                  */
  981                 cr4 = rcr4();
  982                 load_cr4(cr4 & ~CR4_PGE);
  983                 /*
  984                  * Although preemption at this point could be detrimental to
  985                  * performance, it would not lead to an error.  PG_G is simply
  986                  * ignored if CR4.PGE is clear.  Moreover, in case this block
  987                  * is re-entered, the load_cr4() either above or below will
  988                  * modify CR4.PGE flushing the TLB.
  989                  */
  990                 load_cr4(cr4 | CR4_PGE);
  991         }
  992 }
  993 
  994 void
  995 invltlb_glob(void)
  996 {
  997         uint64_t cr4;
  998 
  999         if (pgeflag == 0) {
 1000                 invltlb();
 1001         } else {
 1002                 cr4 = rcr4();
 1003                 load_cr4(cr4 & ~CR4_PGE);
 1004                 load_cr4(cr4 | CR4_PGE);
 1005         }
 1006 }
 1007 
 1008 
 1009 #ifdef SMP
 1010 /*
 1011  * For SMP, these functions have to use the IPI mechanism for coherence.
 1012  *
 1013  * N.B.: Before calling any of the following TLB invalidation functions,
 1014  * the calling processor must ensure that all stores updating a non-
 1015  * kernel page table are globally performed.  Otherwise, another
 1016  * processor could cache an old, pre-update entry without being
 1017  * invalidated.  This can happen one of two ways: (1) The pmap becomes
 1018  * active on another processor after its pm_active field is checked by
 1019  * one of the following functions but before a store updating the page
 1020  * table is globally performed. (2) The pmap becomes active on another
 1021  * processor before its pm_active field is checked but due to
 1022  * speculative loads one of the following functions stills reads the
 1023  * pmap as inactive on the other processor.
 1024  * 
 1025  * The kernel page table is exempt because its pm_active field is
 1026  * immutable.  The kernel page table is always active on every
 1027  * processor.
 1028  */
 1029 void
 1030 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1031 {
 1032         cpuset_t *mask, other_cpus;
 1033         u_int cpuid;
 1034 
 1035         sched_pin();
 1036         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1037                 invlpg(va);
 1038                 mask = &all_cpus;
 1039         } else {
 1040                 cpuid = PCPU_GET(cpuid);
 1041                 other_cpus = all_cpus;
 1042                 CPU_CLR(cpuid, &other_cpus);
 1043                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1044                         invlpg(va);
 1045                 CPU_AND(&other_cpus, &pmap->pm_active);
 1046                 mask = &other_cpus;
 1047         }
 1048         smp_masked_invlpg(*mask, va, pmap);
 1049         sched_unpin();
 1050 }
 1051 
 1052 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
 1053 #define PMAP_INVLPG_THRESHOLD   (4 * 1024 * PAGE_SIZE)
 1054 
 1055 void
 1056 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1057 {
 1058         cpuset_t *mask, other_cpus;
 1059         vm_offset_t addr;
 1060         u_int cpuid;
 1061 
 1062         if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
 1063                 pmap_invalidate_all(pmap);
 1064                 return;
 1065         }
 1066 
 1067         sched_pin();
 1068         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1069                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1070                         invlpg(addr);
 1071                 mask = &all_cpus;
 1072         } else {
 1073                 cpuid = PCPU_GET(cpuid);
 1074                 other_cpus = all_cpus;
 1075                 CPU_CLR(cpuid, &other_cpus);
 1076                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1077                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1078                                 invlpg(addr);
 1079                 CPU_AND(&other_cpus, &pmap->pm_active);
 1080                 mask = &other_cpus;
 1081         }
 1082         smp_masked_invlpg_range(*mask, sva, eva, pmap);
 1083         sched_unpin();
 1084 }
 1085 
 1086 void
 1087 pmap_invalidate_all(pmap_t pmap)
 1088 {
 1089         cpuset_t *mask, other_cpus;
 1090         u_int cpuid;
 1091 
 1092         sched_pin();
 1093         if (pmap == kernel_pmap) {
 1094                 invltlb_glob();
 1095                 mask = &all_cpus;
 1096         } else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1097                 invltlb();
 1098                 mask = &all_cpus;
 1099         } else {
 1100                 cpuid = PCPU_GET(cpuid);
 1101                 other_cpus = all_cpus;
 1102                 CPU_CLR(cpuid, &other_cpus);
 1103                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1104                         invltlb();
 1105                 CPU_AND(&other_cpus, &pmap->pm_active);
 1106                 mask = &other_cpus;
 1107         }
 1108         smp_masked_invltlb(*mask, pmap);
 1109         sched_unpin();
 1110 }
 1111 
 1112 void
 1113 pmap_invalidate_cache(void)
 1114 {
 1115 
 1116         sched_pin();
 1117         wbinvd();
 1118         smp_cache_flush();
 1119         sched_unpin();
 1120 }
 1121 
 1122 struct pde_action {
 1123         cpuset_t invalidate;    /* processors that invalidate their TLB */
 1124         vm_offset_t va;
 1125         pd_entry_t *pde;
 1126         pd_entry_t newpde;
 1127         u_int store;            /* processor that updates the PDE */
 1128 };
 1129 
 1130 static void
 1131 pmap_update_pde_kernel(void *arg)
 1132 {
 1133         struct pde_action *act = arg;
 1134         pd_entry_t *pde;
 1135         pmap_t pmap;
 1136 
 1137         if (act->store == PCPU_GET(cpuid)) {
 1138 
 1139                 /*
 1140                  * Elsewhere, this operation requires allpmaps_lock for
 1141                  * synchronization.  Here, it does not because it is being
 1142                  * performed in the context of an all_cpus rendezvous.
 1143                  */
 1144                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1145                         pde = pmap_pde(pmap, act->va);
 1146                         pde_store(pde, act->newpde);
 1147                 }
 1148         }
 1149 }
 1150 
 1151 static void
 1152 pmap_update_pde_user(void *arg)
 1153 {
 1154         struct pde_action *act = arg;
 1155 
 1156         if (act->store == PCPU_GET(cpuid))
 1157                 pde_store(act->pde, act->newpde);
 1158 }
 1159 
 1160 static void
 1161 pmap_update_pde_teardown(void *arg)
 1162 {
 1163         struct pde_action *act = arg;
 1164 
 1165         if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 1166                 pmap_update_pde_invalidate(act->va, act->newpde);
 1167 }
 1168 
 1169 /*
 1170  * Change the page size for the specified virtual address in a way that
 1171  * prevents any possibility of the TLB ever having two entries that map the
 1172  * same virtual address using different page sizes.  This is the recommended
 1173  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
 1174  * machine check exception for a TLB state that is improperly diagnosed as a
 1175  * hardware error.
 1176  */
 1177 static void
 1178 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1179 {
 1180         struct pde_action act;
 1181         cpuset_t active, other_cpus;
 1182         u_int cpuid;
 1183 
 1184         sched_pin();
 1185         cpuid = PCPU_GET(cpuid);
 1186         other_cpus = all_cpus;
 1187         CPU_CLR(cpuid, &other_cpus);
 1188         if (pmap == kernel_pmap)
 1189                 active = all_cpus;
 1190         else
 1191                 active = pmap->pm_active;
 1192         if (CPU_OVERLAP(&active, &other_cpus)) {
 1193                 act.store = cpuid;
 1194                 act.invalidate = active;
 1195                 act.va = va;
 1196                 act.pde = pde;
 1197                 act.newpde = newpde;
 1198                 CPU_SET(cpuid, &active);
 1199                 smp_rendezvous_cpus(active,
 1200                     smp_no_rendevous_barrier, pmap == kernel_pmap ?
 1201                     pmap_update_pde_kernel : pmap_update_pde_user,
 1202                     pmap_update_pde_teardown, &act);
 1203         } else {
 1204                 if (pmap == kernel_pmap)
 1205                         pmap_kenter_pde(va, newpde);
 1206                 else
 1207                         pde_store(pde, newpde);
 1208                 if (CPU_ISSET(cpuid, &active))
 1209                         pmap_update_pde_invalidate(va, newpde);
 1210         }
 1211         sched_unpin();
 1212 }
 1213 #else /* !SMP */
 1214 /*
 1215  * Normal, non-SMP, 486+ invalidation functions.
 1216  * We inline these within pmap.c for speed.
 1217  */
 1218 PMAP_INLINE void
 1219 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1220 {
 1221 
 1222         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1223                 invlpg(va);
 1224 }
 1225 
 1226 PMAP_INLINE void
 1227 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1228 {
 1229         vm_offset_t addr;
 1230 
 1231         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1232                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1233                         invlpg(addr);
 1234 }
 1235 
 1236 PMAP_INLINE void
 1237 pmap_invalidate_all(pmap_t pmap)
 1238 {
 1239 
 1240         if (pmap == kernel_pmap)
 1241                 invltlb_glob();
 1242         else if (!CPU_EMPTY(&pmap->pm_active))
 1243                 invltlb();
 1244 }
 1245 
 1246 PMAP_INLINE void
 1247 pmap_invalidate_cache(void)
 1248 {
 1249 
 1250         wbinvd();
 1251 }
 1252 
 1253 static void
 1254 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1255 {
 1256 
 1257         if (pmap == kernel_pmap)
 1258                 pmap_kenter_pde(va, newpde);
 1259         else
 1260                 pde_store(pde, newpde);
 1261         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1262                 pmap_update_pde_invalidate(va, newpde);
 1263 }
 1264 #endif /* !SMP */
 1265 
 1266 static void
 1267 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
 1268 {
 1269 
 1270         /*
 1271          * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
 1272          * created by a promotion that did not invalidate the 512 or 1024 4KB
 1273          * page mappings that might exist in the TLB.  Consequently, at this
 1274          * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
 1275          * the address range [va, va + NBPDR).  Therefore, the entire range
 1276          * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
 1277          * the TLB will not hold any 4KB page mappings for the address range
 1278          * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
 1279          * 2- or 4MB page mapping from the TLB.
 1280          */
 1281         if ((pde & PG_PROMOTED) != 0)
 1282                 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
 1283         else
 1284                 pmap_invalidate_page(pmap, va);
 1285 }
 1286 
 1287 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
 1288 
 1289 void
 1290 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
 1291 {
 1292 
 1293         if (force) {
 1294                 sva &= ~(vm_offset_t)cpu_clflush_line_size;
 1295         } else {
 1296                 KASSERT((sva & PAGE_MASK) == 0,
 1297                     ("pmap_invalidate_cache_range: sva not page-aligned"));
 1298                 KASSERT((eva & PAGE_MASK) == 0,
 1299                     ("pmap_invalidate_cache_range: eva not page-aligned"));
 1300         }
 1301 
 1302         if ((cpu_feature & CPUID_SS) != 0 && !force)
 1303                 ; /* If "Self Snoop" is supported and allowed, do nothing. */
 1304         else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
 1305             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1306 #ifdef DEV_APIC
 1307                 /*
 1308                  * XXX: Some CPUs fault, hang, or trash the local APIC
 1309                  * registers if we use CLFLUSH on the local APIC
 1310                  * range.  The local APIC is always uncached, so we
 1311                  * don't need to flush for that range anyway.
 1312                  */
 1313                 if (pmap_kextract(sva) == lapic_paddr)
 1314                         return;
 1315 #endif
 1316                 /*
 1317                  * Otherwise, do per-cache line flush.  Use the sfence
 1318                  * instruction to insure that previous stores are
 1319                  * included in the write-back.  The processor
 1320                  * propagates flush to other processors in the cache
 1321                  * coherence domain.
 1322                  */
 1323                 sfence();
 1324                 for (; sva < eva; sva += cpu_clflush_line_size)
 1325                         clflushopt(sva);
 1326                 sfence();
 1327         } else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 1328             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1329 #ifdef DEV_APIC
 1330                 if (pmap_kextract(sva) == lapic_paddr)
 1331                         return;
 1332 #endif
 1333                 /*
 1334                  * Writes are ordered by CLFLUSH on Intel CPUs.
 1335                  */
 1336                 if (cpu_vendor_id != CPU_VENDOR_INTEL)
 1337                         mfence();
 1338                 for (; sva < eva; sva += cpu_clflush_line_size)
 1339                         clflush(sva);
 1340                 if (cpu_vendor_id != CPU_VENDOR_INTEL)
 1341                         mfence();
 1342         } else {
 1343 
 1344                 /*
 1345                  * No targeted cache flush methods are supported by CPU,
 1346                  * or the supplied range is bigger than 2MB.
 1347                  * Globally invalidate cache.
 1348                  */
 1349                 pmap_invalidate_cache();
 1350         }
 1351 }
 1352 
 1353 void
 1354 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 1355 {
 1356         int i;
 1357 
 1358         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 1359             (cpu_feature & CPUID_CLFSH) == 0) {
 1360                 pmap_invalidate_cache();
 1361         } else {
 1362                 for (i = 0; i < count; i++)
 1363                         pmap_flush_page(pages[i]);
 1364         }
 1365 }
 1366 
 1367 /*
 1368  * Are we current address space or kernel?
 1369  */
 1370 static __inline int
 1371 pmap_is_current(pmap_t pmap)
 1372 {
 1373 
 1374         return (pmap == kernel_pmap || pmap ==
 1375             vmspace_pmap(curthread->td_proc->p_vmspace));
 1376 }
 1377 
 1378 /*
 1379  * If the given pmap is not the current or kernel pmap, the returned pte must
 1380  * be released by passing it to pmap_pte_release().
 1381  */
 1382 pt_entry_t *
 1383 pmap_pte(pmap_t pmap, vm_offset_t va)
 1384 {
 1385         pd_entry_t newpf;
 1386         pd_entry_t *pde;
 1387 
 1388         pde = pmap_pde(pmap, va);
 1389         if (*pde & PG_PS)
 1390                 return (pde);
 1391         if (*pde != 0) {
 1392                 /* are we current address space or kernel? */
 1393                 if (pmap_is_current(pmap))
 1394                         return (vtopte(va));
 1395                 mtx_lock(&PMAP2mutex);
 1396                 newpf = *pde & PG_FRAME;
 1397                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1398                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1399                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 1400                 }
 1401                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1402         }
 1403         return (NULL);
 1404 }
 1405 
 1406 /*
 1407  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1408  * being NULL.
 1409  */
 1410 static __inline void
 1411 pmap_pte_release(pt_entry_t *pte)
 1412 {
 1413 
 1414         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
 1415                 mtx_unlock(&PMAP2mutex);
 1416 }
 1417 
 1418 /*
 1419  * NB:  The sequence of updating a page table followed by accesses to the
 1420  * corresponding pages is subject to the situation described in the "AMD64
 1421  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
 1422  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
 1423  * right after modifying the PTE bits is crucial.
 1424  */
 1425 static __inline void
 1426 invlcaddr(void *caddr)
 1427 {
 1428 
 1429         invlpg((u_int)caddr);
 1430 }
 1431 
 1432 /*
 1433  * Super fast pmap_pte routine best used when scanning
 1434  * the pv lists.  This eliminates many coarse-grained
 1435  * invltlb calls.  Note that many of the pv list
 1436  * scans are across different pmaps.  It is very wasteful
 1437  * to do an entire invltlb for checking a single mapping.
 1438  *
 1439  * If the given pmap is not the current pmap, pvh_global_lock
 1440  * must be held and curthread pinned to a CPU.
 1441  */
 1442 static pt_entry_t *
 1443 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1444 {
 1445         pd_entry_t newpf;
 1446         pd_entry_t *pde;
 1447 
 1448         pde = pmap_pde(pmap, va);
 1449         if (*pde & PG_PS)
 1450                 return (pde);
 1451         if (*pde != 0) {
 1452                 /* are we current address space or kernel? */
 1453                 if (pmap_is_current(pmap))
 1454                         return (vtopte(va));
 1455                 rw_assert(&pvh_global_lock, RA_WLOCKED);
 1456                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1457                 newpf = *pde & PG_FRAME;
 1458                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1459                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1460 #ifdef SMP
 1461                         PMAP1cpu = PCPU_GET(cpuid);
 1462 #endif
 1463                         invlcaddr(PADDR1);
 1464                         PMAP1changed++;
 1465                 } else
 1466 #ifdef SMP
 1467                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1468                         PMAP1cpu = PCPU_GET(cpuid);
 1469                         invlcaddr(PADDR1);
 1470                         PMAP1changedcpu++;
 1471                 } else
 1472 #endif
 1473                         PMAP1unchanged++;
 1474                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1475         }
 1476         return (0);
 1477 }
 1478 
 1479 /*
 1480  *      Routine:        pmap_extract
 1481  *      Function:
 1482  *              Extract the physical page address associated
 1483  *              with the given map/virtual_address pair.
 1484  */
 1485 vm_paddr_t 
 1486 pmap_extract(pmap_t pmap, vm_offset_t va)
 1487 {
 1488         vm_paddr_t rtval;
 1489         pt_entry_t *pte;
 1490         pd_entry_t pde;
 1491 
 1492         rtval = 0;
 1493         PMAP_LOCK(pmap);
 1494         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1495         if (pde != 0) {
 1496                 if ((pde & PG_PS) != 0)
 1497                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
 1498                 else {
 1499                         pte = pmap_pte(pmap, va);
 1500                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1501                         pmap_pte_release(pte);
 1502                 }
 1503         }
 1504         PMAP_UNLOCK(pmap);
 1505         return (rtval);
 1506 }
 1507 
 1508 /*
 1509  *      Routine:        pmap_extract_and_hold
 1510  *      Function:
 1511  *              Atomically extract and hold the physical page
 1512  *              with the given pmap and virtual address pair
 1513  *              if that mapping permits the given protection.
 1514  */
 1515 vm_page_t
 1516 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1517 {
 1518         pd_entry_t pde;
 1519         pt_entry_t pte, *ptep;
 1520         vm_page_t m;
 1521         vm_paddr_t pa;
 1522 
 1523         pa = 0;
 1524         m = NULL;
 1525         PMAP_LOCK(pmap);
 1526 retry:
 1527         pde = *pmap_pde(pmap, va);
 1528         if (pde != 0) {
 1529                 if (pde & PG_PS) {
 1530                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1531                                 if (vm_page_pa_tryrelock(pmap, (pde &
 1532                                     PG_PS_FRAME) | (va & PDRMASK), &pa))
 1533                                         goto retry;
 1534                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1535                                     (va & PDRMASK));
 1536                                 vm_page_hold(m);
 1537                         }
 1538                 } else {
 1539                         ptep = pmap_pte(pmap, va);
 1540                         pte = *ptep;
 1541                         pmap_pte_release(ptep);
 1542                         if (pte != 0 &&
 1543                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1544                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 1545                                     &pa))
 1546                                         goto retry;
 1547                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1548                                 vm_page_hold(m);
 1549                         }
 1550                 }
 1551         }
 1552         PA_UNLOCK_COND(pa);
 1553         PMAP_UNLOCK(pmap);
 1554         return (m);
 1555 }
 1556 
 1557 /***************************************************
 1558  * Low level mapping routines.....
 1559  ***************************************************/
 1560 
 1561 /*
 1562  * Add a wired page to the kva.
 1563  * Note: not SMP coherent.
 1564  *
 1565  * This function may be used before pmap_bootstrap() is called.
 1566  */
 1567 PMAP_INLINE void 
 1568 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1569 {
 1570         pt_entry_t *pte;
 1571 
 1572         pte = vtopte(va);
 1573         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1574 }
 1575 
 1576 static __inline void
 1577 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1578 {
 1579         pt_entry_t *pte;
 1580 
 1581         pte = vtopte(va);
 1582         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1583 }
 1584 
 1585 /*
 1586  * Remove a page from the kernel pagetables.
 1587  * Note: not SMP coherent.
 1588  *
 1589  * This function may be used before pmap_bootstrap() is called.
 1590  */
 1591 PMAP_INLINE void
 1592 pmap_kremove(vm_offset_t va)
 1593 {
 1594         pt_entry_t *pte;
 1595 
 1596         pte = vtopte(va);
 1597         pte_clear(pte);
 1598 }
 1599 
 1600 /*
 1601  *      Used to map a range of physical addresses into kernel
 1602  *      virtual address space.
 1603  *
 1604  *      The value passed in '*virt' is a suggested virtual address for
 1605  *      the mapping. Architectures which can support a direct-mapped
 1606  *      physical to virtual region can return the appropriate address
 1607  *      within that region, leaving '*virt' unchanged. Other
 1608  *      architectures should map the pages starting at '*virt' and
 1609  *      update '*virt' with the first usable address after the mapped
 1610  *      region.
 1611  */
 1612 vm_offset_t
 1613 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1614 {
 1615         vm_offset_t va, sva;
 1616         vm_paddr_t superpage_offset;
 1617         pd_entry_t newpde;
 1618 
 1619         va = *virt;
 1620         /*
 1621          * Does the physical address range's size and alignment permit at
 1622          * least one superpage mapping to be created?
 1623          */ 
 1624         superpage_offset = start & PDRMASK;
 1625         if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
 1626                 /*
 1627                  * Increase the starting virtual address so that its alignment
 1628                  * does not preclude the use of superpage mappings.
 1629                  */
 1630                 if ((va & PDRMASK) < superpage_offset)
 1631                         va = (va & ~PDRMASK) + superpage_offset;
 1632                 else if ((va & PDRMASK) > superpage_offset)
 1633                         va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
 1634         }
 1635         sva = va;
 1636         while (start < end) {
 1637                 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
 1638                     pseflag) {
 1639                         KASSERT((va & PDRMASK) == 0,
 1640                             ("pmap_map: misaligned va %#x", va));
 1641                         newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
 1642                         pmap_kenter_pde(va, newpde);
 1643                         va += NBPDR;
 1644                         start += NBPDR;
 1645                 } else {
 1646                         pmap_kenter(va, start);
 1647                         va += PAGE_SIZE;
 1648                         start += PAGE_SIZE;
 1649                 }
 1650         }
 1651         pmap_invalidate_range(kernel_pmap, sva, va);
 1652         *virt = va;
 1653         return (sva);
 1654 }
 1655 
 1656 
 1657 /*
 1658  * Add a list of wired pages to the kva
 1659  * this routine is only used for temporary
 1660  * kernel mappings that do not need to have
 1661  * page modification or references recorded.
 1662  * Note that old mappings are simply written
 1663  * over.  The page *must* be wired.
 1664  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1665  */
 1666 void
 1667 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1668 {
 1669         pt_entry_t *endpte, oldpte, pa, *pte;
 1670         vm_page_t m;
 1671 
 1672         oldpte = 0;
 1673         pte = vtopte(sva);
 1674         endpte = pte + count;
 1675         while (pte < endpte) {
 1676                 m = *ma++;
 1677                 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 1678                 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
 1679                         oldpte |= *pte;
 1680                         pte_store(pte, pa | pgeflag | PG_RW | PG_V);
 1681                 }
 1682                 pte++;
 1683         }
 1684         if (__predict_false((oldpte & PG_V) != 0))
 1685                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1686                     PAGE_SIZE);
 1687 }
 1688 
 1689 /*
 1690  * This routine tears out page mappings from the
 1691  * kernel -- it is meant only for temporary mappings.
 1692  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1693  */
 1694 void
 1695 pmap_qremove(vm_offset_t sva, int count)
 1696 {
 1697         vm_offset_t va;
 1698 
 1699         va = sva;
 1700         while (count-- > 0) {
 1701                 pmap_kremove(va);
 1702                 va += PAGE_SIZE;
 1703         }
 1704         pmap_invalidate_range(kernel_pmap, sva, va);
 1705 }
 1706 
 1707 /***************************************************
 1708  * Page table page management routines.....
 1709  ***************************************************/
 1710 static __inline void
 1711 pmap_free_zero_pages(struct spglist *free)
 1712 {
 1713         vm_page_t m;
 1714 
 1715         while ((m = SLIST_FIRST(free)) != NULL) {
 1716                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
 1717                 /* Preserve the page's PG_ZERO setting. */
 1718                 vm_page_free_toq(m);
 1719         }
 1720 }
 1721 
 1722 /*
 1723  * Schedule the specified unused page table page to be freed.  Specifically,
 1724  * add the page to the specified list of pages that will be released to the
 1725  * physical memory manager after the TLB has been updated.
 1726  */
 1727 static __inline void
 1728 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
 1729     boolean_t set_PG_ZERO)
 1730 {
 1731 
 1732         if (set_PG_ZERO)
 1733                 m->flags |= PG_ZERO;
 1734         else
 1735                 m->flags &= ~PG_ZERO;
 1736         SLIST_INSERT_HEAD(free, m, plinks.s.ss);
 1737 }
 1738 
 1739 /*
 1740  * Inserts the specified page table page into the specified pmap's collection
 1741  * of idle page table pages.  Each of a pmap's page table pages is responsible
 1742  * for mapping a distinct range of virtual addresses.  The pmap's collection is
 1743  * ordered by this virtual address range.
 1744  */
 1745 static __inline int
 1746 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 1747 {
 1748 
 1749         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1750         return (vm_radix_insert(&pmap->pm_root, mpte));
 1751 }
 1752 
 1753 /*
 1754  * Removes the page table page mapping the specified virtual address from the
 1755  * specified pmap's collection of idle page table pages, and returns it.
 1756  * Otherwise, returns NULL if there is no page table page corresponding to the
 1757  * specified virtual address.
 1758  */
 1759 static __inline vm_page_t
 1760 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
 1761 {
 1762 
 1763         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1764         return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
 1765 }
 1766 
 1767 /*
 1768  * Decrements a page table page's wire count, which is used to record the
 1769  * number of valid page table entries within the page.  If the wire count
 1770  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 1771  * page table page was unmapped and FALSE otherwise.
 1772  */
 1773 static inline boolean_t
 1774 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1775 {
 1776 
 1777         --m->wire_count;
 1778         if (m->wire_count == 0) {
 1779                 _pmap_unwire_ptp(pmap, m, free);
 1780                 return (TRUE);
 1781         } else
 1782                 return (FALSE);
 1783 }
 1784 
 1785 static void
 1786 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
 1787 {
 1788         vm_offset_t pteva;
 1789 
 1790         /*
 1791          * unmap the page table page
 1792          */
 1793         pmap->pm_pdir[m->pindex] = 0;
 1794         --pmap->pm_stats.resident_count;
 1795 
 1796         /*
 1797          * This is a release store so that the ordinary store unmapping
 1798          * the page table page is globally performed before TLB shoot-
 1799          * down is begun.
 1800          */
 1801         atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
 1802 
 1803         /*
 1804          * Do an invltlb to make the invalidated mapping
 1805          * take effect immediately.
 1806          */
 1807         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1808         pmap_invalidate_page(pmap, pteva);
 1809 
 1810         /* 
 1811          * Put page on a list so that it is released after
 1812          * *ALL* TLB shootdown is done
 1813          */
 1814         pmap_add_delayed_free_list(m, free, TRUE);
 1815 }
 1816 
 1817 /*
 1818  * After removing a page table entry, this routine is used to
 1819  * conditionally free the page, and manage the hold/wire counts.
 1820  */
 1821 static int
 1822 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
 1823 {
 1824         pd_entry_t ptepde;
 1825         vm_page_t mpte;
 1826 
 1827         if (va >= VM_MAXUSER_ADDRESS)
 1828                 return (0);
 1829         ptepde = *pmap_pde(pmap, va);
 1830         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1831         return (pmap_unwire_ptp(pmap, mpte, free));
 1832 }
 1833 
 1834 /*
 1835  * Initialize the pmap for the swapper process.
 1836  */
 1837 void
 1838 pmap_pinit0(pmap_t pmap)
 1839 {
 1840 
 1841         PMAP_LOCK_INIT(pmap);
 1842         /*
 1843          * Since the page table directory is shared with the kernel pmap,
 1844          * which is already included in the list "allpmaps", this pmap does
 1845          * not need to be inserted into that list.
 1846          */
 1847         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1848 #if defined(PAE) || defined(PAE_TABLES)
 1849         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1850 #endif
 1851         pmap->pm_root.rt_root = 0;
 1852         CPU_ZERO(&pmap->pm_active);
 1853         PCPU_SET(curpmap, pmap);
 1854         TAILQ_INIT(&pmap->pm_pvchunk);
 1855         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1856 }
 1857 
 1858 /*
 1859  * Initialize a preallocated and zeroed pmap structure,
 1860  * such as one in a vmspace structure.
 1861  */
 1862 int
 1863 pmap_pinit(pmap_t pmap)
 1864 {
 1865         vm_page_t m, ptdpg[NPGPTD];
 1866         vm_paddr_t pa;
 1867         int i;
 1868 
 1869         /*
 1870          * No need to allocate page table space yet but we do need a valid
 1871          * page directory table.
 1872          */
 1873         if (pmap->pm_pdir == NULL) {
 1874                 pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
 1875                 if (pmap->pm_pdir == NULL)
 1876                         return (0);
 1877 #if defined(PAE) || defined(PAE_TABLES)
 1878                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1879                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1880                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1881                     ("pmap_pinit: pdpt misaligned"));
 1882                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1883                     ("pmap_pinit: pdpt above 4g"));
 1884 #endif
 1885                 pmap->pm_root.rt_root = 0;
 1886         }
 1887         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 1888             ("pmap_pinit: pmap has reserved page table page(s)"));
 1889 
 1890         /*
 1891          * allocate the page directory page(s)
 1892          */
 1893         for (i = 0; i < NPGPTD;) {
 1894                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 1895                     VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1896                 if (m == NULL)
 1897                         VM_WAIT;
 1898                 else {
 1899                         ptdpg[i++] = m;
 1900                 }
 1901         }
 1902 
 1903         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1904 
 1905         for (i = 0; i < NPGPTD; i++)
 1906                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1907                         pagezero(pmap->pm_pdir + (i * NPDEPG));
 1908 
 1909         mtx_lock_spin(&allpmaps_lock);
 1910         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1911         /* Copy the kernel page table directory entries. */
 1912         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1913         mtx_unlock_spin(&allpmaps_lock);
 1914 
 1915         /* install self-referential address mapping entry(s) */
 1916         for (i = 0; i < NPGPTD; i++) {
 1917                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1918                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1919 #if defined(PAE) || defined(PAE_TABLES)
 1920                 pmap->pm_pdpt[i] = pa | PG_V;
 1921 #endif
 1922         }
 1923 
 1924         CPU_ZERO(&pmap->pm_active);
 1925         TAILQ_INIT(&pmap->pm_pvchunk);
 1926         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1927 
 1928         return (1);
 1929 }
 1930 
 1931 /*
 1932  * this routine is called if the page table page is not
 1933  * mapped correctly.
 1934  */
 1935 static vm_page_t
 1936 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
 1937 {
 1938         vm_paddr_t ptepa;
 1939         vm_page_t m;
 1940 
 1941         /*
 1942          * Allocate a page table page.
 1943          */
 1944         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1945             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1946                 if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
 1947                         PMAP_UNLOCK(pmap);
 1948                         rw_wunlock(&pvh_global_lock);
 1949                         VM_WAIT;
 1950                         rw_wlock(&pvh_global_lock);
 1951                         PMAP_LOCK(pmap);
 1952                 }
 1953 
 1954                 /*
 1955                  * Indicate the need to retry.  While waiting, the page table
 1956                  * page may have been allocated.
 1957                  */
 1958                 return (NULL);
 1959         }
 1960         if ((m->flags & PG_ZERO) == 0)
 1961                 pmap_zero_page(m);
 1962 
 1963         /*
 1964          * Map the pagetable page into the process address space, if
 1965          * it isn't already there.
 1966          */
 1967 
 1968         pmap->pm_stats.resident_count++;
 1969 
 1970         ptepa = VM_PAGE_TO_PHYS(m);
 1971         pmap->pm_pdir[ptepindex] =
 1972                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1973 
 1974         return (m);
 1975 }
 1976 
 1977 static vm_page_t
 1978 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
 1979 {
 1980         u_int ptepindex;
 1981         pd_entry_t ptepa;
 1982         vm_page_t m;
 1983 
 1984         /*
 1985          * Calculate pagetable page index
 1986          */
 1987         ptepindex = va >> PDRSHIFT;
 1988 retry:
 1989         /*
 1990          * Get the page directory entry
 1991          */
 1992         ptepa = pmap->pm_pdir[ptepindex];
 1993 
 1994         /*
 1995          * This supports switching from a 4MB page to a
 1996          * normal 4K page.
 1997          */
 1998         if (ptepa & PG_PS) {
 1999                 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
 2000                 ptepa = pmap->pm_pdir[ptepindex];
 2001         }
 2002 
 2003         /*
 2004          * If the page table page is mapped, we just increment the
 2005          * hold count, and activate it.
 2006          */
 2007         if (ptepa) {
 2008                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 2009                 m->wire_count++;
 2010         } else {
 2011                 /*
 2012                  * Here if the pte page isn't mapped, or if it has
 2013                  * been deallocated. 
 2014                  */
 2015                 m = _pmap_allocpte(pmap, ptepindex, flags);
 2016                 if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
 2017                         goto retry;
 2018         }
 2019         return (m);
 2020 }
 2021 
 2022 
 2023 /***************************************************
 2024 * Pmap allocation/deallocation routines.
 2025  ***************************************************/
 2026 
 2027 /*
 2028  * Release any resources held by the given physical map.
 2029  * Called when a pmap initialized by pmap_pinit is being released.
 2030  * Should only be called if the map contains no valid mappings.
 2031  */
 2032 void
 2033 pmap_release(pmap_t pmap)
 2034 {
 2035         vm_page_t m, ptdpg[NPGPTD];
 2036         int i;
 2037 
 2038         KASSERT(pmap->pm_stats.resident_count == 0,
 2039             ("pmap_release: pmap resident count %ld != 0",
 2040             pmap->pm_stats.resident_count));
 2041         KASSERT(vm_radix_is_empty(&pmap->pm_root),
 2042             ("pmap_release: pmap has reserved page table page(s)"));
 2043         KASSERT(CPU_EMPTY(&pmap->pm_active),
 2044             ("releasing active pmap %p", pmap));
 2045 
 2046         mtx_lock_spin(&allpmaps_lock);
 2047         LIST_REMOVE(pmap, pm_list);
 2048         mtx_unlock_spin(&allpmaps_lock);
 2049 
 2050         for (i = 0; i < NPGPTD; i++)
 2051                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 2052                     PG_FRAME);
 2053 
 2054         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 2055             sizeof(*pmap->pm_pdir));
 2056 
 2057         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 2058 
 2059         for (i = 0; i < NPGPTD; i++) {
 2060                 m = ptdpg[i];
 2061 #if defined(PAE) || defined(PAE_TABLES)
 2062                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 2063                     ("pmap_release: got wrong ptd page"));
 2064 #endif
 2065                 m->wire_count--;
 2066                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 2067                 vm_page_free_zero(m);
 2068         }
 2069 }
 2070 
 2071 static int
 2072 kvm_size(SYSCTL_HANDLER_ARGS)
 2073 {
 2074         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 2075 
 2076         return (sysctl_handle_long(oidp, &ksize, 0, req));
 2077 }
 2078 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 2079     0, 0, kvm_size, "IU", "Size of KVM");
 2080 
 2081 static int
 2082 kvm_free(SYSCTL_HANDLER_ARGS)
 2083 {
 2084         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 2085 
 2086         return (sysctl_handle_long(oidp, &kfree, 0, req));
 2087 }
 2088 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 2089     0, 0, kvm_free, "IU", "Amount of KVM free");
 2090 
 2091 /*
 2092  * grow the number of kernel page table entries, if needed
 2093  */
 2094 void
 2095 pmap_growkernel(vm_offset_t addr)
 2096 {
 2097         vm_paddr_t ptppaddr;
 2098         vm_page_t nkpg;
 2099         pd_entry_t newpdir;
 2100 
 2101         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 2102         addr = roundup2(addr, NBPDR);
 2103         if (addr - 1 >= kernel_map->max_offset)
 2104                 addr = kernel_map->max_offset;
 2105         while (kernel_vm_end < addr) {
 2106                 if (pdir_pde(PTD, kernel_vm_end)) {
 2107                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2108                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2109                                 kernel_vm_end = kernel_map->max_offset;
 2110                                 break;
 2111                         }
 2112                         continue;
 2113                 }
 2114 
 2115                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 2116                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 2117                     VM_ALLOC_ZERO);
 2118                 if (nkpg == NULL)
 2119                         panic("pmap_growkernel: no memory to grow kernel");
 2120 
 2121                 nkpt++;
 2122 
 2123                 if ((nkpg->flags & PG_ZERO) == 0)
 2124                         pmap_zero_page(nkpg);
 2125                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 2126                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 2127                 pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
 2128 
 2129                 pmap_kenter_pde(kernel_vm_end, newpdir);
 2130                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2131                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2132                         kernel_vm_end = kernel_map->max_offset;
 2133                         break;
 2134                 }
 2135         }
 2136 }
 2137 
 2138 
 2139 /***************************************************
 2140  * page management routines.
 2141  ***************************************************/
 2142 
 2143 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 2144 CTASSERT(_NPCM == 11);
 2145 CTASSERT(_NPCPV == 336);
 2146 
 2147 static __inline struct pv_chunk *
 2148 pv_to_chunk(pv_entry_t pv)
 2149 {
 2150 
 2151         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 2152 }
 2153 
 2154 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 2155 
 2156 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 2157 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 2158 
 2159 static const uint32_t pc_freemask[_NPCM] = {
 2160         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2161         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2162         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2163         PC_FREE0_9, PC_FREE10
 2164 };
 2165 
 2166 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 2167         "Current number of pv entries");
 2168 
 2169 #ifdef PV_STATS
 2170 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 2171 
 2172 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2173         "Current number of pv entry chunks");
 2174 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2175         "Current number of pv entry chunks allocated");
 2176 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2177         "Current number of pv entry chunks frees");
 2178 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2179         "Number of times tried to get a chunk page but failed.");
 2180 
 2181 static long pv_entry_frees, pv_entry_allocs;
 2182 static int pv_entry_spare;
 2183 
 2184 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2185         "Current number of pv entry frees");
 2186 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2187         "Current number of pv entry allocs");
 2188 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2189         "Current number of spare pv entries");
 2190 #endif
 2191 
 2192 /*
 2193  * We are in a serious low memory condition.  Resort to
 2194  * drastic measures to free some pages so we can allocate
 2195  * another pv entry chunk.
 2196  */
 2197 static vm_page_t
 2198 pmap_pv_reclaim(pmap_t locked_pmap)
 2199 {
 2200         struct pch newtail;
 2201         struct pv_chunk *pc;
 2202         struct md_page *pvh;
 2203         pd_entry_t *pde;
 2204         pmap_t pmap;
 2205         pt_entry_t *pte, tpte;
 2206         pv_entry_t pv;
 2207         vm_offset_t va;
 2208         vm_page_t m, m_pc;
 2209         struct spglist free;
 2210         uint32_t inuse;
 2211         int bit, field, freed;
 2212 
 2213         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 2214         pmap = NULL;
 2215         m_pc = NULL;
 2216         SLIST_INIT(&free);
 2217         TAILQ_INIT(&newtail);
 2218         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
 2219             SLIST_EMPTY(&free))) {
 2220                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2221                 if (pmap != pc->pc_pmap) {
 2222                         if (pmap != NULL) {
 2223                                 pmap_invalidate_all(pmap);
 2224                                 if (pmap != locked_pmap)
 2225                                         PMAP_UNLOCK(pmap);
 2226                         }
 2227                         pmap = pc->pc_pmap;
 2228                         /* Avoid deadlock and lock recursion. */
 2229                         if (pmap > locked_pmap)
 2230                                 PMAP_LOCK(pmap);
 2231                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 2232                                 pmap = NULL;
 2233                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2234                                 continue;
 2235                         }
 2236                 }
 2237 
 2238                 /*
 2239                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 2240                  */
 2241                 freed = 0;
 2242                 for (field = 0; field < _NPCM; field++) {
 2243                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 2244                             inuse != 0; inuse &= ~(1UL << bit)) {
 2245                                 bit = bsfl(inuse);
 2246                                 pv = &pc->pc_pventry[field * 32 + bit];
 2247                                 va = pv->pv_va;
 2248                                 pde = pmap_pde(pmap, va);
 2249                                 if ((*pde & PG_PS) != 0)
 2250                                         continue;
 2251                                 pte = pmap_pte(pmap, va);
 2252                                 tpte = *pte;
 2253                                 if ((tpte & PG_W) == 0)
 2254                                         tpte = pte_load_clear(pte);
 2255                                 pmap_pte_release(pte);
 2256                                 if ((tpte & PG_W) != 0)
 2257                                         continue;
 2258                                 KASSERT(tpte != 0,
 2259                                     ("pmap_pv_reclaim: pmap %p va %x zero pte",
 2260                                     pmap, va));
 2261                                 if ((tpte & PG_G) != 0)
 2262                                         pmap_invalidate_page(pmap, va);
 2263                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2264                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2265                                         vm_page_dirty(m);
 2266                                 if ((tpte & PG_A) != 0)
 2267                                         vm_page_aflag_set(m, PGA_REFERENCED);
 2268                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 2269                                 if (TAILQ_EMPTY(&m->md.pv_list) &&
 2270                                     (m->flags & PG_FICTITIOUS) == 0) {
 2271                                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2272                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 2273                                                 vm_page_aflag_clear(m,
 2274                                                     PGA_WRITEABLE);
 2275                                         }
 2276                                 }
 2277                                 pc->pc_map[field] |= 1UL << bit;
 2278                                 pmap_unuse_pt(pmap, va, &free);
 2279                                 freed++;
 2280                         }
 2281                 }
 2282                 if (freed == 0) {
 2283                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2284                         continue;
 2285                 }
 2286                 /* Every freed mapping is for a 4 KB page. */
 2287                 pmap->pm_stats.resident_count -= freed;
 2288                 PV_STAT(pv_entry_frees += freed);
 2289                 PV_STAT(pv_entry_spare += freed);
 2290                 pv_entry_count -= freed;
 2291                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2292                 for (field = 0; field < _NPCM; field++)
 2293                         if (pc->pc_map[field] != pc_freemask[field]) {
 2294                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2295                                     pc_list);
 2296                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2297 
 2298                                 /*
 2299                                  * One freed pv entry in locked_pmap is
 2300                                  * sufficient.
 2301                                  */
 2302                                 if (pmap == locked_pmap)
 2303                                         goto out;
 2304                                 break;
 2305                         }
 2306                 if (field == _NPCM) {
 2307                         PV_STAT(pv_entry_spare -= _NPCPV);
 2308                         PV_STAT(pc_chunk_count--);
 2309                         PV_STAT(pc_chunk_frees++);
 2310                         /* Entire chunk is free; return it. */
 2311                         m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2312                         pmap_qremove((vm_offset_t)pc, 1);
 2313                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2314                         break;
 2315                 }
 2316         }
 2317 out:
 2318         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 2319         if (pmap != NULL) {
 2320                 pmap_invalidate_all(pmap);
 2321                 if (pmap != locked_pmap)
 2322                         PMAP_UNLOCK(pmap);
 2323         }
 2324         if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
 2325                 m_pc = SLIST_FIRST(&free);
 2326                 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 2327                 /* Recycle a freed page table page. */
 2328                 m_pc->wire_count = 1;
 2329                 atomic_add_int(&vm_cnt.v_wire_count, 1);
 2330         }
 2331         pmap_free_zero_pages(&free);
 2332         return (m_pc);
 2333 }
 2334 
 2335 /*
 2336  * free the pv_entry back to the free list
 2337  */
 2338 static void
 2339 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2340 {
 2341         struct pv_chunk *pc;
 2342         int idx, field, bit;
 2343 
 2344         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2345         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2346         PV_STAT(pv_entry_frees++);
 2347         PV_STAT(pv_entry_spare++);
 2348         pv_entry_count--;
 2349         pc = pv_to_chunk(pv);
 2350         idx = pv - &pc->pc_pventry[0];
 2351         field = idx / 32;
 2352         bit = idx % 32;
 2353         pc->pc_map[field] |= 1ul << bit;
 2354         for (idx = 0; idx < _NPCM; idx++)
 2355                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2356                         /*
 2357                          * 98% of the time, pc is already at the head of the
 2358                          * list.  If it isn't already, move it to the head.
 2359                          */
 2360                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 2361                             pc)) {
 2362                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2363                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2364                                     pc_list);
 2365                         }
 2366                         return;
 2367                 }
 2368         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2369         free_pv_chunk(pc);
 2370 }
 2371 
 2372 static void
 2373 free_pv_chunk(struct pv_chunk *pc)
 2374 {
 2375         vm_page_t m;
 2376 
 2377         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2378         PV_STAT(pv_entry_spare -= _NPCPV);
 2379         PV_STAT(pc_chunk_count--);
 2380         PV_STAT(pc_chunk_frees++);
 2381         /* entire chunk is free, return it */
 2382         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2383         pmap_qremove((vm_offset_t)pc, 1);
 2384         vm_page_unwire(m, PQ_NONE);
 2385         vm_page_free(m);
 2386         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2387 }
 2388 
 2389 /*
 2390  * get a new pv_entry, allocating a block from the system
 2391  * when needed.
 2392  */
 2393 static pv_entry_t
 2394 get_pv_entry(pmap_t pmap, boolean_t try)
 2395 {
 2396         static const struct timeval printinterval = { 60, 0 };
 2397         static struct timeval lastprint;
 2398         int bit, field;
 2399         pv_entry_t pv;
 2400         struct pv_chunk *pc;
 2401         vm_page_t m;
 2402 
 2403         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2404         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2405         PV_STAT(pv_entry_allocs++);
 2406         pv_entry_count++;
 2407         if (pv_entry_count > pv_entry_high_water)
 2408                 if (ratecheck(&lastprint, &printinterval))
 2409                         printf("Approaching the limit on PV entries, consider "
 2410                             "increasing either the vm.pmap.shpgperproc or the "
 2411                             "vm.pmap.pv_entry_max tunable.\n");
 2412 retry:
 2413         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2414         if (pc != NULL) {
 2415                 for (field = 0; field < _NPCM; field++) {
 2416                         if (pc->pc_map[field]) {
 2417                                 bit = bsfl(pc->pc_map[field]);
 2418                                 break;
 2419                         }
 2420                 }
 2421                 if (field < _NPCM) {
 2422                         pv = &pc->pc_pventry[field * 32 + bit];
 2423                         pc->pc_map[field] &= ~(1ul << bit);
 2424                         /* If this was the last item, move it to tail */
 2425                         for (field = 0; field < _NPCM; field++)
 2426                                 if (pc->pc_map[field] != 0) {
 2427                                         PV_STAT(pv_entry_spare--);
 2428                                         return (pv);    /* not full, return */
 2429                                 }
 2430                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2431                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2432                         PV_STAT(pv_entry_spare--);
 2433                         return (pv);
 2434                 }
 2435         }
 2436         /*
 2437          * Access to the ptelist "pv_vafree" is synchronized by the pvh
 2438          * global lock.  If "pv_vafree" is currently non-empty, it will
 2439          * remain non-empty until pmap_ptelist_alloc() completes.
 2440          */
 2441         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 2442             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2443                 if (try) {
 2444                         pv_entry_count--;
 2445                         PV_STAT(pc_chunk_tryfail++);
 2446                         return (NULL);
 2447                 }
 2448                 m = pmap_pv_reclaim(pmap);
 2449                 if (m == NULL)
 2450                         goto retry;
 2451         }
 2452         PV_STAT(pc_chunk_count++);
 2453         PV_STAT(pc_chunk_allocs++);
 2454         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2455         pmap_qenter((vm_offset_t)pc, &m, 1);
 2456         pc->pc_pmap = pmap;
 2457         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2458         for (field = 1; field < _NPCM; field++)
 2459                 pc->pc_map[field] = pc_freemask[field];
 2460         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 2461         pv = &pc->pc_pventry[0];
 2462         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2463         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2464         return (pv);
 2465 }
 2466 
 2467 static __inline pv_entry_t
 2468 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2469 {
 2470         pv_entry_t pv;
 2471 
 2472         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2473         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 2474                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2475                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 2476                         break;
 2477                 }
 2478         }
 2479         return (pv);
 2480 }
 2481 
 2482 static void
 2483 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2484 {
 2485         struct md_page *pvh;
 2486         pv_entry_t pv;
 2487         vm_offset_t va_last;
 2488         vm_page_t m;
 2489 
 2490         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2491         KASSERT((pa & PDRMASK) == 0,
 2492             ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
 2493 
 2494         /*
 2495          * Transfer the 4mpage's pv entry for this mapping to the first
 2496          * page's pv list.
 2497          */
 2498         pvh = pa_to_pvh(pa);
 2499         va = trunc_4mpage(va);
 2500         pv = pmap_pvh_remove(pvh, pmap, va);
 2501         KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 2502         m = PHYS_TO_VM_PAGE(pa);
 2503         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2504         /* Instantiate the remaining NPTEPG - 1 pv entries. */
 2505         va_last = va + NBPDR - PAGE_SIZE;
 2506         do {
 2507                 m++;
 2508                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2509                     ("pmap_pv_demote_pde: page %p is not managed", m));
 2510                 va += PAGE_SIZE;
 2511                 pmap_insert_entry(pmap, va, m);
 2512         } while (va < va_last);
 2513 }
 2514 
 2515 static void
 2516 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2517 {
 2518         struct md_page *pvh;
 2519         pv_entry_t pv;
 2520         vm_offset_t va_last;
 2521         vm_page_t m;
 2522 
 2523         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2524         KASSERT((pa & PDRMASK) == 0,
 2525             ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
 2526 
 2527         /*
 2528          * Transfer the first page's pv entry for this mapping to the
 2529          * 4mpage's pv list.  Aside from avoiding the cost of a call
 2530          * to get_pv_entry(), a transfer avoids the possibility that
 2531          * get_pv_entry() calls pmap_collect() and that pmap_collect()
 2532          * removes one of the mappings that is being promoted.
 2533          */
 2534         m = PHYS_TO_VM_PAGE(pa);
 2535         va = trunc_4mpage(va);
 2536         pv = pmap_pvh_remove(&m->md, pmap, va);
 2537         KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 2538         pvh = pa_to_pvh(pa);
 2539         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2540         /* Free the remaining NPTEPG - 1 pv entries. */
 2541         va_last = va + NBPDR - PAGE_SIZE;
 2542         do {
 2543                 m++;
 2544                 va += PAGE_SIZE;
 2545                 pmap_pvh_free(&m->md, pmap, va);
 2546         } while (va < va_last);
 2547 }
 2548 
 2549 static void
 2550 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2551 {
 2552         pv_entry_t pv;
 2553 
 2554         pv = pmap_pvh_remove(pvh, pmap, va);
 2555         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2556         free_pv_entry(pmap, pv);
 2557 }
 2558 
 2559 static void
 2560 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2561 {
 2562         struct md_page *pvh;
 2563 
 2564         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2565         pmap_pvh_free(&m->md, pmap, va);
 2566         if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
 2567                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2568                 if (TAILQ_EMPTY(&pvh->pv_list))
 2569                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2570         }
 2571 }
 2572 
 2573 /*
 2574  * Create a pv entry for page at pa for
 2575  * (pmap, va).
 2576  */
 2577 static void
 2578 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2579 {
 2580         pv_entry_t pv;
 2581 
 2582         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2583         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2584         pv = get_pv_entry(pmap, FALSE);
 2585         pv->pv_va = va;
 2586         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2587 }
 2588 
 2589 /*
 2590  * Conditionally create a pv entry.
 2591  */
 2592 static boolean_t
 2593 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2594 {
 2595         pv_entry_t pv;
 2596 
 2597         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2598         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2599         if (pv_entry_count < pv_entry_high_water && 
 2600             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2601                 pv->pv_va = va;
 2602                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 2603                 return (TRUE);
 2604         } else
 2605                 return (FALSE);
 2606 }
 2607 
 2608 /*
 2609  * Create the pv entries for each of the pages within a superpage.
 2610  */
 2611 static boolean_t
 2612 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2613 {
 2614         struct md_page *pvh;
 2615         pv_entry_t pv;
 2616 
 2617         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2618         if (pv_entry_count < pv_entry_high_water && 
 2619             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2620                 pv->pv_va = va;
 2621                 pvh = pa_to_pvh(pa);
 2622                 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 2623                 return (TRUE);
 2624         } else
 2625                 return (FALSE);
 2626 }
 2627 
 2628 /*
 2629  * Fills a page table page with mappings to consecutive physical pages.
 2630  */
 2631 static void
 2632 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 2633 {
 2634         pt_entry_t *pte;
 2635 
 2636         for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 2637                 *pte = newpte;  
 2638                 newpte += PAGE_SIZE;
 2639         }
 2640 }
 2641 
 2642 /*
 2643  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
 2644  * 2- or 4MB page mapping is invalidated.
 2645  */
 2646 static boolean_t
 2647 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2648 {
 2649         pd_entry_t newpde, oldpde;
 2650         pt_entry_t *firstpte, newpte;
 2651         vm_paddr_t mptepa;
 2652         vm_page_t mpte;
 2653         struct spglist free;
 2654         vm_offset_t sva;
 2655 
 2656         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2657         oldpde = *pde;
 2658         KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 2659             ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 2660         if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
 2661             NULL) {
 2662                 KASSERT((oldpde & PG_W) == 0,
 2663                     ("pmap_demote_pde: page table page for a wired mapping"
 2664                     " is missing"));
 2665 
 2666                 /*
 2667                  * Invalidate the 2- or 4MB page mapping and return
 2668                  * "failure" if the mapping was never accessed or the
 2669                  * allocation of the new page table page fails.
 2670                  */
 2671                 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 2672                     va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
 2673                     VM_ALLOC_WIRED)) == NULL) {
 2674                         SLIST_INIT(&free);
 2675                         sva = trunc_4mpage(va);
 2676                         pmap_remove_pde(pmap, pde, sva, &free);
 2677                         if ((oldpde & PG_G) == 0)
 2678                                 pmap_invalidate_pde_page(pmap, sva, oldpde);
 2679                         pmap_free_zero_pages(&free);
 2680                         CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
 2681                             " in pmap %p", va, pmap);
 2682                         return (FALSE);
 2683                 }
 2684                 if (va < VM_MAXUSER_ADDRESS)
 2685                         pmap->pm_stats.resident_count++;
 2686         }
 2687         mptepa = VM_PAGE_TO_PHYS(mpte);
 2688 
 2689         /*
 2690          * If the page mapping is in the kernel's address space, then the
 2691          * KPTmap can provide access to the page table page.  Otherwise,
 2692          * temporarily map the page table page (mpte) into the kernel's
 2693          * address space at either PADDR1 or PADDR2. 
 2694          */
 2695         if (va >= KERNBASE)
 2696                 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
 2697         else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
 2698                 if ((*PMAP1 & PG_FRAME) != mptepa) {
 2699                         *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2700 #ifdef SMP
 2701                         PMAP1cpu = PCPU_GET(cpuid);
 2702 #endif
 2703                         invlcaddr(PADDR1);
 2704                         PMAP1changed++;
 2705                 } else
 2706 #ifdef SMP
 2707                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 2708                         PMAP1cpu = PCPU_GET(cpuid);
 2709                         invlcaddr(PADDR1);
 2710                         PMAP1changedcpu++;
 2711                 } else
 2712 #endif
 2713                         PMAP1unchanged++;
 2714                 firstpte = PADDR1;
 2715         } else {
 2716                 mtx_lock(&PMAP2mutex);
 2717                 if ((*PMAP2 & PG_FRAME) != mptepa) {
 2718                         *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2719                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 2720                 }
 2721                 firstpte = PADDR2;
 2722         }
 2723         newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 2724         KASSERT((oldpde & PG_A) != 0,
 2725             ("pmap_demote_pde: oldpde is missing PG_A"));
 2726         KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 2727             ("pmap_demote_pde: oldpde is missing PG_M"));
 2728         newpte = oldpde & ~PG_PS;
 2729         if ((newpte & PG_PDE_PAT) != 0)
 2730                 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
 2731 
 2732         /*
 2733          * If the page table page is new, initialize it.
 2734          */
 2735         if (mpte->wire_count == 1) {
 2736                 mpte->wire_count = NPTEPG;
 2737                 pmap_fill_ptp(firstpte, newpte);
 2738         }
 2739         KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 2740             ("pmap_demote_pde: firstpte and newpte map different physical"
 2741             " addresses"));
 2742 
 2743         /*
 2744          * If the mapping has changed attributes, update the page table
 2745          * entries.
 2746          */ 
 2747         if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 2748                 pmap_fill_ptp(firstpte, newpte);
 2749         
 2750         /*
 2751          * Demote the mapping.  This pmap is locked.  The old PDE has
 2752          * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 2753          * set.  Thus, there is no danger of a race with another
 2754          * processor changing the setting of PG_A and/or PG_M between
 2755          * the read above and the store below. 
 2756          */
 2757         if (workaround_erratum383)
 2758                 pmap_update_pde(pmap, va, pde, newpde);
 2759         else if (pmap == kernel_pmap)
 2760                 pmap_kenter_pde(va, newpde);
 2761         else
 2762                 pde_store(pde, newpde); 
 2763         if (firstpte == PADDR2)
 2764                 mtx_unlock(&PMAP2mutex);
 2765 
 2766         /*
 2767          * Invalidate the recursive mapping of the page table page.
 2768          */
 2769         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2770 
 2771         /*
 2772          * Demote the pv entry.  This depends on the earlier demotion
 2773          * of the mapping.  Specifically, the (re)creation of a per-
 2774          * page pv entry might trigger the execution of pmap_collect(),
 2775          * which might reclaim a newly (re)created per-page pv entry
 2776          * and destroy the associated mapping.  In order to destroy
 2777          * the mapping, the PDE must have already changed from mapping
 2778          * the 2mpage to referencing the page table page.
 2779          */
 2780         if ((oldpde & PG_MANAGED) != 0)
 2781                 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
 2782 
 2783         pmap_pde_demotions++;
 2784         CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
 2785             " in pmap %p", va, pmap);
 2786         return (TRUE);
 2787 }
 2788 
 2789 /*
 2790  * Removes a 2- or 4MB page mapping from the kernel pmap.
 2791  */
 2792 static void
 2793 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2794 {
 2795         pd_entry_t newpde;
 2796         vm_paddr_t mptepa;
 2797         vm_page_t mpte;
 2798 
 2799         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2800         mpte = pmap_remove_pt_page(pmap, va);
 2801         if (mpte == NULL)
 2802                 panic("pmap_remove_kernel_pde: Missing pt page.");
 2803 
 2804         mptepa = VM_PAGE_TO_PHYS(mpte);
 2805         newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
 2806 
 2807         /*
 2808          * Initialize the page table page.
 2809          */
 2810         pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
 2811 
 2812         /*
 2813          * Remove the mapping.
 2814          */
 2815         if (workaround_erratum383)
 2816                 pmap_update_pde(pmap, va, pde, newpde);
 2817         else 
 2818                 pmap_kenter_pde(va, newpde);
 2819 
 2820         /*
 2821          * Invalidate the recursive mapping of the page table page.
 2822          */
 2823         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2824 }
 2825 
 2826 /*
 2827  * pmap_remove_pde: do the things to unmap a superpage in a process
 2828  */
 2829 static void
 2830 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
 2831     struct spglist *free)
 2832 {
 2833         struct md_page *pvh;
 2834         pd_entry_t oldpde;
 2835         vm_offset_t eva, va;
 2836         vm_page_t m, mpte;
 2837 
 2838         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2839         KASSERT((sva & PDRMASK) == 0,
 2840             ("pmap_remove_pde: sva is not 4mpage aligned"));
 2841         oldpde = pte_load_clear(pdq);
 2842         if (oldpde & PG_W)
 2843                 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 2844 
 2845         /*
 2846          * Machines that don't support invlpg, also don't support
 2847          * PG_G.
 2848          */
 2849         if ((oldpde & PG_G) != 0)
 2850                 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
 2851 
 2852         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2853         if (oldpde & PG_MANAGED) {
 2854                 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 2855                 pmap_pvh_free(pvh, pmap, sva);
 2856                 eva = sva + NBPDR;
 2857                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 2858                     va < eva; va += PAGE_SIZE, m++) {
 2859                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2860                                 vm_page_dirty(m);
 2861                         if (oldpde & PG_A)
 2862                                 vm_page_aflag_set(m, PGA_REFERENCED);
 2863                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 2864                             TAILQ_EMPTY(&pvh->pv_list))
 2865                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2866                 }
 2867         }
 2868         if (pmap == kernel_pmap) {
 2869                 pmap_remove_kernel_pde(pmap, pdq, sva);
 2870         } else {
 2871                 mpte = pmap_remove_pt_page(pmap, sva);
 2872                 if (mpte != NULL) {
 2873                         pmap->pm_stats.resident_count--;
 2874                         KASSERT(mpte->wire_count == NPTEPG,
 2875                             ("pmap_remove_pde: pte page wire count error"));
 2876                         mpte->wire_count = 0;
 2877                         pmap_add_delayed_free_list(mpte, free, FALSE);
 2878                         atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 2879                 }
 2880         }
 2881 }
 2882 
 2883 /*
 2884  * pmap_remove_pte: do the things to unmap a page in a process
 2885  */
 2886 static int
 2887 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
 2888     struct spglist *free)
 2889 {
 2890         pt_entry_t oldpte;
 2891         vm_page_t m;
 2892 
 2893         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2894         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2895         oldpte = pte_load_clear(ptq);
 2896         KASSERT(oldpte != 0,
 2897             ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
 2898         if (oldpte & PG_W)
 2899                 pmap->pm_stats.wired_count -= 1;
 2900         /*
 2901          * Machines that don't support invlpg, also don't support
 2902          * PG_G.
 2903          */
 2904         if (oldpte & PG_G)
 2905                 pmap_invalidate_page(kernel_pmap, va);
 2906         pmap->pm_stats.resident_count -= 1;
 2907         if (oldpte & PG_MANAGED) {
 2908                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 2909                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2910                         vm_page_dirty(m);
 2911                 if (oldpte & PG_A)
 2912                         vm_page_aflag_set(m, PGA_REFERENCED);
 2913                 pmap_remove_entry(pmap, m, va);
 2914         }
 2915         return (pmap_unuse_pt(pmap, va, free));
 2916 }
 2917 
 2918 /*
 2919  * Remove a single page from a process address space
 2920  */
 2921 static void
 2922 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
 2923 {
 2924         pt_entry_t *pte;
 2925 
 2926         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2927         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2928         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2929         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2930                 return;
 2931         pmap_remove_pte(pmap, pte, va, free);
 2932         pmap_invalidate_page(pmap, va);
 2933 }
 2934 
 2935 /*
 2936  *      Remove the given range of addresses from the specified map.
 2937  *
 2938  *      It is assumed that the start and end are properly
 2939  *      rounded to the page size.
 2940  */
 2941 void
 2942 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2943 {
 2944         vm_offset_t pdnxt;
 2945         pd_entry_t ptpaddr;
 2946         pt_entry_t *pte;
 2947         struct spglist free;
 2948         int anyvalid;
 2949 
 2950         /*
 2951          * Perform an unsynchronized read.  This is, however, safe.
 2952          */
 2953         if (pmap->pm_stats.resident_count == 0)
 2954                 return;
 2955 
 2956         anyvalid = 0;
 2957         SLIST_INIT(&free);
 2958 
 2959         rw_wlock(&pvh_global_lock);
 2960         sched_pin();
 2961         PMAP_LOCK(pmap);
 2962 
 2963         /*
 2964          * special handling of removing one page.  a very
 2965          * common operation and easy to short circuit some
 2966          * code.
 2967          */
 2968         if ((sva + PAGE_SIZE == eva) && 
 2969             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2970                 pmap_remove_page(pmap, sva, &free);
 2971                 goto out;
 2972         }
 2973 
 2974         for (; sva < eva; sva = pdnxt) {
 2975                 u_int pdirindex;
 2976 
 2977                 /*
 2978                  * Calculate index for next page table.
 2979                  */
 2980                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2981                 if (pdnxt < sva)
 2982                         pdnxt = eva;
 2983                 if (pmap->pm_stats.resident_count == 0)
 2984                         break;
 2985 
 2986                 pdirindex = sva >> PDRSHIFT;
 2987                 ptpaddr = pmap->pm_pdir[pdirindex];
 2988 
 2989                 /*
 2990                  * Weed out invalid mappings. Note: we assume that the page
 2991                  * directory table is always allocated, and in kernel virtual.
 2992                  */
 2993                 if (ptpaddr == 0)
 2994                         continue;
 2995 
 2996                 /*
 2997                  * Check for large page.
 2998                  */
 2999                 if ((ptpaddr & PG_PS) != 0) {
 3000                         /*
 3001                          * Are we removing the entire large page?  If not,
 3002                          * demote the mapping and fall through.
 3003                          */
 3004                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3005                                 /*
 3006                                  * The TLB entry for a PG_G mapping is
 3007                                  * invalidated by pmap_remove_pde().
 3008                                  */
 3009                                 if ((ptpaddr & PG_G) == 0)
 3010                                         anyvalid = 1;
 3011                                 pmap_remove_pde(pmap,
 3012                                     &pmap->pm_pdir[pdirindex], sva, &free);
 3013                                 continue;
 3014                         } else if (!pmap_demote_pde(pmap,
 3015                             &pmap->pm_pdir[pdirindex], sva)) {
 3016                                 /* The large page mapping was destroyed. */
 3017                                 continue;
 3018                         }
 3019                 }
 3020 
 3021                 /*
 3022                  * Limit our scan to either the end of the va represented
 3023                  * by the current page table page, or to the end of the
 3024                  * range being removed.
 3025                  */
 3026                 if (pdnxt > eva)
 3027                         pdnxt = eva;
 3028 
 3029                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3030                     sva += PAGE_SIZE) {
 3031                         if (*pte == 0)
 3032                                 continue;
 3033 
 3034                         /*
 3035                          * The TLB entry for a PG_G mapping is invalidated
 3036                          * by pmap_remove_pte().
 3037                          */
 3038                         if ((*pte & PG_G) == 0)
 3039                                 anyvalid = 1;
 3040                         if (pmap_remove_pte(pmap, pte, sva, &free))
 3041                                 break;
 3042                 }
 3043         }
 3044 out:
 3045         sched_unpin();
 3046         if (anyvalid)
 3047                 pmap_invalidate_all(pmap);
 3048         rw_wunlock(&pvh_global_lock);
 3049         PMAP_UNLOCK(pmap);
 3050         pmap_free_zero_pages(&free);
 3051 }
 3052 
 3053 /*
 3054  *      Routine:        pmap_remove_all
 3055  *      Function:
 3056  *              Removes this physical page from
 3057  *              all physical maps in which it resides.
 3058  *              Reflects back modify bits to the pager.
 3059  *
 3060  *      Notes:
 3061  *              Original versions of this routine were very
 3062  *              inefficient because they iteratively called
 3063  *              pmap_remove (slow...)
 3064  */
 3065 
 3066 void
 3067 pmap_remove_all(vm_page_t m)
 3068 {
 3069         struct md_page *pvh;
 3070         pv_entry_t pv;
 3071         pmap_t pmap;
 3072         pt_entry_t *pte, tpte;
 3073         pd_entry_t *pde;
 3074         vm_offset_t va;
 3075         struct spglist free;
 3076 
 3077         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3078             ("pmap_remove_all: page %p is not managed", m));
 3079         SLIST_INIT(&free);
 3080         rw_wlock(&pvh_global_lock);
 3081         sched_pin();
 3082         if ((m->flags & PG_FICTITIOUS) != 0)
 3083                 goto small_mappings;
 3084         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 3085         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 3086                 va = pv->pv_va;
 3087                 pmap = PV_PMAP(pv);
 3088                 PMAP_LOCK(pmap);
 3089                 pde = pmap_pde(pmap, va);
 3090                 (void)pmap_demote_pde(pmap, pde, va);
 3091                 PMAP_UNLOCK(pmap);
 3092         }
 3093 small_mappings:
 3094         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3095                 pmap = PV_PMAP(pv);
 3096                 PMAP_LOCK(pmap);
 3097                 pmap->pm_stats.resident_count--;
 3098                 pde = pmap_pde(pmap, pv->pv_va);
 3099                 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 3100                     " a 4mpage in page %p's pv list", m));
 3101                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3102                 tpte = pte_load_clear(pte);
 3103                 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
 3104                     pmap, pv->pv_va));
 3105                 if (tpte & PG_W)
 3106                         pmap->pm_stats.wired_count--;
 3107                 if (tpte & PG_A)
 3108                         vm_page_aflag_set(m, PGA_REFERENCED);
 3109 
 3110                 /*
 3111                  * Update the vm_page_t clean and reference bits.
 3112                  */
 3113                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3114                         vm_page_dirty(m);
 3115                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3116                 pmap_invalidate_page(pmap, pv->pv_va);
 3117                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 3118                 free_pv_entry(pmap, pv);
 3119                 PMAP_UNLOCK(pmap);
 3120         }
 3121         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3122         sched_unpin();
 3123         rw_wunlock(&pvh_global_lock);
 3124         pmap_free_zero_pages(&free);
 3125 }
 3126 
 3127 /*
 3128  * pmap_protect_pde: do the things to protect a 4mpage in a process
 3129  */
 3130 static boolean_t
 3131 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 3132 {
 3133         pd_entry_t newpde, oldpde;
 3134         vm_offset_t eva, va;
 3135         vm_page_t m;
 3136         boolean_t anychanged;
 3137 
 3138         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3139         KASSERT((sva & PDRMASK) == 0,
 3140             ("pmap_protect_pde: sva is not 4mpage aligned"));
 3141         anychanged = FALSE;
 3142 retry:
 3143         oldpde = newpde = *pde;
 3144         if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
 3145             (PG_MANAGED | PG_M | PG_RW)) {
 3146                 eva = sva + NBPDR;
 3147                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 3148                     va < eva; va += PAGE_SIZE, m++)
 3149                         vm_page_dirty(m);
 3150         }
 3151         if ((prot & VM_PROT_WRITE) == 0)
 3152                 newpde &= ~(PG_RW | PG_M);
 3153 #if defined(PAE) || defined(PAE_TABLES)
 3154         if ((prot & VM_PROT_EXECUTE) == 0)
 3155                 newpde |= pg_nx;
 3156 #endif
 3157         if (newpde != oldpde) {
 3158                 /*
 3159                  * As an optimization to future operations on this PDE, clear
 3160                  * PG_PROMOTED.  The impending invalidation will remove any
 3161                  * lingering 4KB page mappings from the TLB.
 3162                  */
 3163                 if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
 3164                         goto retry;
 3165                 if ((oldpde & PG_G) != 0)
 3166                         pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
 3167                 else
 3168                         anychanged = TRUE;
 3169         }
 3170         return (anychanged);
 3171 }
 3172 
 3173 /*
 3174  *      Set the physical protection on the
 3175  *      specified range of this map as requested.
 3176  */
 3177 void
 3178 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3179 {
 3180         vm_offset_t pdnxt;
 3181         pd_entry_t ptpaddr;
 3182         pt_entry_t *pte;
 3183         boolean_t anychanged, pv_lists_locked;
 3184 
 3185         KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
 3186         if (prot == VM_PROT_NONE) {
 3187                 pmap_remove(pmap, sva, eva);
 3188                 return;
 3189         }
 3190 
 3191 #if defined(PAE) || defined(PAE_TABLES)
 3192         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 3193             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 3194                 return;
 3195 #else
 3196         if (prot & VM_PROT_WRITE)
 3197                 return;
 3198 #endif
 3199 
 3200         if (pmap_is_current(pmap))
 3201                 pv_lists_locked = FALSE;
 3202         else {
 3203                 pv_lists_locked = TRUE;
 3204 resume:
 3205                 rw_wlock(&pvh_global_lock);
 3206                 sched_pin();
 3207         }
 3208         anychanged = FALSE;
 3209 
 3210         PMAP_LOCK(pmap);
 3211         for (; sva < eva; sva = pdnxt) {
 3212                 pt_entry_t obits, pbits;
 3213                 u_int pdirindex;
 3214 
 3215                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3216                 if (pdnxt < sva)
 3217                         pdnxt = eva;
 3218 
 3219                 pdirindex = sva >> PDRSHIFT;
 3220                 ptpaddr = pmap->pm_pdir[pdirindex];
 3221 
 3222                 /*
 3223                  * Weed out invalid mappings. Note: we assume that the page
 3224                  * directory table is always allocated, and in kernel virtual.
 3225                  */
 3226                 if (ptpaddr == 0)
 3227                         continue;
 3228 
 3229                 /*
 3230                  * Check for large page.
 3231                  */
 3232                 if ((ptpaddr & PG_PS) != 0) {
 3233                         /*
 3234                          * Are we protecting the entire large page?  If not,
 3235                          * demote the mapping and fall through.
 3236                          */
 3237                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3238                                 /*
 3239                                  * The TLB entry for a PG_G mapping is
 3240                                  * invalidated by pmap_protect_pde().
 3241                                  */
 3242                                 if (pmap_protect_pde(pmap,
 3243                                     &pmap->pm_pdir[pdirindex], sva, prot))
 3244                                         anychanged = TRUE;
 3245                                 continue;
 3246                         } else {
 3247                                 if (!pv_lists_locked) {
 3248                                         pv_lists_locked = TRUE;
 3249                                         if (!rw_try_wlock(&pvh_global_lock)) {
 3250                                                 if (anychanged)
 3251                                                         pmap_invalidate_all(
 3252                                                             pmap);
 3253                                                 PMAP_UNLOCK(pmap);
 3254                                                 goto resume;
 3255                                         }
 3256                                         sched_pin();
 3257                                 }
 3258                                 if (!pmap_demote_pde(pmap,
 3259                                     &pmap->pm_pdir[pdirindex], sva)) {
 3260                                         /*
 3261                                          * The large page mapping was
 3262                                          * destroyed.
 3263                                          */
 3264                                         continue;
 3265                                 }
 3266                         }
 3267                 }
 3268 
 3269                 if (pdnxt > eva)
 3270                         pdnxt = eva;
 3271 
 3272                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3273                     sva += PAGE_SIZE) {
 3274                         vm_page_t m;
 3275 
 3276 retry:
 3277                         /*
 3278                          * Regardless of whether a pte is 32 or 64 bits in
 3279                          * size, PG_RW, PG_A, and PG_M are among the least
 3280                          * significant 32 bits.
 3281                          */
 3282                         obits = pbits = *pte;
 3283                         if ((pbits & PG_V) == 0)
 3284                                 continue;
 3285 
 3286                         if ((prot & VM_PROT_WRITE) == 0) {
 3287                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 3288                                     (PG_MANAGED | PG_M | PG_RW)) {
 3289                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3290                                         vm_page_dirty(m);
 3291                                 }
 3292                                 pbits &= ~(PG_RW | PG_M);
 3293                         }
 3294 #if defined(PAE) || defined(PAE_TABLES)
 3295                         if ((prot & VM_PROT_EXECUTE) == 0)
 3296                                 pbits |= pg_nx;
 3297 #endif
 3298 
 3299                         if (pbits != obits) {
 3300 #if defined(PAE) || defined(PAE_TABLES)
 3301                                 if (!atomic_cmpset_64(pte, obits, pbits))
 3302                                         goto retry;
 3303 #else
 3304                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 3305                                     pbits))
 3306                                         goto retry;
 3307 #endif
 3308                                 if (obits & PG_G)
 3309                                         pmap_invalidate_page(pmap, sva);
 3310                                 else
 3311                                         anychanged = TRUE;
 3312                         }
 3313                 }
 3314         }
 3315         if (anychanged)
 3316                 pmap_invalidate_all(pmap);
 3317         if (pv_lists_locked) {
 3318                 sched_unpin();
 3319                 rw_wunlock(&pvh_global_lock);
 3320         }
 3321         PMAP_UNLOCK(pmap);
 3322 }
 3323 
 3324 /*
 3325  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
 3326  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
 3327  * For promotion to occur, two conditions must be met: (1) the 4KB page
 3328  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
 3329  * mappings must have identical characteristics.
 3330  *
 3331  * Managed (PG_MANAGED) mappings within the kernel address space are not
 3332  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
 3333  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
 3334  * pmap.
 3335  */
 3336 static void
 3337 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 3338 {
 3339         pd_entry_t newpde;
 3340         pt_entry_t *firstpte, oldpte, pa, *pte;
 3341         vm_offset_t oldpteva;
 3342         vm_page_t mpte;
 3343 
 3344         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3345 
 3346         /*
 3347          * Examine the first PTE in the specified PTP.  Abort if this PTE is
 3348          * either invalid, unused, or does not map the first 4KB physical page
 3349          * within a 2- or 4MB page.
 3350          */
 3351         firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
 3352 setpde:
 3353         newpde = *firstpte;
 3354         if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 3355                 pmap_pde_p_failures++;
 3356                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3357                     " in pmap %p", va, pmap);
 3358                 return;
 3359         }
 3360         if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
 3361                 pmap_pde_p_failures++;
 3362                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3363                     " in pmap %p", va, pmap);
 3364                 return;
 3365         }
 3366         if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 3367                 /*
 3368                  * When PG_M is already clear, PG_RW can be cleared without
 3369                  * a TLB invalidation.
 3370                  */
 3371                 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
 3372                     ~PG_RW))  
 3373                         goto setpde;
 3374                 newpde &= ~PG_RW;
 3375         }
 3376 
 3377         /* 
 3378          * Examine each of the other PTEs in the specified PTP.  Abort if this
 3379          * PTE maps an unexpected 4KB physical page or does not have identical
 3380          * characteristics to the first PTE.
 3381          */
 3382         pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 3383         for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 3384 setpte:
 3385                 oldpte = *pte;
 3386                 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 3387                         pmap_pde_p_failures++;
 3388                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3389                             " in pmap %p", va, pmap);
 3390                         return;
 3391                 }
 3392                 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 3393                         /*
 3394                          * When PG_M is already clear, PG_RW can be cleared
 3395                          * without a TLB invalidation.
 3396                          */
 3397                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3398                             oldpte & ~PG_RW))
 3399                                 goto setpte;
 3400                         oldpte &= ~PG_RW;
 3401                         oldpteva = (oldpte & PG_FRAME & PDRMASK) |
 3402                             (va & ~PDRMASK);
 3403                         CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
 3404                             " in pmap %p", oldpteva, pmap);
 3405                 }
 3406                 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 3407                         pmap_pde_p_failures++;
 3408                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3409                             " in pmap %p", va, pmap);
 3410                         return;
 3411                 }
 3412                 pa -= PAGE_SIZE;
 3413         }
 3414 
 3415         /*
 3416          * Save the page table page in its current state until the PDE
 3417          * mapping the superpage is demoted by pmap_demote_pde() or
 3418          * destroyed by pmap_remove_pde(). 
 3419          */
 3420         mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 3421         KASSERT(mpte >= vm_page_array &&
 3422             mpte < &vm_page_array[vm_page_array_size],
 3423             ("pmap_promote_pde: page table page is out of range"));
 3424         KASSERT(mpte->pindex == va >> PDRSHIFT,
 3425             ("pmap_promote_pde: page table page's pindex is wrong"));
 3426         if (pmap_insert_pt_page(pmap, mpte)) {
 3427                 pmap_pde_p_failures++;
 3428                 CTR2(KTR_PMAP,
 3429                     "pmap_promote_pde: failure for va %#x in pmap %p", va,
 3430                     pmap);
 3431                 return;
 3432         }
 3433 
 3434         /*
 3435          * Promote the pv entries.
 3436          */
 3437         if ((newpde & PG_MANAGED) != 0)
 3438                 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
 3439 
 3440         /*
 3441          * Propagate the PAT index to its proper position.
 3442          */
 3443         if ((newpde & PG_PTE_PAT) != 0)
 3444                 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
 3445 
 3446         /*
 3447          * Map the superpage.
 3448          */
 3449         if (workaround_erratum383)
 3450                 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 3451         else if (pmap == kernel_pmap)
 3452                 pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
 3453         else
 3454                 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
 3455 
 3456         pmap_pde_promotions++;
 3457         CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
 3458             " in pmap %p", va, pmap);
 3459 }
 3460 
 3461 /*
 3462  *      Insert the given physical page (p) at
 3463  *      the specified virtual address (v) in the
 3464  *      target physical map with the protection requested.
 3465  *
 3466  *      If specified, the page will be wired down, meaning
 3467  *      that the related pte can not be reclaimed.
 3468  *
 3469  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3470  *      or lose information.  That is, this routine must actually
 3471  *      insert this page into the given map NOW.
 3472  */
 3473 int
 3474 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 3475     u_int flags, int8_t psind)
 3476 {
 3477         pd_entry_t *pde;
 3478         pt_entry_t *pte;
 3479         pt_entry_t newpte, origpte;
 3480         pv_entry_t pv;
 3481         vm_paddr_t opa, pa;
 3482         vm_page_t mpte, om;
 3483         boolean_t invlva, wired;
 3484 
 3485         va = trunc_page(va);
 3486         mpte = NULL;
 3487         wired = (flags & PMAP_ENTER_WIRED) != 0;
 3488 
 3489         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 3490         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 3491             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 3492             va));
 3493         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 3494                 VM_OBJECT_ASSERT_LOCKED(m->object);
 3495 
 3496         rw_wlock(&pvh_global_lock);
 3497         PMAP_LOCK(pmap);
 3498         sched_pin();
 3499 
 3500         pde = pmap_pde(pmap, va);
 3501         if (va < VM_MAXUSER_ADDRESS) {
 3502                 /*
 3503                  * va is for UVA.
 3504                  * In the case that a page table page is not resident,
 3505                  * we are creating it here.  pmap_allocpte() handles
 3506                  * demotion.
 3507                  */
 3508                 mpte = pmap_allocpte(pmap, va, flags);
 3509                 if (mpte == NULL) {
 3510                         KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
 3511                             ("pmap_allocpte failed with sleep allowed"));
 3512                         sched_unpin();
 3513                         rw_wunlock(&pvh_global_lock);
 3514                         PMAP_UNLOCK(pmap);
 3515                         return (KERN_RESOURCE_SHORTAGE);
 3516                 }
 3517         } else {
 3518                 /*
 3519                  * va is for KVA, so pmap_demote_pde() will never fail
 3520                  * to install a page table page.  PG_V is also
 3521                  * asserted by pmap_demote_pde().
 3522                  */
 3523                 KASSERT(pde != NULL && (*pde & PG_V) != 0,
 3524                     ("KVA %#x invalid pde pdir %#jx", va,
 3525                     (uintmax_t)pmap->pm_pdir[PTDPTDI]));
 3526                 if ((*pde & PG_PS) != 0)
 3527                         pmap_demote_pde(pmap, pde, va);
 3528         }
 3529         pte = pmap_pte_quick(pmap, va);
 3530 
 3531         /*
 3532          * Page Directory table entry is not valid, which should not
 3533          * happen.  We should have either allocated the page table
 3534          * page or demoted the existing mapping above.
 3535          */
 3536         if (pte == NULL) {
 3537                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 3538                     (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 3539         }
 3540 
 3541         pa = VM_PAGE_TO_PHYS(m);
 3542         om = NULL;
 3543         origpte = *pte;
 3544         opa = origpte & PG_FRAME;
 3545 
 3546         /*
 3547          * Mapping has not changed, must be protection or wiring change.
 3548          */
 3549         if (origpte && (opa == pa)) {
 3550                 /*
 3551                  * Wiring change, just update stats. We don't worry about
 3552                  * wiring PT pages as they remain resident as long as there
 3553                  * are valid mappings in them. Hence, if a user page is wired,
 3554                  * the PT page will be also.
 3555                  */
 3556                 if (wired && ((origpte & PG_W) == 0))
 3557                         pmap->pm_stats.wired_count++;
 3558                 else if (!wired && (origpte & PG_W))
 3559                         pmap->pm_stats.wired_count--;
 3560 
 3561                 /*
 3562                  * Remove extra pte reference
 3563                  */
 3564                 if (mpte)
 3565                         mpte->wire_count--;
 3566 
 3567                 if (origpte & PG_MANAGED) {
 3568                         om = m;
 3569                         pa |= PG_MANAGED;
 3570                 }
 3571                 goto validate;
 3572         } 
 3573 
 3574         pv = NULL;
 3575 
 3576         /*
 3577          * Mapping has changed, invalidate old range and fall through to
 3578          * handle validating new mapping.
 3579          */
 3580         if (opa) {
 3581                 if (origpte & PG_W)
 3582                         pmap->pm_stats.wired_count--;
 3583                 if (origpte & PG_MANAGED) {
 3584                         om = PHYS_TO_VM_PAGE(opa);
 3585                         pv = pmap_pvh_remove(&om->md, pmap, va);
 3586                 }
 3587                 if (mpte != NULL) {
 3588                         mpte->wire_count--;
 3589                         KASSERT(mpte->wire_count > 0,
 3590                             ("pmap_enter: missing reference to page table page,"
 3591                              " va: 0x%x", va));
 3592                 }
 3593         } else
 3594                 pmap->pm_stats.resident_count++;
 3595 
 3596         /*
 3597          * Enter on the PV list if part of our managed memory.
 3598          */
 3599         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3600                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3601                     ("pmap_enter: managed mapping within the clean submap"));
 3602                 if (pv == NULL)
 3603                         pv = get_pv_entry(pmap, FALSE);
 3604                 pv->pv_va = va;
 3605                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 3606                 pa |= PG_MANAGED;
 3607         } else if (pv != NULL)
 3608                 free_pv_entry(pmap, pv);
 3609 
 3610         /*
 3611          * Increment counters
 3612          */
 3613         if (wired)
 3614                 pmap->pm_stats.wired_count++;
 3615 
 3616 validate:
 3617         /*
 3618          * Now validate mapping with desired protection/wiring.
 3619          */
 3620         newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
 3621         if ((prot & VM_PROT_WRITE) != 0) {
 3622                 newpte |= PG_RW;
 3623                 if ((newpte & PG_MANAGED) != 0)
 3624                         vm_page_aflag_set(m, PGA_WRITEABLE);
 3625         }
 3626 #if defined(PAE) || defined(PAE_TABLES)
 3627         if ((prot & VM_PROT_EXECUTE) == 0)
 3628                 newpte |= pg_nx;
 3629 #endif
 3630         if (wired)
 3631                 newpte |= PG_W;
 3632         if (va < VM_MAXUSER_ADDRESS)
 3633                 newpte |= PG_U;
 3634         if (pmap == kernel_pmap)
 3635                 newpte |= pgeflag;
 3636 
 3637         /*
 3638          * if the mapping or permission bits are different, we need
 3639          * to update the pte.
 3640          */
 3641         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 3642                 newpte |= PG_A;
 3643                 if ((flags & VM_PROT_WRITE) != 0)
 3644                         newpte |= PG_M;
 3645                 if (origpte & PG_V) {
 3646                         invlva = FALSE;
 3647                         origpte = pte_load_store(pte, newpte);
 3648                         if (origpte & PG_A) {
 3649                                 if (origpte & PG_MANAGED)
 3650                                         vm_page_aflag_set(om, PGA_REFERENCED);
 3651                                 if (opa != VM_PAGE_TO_PHYS(m))
 3652                                         invlva = TRUE;
 3653 #if defined(PAE) || defined(PAE_TABLES)
 3654                                 if ((origpte & PG_NX) == 0 &&
 3655                                     (newpte & PG_NX) != 0)
 3656                                         invlva = TRUE;
 3657 #endif
 3658                         }
 3659                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3660                                 if ((origpte & PG_MANAGED) != 0)
 3661                                         vm_page_dirty(om);
 3662                                 if ((prot & VM_PROT_WRITE) == 0)
 3663                                         invlva = TRUE;
 3664                         }
 3665                         if ((origpte & PG_MANAGED) != 0 &&
 3666                             TAILQ_EMPTY(&om->md.pv_list) &&
 3667                             ((om->flags & PG_FICTITIOUS) != 0 ||
 3668                             TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 3669                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 3670                         if (invlva)
 3671                                 pmap_invalidate_page(pmap, va);
 3672                 } else
 3673                         pte_store(pte, newpte);
 3674         }
 3675 
 3676         /*
 3677          * If both the page table page and the reservation are fully
 3678          * populated, then attempt promotion.
 3679          */
 3680         if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 3681             pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
 3682             vm_reserv_level_iffullpop(m) == 0)
 3683                 pmap_promote_pde(pmap, pde, va);
 3684 
 3685         sched_unpin();
 3686         rw_wunlock(&pvh_global_lock);
 3687         PMAP_UNLOCK(pmap);
 3688         return (KERN_SUCCESS);
 3689 }
 3690 
 3691 /*
 3692  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
 3693  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
 3694  * blocking, (2) a mapping already exists at the specified virtual address, or
 3695  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
 3696  */
 3697 static boolean_t
 3698 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3699 {
 3700         pd_entry_t *pde, newpde;
 3701 
 3702         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3703         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3704         pde = pmap_pde(pmap, va);
 3705         if (*pde != 0) {
 3706                 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3707                     " in pmap %p", va, pmap);
 3708                 return (FALSE);
 3709         }
 3710         newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
 3711             PG_PS | PG_V;
 3712         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3713                 newpde |= PG_MANAGED;
 3714 
 3715                 /*
 3716                  * Abort this mapping if its PV entry could not be created.
 3717                  */
 3718                 if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
 3719                         CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3720                             " in pmap %p", va, pmap);
 3721                         return (FALSE);
 3722                 }
 3723         }
 3724 #if defined(PAE) || defined(PAE_TABLES)
 3725         if ((prot & VM_PROT_EXECUTE) == 0)
 3726                 newpde |= pg_nx;
 3727 #endif
 3728         if (va < VM_MAXUSER_ADDRESS)
 3729                 newpde |= PG_U;
 3730 
 3731         /*
 3732          * Increment counters.
 3733          */
 3734         pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 3735 
 3736         /*
 3737          * Map the superpage.  (This is not a promoted mapping; there will not
 3738          * be any lingering 4KB page mappings in the TLB.)
 3739          */
 3740         pde_store(pde, newpde);
 3741 
 3742         pmap_pde_mappings++;
 3743         CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 3744             " in pmap %p", va, pmap);
 3745         return (TRUE);
 3746 }
 3747 
 3748 /*
 3749  * Maps a sequence of resident pages belonging to the same object.
 3750  * The sequence begins with the given page m_start.  This page is
 3751  * mapped at the given virtual address start.  Each subsequent page is
 3752  * mapped at a virtual address that is offset from start by the same
 3753  * amount as the page is offset from m_start within the object.  The
 3754  * last page in the sequence is the page with the largest offset from
 3755  * m_start that can be mapped at a virtual address less than the given
 3756  * virtual address end.  Not every virtual page between start and end
 3757  * is mapped; only those for which a resident page exists with the
 3758  * corresponding offset from m_start are mapped.
 3759  */
 3760 void
 3761 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3762     vm_page_t m_start, vm_prot_t prot)
 3763 {
 3764         vm_offset_t va;
 3765         vm_page_t m, mpte;
 3766         vm_pindex_t diff, psize;
 3767 
 3768         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 3769 
 3770         psize = atop(end - start);
 3771         mpte = NULL;
 3772         m = m_start;
 3773         rw_wlock(&pvh_global_lock);
 3774         PMAP_LOCK(pmap);
 3775         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3776                 va = start + ptoa(diff);
 3777                 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 3778                     m->psind == 1 && pg_ps_enabled &&
 3779                     pmap_enter_pde(pmap, va, m, prot))
 3780                         m = &m[NBPDR / PAGE_SIZE - 1];
 3781                 else
 3782                         mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 3783                             mpte);
 3784                 m = TAILQ_NEXT(m, listq);
 3785         }
 3786         rw_wunlock(&pvh_global_lock);
 3787         PMAP_UNLOCK(pmap);
 3788 }
 3789 
 3790 /*
 3791  * this code makes some *MAJOR* assumptions:
 3792  * 1. Current pmap & pmap exists.
 3793  * 2. Not wired.
 3794  * 3. Read access.
 3795  * 4. No page table pages.
 3796  * but is *MUCH* faster than pmap_enter...
 3797  */
 3798 
 3799 void
 3800 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3801 {
 3802 
 3803         rw_wlock(&pvh_global_lock);
 3804         PMAP_LOCK(pmap);
 3805         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 3806         rw_wunlock(&pvh_global_lock);
 3807         PMAP_UNLOCK(pmap);
 3808 }
 3809 
 3810 static vm_page_t
 3811 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 3812     vm_prot_t prot, vm_page_t mpte)
 3813 {
 3814         pt_entry_t *pte;
 3815         vm_paddr_t pa;
 3816         struct spglist free;
 3817 
 3818         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 3819             (m->oflags & VPO_UNMANAGED) != 0,
 3820             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 3821         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3822         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3823 
 3824         /*
 3825          * In the case that a page table page is not
 3826          * resident, we are creating it here.
 3827          */
 3828         if (va < VM_MAXUSER_ADDRESS) {
 3829                 u_int ptepindex;
 3830                 pd_entry_t ptepa;
 3831 
 3832                 /*
 3833                  * Calculate pagetable page index
 3834                  */
 3835                 ptepindex = va >> PDRSHIFT;
 3836                 if (mpte && (mpte->pindex == ptepindex)) {
 3837                         mpte->wire_count++;
 3838                 } else {
 3839                         /*
 3840                          * Get the page directory entry
 3841                          */
 3842                         ptepa = pmap->pm_pdir[ptepindex];
 3843 
 3844                         /*
 3845                          * If the page table page is mapped, we just increment
 3846                          * the hold count, and activate it.
 3847                          */
 3848                         if (ptepa) {
 3849                                 if (ptepa & PG_PS)
 3850                                         return (NULL);
 3851                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 3852                                 mpte->wire_count++;
 3853                         } else {
 3854                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3855                                     PMAP_ENTER_NOSLEEP);
 3856                                 if (mpte == NULL)
 3857                                         return (mpte);
 3858                         }
 3859                 }
 3860         } else {
 3861                 mpte = NULL;
 3862         }
 3863 
 3864         /*
 3865          * This call to vtopte makes the assumption that we are
 3866          * entering the page into the current pmap.  In order to support
 3867          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3868          * But that isn't as quick as vtopte.
 3869          */
 3870         pte = vtopte(va);
 3871         if (*pte) {
 3872                 if (mpte != NULL) {
 3873                         mpte->wire_count--;
 3874                         mpte = NULL;
 3875                 }
 3876                 return (mpte);
 3877         }
 3878 
 3879         /*
 3880          * Enter on the PV list if part of our managed memory.
 3881          */
 3882         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 3883             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3884                 if (mpte != NULL) {
 3885                         SLIST_INIT(&free);
 3886                         if (pmap_unwire_ptp(pmap, mpte, &free)) {
 3887                                 pmap_invalidate_page(pmap, va);
 3888                                 pmap_free_zero_pages(&free);
 3889                         }
 3890                         
 3891                         mpte = NULL;
 3892                 }
 3893                 return (mpte);
 3894         }
 3895 
 3896         /*
 3897          * Increment counters
 3898          */
 3899         pmap->pm_stats.resident_count++;
 3900 
 3901         pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 3902 #if defined(PAE) || defined(PAE_TABLES)
 3903         if ((prot & VM_PROT_EXECUTE) == 0)
 3904                 pa |= pg_nx;
 3905 #endif
 3906 
 3907         /*
 3908          * Now validate mapping with RO protection
 3909          */
 3910         if ((m->oflags & VPO_UNMANAGED) != 0)
 3911                 pte_store(pte, pa | PG_V | PG_U);
 3912         else
 3913                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3914         return (mpte);
 3915 }
 3916 
 3917 /*
 3918  * Make a temporary mapping for a physical address.  This is only intended
 3919  * to be used for panic dumps.
 3920  */
 3921 void *
 3922 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3923 {
 3924         vm_offset_t va;
 3925 
 3926         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3927         pmap_kenter(va, pa);
 3928         invlpg(va);
 3929         return ((void *)crashdumpmap);
 3930 }
 3931 
 3932 /*
 3933  * This code maps large physical mmap regions into the
 3934  * processor address space.  Note that some shortcuts
 3935  * are taken, but the code works.
 3936  */
 3937 void
 3938 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3939     vm_pindex_t pindex, vm_size_t size)
 3940 {
 3941         pd_entry_t *pde;
 3942         vm_paddr_t pa, ptepa;
 3943         vm_page_t p;
 3944         int pat_mode;
 3945 
 3946         VM_OBJECT_ASSERT_WLOCKED(object);
 3947         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3948             ("pmap_object_init_pt: non-device object"));
 3949         if (pseflag && 
 3950             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3951                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3952                         return;
 3953                 p = vm_page_lookup(object, pindex);
 3954                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3955                     ("pmap_object_init_pt: invalid page %p", p));
 3956                 pat_mode = p->md.pat_mode;
 3957 
 3958                 /*
 3959                  * Abort the mapping if the first page is not physically
 3960                  * aligned to a 2/4MB page boundary.
 3961                  */
 3962                 ptepa = VM_PAGE_TO_PHYS(p);
 3963                 if (ptepa & (NBPDR - 1))
 3964                         return;
 3965 
 3966                 /*
 3967                  * Skip the first page.  Abort the mapping if the rest of
 3968                  * the pages are not physically contiguous or have differing
 3969                  * memory attributes.
 3970                  */
 3971                 p = TAILQ_NEXT(p, listq);
 3972                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3973                     pa += PAGE_SIZE) {
 3974                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3975                             ("pmap_object_init_pt: invalid page %p", p));
 3976                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3977                             pat_mode != p->md.pat_mode)
 3978                                 return;
 3979                         p = TAILQ_NEXT(p, listq);
 3980                 }
 3981 
 3982                 /*
 3983                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3984                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3985                  * "pa" will not affect the termination of this loop.
 3986                  */
 3987                 PMAP_LOCK(pmap);
 3988                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3989                     size; pa += NBPDR) {
 3990                         pde = pmap_pde(pmap, addr);
 3991                         if (*pde == 0) {
 3992                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3993                                     PG_U | PG_RW | PG_V);
 3994                                 pmap->pm_stats.resident_count += NBPDR /
 3995                                     PAGE_SIZE;
 3996                                 pmap_pde_mappings++;
 3997                         }
 3998                         /* Else continue on if the PDE is already valid. */
 3999                         addr += NBPDR;
 4000                 }
 4001                 PMAP_UNLOCK(pmap);
 4002         }
 4003 }
 4004 
 4005 /*
 4006  *      Clear the wired attribute from the mappings for the specified range of
 4007  *      addresses in the given pmap.  Every valid mapping within that range
 4008  *      must have the wired attribute set.  In contrast, invalid mappings
 4009  *      cannot have the wired attribute set, so they are ignored.
 4010  *
 4011  *      The wired attribute of the page table entry is not a hardware feature,
 4012  *      so there is no need to invalidate any TLB entries.
 4013  */
 4014 void
 4015 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 4016 {
 4017         vm_offset_t pdnxt;
 4018         pd_entry_t *pde;
 4019         pt_entry_t *pte;
 4020         boolean_t pv_lists_locked;
 4021 
 4022         if (pmap_is_current(pmap))
 4023                 pv_lists_locked = FALSE;
 4024         else {
 4025                 pv_lists_locked = TRUE;
 4026 resume:
 4027                 rw_wlock(&pvh_global_lock);
 4028                 sched_pin();
 4029         }
 4030         PMAP_LOCK(pmap);
 4031         for (; sva < eva; sva = pdnxt) {
 4032                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 4033                 if (pdnxt < sva)
 4034                         pdnxt = eva;
 4035                 pde = pmap_pde(pmap, sva);
 4036                 if ((*pde & PG_V) == 0)
 4037                         continue;
 4038                 if ((*pde & PG_PS) != 0) {
 4039                         if ((*pde & PG_W) == 0)
 4040                                 panic("pmap_unwire: pde %#jx is missing PG_W",
 4041                                     (uintmax_t)*pde);
 4042 
 4043                         /*
 4044                          * Are we unwiring the entire large page?  If not,
 4045                          * demote the mapping and fall through.
 4046                          */
 4047                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 4048                                 /*
 4049                                  * Regardless of whether a pde (or pte) is 32
 4050                                  * or 64 bits in size, PG_W is among the least
 4051                                  * significant 32 bits.
 4052                                  */
 4053                                 atomic_clear_int((u_int *)pde, PG_W);
 4054                                 pmap->pm_stats.wired_count -= NBPDR /
 4055                                     PAGE_SIZE;
 4056                                 continue;
 4057                         } else {
 4058                                 if (!pv_lists_locked) {
 4059                                         pv_lists_locked = TRUE;
 4060                                         if (!rw_try_wlock(&pvh_global_lock)) {
 4061                                                 PMAP_UNLOCK(pmap);
 4062                                                 /* Repeat sva. */
 4063                                                 goto resume;
 4064                                         }
 4065                                         sched_pin();
 4066                                 }
 4067                                 if (!pmap_demote_pde(pmap, pde, sva))
 4068                                         panic("pmap_unwire: demotion failed");
 4069                         }
 4070                 }
 4071                 if (pdnxt > eva)
 4072                         pdnxt = eva;
 4073                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 4074                     sva += PAGE_SIZE) {
 4075                         if ((*pte & PG_V) == 0)
 4076                                 continue;
 4077                         if ((*pte & PG_W) == 0)
 4078                                 panic("pmap_unwire: pte %#jx is missing PG_W",
 4079                                     (uintmax_t)*pte);
 4080 
 4081                         /*
 4082                          * PG_W must be cleared atomically.  Although the pmap
 4083                          * lock synchronizes access to PG_W, another processor
 4084                          * could be setting PG_M and/or PG_A concurrently.
 4085                          *
 4086                          * PG_W is among the least significant 32 bits.
 4087                          */
 4088                         atomic_clear_int((u_int *)pte, PG_W);
 4089                         pmap->pm_stats.wired_count--;
 4090                 }
 4091         }
 4092         if (pv_lists_locked) {
 4093                 sched_unpin();
 4094                 rw_wunlock(&pvh_global_lock);
 4095         }
 4096         PMAP_UNLOCK(pmap);
 4097 }
 4098 
 4099 
 4100 /*
 4101  *      Copy the range specified by src_addr/len
 4102  *      from the source map to the range dst_addr/len
 4103  *      in the destination map.
 4104  *
 4105  *      This routine is only advisory and need not do anything.
 4106  */
 4107 
 4108 void
 4109 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 4110     vm_offset_t src_addr)
 4111 {
 4112         struct spglist free;
 4113         vm_offset_t addr;
 4114         vm_offset_t end_addr = src_addr + len;
 4115         vm_offset_t pdnxt;
 4116 
 4117         if (dst_addr != src_addr)
 4118                 return;
 4119 
 4120         if (!pmap_is_current(src_pmap))
 4121                 return;
 4122 
 4123         rw_wlock(&pvh_global_lock);
 4124         if (dst_pmap < src_pmap) {
 4125                 PMAP_LOCK(dst_pmap);
 4126                 PMAP_LOCK(src_pmap);
 4127         } else {
 4128                 PMAP_LOCK(src_pmap);
 4129                 PMAP_LOCK(dst_pmap);
 4130         }
 4131         sched_pin();
 4132         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 4133                 pt_entry_t *src_pte, *dst_pte;
 4134                 vm_page_t dstmpte, srcmpte;
 4135                 pd_entry_t srcptepaddr;
 4136                 u_int ptepindex;
 4137 
 4138                 KASSERT(addr < UPT_MIN_ADDRESS,
 4139                     ("pmap_copy: invalid to pmap_copy page tables"));
 4140 
 4141                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 4142                 if (pdnxt < addr)
 4143                         pdnxt = end_addr;
 4144                 ptepindex = addr >> PDRSHIFT;
 4145 
 4146                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 4147                 if (srcptepaddr == 0)
 4148                         continue;
 4149                         
 4150                 if (srcptepaddr & PG_PS) {
 4151                         if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
 4152                                 continue;
 4153                         if (dst_pmap->pm_pdir[ptepindex] == 0 &&
 4154                             ((srcptepaddr & PG_MANAGED) == 0 ||
 4155                             pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 4156                             PG_PS_FRAME))) {
 4157                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 4158                                     ~PG_W;
 4159                                 dst_pmap->pm_stats.resident_count +=
 4160                                     NBPDR / PAGE_SIZE;
 4161                                 pmap_pde_mappings++;
 4162                         }
 4163                         continue;
 4164                 }
 4165 
 4166                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 4167                 KASSERT(srcmpte->wire_count > 0,
 4168                     ("pmap_copy: source page table page is unused"));
 4169 
 4170                 if (pdnxt > end_addr)
 4171                         pdnxt = end_addr;
 4172 
 4173                 src_pte = vtopte(addr);
 4174                 while (addr < pdnxt) {
 4175                         pt_entry_t ptetemp;
 4176                         ptetemp = *src_pte;
 4177                         /*
 4178                          * we only virtual copy managed pages
 4179                          */
 4180                         if ((ptetemp & PG_MANAGED) != 0) {
 4181                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 4182                                     PMAP_ENTER_NOSLEEP);
 4183                                 if (dstmpte == NULL)
 4184                                         goto out;
 4185                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 4186                                 if (*dst_pte == 0 &&
 4187                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 4188                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 4189                                         /*
 4190                                          * Clear the wired, modified, and
 4191                                          * accessed (referenced) bits
 4192                                          * during the copy.
 4193                                          */
 4194                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 4195                                             PG_A);
 4196                                         dst_pmap->pm_stats.resident_count++;
 4197                                 } else {
 4198                                         SLIST_INIT(&free);
 4199                                         if (pmap_unwire_ptp(dst_pmap, dstmpte,
 4200                                             &free)) {
 4201                                                 pmap_invalidate_page(dst_pmap,
 4202                                                     addr);
 4203                                                 pmap_free_zero_pages(&free);
 4204                                         }
 4205                                         goto out;
 4206                                 }
 4207                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 4208                                         break;
 4209                         }
 4210                         addr += PAGE_SIZE;
 4211                         src_pte++;
 4212                 }
 4213         }
 4214 out:
 4215         sched_unpin();
 4216         rw_wunlock(&pvh_global_lock);
 4217         PMAP_UNLOCK(src_pmap);
 4218         PMAP_UNLOCK(dst_pmap);
 4219 }       
 4220 
 4221 static __inline void
 4222 pagezero(void *page)
 4223 {
 4224 #if defined(I686_CPU)
 4225         if (cpu_class == CPUCLASS_686) {
 4226                 if (cpu_feature & CPUID_SSE2)
 4227                         sse2_pagezero(page);
 4228                 else
 4229                         i686_pagezero(page);
 4230         } else
 4231 #endif
 4232                 bzero(page, PAGE_SIZE);
 4233 }
 4234 
 4235 /*
 4236  *      pmap_zero_page zeros the specified hardware page by mapping 
 4237  *      the page into KVM and using bzero to clear its contents.
 4238  */
 4239 void
 4240 pmap_zero_page(vm_page_t m)
 4241 {
 4242         pt_entry_t *cmap_pte2;
 4243         struct pcpu *pc;
 4244 
 4245         sched_pin();
 4246         pc = get_pcpu();
 4247         cmap_pte2 = pc->pc_cmap_pte2;
 4248         mtx_lock(&pc->pc_cmap_lock);
 4249         if (*cmap_pte2)
 4250                 panic("pmap_zero_page: CMAP2 busy");
 4251         *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4252             pmap_cache_bits(m->md.pat_mode, 0);
 4253         invlcaddr(pc->pc_cmap_addr2);
 4254         pagezero(pc->pc_cmap_addr2);
 4255         *cmap_pte2 = 0;
 4256 
 4257         /*
 4258          * Unpin the thread before releasing the lock.  Otherwise the thread
 4259          * could be rescheduled while still bound to the current CPU, only
 4260          * to unpin itself immediately upon resuming execution.
 4261          */
 4262         sched_unpin();
 4263         mtx_unlock(&pc->pc_cmap_lock);
 4264 }
 4265 
 4266 /*
 4267  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4268  *      the page into KVM and using bzero to clear its contents.
 4269  *
 4270  *      off and size may not cover an area beyond a single hardware page.
 4271  */
 4272 void
 4273 pmap_zero_page_area(vm_page_t m, int off, int size)
 4274 {
 4275         pt_entry_t *cmap_pte2;
 4276         struct pcpu *pc;
 4277 
 4278         sched_pin();
 4279         pc = get_pcpu();
 4280         cmap_pte2 = pc->pc_cmap_pte2;
 4281         mtx_lock(&pc->pc_cmap_lock);
 4282         if (*cmap_pte2)
 4283                 panic("pmap_zero_page_area: CMAP2 busy");
 4284         *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4285             pmap_cache_bits(m->md.pat_mode, 0);
 4286         invlcaddr(pc->pc_cmap_addr2);
 4287         if (off == 0 && size == PAGE_SIZE) 
 4288                 pagezero(pc->pc_cmap_addr2);
 4289         else
 4290                 bzero(pc->pc_cmap_addr2 + off, size);
 4291         *cmap_pte2 = 0;
 4292         sched_unpin();
 4293         mtx_unlock(&pc->pc_cmap_lock);
 4294 }
 4295 
 4296 /*
 4297  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4298  *      the page into KVM and using bzero to clear its contents.  This
 4299  *      is intended to be called from the vm_pagezero process only and
 4300  *      outside of Giant.
 4301  */
 4302 void
 4303 pmap_zero_page_idle(vm_page_t m)
 4304 {
 4305 
 4306         if (*CMAP3)
 4307                 panic("pmap_zero_page_idle: CMAP3 busy");
 4308         sched_pin();
 4309         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4310             pmap_cache_bits(m->md.pat_mode, 0);
 4311         invlcaddr(CADDR3);
 4312         pagezero(CADDR3);
 4313         *CMAP3 = 0;
 4314         sched_unpin();
 4315 }
 4316 
 4317 /*
 4318  *      pmap_copy_page copies the specified (machine independent)
 4319  *      page by mapping the page into virtual memory and using
 4320  *      bcopy to copy the page, one machine dependent page at a
 4321  *      time.
 4322  */
 4323 void
 4324 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4325 {
 4326         pt_entry_t *cmap_pte1, *cmap_pte2;
 4327         struct pcpu *pc;
 4328 
 4329         sched_pin();
 4330         pc = get_pcpu();
 4331         cmap_pte1 = pc->pc_cmap_pte1; 
 4332         cmap_pte2 = pc->pc_cmap_pte2;
 4333         mtx_lock(&pc->pc_cmap_lock);
 4334         if (*cmap_pte1)
 4335                 panic("pmap_copy_page: CMAP1 busy");
 4336         if (*cmap_pte2)
 4337                 panic("pmap_copy_page: CMAP2 busy");
 4338         *cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
 4339             pmap_cache_bits(src->md.pat_mode, 0);
 4340         invlcaddr(pc->pc_cmap_addr1);
 4341         *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
 4342             pmap_cache_bits(dst->md.pat_mode, 0);
 4343         invlcaddr(pc->pc_cmap_addr2);
 4344         bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
 4345         *cmap_pte1 = 0;
 4346         *cmap_pte2 = 0;
 4347         sched_unpin();
 4348         mtx_unlock(&pc->pc_cmap_lock);
 4349 }
 4350 
 4351 int unmapped_buf_allowed = 1;
 4352 
 4353 void
 4354 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 4355     vm_offset_t b_offset, int xfersize)
 4356 {
 4357         vm_page_t a_pg, b_pg;
 4358         char *a_cp, *b_cp;
 4359         vm_offset_t a_pg_offset, b_pg_offset;
 4360         pt_entry_t *cmap_pte1, *cmap_pte2;
 4361         struct pcpu *pc;
 4362         int cnt;
 4363 
 4364         sched_pin();
 4365         pc = get_pcpu();
 4366         cmap_pte1 = pc->pc_cmap_pte1; 
 4367         cmap_pte2 = pc->pc_cmap_pte2;
 4368         mtx_lock(&pc->pc_cmap_lock);
 4369         if (*cmap_pte1 != 0)
 4370                 panic("pmap_copy_pages: CMAP1 busy");
 4371         if (*cmap_pte2 != 0)
 4372                 panic("pmap_copy_pages: CMAP2 busy");
 4373         while (xfersize > 0) {
 4374                 a_pg = ma[a_offset >> PAGE_SHIFT];
 4375                 a_pg_offset = a_offset & PAGE_MASK;
 4376                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 4377                 b_pg = mb[b_offset >> PAGE_SHIFT];
 4378                 b_pg_offset = b_offset & PAGE_MASK;
 4379                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 4380                 *cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
 4381                     pmap_cache_bits(a_pg->md.pat_mode, 0);
 4382                 invlcaddr(pc->pc_cmap_addr1);
 4383                 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
 4384                     PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
 4385                 invlcaddr(pc->pc_cmap_addr2);
 4386                 a_cp = pc->pc_cmap_addr1 + a_pg_offset;
 4387                 b_cp = pc->pc_cmap_addr2 + b_pg_offset;
 4388                 bcopy(a_cp, b_cp, cnt);
 4389                 a_offset += cnt;
 4390                 b_offset += cnt;
 4391                 xfersize -= cnt;
 4392         }
 4393         *cmap_pte1 = 0;
 4394         *cmap_pte2 = 0;
 4395         sched_unpin();
 4396         mtx_unlock(&pc->pc_cmap_lock);
 4397 }
 4398 
 4399 /*
 4400  * Returns true if the pmap's pv is one of the first
 4401  * 16 pvs linked to from this page.  This count may
 4402  * be changed upwards or downwards in the future; it
 4403  * is only necessary that true be returned for a small
 4404  * subset of pmaps for proper page aging.
 4405  */
 4406 boolean_t
 4407 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4408 {
 4409         struct md_page *pvh;
 4410         pv_entry_t pv;
 4411         int loops = 0;
 4412         boolean_t rv;
 4413 
 4414         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4415             ("pmap_page_exists_quick: page %p is not managed", m));
 4416         rv = FALSE;
 4417         rw_wlock(&pvh_global_lock);
 4418         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4419                 if (PV_PMAP(pv) == pmap) {
 4420                         rv = TRUE;
 4421                         break;
 4422                 }
 4423                 loops++;
 4424                 if (loops >= 16)
 4425                         break;
 4426         }
 4427         if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 4428                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4429                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4430                         if (PV_PMAP(pv) == pmap) {
 4431                                 rv = TRUE;
 4432                                 break;
 4433                         }
 4434                         loops++;
 4435                         if (loops >= 16)
 4436                                 break;
 4437                 }
 4438         }
 4439         rw_wunlock(&pvh_global_lock);
 4440         return (rv);
 4441 }
 4442 
 4443 /*
 4444  *      pmap_page_wired_mappings:
 4445  *
 4446  *      Return the number of managed mappings to the given physical page
 4447  *      that are wired.
 4448  */
 4449 int
 4450 pmap_page_wired_mappings(vm_page_t m)
 4451 {
 4452         int count;
 4453 
 4454         count = 0;
 4455         if ((m->oflags & VPO_UNMANAGED) != 0)
 4456                 return (count);
 4457         rw_wlock(&pvh_global_lock);
 4458         count = pmap_pvh_wired_mappings(&m->md, count);
 4459         if ((m->flags & PG_FICTITIOUS) == 0) {
 4460             count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
 4461                 count);
 4462         }
 4463         rw_wunlock(&pvh_global_lock);
 4464         return (count);
 4465 }
 4466 
 4467 /*
 4468  *      pmap_pvh_wired_mappings:
 4469  *
 4470  *      Return the updated number "count" of managed mappings that are wired.
 4471  */
 4472 static int
 4473 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
 4474 {
 4475         pmap_t pmap;
 4476         pt_entry_t *pte;
 4477         pv_entry_t pv;
 4478 
 4479         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4480         sched_pin();
 4481         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4482                 pmap = PV_PMAP(pv);
 4483                 PMAP_LOCK(pmap);
 4484                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4485                 if ((*pte & PG_W) != 0)
 4486                         count++;
 4487                 PMAP_UNLOCK(pmap);
 4488         }
 4489         sched_unpin();
 4490         return (count);
 4491 }
 4492 
 4493 /*
 4494  * Returns TRUE if the given page is mapped individually or as part of
 4495  * a 4mpage.  Otherwise, returns FALSE.
 4496  */
 4497 boolean_t
 4498 pmap_page_is_mapped(vm_page_t m)
 4499 {
 4500         boolean_t rv;
 4501 
 4502         if ((m->oflags & VPO_UNMANAGED) != 0)
 4503                 return (FALSE);
 4504         rw_wlock(&pvh_global_lock);
 4505         rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 4506             ((m->flags & PG_FICTITIOUS) == 0 &&
 4507             !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 4508         rw_wunlock(&pvh_global_lock);
 4509         return (rv);
 4510 }
 4511 
 4512 /*
 4513  * Remove all pages from specified address space
 4514  * this aids process exit speeds.  Also, this code
 4515  * is special cased for current process only, but
 4516  * can have the more generic (and slightly slower)
 4517  * mode enabled.  This is much faster than pmap_remove
 4518  * in the case of running down an entire address space.
 4519  */
 4520 void
 4521 pmap_remove_pages(pmap_t pmap)
 4522 {
 4523         pt_entry_t *pte, tpte;
 4524         vm_page_t m, mpte, mt;
 4525         pv_entry_t pv;
 4526         struct md_page *pvh;
 4527         struct pv_chunk *pc, *npc;
 4528         struct spglist free;
 4529         int field, idx;
 4530         int32_t bit;
 4531         uint32_t inuse, bitmask;
 4532         int allfree;
 4533 
 4534         if (pmap != PCPU_GET(curpmap)) {
 4535                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 4536                 return;
 4537         }
 4538         SLIST_INIT(&free);
 4539         rw_wlock(&pvh_global_lock);
 4540         PMAP_LOCK(pmap);
 4541         sched_pin();
 4542         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 4543                 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
 4544                     pc->pc_pmap));
 4545                 allfree = 1;
 4546                 for (field = 0; field < _NPCM; field++) {
 4547                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 4548                         while (inuse != 0) {
 4549                                 bit = bsfl(inuse);
 4550                                 bitmask = 1UL << bit;
 4551                                 idx = field * 32 + bit;
 4552                                 pv = &pc->pc_pventry[idx];
 4553                                 inuse &= ~bitmask;
 4554 
 4555                                 pte = pmap_pde(pmap, pv->pv_va);
 4556                                 tpte = *pte;
 4557                                 if ((tpte & PG_PS) == 0) {
 4558                                         pte = vtopte(pv->pv_va);
 4559                                         tpte = *pte & ~PG_PTE_PAT;
 4560                                 }
 4561 
 4562                                 if (tpte == 0) {
 4563                                         printf(
 4564                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 4565                                             pte, pv->pv_va);
 4566                                         panic("bad pte");
 4567                                 }
 4568 
 4569 /*
 4570  * We cannot remove wired pages from a process' mapping at this time
 4571  */
 4572                                 if (tpte & PG_W) {
 4573                                         allfree = 0;
 4574                                         continue;
 4575                                 }
 4576 
 4577                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 4578                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 4579                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 4580                                     m, (uintmax_t)m->phys_addr,
 4581                                     (uintmax_t)tpte));
 4582 
 4583                                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 4584                                     m < &vm_page_array[vm_page_array_size],
 4585                                     ("pmap_remove_pages: bad tpte %#jx",
 4586                                     (uintmax_t)tpte));
 4587 
 4588                                 pte_clear(pte);
 4589 
 4590                                 /*
 4591                                  * Update the vm_page_t clean/reference bits.
 4592                                  */
 4593                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4594                                         if ((tpte & PG_PS) != 0) {
 4595                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4596                                                         vm_page_dirty(mt);
 4597                                         } else
 4598                                                 vm_page_dirty(m);
 4599                                 }
 4600 
 4601                                 /* Mark free */
 4602                                 PV_STAT(pv_entry_frees++);
 4603                                 PV_STAT(pv_entry_spare++);
 4604                                 pv_entry_count--;
 4605                                 pc->pc_map[field] |= bitmask;
 4606                                 if ((tpte & PG_PS) != 0) {
 4607                                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 4608                                         pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 4609                                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4610                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 4611                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4612                                                         if (TAILQ_EMPTY(&mt->md.pv_list))
 4613                                                                 vm_page_aflag_clear(mt, PGA_WRITEABLE);
 4614                                         }
 4615                                         mpte = pmap_remove_pt_page(pmap, pv->pv_va);
 4616                                         if (mpte != NULL) {
 4617                                                 pmap->pm_stats.resident_count--;
 4618                                                 KASSERT(mpte->wire_count == NPTEPG,
 4619                                                     ("pmap_remove_pages: pte page wire count error"));
 4620                                                 mpte->wire_count = 0;
 4621                                                 pmap_add_delayed_free_list(mpte, &free, FALSE);
 4622                                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 4623                                         }
 4624                                 } else {
 4625                                         pmap->pm_stats.resident_count--;
 4626                                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4627                                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 4628                                             (m->flags & PG_FICTITIOUS) == 0) {
 4629                                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4630                                                 if (TAILQ_EMPTY(&pvh->pv_list))
 4631                                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4632                                         }
 4633                                         pmap_unuse_pt(pmap, pv->pv_va, &free);
 4634                                 }
 4635                         }
 4636                 }
 4637                 if (allfree) {
 4638                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 4639                         free_pv_chunk(pc);
 4640                 }
 4641         }
 4642         sched_unpin();
 4643         pmap_invalidate_all(pmap);
 4644         rw_wunlock(&pvh_global_lock);
 4645         PMAP_UNLOCK(pmap);
 4646         pmap_free_zero_pages(&free);
 4647 }
 4648 
 4649 /*
 4650  *      pmap_is_modified:
 4651  *
 4652  *      Return whether or not the specified physical page was modified
 4653  *      in any physical maps.
 4654  */
 4655 boolean_t
 4656 pmap_is_modified(vm_page_t m)
 4657 {
 4658         boolean_t rv;
 4659 
 4660         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4661             ("pmap_is_modified: page %p is not managed", m));
 4662 
 4663         /*
 4664          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4665          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 4666          * is clear, no PTEs can have PG_M set.
 4667          */
 4668         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4669         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4670                 return (FALSE);
 4671         rw_wlock(&pvh_global_lock);
 4672         rv = pmap_is_modified_pvh(&m->md) ||
 4673             ((m->flags & PG_FICTITIOUS) == 0 &&
 4674             pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4675         rw_wunlock(&pvh_global_lock);
 4676         return (rv);
 4677 }
 4678 
 4679 /*
 4680  * Returns TRUE if any of the given mappings were used to modify
 4681  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
 4682  * mappings are supported.
 4683  */
 4684 static boolean_t
 4685 pmap_is_modified_pvh(struct md_page *pvh)
 4686 {
 4687         pv_entry_t pv;
 4688         pt_entry_t *pte;
 4689         pmap_t pmap;
 4690         boolean_t rv;
 4691 
 4692         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4693         rv = FALSE;
 4694         sched_pin();
 4695         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4696                 pmap = PV_PMAP(pv);
 4697                 PMAP_LOCK(pmap);
 4698                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4699                 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
 4700                 PMAP_UNLOCK(pmap);
 4701                 if (rv)
 4702                         break;
 4703         }
 4704         sched_unpin();
 4705         return (rv);
 4706 }
 4707 
 4708 /*
 4709  *      pmap_is_prefaultable:
 4710  *
 4711  *      Return whether or not the specified virtual address is elgible
 4712  *      for prefault.
 4713  */
 4714 boolean_t
 4715 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 4716 {
 4717         pd_entry_t *pde;
 4718         pt_entry_t *pte;
 4719         boolean_t rv;
 4720 
 4721         rv = FALSE;
 4722         PMAP_LOCK(pmap);
 4723         pde = pmap_pde(pmap, addr);
 4724         if (*pde != 0 && (*pde & PG_PS) == 0) {
 4725                 pte = vtopte(addr);
 4726                 rv = *pte == 0;
 4727         }
 4728         PMAP_UNLOCK(pmap);
 4729         return (rv);
 4730 }
 4731 
 4732 /*
 4733  *      pmap_is_referenced:
 4734  *
 4735  *      Return whether or not the specified physical page was referenced
 4736  *      in any physical maps.
 4737  */
 4738 boolean_t
 4739 pmap_is_referenced(vm_page_t m)
 4740 {
 4741         boolean_t rv;
 4742 
 4743         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4744             ("pmap_is_referenced: page %p is not managed", m));
 4745         rw_wlock(&pvh_global_lock);
 4746         rv = pmap_is_referenced_pvh(&m->md) ||
 4747             ((m->flags & PG_FICTITIOUS) == 0 &&
 4748             pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4749         rw_wunlock(&pvh_global_lock);
 4750         return (rv);
 4751 }
 4752 
 4753 /*
 4754  * Returns TRUE if any of the given mappings were referenced and FALSE
 4755  * otherwise.  Both page and 4mpage mappings are supported.
 4756  */
 4757 static boolean_t
 4758 pmap_is_referenced_pvh(struct md_page *pvh)
 4759 {
 4760         pv_entry_t pv;
 4761         pt_entry_t *pte;
 4762         pmap_t pmap;
 4763         boolean_t rv;
 4764 
 4765         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4766         rv = FALSE;
 4767         sched_pin();
 4768         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 4769                 pmap = PV_PMAP(pv);
 4770                 PMAP_LOCK(pmap);
 4771                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4772                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 4773                 PMAP_UNLOCK(pmap);
 4774                 if (rv)
 4775                         break;
 4776         }
 4777         sched_unpin();
 4778         return (rv);
 4779 }
 4780 
 4781 /*
 4782  * Clear the write and modified bits in each of the given page's mappings.
 4783  */
 4784 void
 4785 pmap_remove_write(vm_page_t m)
 4786 {
 4787         struct md_page *pvh;
 4788         pv_entry_t next_pv, pv;
 4789         pmap_t pmap;
 4790         pd_entry_t *pde;
 4791         pt_entry_t oldpte, *pte;
 4792         vm_offset_t va;
 4793 
 4794         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4795             ("pmap_remove_write: page %p is not managed", m));
 4796 
 4797         /*
 4798          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 4799          * set by another thread while the object is locked.  Thus,
 4800          * if PGA_WRITEABLE is clear, no page table entries need updating.
 4801          */
 4802         VM_OBJECT_ASSERT_WLOCKED(m->object);
 4803         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 4804                 return;
 4805         rw_wlock(&pvh_global_lock);
 4806         sched_pin();
 4807         if ((m->flags & PG_FICTITIOUS) != 0)
 4808                 goto small_mappings;
 4809         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4810         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 4811                 va = pv->pv_va;
 4812                 pmap = PV_PMAP(pv);
 4813                 PMAP_LOCK(pmap);
 4814                 pde = pmap_pde(pmap, va);
 4815                 if ((*pde & PG_RW) != 0)
 4816                         (void)pmap_demote_pde(pmap, pde, va);
 4817                 PMAP_UNLOCK(pmap);
 4818         }
 4819 small_mappings:
 4820         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 4821                 pmap = PV_PMAP(pv);
 4822                 PMAP_LOCK(pmap);
 4823                 pde = pmap_pde(pmap, pv->pv_va);
 4824                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
 4825                     " a 4mpage in page %p's pv list", m));
 4826                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4827 retry:
 4828                 oldpte = *pte;
 4829                 if ((oldpte & PG_RW) != 0) {
 4830                         /*
 4831                          * Regardless of whether a pte is 32 or 64 bits
 4832                          * in size, PG_RW and PG_M are among the least
 4833                          * significant 32 bits.
 4834                          */
 4835                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 4836                             oldpte & ~(PG_RW | PG_M)))
 4837                                 goto retry;
 4838                         if ((oldpte & PG_M) != 0)
 4839                                 vm_page_dirty(m);
 4840                         pmap_invalidate_page(pmap, pv->pv_va);
 4841                 }
 4842                 PMAP_UNLOCK(pmap);
 4843         }
 4844         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4845         sched_unpin();
 4846         rw_wunlock(&pvh_global_lock);
 4847 }
 4848 
 4849 #define PMAP_TS_REFERENCED_MAX  5
 4850 
 4851 /*
 4852  *      pmap_ts_referenced:
 4853  *
 4854  *      Return a count of reference bits for a page, clearing those bits.
 4855  *      It is not necessary for every reference bit to be cleared, but it
 4856  *      is necessary that 0 only be returned when there are truly no
 4857  *      reference bits set.
 4858  *
 4859  *      XXX: The exact number of bits to check and clear is a matter that
 4860  *      should be tested and standardized at some point in the future for
 4861  *      optimal aging of shared pages.
 4862  *
 4863  *      As an optimization, update the page's dirty field if a modified bit is
 4864  *      found while counting reference bits.  This opportunistic update can be
 4865  *      performed at low cost and can eliminate the need for some future calls
 4866  *      to pmap_is_modified().  However, since this function stops after
 4867  *      finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
 4868  *      dirty pages.  Those dirty pages will only be detected by a future call
 4869  *      to pmap_is_modified().
 4870  */
 4871 int
 4872 pmap_ts_referenced(vm_page_t m)
 4873 {
 4874         struct md_page *pvh;
 4875         pv_entry_t pv, pvf;
 4876         pmap_t pmap;
 4877         pd_entry_t *pde;
 4878         pt_entry_t *pte;
 4879         vm_paddr_t pa;
 4880         int rtval = 0;
 4881 
 4882         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4883             ("pmap_ts_referenced: page %p is not managed", m));
 4884         pa = VM_PAGE_TO_PHYS(m);
 4885         pvh = pa_to_pvh(pa);
 4886         rw_wlock(&pvh_global_lock);
 4887         sched_pin();
 4888         if ((m->flags & PG_FICTITIOUS) != 0 ||
 4889             (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
 4890                 goto small_mappings;
 4891         pv = pvf;
 4892         do {
 4893                 pmap = PV_PMAP(pv);
 4894                 PMAP_LOCK(pmap);
 4895                 pde = pmap_pde(pmap, pv->pv_va);
 4896                 if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4897                         /*
 4898                          * Although "*pde" is mapping a 2/4MB page, because
 4899                          * this function is called at a 4KB page granularity,
 4900                          * we only update the 4KB page under test.
 4901                          */
 4902                         vm_page_dirty(m);
 4903                 }
 4904                 if ((*pde & PG_A) != 0) {
 4905                         /*
 4906                          * Since this reference bit is shared by either 1024
 4907                          * or 512 4KB pages, it should not be cleared every
 4908                          * time it is tested.  Apply a simple "hash" function
 4909                          * on the physical page number, the virtual superpage
 4910                          * number, and the pmap address to select one 4KB page
 4911                          * out of the 1024 or 512 on which testing the
 4912                          * reference bit will result in clearing that bit.
 4913                          * This function is designed to avoid the selection of
 4914                          * the same 4KB page for every 2- or 4MB page mapping.
 4915                          *
 4916                          * On demotion, a mapping that hasn't been referenced
 4917                          * is simply destroyed.  To avoid the possibility of a
 4918                          * subsequent page fault on a demoted wired mapping,
 4919                          * always leave its reference bit set.  Moreover,
 4920                          * since the superpage is wired, the current state of
 4921                          * its reference bit won't affect page replacement.
 4922                          */
 4923                         if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
 4924                             (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
 4925                             (*pde & PG_W) == 0) {
 4926                                 atomic_clear_int((u_int *)pde, PG_A);
 4927                                 pmap_invalidate_page(pmap, pv->pv_va);
 4928                         }
 4929                         rtval++;
 4930                 }
 4931                 PMAP_UNLOCK(pmap);
 4932                 /* Rotate the PV list if it has more than one entry. */
 4933                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4934                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 4935                         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 4936                 }
 4937                 if (rtval >= PMAP_TS_REFERENCED_MAX)
 4938                         goto out;
 4939         } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
 4940 small_mappings:
 4941         if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
 4942                 goto out;
 4943         pv = pvf;
 4944         do {
 4945                 pmap = PV_PMAP(pv);
 4946                 PMAP_LOCK(pmap);
 4947                 pde = pmap_pde(pmap, pv->pv_va);
 4948                 KASSERT((*pde & PG_PS) == 0,
 4949                     ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
 4950                     m));
 4951                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4952                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 4953                         vm_page_dirty(m);
 4954                 if ((*pte & PG_A) != 0) {
 4955                         atomic_clear_int((u_int *)pte, PG_A);
 4956                         pmap_invalidate_page(pmap, pv->pv_va);
 4957                         rtval++;
 4958                 }
 4959                 PMAP_UNLOCK(pmap);
 4960                 /* Rotate the PV list if it has more than one entry. */
 4961                 if (TAILQ_NEXT(pv, pv_next) != NULL) {
 4962                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 4963                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 4964                 }
 4965         } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
 4966             PMAP_TS_REFERENCED_MAX);
 4967 out:
 4968         sched_unpin();
 4969         rw_wunlock(&pvh_global_lock);
 4970         return (rtval);
 4971 }
 4972 
 4973 /*
 4974  *      Apply the given advice to the specified range of addresses within the
 4975  *      given pmap.  Depending on the advice, clear the referenced and/or
 4976  *      modified flags in each mapping and set the mapped page's dirty field.
 4977  */
 4978 void
 4979 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 4980 {
 4981         pd_entry_t oldpde, *pde;
 4982         pt_entry_t *pte;
 4983         vm_offset_t va, pdnxt;
 4984         vm_page_t m;
 4985         boolean_t anychanged, pv_lists_locked;
 4986 
 4987         if (advice != MADV_DONTNEED && advice != MADV_FREE)
 4988                 return;
 4989         if (pmap_is_current(pmap))
 4990                 pv_lists_locked = FALSE;
 4991         else {
 4992                 pv_lists_locked = TRUE;
 4993 resume:
 4994                 rw_wlock(&pvh_global_lock);
 4995                 sched_pin();
 4996         }
 4997         anychanged = FALSE;
 4998         PMAP_LOCK(pmap);
 4999         for (; sva < eva; sva = pdnxt) {
 5000                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 5001                 if (pdnxt < sva)
 5002                         pdnxt = eva;
 5003                 pde = pmap_pde(pmap, sva);
 5004                 oldpde = *pde;
 5005                 if ((oldpde & PG_V) == 0)
 5006                         continue;
 5007                 else if ((oldpde & PG_PS) != 0) {
 5008                         if ((oldpde & PG_MANAGED) == 0)
 5009                                 continue;
 5010                         if (!pv_lists_locked) {
 5011                                 pv_lists_locked = TRUE;
 5012                                 if (!rw_try_wlock(&pvh_global_lock)) {
 5013                                         if (anychanged)
 5014                                                 pmap_invalidate_all(pmap);
 5015                                         PMAP_UNLOCK(pmap);
 5016                                         goto resume;
 5017                                 }
 5018                                 sched_pin();
 5019                         }
 5020                         if (!pmap_demote_pde(pmap, pde, sva)) {
 5021                                 /*
 5022                                  * The large page mapping was destroyed.
 5023                                  */
 5024                                 continue;
 5025                         }
 5026 
 5027                         /*
 5028                          * Unless the page mappings are wired, remove the
 5029                          * mapping to a single page so that a subsequent
 5030                          * access may repromote.  Since the underlying page
 5031                          * table page is fully populated, this removal never
 5032                          * frees a page table page.
 5033                          */
 5034                         if ((oldpde & PG_W) == 0) {
 5035                                 pte = pmap_pte_quick(pmap, sva);
 5036                                 KASSERT((*pte & PG_V) != 0,
 5037                                     ("pmap_advise: invalid PTE"));
 5038                                 pmap_remove_pte(pmap, pte, sva, NULL);
 5039                                 anychanged = TRUE;
 5040                         }
 5041                 }
 5042                 if (pdnxt > eva)
 5043                         pdnxt = eva;
 5044                 va = pdnxt;
 5045                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 5046                     sva += PAGE_SIZE) {
 5047                         if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
 5048                                 goto maybe_invlrng;
 5049                         else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 5050                                 if (advice == MADV_DONTNEED) {
 5051                                         /*
 5052                                          * Future calls to pmap_is_modified()
 5053                                          * can be avoided by making the page
 5054                                          * dirty now.
 5055                                          */
 5056                                         m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 5057                                         vm_page_dirty(m);
 5058                                 }
 5059                                 atomic_clear_int((u_int *)pte, PG_M | PG_A);
 5060                         } else if ((*pte & PG_A) != 0)
 5061                                 atomic_clear_int((u_int *)pte, PG_A);
 5062                         else
 5063                                 goto maybe_invlrng;
 5064                         if ((*pte & PG_G) != 0) {
 5065                                 if (va == pdnxt)
 5066                                         va = sva;
 5067                         } else
 5068                                 anychanged = TRUE;
 5069                         continue;
 5070 maybe_invlrng:
 5071                         if (va != pdnxt) {
 5072                                 pmap_invalidate_range(pmap, va, sva);
 5073                                 va = pdnxt;
 5074                         }
 5075                 }
 5076                 if (va != pdnxt)
 5077                         pmap_invalidate_range(pmap, va, sva);
 5078         }
 5079         if (anychanged)
 5080                 pmap_invalidate_all(pmap);
 5081         if (pv_lists_locked) {
 5082                 sched_unpin();
 5083                 rw_wunlock(&pvh_global_lock);
 5084         }
 5085         PMAP_UNLOCK(pmap);
 5086 }
 5087 
 5088 /*
 5089  *      Clear the modify bits on the specified physical page.
 5090  */
 5091 void
 5092 pmap_clear_modify(vm_page_t m)
 5093 {
 5094         struct md_page *pvh;
 5095         pv_entry_t next_pv, pv;
 5096         pmap_t pmap;
 5097         pd_entry_t oldpde, *pde;
 5098         pt_entry_t oldpte, *pte;
 5099         vm_offset_t va;
 5100 
 5101         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 5102             ("pmap_clear_modify: page %p is not managed", m));
 5103         VM_OBJECT_ASSERT_WLOCKED(m->object);
 5104         KASSERT(!vm_page_xbusied(m),
 5105             ("pmap_clear_modify: page %p is exclusive busied", m));
 5106 
 5107         /*
 5108          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 5109          * If the object containing the page is locked and the page is not
 5110          * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
 5111          */
 5112         if ((m->aflags & PGA_WRITEABLE) == 0)
 5113                 return;
 5114         rw_wlock(&pvh_global_lock);
 5115         sched_pin();
 5116         if ((m->flags & PG_FICTITIOUS) != 0)
 5117                 goto small_mappings;
 5118         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 5119         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 5120                 va = pv->pv_va;
 5121                 pmap = PV_PMAP(pv);
 5122                 PMAP_LOCK(pmap);
 5123                 pde = pmap_pde(pmap, va);
 5124                 oldpde = *pde;
 5125                 if ((oldpde & PG_RW) != 0) {
 5126                         if (pmap_demote_pde(pmap, pde, va)) {
 5127                                 if ((oldpde & PG_W) == 0) {
 5128                                         /*
 5129                                          * Write protect the mapping to a
 5130                                          * single page so that a subsequent
 5131                                          * write access may repromote.
 5132                                          */
 5133                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 5134                                             PG_PS_FRAME);
 5135                                         pte = pmap_pte_quick(pmap, va);
 5136                                         oldpte = *pte;
 5137                                         if ((oldpte & PG_V) != 0) {
 5138                                                 /*
 5139                                                  * Regardless of whether a pte is 32 or 64 bits
 5140                                                  * in size, PG_RW and PG_M are among the least
 5141                                                  * significant 32 bits.
 5142                                                  */
 5143                                                 while (!atomic_cmpset_int((u_int *)pte,
 5144                                                     oldpte,
 5145                                                     oldpte & ~(PG_M | PG_RW)))
 5146                                                         oldpte = *pte;
 5147                                                 vm_page_dirty(m);
 5148                                                 pmap_invalidate_page(pmap, va);
 5149                                         }
 5150                                 }
 5151                         }
 5152                 }
 5153                 PMAP_UNLOCK(pmap);
 5154         }
 5155 small_mappings:
 5156         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 5157                 pmap = PV_PMAP(pv);
 5158                 PMAP_LOCK(pmap);
 5159                 pde = pmap_pde(pmap, pv->pv_va);
 5160                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 5161                     " a 4mpage in page %p's pv list", m));
 5162                 pte = pmap_pte_quick(pmap, pv->pv_va);
 5163                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 5164                         /*
 5165                          * Regardless of whether a pte is 32 or 64 bits
 5166                          * in size, PG_M is among the least significant
 5167                          * 32 bits. 
 5168                          */
 5169                         atomic_clear_int((u_int *)pte, PG_M);
 5170                         pmap_invalidate_page(pmap, pv->pv_va);
 5171                 }
 5172                 PMAP_UNLOCK(pmap);
 5173         }
 5174         sched_unpin();
 5175         rw_wunlock(&pvh_global_lock);
 5176 }
 5177 
 5178 /*
 5179  * Miscellaneous support routines follow
 5180  */
 5181 
 5182 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 5183 static __inline void
 5184 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
 5185 {
 5186         u_int opte, npte;
 5187 
 5188         /*
 5189          * The cache mode bits are all in the low 32-bits of the
 5190          * PTE, so we can just spin on updating the low 32-bits.
 5191          */
 5192         do {
 5193                 opte = *(u_int *)pte;
 5194                 npte = opte & ~PG_PTE_CACHE;
 5195                 npte |= cache_bits;
 5196         } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 5197 }
 5198 
 5199 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
 5200 static __inline void
 5201 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
 5202 {
 5203         u_int opde, npde;
 5204 
 5205         /*
 5206          * The cache mode bits are all in the low 32-bits of the
 5207          * PDE, so we can just spin on updating the low 32-bits.
 5208          */
 5209         do {
 5210                 opde = *(u_int *)pde;
 5211                 npde = opde & ~PG_PDE_CACHE;
 5212                 npde |= cache_bits;
 5213         } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 5214 }
 5215 
 5216 /*
 5217  * Map a set of physical memory pages into the kernel virtual
 5218  * address space. Return a pointer to where it is mapped. This
 5219  * routine is intended to be used for mapping device memory,
 5220  * NOT real memory.
 5221  */
 5222 void *
 5223 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 5224 {
 5225         struct pmap_preinit_mapping *ppim;
 5226         vm_offset_t va, offset;
 5227         vm_size_t tmpsize;
 5228         int i;
 5229 
 5230         offset = pa & PAGE_MASK;
 5231         size = round_page(offset + size);
 5232         pa = pa & PG_FRAME;
 5233 
 5234         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 5235                 va = KERNBASE + pa;
 5236         else if (!pmap_initialized) {
 5237                 va = 0;
 5238                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5239                         ppim = pmap_preinit_mapping + i;
 5240                         if (ppim->va == 0) {
 5241                                 ppim->pa = pa;
 5242                                 ppim->sz = size;
 5243                                 ppim->mode = mode;
 5244                                 ppim->va = virtual_avail;
 5245                                 virtual_avail += size;
 5246                                 va = ppim->va;
 5247                                 break;
 5248                         }
 5249                 }
 5250                 if (va == 0)
 5251                         panic("%s: too many preinit mappings", __func__);
 5252         } else {
 5253                 /*
 5254                  * If we have a preinit mapping, re-use it.
 5255                  */
 5256                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5257                         ppim = pmap_preinit_mapping + i;
 5258                         if (ppim->pa == pa && ppim->sz == size &&
 5259                             ppim->mode == mode)
 5260                                 return ((void *)(ppim->va + offset));
 5261                 }
 5262                 va = kva_alloc(size);
 5263                 if (va == 0)
 5264                         panic("%s: Couldn't allocate KVA", __func__);
 5265         }
 5266         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 5267                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 5268         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 5269         pmap_invalidate_cache_range(va, va + size, FALSE);
 5270         return ((void *)(va + offset));
 5271 }
 5272 
 5273 void *
 5274 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 5275 {
 5276 
 5277         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 5278 }
 5279 
 5280 void *
 5281 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 5282 {
 5283 
 5284         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 5285 }
 5286 
 5287 void
 5288 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 5289 {
 5290         struct pmap_preinit_mapping *ppim;
 5291         vm_offset_t offset;
 5292         int i;
 5293 
 5294         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 5295                 return;
 5296         offset = va & PAGE_MASK;
 5297         size = round_page(offset + size);
 5298         va = trunc_page(va);
 5299         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 5300                 ppim = pmap_preinit_mapping + i;
 5301                 if (ppim->va == va && ppim->sz == size) {
 5302                         if (pmap_initialized)
 5303                                 return;
 5304                         ppim->pa = 0;
 5305                         ppim->va = 0;
 5306                         ppim->sz = 0;
 5307                         ppim->mode = 0;
 5308                         if (va + size == virtual_avail)
 5309                                 virtual_avail = va;
 5310                         return;
 5311                 }
 5312         }
 5313         if (pmap_initialized)
 5314                 kva_free(va, size);
 5315 }
 5316 
 5317 /*
 5318  * Sets the memory attribute for the specified page.
 5319  */
 5320 void
 5321 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 5322 {
 5323 
 5324         m->md.pat_mode = ma;
 5325         if ((m->flags & PG_FICTITIOUS) != 0)
 5326                 return;
 5327 
 5328         /*
 5329          * If "m" is a normal page, flush it from the cache.
 5330          * See pmap_invalidate_cache_range().
 5331          *
 5332          * First, try to find an existing mapping of the page by sf
 5333          * buffer. sf_buf_invalidate_cache() modifies mapping and
 5334          * flushes the cache.
 5335          */    
 5336         if (sf_buf_invalidate_cache(m))
 5337                 return;
 5338 
 5339         /*
 5340          * If page is not mapped by sf buffer, but CPU does not
 5341          * support self snoop, map the page transient and do
 5342          * invalidation. In the worst case, whole cache is flushed by
 5343          * pmap_invalidate_cache_range().
 5344          */
 5345         if ((cpu_feature & CPUID_SS) == 0)
 5346                 pmap_flush_page(m);
 5347 }
 5348 
 5349 static void
 5350 pmap_flush_page(vm_page_t m)
 5351 {
 5352         pt_entry_t *cmap_pte2;
 5353         struct pcpu *pc;
 5354         vm_offset_t sva, eva;
 5355         bool useclflushopt;
 5356 
 5357         useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
 5358         if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
 5359                 sched_pin();
 5360                 pc = get_pcpu();
 5361                 cmap_pte2 = pc->pc_cmap_pte2; 
 5362                 mtx_lock(&pc->pc_cmap_lock);
 5363                 if (*cmap_pte2)
 5364                         panic("pmap_flush_page: CMAP2 busy");
 5365                 *cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
 5366                     PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
 5367                 invlcaddr(pc->pc_cmap_addr2);
 5368                 sva = (vm_offset_t)pc->pc_cmap_addr2;
 5369                 eva = sva + PAGE_SIZE;
 5370 
 5371                 /*
 5372                  * Use mfence or sfence despite the ordering implied by
 5373                  * mtx_{un,}lock() because clflush on non-Intel CPUs
 5374                  * and clflushopt are not guaranteed to be ordered by
 5375                  * any other instruction.
 5376                  */
 5377                 if (useclflushopt)
 5378                         sfence();
 5379                 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
 5380                         mfence();
 5381                 for (; sva < eva; sva += cpu_clflush_line_size) {
 5382                         if (useclflushopt)
 5383                                 clflushopt(sva);
 5384                         else
 5385                                 clflush(sva);
 5386                 }
 5387                 if (useclflushopt)
 5388                         sfence();
 5389                 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
 5390                         mfence();
 5391                 *cmap_pte2 = 0;
 5392                 sched_unpin();
 5393                 mtx_unlock(&pc->pc_cmap_lock);
 5394         } else
 5395                 pmap_invalidate_cache();
 5396 }
 5397 
 5398 /*
 5399  * Changes the specified virtual address range's memory type to that given by
 5400  * the parameter "mode".  The specified virtual address range must be
 5401  * completely contained within either the kernel map.
 5402  *
 5403  * Returns zero if the change completed successfully, and either EINVAL or
 5404  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 5405  * of the virtual address range was not mapped, and ENOMEM is returned if
 5406  * there was insufficient memory available to complete the change.
 5407  */
 5408 int
 5409 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 5410 {
 5411         vm_offset_t base, offset, tmpva;
 5412         pd_entry_t *pde;
 5413         pt_entry_t *pte;
 5414         int cache_bits_pte, cache_bits_pde;
 5415         boolean_t changed;
 5416 
 5417         base = trunc_page(va);
 5418         offset = va & PAGE_MASK;
 5419         size = round_page(offset + size);
 5420 
 5421         /*
 5422          * Only supported on kernel virtual addresses above the recursive map.
 5423          */
 5424         if (base < VM_MIN_KERNEL_ADDRESS)
 5425                 return (EINVAL);
 5426 
 5427         cache_bits_pde = pmap_cache_bits(mode, 1);
 5428         cache_bits_pte = pmap_cache_bits(mode, 0);
 5429         changed = FALSE;
 5430 
 5431         /*
 5432          * Pages that aren't mapped aren't supported.  Also break down
 5433          * 2/4MB pages into 4KB pages if required.
 5434          */
 5435         PMAP_LOCK(kernel_pmap);
 5436         for (tmpva = base; tmpva < base + size; ) {
 5437                 pde = pmap_pde(kernel_pmap, tmpva);
 5438                 if (*pde == 0) {
 5439                         PMAP_UNLOCK(kernel_pmap);
 5440                         return (EINVAL);
 5441                 }
 5442                 if (*pde & PG_PS) {
 5443                         /*
 5444                          * If the current 2/4MB page already has
 5445                          * the required memory type, then we need not
 5446                          * demote this page.  Just increment tmpva to
 5447                          * the next 2/4MB page frame.
 5448                          */
 5449                         if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
 5450                                 tmpva = trunc_4mpage(tmpva) + NBPDR;
 5451                                 continue;
 5452                         }
 5453 
 5454                         /*
 5455                          * If the current offset aligns with a 2/4MB
 5456                          * page frame and there is at least 2/4MB left
 5457                          * within the range, then we need not break
 5458                          * down this page into 4KB pages.
 5459                          */
 5460                         if ((tmpva & PDRMASK) == 0 &&
 5461                             tmpva + PDRMASK < base + size) {
 5462                                 tmpva += NBPDR;
 5463                                 continue;
 5464                         }
 5465                         if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
 5466                                 PMAP_UNLOCK(kernel_pmap);
 5467                                 return (ENOMEM);
 5468                         }
 5469                 }
 5470                 pte = vtopte(tmpva);
 5471                 if (*pte == 0) {
 5472                         PMAP_UNLOCK(kernel_pmap);
 5473                         return (EINVAL);
 5474                 }
 5475                 tmpva += PAGE_SIZE;
 5476         }
 5477         PMAP_UNLOCK(kernel_pmap);
 5478 
 5479         /*
 5480          * Ok, all the pages exist, so run through them updating their
 5481          * cache mode if required.
 5482          */
 5483         for (tmpva = base; tmpva < base + size; ) {
 5484                 pde = pmap_pde(kernel_pmap, tmpva);
 5485                 if (*pde & PG_PS) {
 5486                         if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
 5487                                 pmap_pde_attr(pde, cache_bits_pde);
 5488                                 changed = TRUE;
 5489                         }
 5490                         tmpva = trunc_4mpage(tmpva) + NBPDR;
 5491                 } else {
 5492                         pte = vtopte(tmpva);
 5493                         if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
 5494                                 pmap_pte_attr(pte, cache_bits_pte);
 5495                                 changed = TRUE;
 5496                         }
 5497                         tmpva += PAGE_SIZE;
 5498                 }
 5499         }
 5500 
 5501         /*
 5502          * Flush CPU caches to make sure any data isn't cached that
 5503          * shouldn't be, etc.
 5504          */
 5505         if (changed) {
 5506                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 5507                 pmap_invalidate_cache_range(base, tmpva, FALSE);
 5508         }
 5509         return (0);
 5510 }
 5511 
 5512 /*
 5513  * perform the pmap work for mincore
 5514  */
 5515 int
 5516 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 5517 {
 5518         pd_entry_t *pdep;
 5519         pt_entry_t *ptep, pte;
 5520         vm_paddr_t pa;
 5521         int val;
 5522 
 5523         PMAP_LOCK(pmap);
 5524 retry:
 5525         pdep = pmap_pde(pmap, addr);
 5526         if (*pdep != 0) {
 5527                 if (*pdep & PG_PS) {
 5528                         pte = *pdep;
 5529                         /* Compute the physical address of the 4KB page. */
 5530                         pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 5531                             PG_FRAME;
 5532                         val = MINCORE_SUPER;
 5533                 } else {
 5534                         ptep = pmap_pte(pmap, addr);
 5535                         pte = *ptep;
 5536                         pmap_pte_release(ptep);
 5537                         pa = pte & PG_FRAME;
 5538                         val = 0;
 5539                 }
 5540         } else {
 5541                 pte = 0;
 5542                 pa = 0;
 5543                 val = 0;
 5544         }
 5545         if ((pte & PG_V) != 0) {
 5546                 val |= MINCORE_INCORE;
 5547                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 5548                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 5549                 if ((pte & PG_A) != 0)
 5550                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 5551         }
 5552         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 5553             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 5554             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 5555                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 5556                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 5557                         goto retry;
 5558         } else
 5559                 PA_UNLOCK_COND(*locked_pa);
 5560         PMAP_UNLOCK(pmap);
 5561         return (val);
 5562 }
 5563 
 5564 void
 5565 pmap_activate(struct thread *td)
 5566 {
 5567         pmap_t  pmap, oldpmap;
 5568         u_int   cpuid;
 5569         u_int32_t  cr3;
 5570 
 5571         critical_enter();
 5572         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 5573         oldpmap = PCPU_GET(curpmap);
 5574         cpuid = PCPU_GET(cpuid);
 5575 #if defined(SMP)
 5576         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 5577         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 5578 #else
 5579         CPU_CLR(cpuid, &oldpmap->pm_active);
 5580         CPU_SET(cpuid, &pmap->pm_active);
 5581 #endif
 5582 #if defined(PAE) || defined(PAE_TABLES)
 5583         cr3 = vtophys(pmap->pm_pdpt);
 5584 #else
 5585         cr3 = vtophys(pmap->pm_pdir);
 5586 #endif
 5587         /*
 5588          * pmap_activate is for the current thread on the current cpu
 5589          */
 5590         td->td_pcb->pcb_cr3 = cr3;
 5591         load_cr3(cr3);
 5592         PCPU_SET(curpmap, pmap);
 5593         critical_exit();
 5594 }
 5595 
 5596 void
 5597 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 5598 {
 5599 }
 5600 
 5601 /*
 5602  *      Increase the starting virtual address of the given mapping if a
 5603  *      different alignment might result in more superpage mappings.
 5604  */
 5605 void
 5606 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 5607     vm_offset_t *addr, vm_size_t size)
 5608 {
 5609         vm_offset_t superpage_offset;
 5610 
 5611         if (size < NBPDR)
 5612                 return;
 5613         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 5614                 offset += ptoa(object->pg_color);
 5615         superpage_offset = offset & PDRMASK;
 5616         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 5617             (*addr & PDRMASK) == superpage_offset)
 5618                 return;
 5619         if ((*addr & PDRMASK) < superpage_offset)
 5620                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 5621         else
 5622                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 5623 }
 5624 
 5625 vm_offset_t
 5626 pmap_quick_enter_page(vm_page_t m)
 5627 {
 5628         vm_offset_t qaddr;
 5629         pt_entry_t *pte;
 5630 
 5631         critical_enter();
 5632         qaddr = PCPU_GET(qmap_addr);
 5633         pte = vtopte(qaddr);
 5634 
 5635         KASSERT(*pte == 0, ("pmap_quick_enter_page: PTE busy"));
 5636         *pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 5637             pmap_cache_bits(pmap_page_get_memattr(m), 0);
 5638         invlpg(qaddr);
 5639 
 5640         return (qaddr);
 5641 }
 5642 
 5643 void
 5644 pmap_quick_remove_page(vm_offset_t addr)
 5645 {
 5646         vm_offset_t qaddr;
 5647         pt_entry_t *pte;
 5648 
 5649         qaddr = PCPU_GET(qmap_addr);
 5650         pte = vtopte(qaddr);
 5651 
 5652         KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
 5653         KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
 5654 
 5655         *pte = 0;
 5656         critical_exit();
 5657 }
 5658 
 5659 #if defined(PMAP_DEBUG)
 5660 pmap_pid_dump(int pid)
 5661 {
 5662         pmap_t pmap;
 5663         struct proc *p;
 5664         int npte = 0;
 5665         int index;
 5666 
 5667         sx_slock(&allproc_lock);
 5668         FOREACH_PROC_IN_SYSTEM(p) {
 5669                 if (p->p_pid != pid)
 5670                         continue;
 5671 
 5672                 if (p->p_vmspace) {
 5673                         int i,j;
 5674                         index = 0;
 5675                         pmap = vmspace_pmap(p->p_vmspace);
 5676                         for (i = 0; i < NPDEPTD; i++) {
 5677                                 pd_entry_t *pde;
 5678                                 pt_entry_t *pte;
 5679                                 vm_offset_t base = i << PDRSHIFT;
 5680                                 
 5681                                 pde = &pmap->pm_pdir[i];
 5682                                 if (pde && pmap_pde_v(pde)) {
 5683                                         for (j = 0; j < NPTEPG; j++) {
 5684                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 5685                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 5686                                                         if (index) {
 5687                                                                 index = 0;
 5688                                                                 printf("\n");
 5689                                                         }
 5690                                                         sx_sunlock(&allproc_lock);
 5691                                                         return (npte);
 5692                                                 }
 5693                                                 pte = pmap_pte(pmap, va);
 5694                                                 if (pte && pmap_pte_v(pte)) {
 5695                                                         pt_entry_t pa;
 5696                                                         vm_page_t m;
 5697                                                         pa = *pte;
 5698                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 5699                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 5700                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 5701                                                         npte++;
 5702                                                         index++;
 5703                                                         if (index >= 2) {
 5704                                                                 index = 0;
 5705                                                                 printf("\n");
 5706                                                         } else {
 5707                                                                 printf(" ");
 5708                                                         }
 5709                                                 }
 5710                                         }
 5711                                 }
 5712                         }
 5713                 }
 5714         }
 5715         sx_sunlock(&allproc_lock);
 5716         return (npte);
 5717 }
 5718 #endif

Cache object: 971b89f64a3de20d11f2c5547daff94e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.