The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   42  * $FreeBSD$
   43  */
   44 
   45 /*
   46  *      Manages physical address maps.
   47  *
   48  *      In addition to hardware address maps, this
   49  *      module is called upon to provide software-use-only
   50  *      maps which may or may not be stored in the same
   51  *      form as hardware maps.  These pseudo-maps are
   52  *      used to store intermediate results from copy
   53  *      operations to and from address spaces.
   54  *
   55  *      Since the information managed by this module is
   56  *      also stored by the logical address mapping module,
   57  *      this module may throw away valid virtual-to-physical
   58  *      mappings at almost any time.  However, invalidations
   59  *      of virtual-to-physical mappings must be done as
   60  *      requested.
   61  *
   62  *      In order to cope with hardware architectures which
   63  *      make virtual-to-physical map invalidates expensive,
   64  *      this module may delay invalidate or reduced protection
   65  *      operations until such time as they are actually
   66  *      necessary.  This module is given full information as
   67  *      to which processors are currently using which maps,
   68  *      and to when physical maps must be made correct.
   69  */
   70 
   71 #include "opt_disable_pse.h"
   72 #include "opt_pmap.h"
   73 #include "opt_msgbuf.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/proc.h>
   78 #include <sys/msgbuf.h>
   79 #include <sys/vmmeter.h>
   80 #include <sys/mman.h>
   81 
   82 #include <vm/vm.h>
   83 #include <vm/vm_param.h>
   84 #include <vm/vm_prot.h>
   85 #include <sys/lock.h>
   86 #include <vm/vm_kern.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/vm_zone.h>
   94 
   95 #include <sys/user.h>
   96 
   97 #include <machine/cputypes.h>
   98 #include <machine/md_var.h>
   99 #include <machine/specialreg.h>
  100 #if defined(SMP) || defined(APIC_IO)
  101 #include <machine/smp.h>
  102 #include <machine/apic.h>
  103 #endif /* SMP || APIC_IO */
  104 
  105 #define PMAP_KEEP_PDIRS
  106 #ifndef PMAP_SHPGPERPROC
  107 #define PMAP_SHPGPERPROC 200
  108 #endif
  109 
  110 #if defined(DIAGNOSTIC)
  111 #define PMAP_DIAGNOSTIC
  112 #endif
  113 
  114 #define MINPV 2048
  115 
  116 #if !defined(PMAP_DIAGNOSTIC)
  117 #define PMAP_INLINE __inline
  118 #else
  119 #define PMAP_INLINE
  120 #endif
  121 
  122 /*
  123  * Get PDEs and PTEs for user/kernel address space
  124  */
  125 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  126 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  127 
  128 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  129 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  130 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  131 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  132 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  133 
  134 #define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
  135 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  136 
  137 /*
  138  * Given a map and a machine independent protection code,
  139  * convert to a vax protection code.
  140  */
  141 #define pte_prot(m, p)  (protection_codes[p])
  142 static int protection_codes[8];
  143 
  144 #define pa_index(pa)            atop((pa) - vm_first_phys)
  145 #define pa_to_pvh(pa)           (&pv_table[pa_index(pa)])
  146 
  147 static struct pmap kernel_pmap_store;
  148 pmap_t kernel_pmap;
  149 extern pd_entry_t my_idlePTD;
  150 
  151 vm_offset_t avail_start;        /* PA of first available physical page */
  152 vm_offset_t avail_end;          /* PA of last available physical page */
  153 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  154 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  155 static boolean_t pmap_initialized = FALSE;      /* Has pmap_init completed? */
  156 static vm_offset_t vm_first_phys;
  157 static int pgeflag;             /* PG_G or-in */
  158 static int pseflag;             /* PG_PS or-in */
  159 static int pv_npg;
  160 
  161 static vm_object_t kptobj;
  162 
  163 static int nkpt;
  164 vm_offset_t kernel_vm_end;
  165 
  166 /*
  167  * Data for the pv entry allocation mechanism
  168  */
  169 static vm_zone_t pvzone;
  170 static struct vm_zone pvzone_store;
  171 static struct vm_object pvzone_obj;
  172 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
  173 static int pmap_pagedaemon_waken = 0;
  174 static struct pv_entry *pvinit;
  175 
  176 /*
  177  * All those kernel PT submaps that BSD is so fond of
  178  */
  179 pt_entry_t *CMAP1 = 0;
  180 static pt_entry_t *CMAP2, *ptmmap;
  181 static pv_table_t *pv_table;
  182 caddr_t CADDR1 = 0, ptvmmap = 0;
  183 static caddr_t CADDR2;
  184 static pt_entry_t *msgbufmap;
  185 struct msgbuf *msgbufp=0;
  186 
  187 /* AIO support */
  188 extern struct vmspace *aiovmspace;
  189 
  190 #ifdef SMP
  191 extern char prv_CPAGE1[], prv_CPAGE2[], prv_CPAGE3[];
  192 extern pt_entry_t *prv_CMAP1, *prv_CMAP2, *prv_CMAP3;
  193 extern pd_entry_t *IdlePTDS[];
  194 extern pt_entry_t SMP_prvpt[];
  195 #endif
  196 
  197 #ifdef SMP
  198 extern unsigned int prv_PPAGE1[];
  199 extern pt_entry_t *prv_PMAP1;
  200 #else
  201 static pt_entry_t *PMAP1 = 0;
  202 static unsigned *PADDR1 = 0;
  203 #endif
  204 
  205 static PMAP_INLINE void free_pv_entry __P((pv_entry_t pv));
  206 static unsigned * get_ptbase __P((pmap_t pmap));
  207 static pv_entry_t get_pv_entry __P((void));
  208 static void     i386_protection_init __P((void));
  209 static void     pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
  210 
  211 static PMAP_INLINE int  pmap_is_managed __P((vm_offset_t pa));
  212 static void     pmap_remove_all __P((vm_offset_t pa));
  213 static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
  214                                       vm_offset_t pa, vm_page_t mpte));
  215 static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
  216                                         vm_offset_t sva));
  217 static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
  218 static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
  219                                         vm_offset_t va));
  220 static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
  221 static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
  222                 vm_page_t mpte, vm_offset_t pa));
  223 
  224 static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
  225 
  226 static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
  227 static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
  228 static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
  229 static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
  230 static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
  231 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  232 void pmap_collect(void);
  233 
  234 static unsigned pdir4mb;
  235 
  236 /*
  237  *      Routine:        pmap_pte
  238  *      Function:
  239  *              Extract the page table entry associated
  240  *              with the given map/virtual_address pair.
  241  */
  242 
  243 PMAP_INLINE unsigned *
  244 pmap_pte(pmap, va)
  245         register pmap_t pmap;
  246         vm_offset_t va;
  247 {
  248         unsigned *pdeaddr;
  249 
  250         if (pmap) {
  251                 pdeaddr = (unsigned *) pmap_pde(pmap, va);
  252                 if (*pdeaddr & PG_PS)
  253                         return pdeaddr;
  254                 if (*pdeaddr) {
  255                         return get_ptbase(pmap) + i386_btop(va);
  256                 }
  257         }
  258         return (0);
  259 }
  260 
  261 /*
  262  * Move the kernel virtual free pointer to the next
  263  * 4MB.  This is used to help improve performance
  264  * by using a large (4MB) page for much of the kernel
  265  * (.text, .data, .bss)
  266  */
  267 static vm_offset_t
  268 pmap_kmem_choose(vm_offset_t addr) {
  269         vm_offset_t newaddr = addr;
  270 #ifndef DISABLE_PSE
  271         if (cpu_feature & CPUID_PSE) {
  272                 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
  273         }
  274 #endif
  275         return newaddr;
  276 }
  277 
  278 /*
  279  *      Bootstrap the system enough to run with virtual memory.
  280  *
  281  *      On the i386 this is called after mapping has already been enabled
  282  *      and just syncs the pmap module with what has already been done.
  283  *      [We can't call it easily with mapping off since the kernel is not
  284  *      mapped with PA == VA, hence we would have to relocate every address
  285  *      from the linked base (virtual) address "KERNBASE" to the actual
  286  *      (physical) address starting relative to 0]
  287  */
  288 void
  289 pmap_bootstrap(firstaddr, loadaddr)
  290         vm_offset_t firstaddr;
  291         vm_offset_t loadaddr;
  292 {
  293         vm_offset_t va;
  294         pt_entry_t *pte;
  295 #ifdef SMP
  296         int i, j;
  297 #endif
  298 
  299         avail_start = firstaddr;
  300 
  301         /*
  302          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  303          * large. It should instead be correctly calculated in locore.s and
  304          * not based on 'first' (which is a physical address, not a virtual
  305          * address, for the start of unused physical memory). The kernel
  306          * page tables are NOT double mapped and thus should not be included
  307          * in this calculation.
  308          */
  309         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  310         virtual_avail = pmap_kmem_choose(virtual_avail);
  311 
  312         virtual_end = VM_MAX_KERNEL_ADDRESS;
  313 
  314         /*
  315          * Initialize protection array.
  316          */
  317         i386_protection_init();
  318 
  319         /*
  320          * The kernel's pmap is statically allocated so we don't have to use
  321          * pmap_create, which is unlikely to work correctly at this part of
  322          * the boot sequence (XXX and which no longer exists).
  323          */
  324         kernel_pmap = &kernel_pmap_store;
  325 
  326         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  327 
  328         kernel_pmap->pm_count = 1;
  329         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  330         nkpt = NKPT;
  331 
  332         /*
  333          * Reserve some special page table entries/VA space for temporary
  334          * mapping of pages.
  335          */
  336 #define SYSMAP(c, p, v, n)      \
  337         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  338 
  339         va = virtual_avail;
  340         pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
  341 
  342         /*
  343          * CMAP1/CMAP2 are used for zeroing and copying pages.
  344          */
  345         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  346         SYSMAP(caddr_t, CMAP2, CADDR2, 1)
  347 
  348         /*
  349          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  350          * XXX ptmmap is not used.
  351          */
  352         SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
  353 
  354         /*
  355          * msgbufp is used to map the system message buffer.
  356          * XXX msgbufmap is not used.
  357          */
  358         SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
  359                atop(round_page(MSGBUF_SIZE)))
  360 
  361 #if !defined(SMP)
  362         /*
  363          * ptemap is used for pmap_pte_quick
  364          */
  365         SYSMAP(unsigned *, PMAP1, PADDR1, 1);
  366 #endif
  367 
  368         virtual_avail = va;
  369 
  370         *(int *) CMAP1 = *(int *) CMAP2 = 0;
  371         *(int *) PTD = 0;
  372 
  373 
  374         pgeflag = 0;
  375 #ifdef notyet
  376 #if !defined(SMP)
  377         if (cpu_feature & CPUID_PGE) {
  378                 pgeflag = PG_G;
  379         }
  380 #endif
  381 #endif
  382         
  383 /*
  384  * Initialize the 4MB page size flag
  385  */
  386         pseflag = 0;
  387 /*
  388  * The 4MB page version of the initial
  389  * kernel page mapping.
  390  */
  391         pdir4mb = 0;
  392 
  393 #if !defined(DISABLE_PSE)
  394         if (cpu_feature & CPUID_PSE) {
  395                 unsigned ptditmp;
  396                 /*
  397                  * Enable the PSE mode
  398                  */
  399                 load_cr4(rcr4() | CR4_PSE);
  400 
  401                 /*
  402                  * Note that we have enabled PSE mode
  403                  */
  404                 pseflag = PG_PS;
  405                 ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
  406                 ptditmp &= ~(NBPDR - 1);
  407                 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
  408                 pdir4mb = ptditmp;
  409                 /*
  410                  * We can do the mapping here for the single processor
  411                  * case.  We simply ignore the old page table page from
  412                  * now on.
  413                  */
  414 #if !defined(SMP)
  415                 PTD[KPTDI] = (pd_entry_t) ptditmp;
  416                 kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
  417                 invltlb();
  418 #endif
  419         }
  420 #endif
  421 
  422 #ifdef SMP
  423         if (cpu_apic_address == 0)
  424                 panic("pmap_bootstrap: no local apic!");
  425 
  426         /* 0 = private page */
  427         /* 1 = page table page */
  428         /* 2 = local apic */
  429         /* 16-31 = io apics */
  430         SMP_prvpt[2] = (pt_entry_t)(PG_V | PG_RW | pgeflag |
  431             (cpu_apic_address & PG_FRAME));
  432 
  433         for (i = 0; i < mp_napics; i++) {
  434                 for (j = 0; j < 16; j++) {
  435                         /* same page frame as a previous IO apic? */
  436                         if (((vm_offset_t)SMP_prvpt[j + 16] & PG_FRAME) ==
  437                             (io_apic_address[i] & PG_FRAME)) {
  438                                 ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE
  439                                     + (io_apic_address[i] & PAGE_MASK)];
  440                                 break;
  441                         }
  442                         /* use this slot if available */
  443                         if (((vm_offset_t)SMP_prvpt[j + 16] & PG_FRAME) == 0) {
  444                                 SMP_prvpt[j + 16] = (pt_entry_t)(PG_V | PG_RW |
  445                                     pgeflag | (io_apic_address[i] & PG_FRAME));
  446                                 ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE
  447                                     + (io_apic_address[i] & PAGE_MASK)];
  448                                 break;
  449                         }
  450                 }
  451                 if (j == 16)
  452                         panic("no space to map IO apic %d!", i);
  453         }
  454 
  455         /* BSP does this itself, AP's get it pre-set */
  456         prv_CMAP1 = &SMP_prvpt[3 + UPAGES];
  457         prv_CMAP2 = &SMP_prvpt[4 + UPAGES];
  458         prv_CMAP3 = &SMP_prvpt[5 + UPAGES];
  459         prv_PMAP1 = &SMP_prvpt[6 + UPAGES];
  460 #endif
  461 
  462         invltlb();
  463 
  464 }
  465 
  466 /*
  467  * Set 4mb pdir for mp startup, and global flags
  468  */
  469 void
  470 pmap_set_opt(unsigned *pdir) {
  471         int i;
  472 
  473         if (pseflag && (cpu_feature & CPUID_PSE)) {
  474                 load_cr4(rcr4() | CR4_PSE);
  475                 if (pdir4mb) {
  476                         pdir[KPTDI] = pdir4mb;
  477                 }
  478         }
  479 
  480 #ifdef notyet
  481         if (pgeflag && (cpu_feature & CPUID_PGE)) {
  482                 load_cr4(rcr4() | CR4_PGE);
  483                 for(i = KPTDI; i < KPTDI + nkpt; i++) {
  484                         if (pdir[i]) {
  485                                 pdir[i] |= PG_G;
  486                         }
  487                 }
  488         }
  489 #endif
  490 }
  491 
  492 /*
  493  * Setup the PTD for the boot processor
  494  */
  495 void
  496 pmap_set_opt_bsp(void)
  497 {
  498         pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
  499         pmap_set_opt((unsigned *)PTD);
  500         invltlb();
  501 }
  502 
  503 /*
  504  *      Initialize the pmap module.
  505  *      Called by vm_init, to initialize any structures that the pmap
  506  *      system needs to map virtual memory.
  507  *      pmap_init has been enhanced to support in a fairly consistant
  508  *      way, discontiguous physical memory.
  509  */
  510 void
  511 pmap_init(phys_start, phys_end)
  512         vm_offset_t phys_start, phys_end;
  513 {
  514         vm_offset_t addr;
  515         vm_size_t s;
  516         int i;
  517         int initial_pvs;
  518 
  519         /*
  520          * object for kernel page table pages
  521          */
  522         kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
  523 
  524         /*
  525          * calculate the number of pv_entries needed
  526          */
  527         vm_first_phys = phys_avail[0];
  528         for (i = 0; phys_avail[i + 1]; i += 2);
  529         pv_npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
  530 
  531         /*
  532          * Allocate memory for random pmap data structures.  Includes the
  533          * pv_head_table.
  534          */
  535         s = (vm_size_t) (sizeof(pv_table_t) * pv_npg);
  536         s = round_page(s);
  537 
  538         addr = (vm_offset_t) kmem_alloc(kernel_map, s);
  539         pv_table = (pv_table_t *) addr;
  540         for(i = 0; i < pv_npg; i++) {
  541                 vm_offset_t pa;
  542                 TAILQ_INIT(&pv_table[i].pv_list);
  543                 pv_table[i].pv_list_count = 0;
  544                 pa = vm_first_phys + i * PAGE_SIZE;
  545                 pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
  546         }
  547 
  548         /*
  549          * init the pv free list
  550          */
  551         initial_pvs = pv_npg;
  552         if (initial_pvs < MINPV)
  553                 initial_pvs = MINPV;
  554         pvzone = &pvzone_store;
  555         pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
  556                 initial_pvs * sizeof (struct pv_entry));
  557         zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit, pv_npg);
  558 
  559         /*
  560          * Now it is safe to enable pv_table recording.
  561          */
  562         pmap_initialized = TRUE;
  563 }
  564 
  565 /*
  566  * Initialize the address space (zone) for the pv_entries.  Set a
  567  * high water mark so that the system can recover from excessive
  568  * numbers of pv entries.
  569  */
  570 void
  571 pmap_init2() {
  572         pv_entry_max = PMAP_SHPGPERPROC * maxproc + pv_npg;
  573         pv_entry_high_water = 9 * (pv_entry_max / 10);
  574         zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
  575 }
  576 
  577 /*
  578  *      Used to map a range of physical addresses into kernel
  579  *      virtual address space.
  580  *
  581  *      For now, VM is already on, we only need to map the
  582  *      specified memory.
  583  */
  584 vm_offset_t
  585 pmap_map(virt, start, end, prot)
  586         vm_offset_t virt;
  587         vm_offset_t start;
  588         vm_offset_t end;
  589         int prot;
  590 {
  591         while (start < end) {
  592                 pmap_enter(kernel_pmap, virt, start, prot, FALSE);
  593                 virt += PAGE_SIZE;
  594                 start += PAGE_SIZE;
  595         }
  596         return (virt);
  597 }
  598 
  599 
  600 /***************************************************
  601  * Low level helper routines.....
  602  ***************************************************/
  603 
  604 #if defined(PMAP_DIAGNOSTIC)
  605 
  606 /*
  607  * This code checks for non-writeable/modified pages.
  608  * This should be an invalid condition.
  609  */
  610 static int
  611 pmap_nw_modified(pt_entry_t ptea) {
  612         int pte;
  613 
  614         pte = (int) ptea;
  615 
  616         if ((pte & (PG_M|PG_RW)) == PG_M)
  617                 return 1;
  618         else
  619                 return 0;
  620 }
  621 #endif
  622 
  623 
  624 /*
  625  * this routine defines the region(s) of memory that should
  626  * not be tested for the modified bit.
  627  */
  628 static PMAP_INLINE int
  629 pmap_track_modified( vm_offset_t va) {
  630         if ((va < clean_sva) || (va >= clean_eva)) 
  631                 return 1;
  632         else
  633                 return 0;
  634 }
  635 
  636 static PMAP_INLINE void
  637 invltlb_1pg( vm_offset_t va) {
  638 #if defined(I386_CPU)
  639         if (cpu_class == CPUCLASS_386) {
  640                 invltlb();
  641         } else
  642 #endif
  643         {
  644                 invlpg(va);
  645         }
  646 }
  647 
  648 static unsigned *
  649 get_ptbase(pmap)
  650         pmap_t pmap;
  651 {
  652         unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
  653 
  654         /* are we current address space or kernel? */
  655         if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
  656                 return (unsigned *) PTmap;
  657         }
  658         /* otherwise, we are alternate address space */
  659         if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
  660                 APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
  661 #if defined(SMP)
  662                 /* The page directory is not shared between CPUs */
  663                 cpu_invltlb();
  664 #else
  665                 invltlb();
  666 #endif
  667         }
  668         return (unsigned *) APTmap;
  669 }
  670 
  671 /*
  672  * Super fast pmap_pte routine best used when scanning
  673  * the pv lists.  This eliminates many coarse-grained
  674  * invltlb calls.  Note that many of the pv list
  675  * scans are across different pmaps.  It is very wasteful
  676  * to do an entire invltlb for checking a single mapping.
  677  */
  678 
  679 static unsigned * 
  680 pmap_pte_quick(pmap, va)
  681         register pmap_t pmap;
  682         vm_offset_t va;
  683 {
  684         unsigned pde, newpf;
  685         if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
  686                 unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
  687                 unsigned index = i386_btop(va);
  688                 /* are we current address space or kernel? */
  689                 if ((pmap == kernel_pmap) ||
  690                         (frame == (((unsigned) PTDpde) & PG_FRAME))) {
  691                         return (unsigned *) PTmap + index;
  692                 }
  693                 newpf = pde & PG_FRAME;
  694 #ifdef SMP
  695                 if ( ((* (unsigned *) prv_PMAP1) & PG_FRAME) != newpf) {
  696                         * (unsigned *) prv_PMAP1 = newpf | PG_RW | PG_V;
  697                         cpu_invlpg(&prv_PPAGE1);
  698                 }
  699                 return prv_PPAGE1 + ((unsigned) index & (NPTEPG - 1));
  700 #else
  701                 if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
  702                         * (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
  703                         invltlb_1pg((vm_offset_t) PADDR1);
  704                 }
  705                 return PADDR1 + ((unsigned) index & (NPTEPG - 1));
  706 #endif
  707         }
  708         return (0);
  709 }
  710 
  711 /*
  712  *      Routine:        pmap_extract
  713  *      Function:
  714  *              Extract the physical page address associated
  715  *              with the given map/virtual_address pair.
  716  */
  717 vm_offset_t 
  718 pmap_extract(pmap, va)
  719         register pmap_t pmap;
  720         vm_offset_t va;
  721 {
  722         vm_offset_t rtval;
  723         vm_offset_t pdirindex;
  724         pdirindex = va >> PDRSHIFT;
  725         if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
  726                 unsigned *pte;
  727                 if ((rtval & PG_PS) != 0) {
  728                         rtval &= ~(NBPDR - 1);
  729                         rtval |= va & (NBPDR - 1);
  730                         return rtval;
  731                 }
  732                 pte = get_ptbase(pmap) + i386_btop(va);
  733                 rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
  734                 return rtval;
  735         }
  736         return 0;
  737 
  738 }
  739 
  740 /*
  741  * determine if a page is managed (memory vs. device)
  742  */
  743 static PMAP_INLINE int
  744 pmap_is_managed(pa)
  745         vm_offset_t pa;
  746 {
  747         int i;
  748 
  749         if (!pmap_initialized)
  750                 return 0;
  751 
  752         for (i = 0; phys_avail[i + 1]; i += 2) {
  753                 if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
  754                         return 1;
  755         }
  756         return 0;
  757 }
  758 
  759 
  760 /***************************************************
  761  * Low level mapping routines.....
  762  ***************************************************/
  763 
  764 /*
  765  * Add a list of wired pages to the kva
  766  * this routine is only used for temporary
  767  * kernel mappings that do not need to have
  768  * page modification or references recorded.
  769  * Note that old mappings are simply written
  770  * over.  The page *must* be wired.
  771  */
  772 void
  773 pmap_qenter(va, m, count)
  774         vm_offset_t va;
  775         vm_page_t *m;
  776         int count;
  777 {
  778         int i;
  779         register unsigned *pte;
  780 
  781         for (i = 0; i < count; i++) {
  782                 vm_offset_t tva = va + i * PAGE_SIZE;
  783                 unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
  784                 unsigned opte;
  785                 pte = (unsigned *)vtopte(tva);
  786                 opte = *pte;
  787                 *pte = npte;
  788                 if (opte)
  789                         invltlb_1pg(tva);
  790         }
  791 }
  792 
  793 /*
  794  * this routine jerks page mappings from the
  795  * kernel -- it is meant only for temporary mappings.
  796  */
  797 void
  798 pmap_qremove(va, count)
  799         vm_offset_t va;
  800         int count;
  801 {
  802         int i;
  803         register unsigned *pte;
  804 
  805         for (i = 0; i < count; i++) {
  806                 pte = (unsigned *)vtopte(va);
  807                 *pte = 0;
  808                 invltlb_1pg(va);
  809                 va += PAGE_SIZE;
  810         }
  811 }
  812 
  813 /*
  814  * add a wired page to the kva
  815  * note that in order for the mapping to take effect -- you
  816  * should do a invltlb after doing the pmap_kenter...
  817  */
  818 PMAP_INLINE void 
  819 pmap_kenter(va, pa)
  820         vm_offset_t va;
  821         register vm_offset_t pa;
  822 {
  823         register unsigned *pte;
  824         unsigned npte, opte;
  825 
  826         npte = pa | PG_RW | PG_V | pgeflag;
  827         pte = (unsigned *)vtopte(va);
  828         opte = *pte;
  829         *pte = npte;
  830         if (opte)
  831                 invltlb_1pg(va);
  832 }
  833 
  834 /*
  835  * remove a page from the kernel pagetables
  836  */
  837 PMAP_INLINE void
  838 pmap_kremove(va)
  839         vm_offset_t va;
  840 {
  841         register unsigned *pte;
  842 
  843         pte = (unsigned *)vtopte(va);
  844         *pte = 0;
  845         invltlb_1pg(va);
  846 }
  847 
  848 static vm_page_t
  849 pmap_page_lookup(object, pindex)
  850         vm_object_t object;
  851         vm_pindex_t pindex;
  852 {
  853         vm_page_t m;
  854 retry:
  855         m = vm_page_lookup(object, pindex);
  856         if (m && vm_page_sleep(m, "pplookp", NULL))
  857                 goto retry;
  858         return m;
  859 }
  860 
  861 /*
  862  * Create the UPAGES for a new process.
  863  * This routine directly affects the fork perf for a process.
  864  */
  865 void
  866 pmap_new_proc(p)
  867         struct proc *p;
  868 {
  869         int i, updateneeded;
  870         vm_object_t upobj;
  871         vm_page_t m;
  872         struct user *up;
  873         unsigned *ptek, oldpte;
  874 
  875         /*
  876          * allocate object for the upages
  877          */
  878         if ((upobj = p->p_upages_obj) == NULL) {
  879                 upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
  880                 p->p_upages_obj = upobj;
  881         }
  882 
  883         /* get a kernel virtual address for the UPAGES for this proc */
  884         if ((up = p->p_addr) == NULL) {
  885                 up = (struct user *) kmem_alloc_pageable(kernel_map,
  886                                 UPAGES * PAGE_SIZE);
  887 #if !defined(MAX_PERF)
  888                 if (up == NULL)
  889                         panic("pmap_new_proc: u_map allocation failed");
  890 #endif
  891                 p->p_addr = up;
  892         }
  893 
  894         ptek = (unsigned *) vtopte((vm_offset_t) up);
  895 
  896         updateneeded = 0;
  897         for(i=0;i<UPAGES;i++) {
  898                 /*
  899                  * Get a kernel stack page
  900                  */
  901                 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  902 
  903                 /*
  904                  * Wire the page
  905                  */
  906                 m->wire_count++;
  907                 cnt.v_wire_count++;
  908 
  909                 oldpte = *(ptek + i);
  910                 /*
  911                  * Enter the page into the kernel address space.
  912                  */
  913                 *(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
  914                 if (oldpte) {
  915                         if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
  916                                 invlpg((vm_offset_t) up + i * PAGE_SIZE);
  917                         } else {
  918                                 updateneeded = 1;
  919                         }
  920                 }
  921 
  922                 vm_page_wakeup(m);
  923                 m->flags &= ~PG_ZERO;
  924                 m->flags |= PG_MAPPED | PG_WRITEABLE;
  925                 m->valid = VM_PAGE_BITS_ALL;
  926         }
  927         if (updateneeded)
  928                 invltlb();
  929 }
  930 
  931 /*
  932  * Dispose the UPAGES for a process that has exited.
  933  * This routine directly impacts the exit perf of a process.
  934  */
  935 void
  936 pmap_dispose_proc(p)
  937         struct proc *p;
  938 {
  939         int i;
  940         vm_object_t upobj;
  941         vm_page_t m;
  942         unsigned *ptek, oldpte;
  943 
  944         upobj = p->p_upages_obj;
  945 
  946         ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
  947         for(i=0;i<UPAGES;i++) {
  948 
  949                 if ((m = vm_page_lookup(upobj, i)) == NULL)
  950                         panic("pmap_dispose_proc: upage already missing???");
  951 
  952                 m->flags |= PG_BUSY;
  953 
  954                 oldpte = *(ptek + i);
  955                 *(ptek + i) = 0;
  956                 if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
  957                         invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
  958                 vm_page_unwire(m, 0);
  959                 vm_page_free(m);
  960         }
  961 
  962         if (cpu_class <= CPUCLASS_386)
  963                 invltlb();
  964 }
  965 
  966 /*
  967  * Allow the UPAGES for a process to be prejudicially paged out.
  968  */
  969 void
  970 pmap_swapout_proc(p)
  971         struct proc *p;
  972 {
  973         int i;
  974         vm_object_t upobj;
  975         vm_page_t m;
  976 
  977         upobj = p->p_upages_obj;
  978         /*
  979          * let the upages be paged
  980          */
  981         for(i=0;i<UPAGES;i++) {
  982                 if ((m = vm_page_lookup(upobj, i)) == NULL)
  983                         panic("pmap_swapout_proc: upage already missing???");
  984                 m->dirty = VM_PAGE_BITS_ALL;
  985                 vm_page_unwire(m, 0);
  986                 pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
  987         }
  988 }
  989 
  990 /*
  991  * Bring the UPAGES for a specified process back in.
  992  */
  993 void
  994 pmap_swapin_proc(p)
  995         struct proc *p;
  996 {
  997         int i,rv;
  998         vm_object_t upobj;
  999         vm_page_t m;
 1000 
 1001         upobj = p->p_upages_obj;
 1002         for(i=0;i<UPAGES;i++) {
 1003 
 1004                 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
 1005 
 1006                 pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
 1007                         VM_PAGE_TO_PHYS(m));
 1008 
 1009                 if (m->valid != VM_PAGE_BITS_ALL) {
 1010                         rv = vm_pager_get_pages(upobj, &m, 1, 0);
 1011 #if !defined(MAX_PERF)
 1012                         if (rv != VM_PAGER_OK)
 1013                                 panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
 1014 #endif
 1015                         m = vm_page_lookup(upobj, i);
 1016                         m->valid = VM_PAGE_BITS_ALL;
 1017                 }
 1018 
 1019                 vm_page_wire(m);
 1020                 vm_page_wakeup(m);
 1021                 m->flags |= PG_MAPPED | PG_WRITEABLE;
 1022         }
 1023 }
 1024 
 1025 /***************************************************
 1026  * Page table page management routines.....
 1027  ***************************************************/
 1028 
 1029 /*
 1030  * This routine unholds page table pages, and if the hold count
 1031  * drops to zero, then it decrements the wire count.
 1032  */
 1033 static int 
 1034 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
 1035 
 1036         while (vm_page_sleep(m, "pmuwpt", NULL));
 1037 
 1038         if (m->hold_count == 0) {
 1039                 vm_offset_t pteva;
 1040                 /*
 1041                  * unmap the page table page
 1042                  */
 1043                 pmap->pm_pdir[m->pindex] = 0;
 1044                 --pmap->pm_stats.resident_count;
 1045                 if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
 1046                         (((unsigned) PTDpde) & PG_FRAME)) {
 1047                         /*
 1048                          * Do a invltlb to make the invalidated mapping
 1049                          * take effect immediately.
 1050                          */
 1051                         pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
 1052                         invltlb_1pg(pteva);
 1053                 }
 1054 
 1055                 if (pmap->pm_ptphint == m)
 1056                         pmap->pm_ptphint = NULL;
 1057 
 1058                 /*
 1059                  * If the page is finally unwired, simply free it.
 1060                  */
 1061                 --m->wire_count;
 1062                 if (m->wire_count == 0) {
 1063 
 1064                         if (m->flags & PG_WANTED) {
 1065                                 m->flags &= ~PG_WANTED;
 1066                                 wakeup(m);
 1067                         }
 1068 
 1069                         m->flags |= PG_BUSY;
 1070                         vm_page_free_zero(m);
 1071                         --cnt.v_wire_count;
 1072                 }
 1073                 return 1;
 1074         }
 1075         return 0;
 1076 }
 1077 
 1078 static PMAP_INLINE int
 1079 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
 1080         vm_page_unhold(m);
 1081         if (m->hold_count == 0)
 1082                 return _pmap_unwire_pte_hold(pmap, m);
 1083         else
 1084                 return 0;
 1085 }
 1086 
 1087 /*
 1088  * After removing a page table entry, this routine is used to
 1089  * conditionally free the page, and manage the hold/wire counts.
 1090  */
 1091 static int
 1092 pmap_unuse_pt(pmap, va, mpte)
 1093         pmap_t pmap;
 1094         vm_offset_t va;
 1095         vm_page_t mpte;
 1096 {
 1097         unsigned ptepindex;
 1098         if (va >= UPT_MIN_ADDRESS)
 1099                 return 0;
 1100 
 1101         if (mpte == NULL) {
 1102                 ptepindex = (va >> PDRSHIFT);
 1103                 if (pmap->pm_ptphint &&
 1104                         (pmap->pm_ptphint->pindex == ptepindex)) {
 1105                         mpte = pmap->pm_ptphint;
 1106                 } else {
 1107                         mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
 1108                         pmap->pm_ptphint = mpte;
 1109                 }
 1110         }
 1111 
 1112         return pmap_unwire_pte_hold(pmap, mpte);
 1113 }
 1114 
 1115 #if !defined(SMP)
 1116 void
 1117 pmap_pinit0(pmap)
 1118         struct pmap *pmap;
 1119 {
 1120         pmap->pm_pdir =
 1121                 (pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
 1122         pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
 1123         pmap->pm_flags = 0;
 1124         pmap->pm_count = 1;
 1125         pmap->pm_ptphint = NULL;
 1126         TAILQ_INIT(&pmap->pm_pvlist);
 1127         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1128 }
 1129 #else
 1130 void
 1131 pmap_pinit0(pmap)
 1132         struct pmap *pmap;
 1133 {
 1134         pmap_pinit(pmap);
 1135 }
 1136 #endif
 1137 
 1138 /*
 1139  * Initialize a preallocated and zeroed pmap structure,
 1140  * such as one in a vmspace structure.
 1141  */
 1142 void
 1143 pmap_pinit(pmap)
 1144         register struct pmap *pmap;
 1145 {
 1146         vm_page_t ptdpg;
 1147 
 1148         /*
 1149          * No need to allocate page table space yet but we do need a valid
 1150          * page directory table.
 1151          */
 1152         if (pmap->pm_pdir == NULL)
 1153                 pmap->pm_pdir =
 1154                         (pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
 1155 
 1156         /*
 1157          * allocate object for the ptes
 1158          */
 1159         if (pmap->pm_pteobj == NULL)
 1160                 pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
 1161 
 1162         /*
 1163          * allocate the page directory page
 1164          */
 1165         ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
 1166                         VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
 1167 
 1168         ptdpg->wire_count = 1;
 1169         ++cnt.v_wire_count;
 1170 
 1171         ptdpg->flags &= ~(PG_MAPPED | PG_BUSY); /* not mapped normally */
 1172         ptdpg->valid = VM_PAGE_BITS_ALL;
 1173 
 1174         pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
 1175         if ((ptdpg->flags & PG_ZERO) == 0)
 1176                 bzero(pmap->pm_pdir, PAGE_SIZE);
 1177 
 1178         /* install self-referential address mapping entry */
 1179         *(unsigned *) (pmap->pm_pdir + PTDPTDI) =
 1180                 VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
 1181 
 1182         pmap->pm_flags = 0;
 1183         pmap->pm_count = 1;
 1184         pmap->pm_ptphint = NULL;
 1185         TAILQ_INIT(&pmap->pm_pvlist);
 1186         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1187 }
 1188 
 1189 /*
 1190  * Wire in kernel global address entries.  To avoid a race condition
 1191  * between pmap initialization and pmap_growkernel, this procedure
 1192  * should be called after the vmspace is attached to the process
 1193  * but before this pmap is activated.
 1194  */
 1195 void
 1196 pmap_pinit2(pmap)
 1197         struct pmap *pmap;
 1198 {
 1199         /* XXX copies current process, does not fill in MPPTDI */
 1200         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
 1201 }
 1202 
 1203 static int
 1204 pmap_release_free_page(pmap, p)
 1205         struct pmap *pmap;
 1206         vm_page_t p;
 1207 {
 1208         unsigned *pde = (unsigned *) pmap->pm_pdir;
 1209         /*
 1210          * This code optimizes the case of freeing non-busy
 1211          * page-table pages.  Those pages are zero now, and
 1212          * might as well be placed directly into the zero queue.
 1213          */
 1214         if (vm_page_sleep(p, "pmaprl", NULL))
 1215                 return 0;
 1216 
 1217         p->flags |= PG_BUSY;
 1218 
 1219         /*
 1220          * Remove the page table page from the processes address space.
 1221          */
 1222         pde[p->pindex] = 0;
 1223         pmap->pm_stats.resident_count--;
 1224 
 1225 #if !defined(MAX_PERF)
 1226         if (p->hold_count)  {
 1227                 panic("pmap_release: freeing held page table page");
 1228         }
 1229 #endif
 1230         /*
 1231          * Page directory pages need to have the kernel
 1232          * stuff cleared, so they can go into the zero queue also.
 1233          */
 1234         if (p->pindex == PTDPTDI) {
 1235                 bzero(pde + KPTDI, nkpt * PTESIZE);
 1236 #ifdef SMP
 1237                 pde[MPPTDI] = 0;
 1238 #endif
 1239                 pde[APTDPTDI] = 0;
 1240                 pmap_kremove((vm_offset_t) pmap->pm_pdir);
 1241         }
 1242 
 1243         if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
 1244                 pmap->pm_ptphint = NULL;
 1245 
 1246         p->wire_count--;
 1247         cnt.v_wire_count--;
 1248         vm_page_free_zero(p);
 1249         return 1;
 1250 }
 1251 
 1252 /*
 1253  * this routine is called if the page table page is not
 1254  * mapped correctly.
 1255  */
 1256 static vm_page_t
 1257 _pmap_allocpte(pmap, ptepindex)
 1258         pmap_t  pmap;
 1259         unsigned ptepindex;
 1260 {
 1261         vm_offset_t pteva, ptepa;
 1262         vm_page_t m;
 1263 
 1264         /*
 1265          * Find or fabricate a new pagetable page
 1266          */
 1267         m = vm_page_grab(pmap->pm_pteobj, ptepindex,
 1268                         VM_ALLOC_ZERO | VM_ALLOC_RETRY);
 1269 
 1270         if (m->queue != PQ_NONE) {
 1271                 int s = splvm();
 1272                 vm_page_unqueue(m);
 1273                 splx(s);
 1274         }
 1275 
 1276         if (m->wire_count == 0)
 1277                 cnt.v_wire_count++;
 1278         m->wire_count++;
 1279 
 1280         /*
 1281          * Increment the hold count for the page table page
 1282          * (denoting a new mapping.)
 1283          */
 1284         m->hold_count++;
 1285 
 1286         /*
 1287          * Map the pagetable page into the process address space, if
 1288          * it isn't already there.
 1289          */
 1290 
 1291         pmap->pm_stats.resident_count++;
 1292 
 1293         ptepa = VM_PAGE_TO_PHYS(m);
 1294         pmap->pm_pdir[ptepindex] =
 1295                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1296 
 1297         /*
 1298          * Set the page table hint
 1299          */
 1300         pmap->pm_ptphint = m;
 1301 
 1302         /*
 1303          * Try to use the new mapping, but if we cannot, then
 1304          * do it with the routine that maps the page explicitly.
 1305          */
 1306         if ((m->flags & PG_ZERO) == 0) {
 1307                 if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
 1308                         (((unsigned) PTDpde) & PG_FRAME)) {
 1309                         pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
 1310                         bzero((caddr_t) pteva, PAGE_SIZE);
 1311                 } else {
 1312                         pmap_zero_page(ptepa);
 1313                 }
 1314         }
 1315 
 1316         m->valid = VM_PAGE_BITS_ALL;
 1317         m->flags &= ~(PG_ZERO | PG_BUSY);
 1318         m->flags |= PG_MAPPED;
 1319 
 1320         return m;
 1321 }
 1322 
 1323 static vm_page_t
 1324 pmap_allocpte(pmap, va)
 1325         pmap_t  pmap;
 1326         vm_offset_t va;
 1327 {
 1328         unsigned ptepindex;
 1329         vm_offset_t ptepa;
 1330         vm_page_t m;
 1331 
 1332         /*
 1333          * Calculate pagetable page index
 1334          */
 1335         ptepindex = va >> PDRSHIFT;
 1336 
 1337         /*
 1338          * Get the page directory entry
 1339          */
 1340         ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
 1341 
 1342         /*
 1343          * This supports switching from a 4MB page to a
 1344          * normal 4K page.
 1345          */
 1346         if (ptepa & PG_PS) {
 1347                 pmap->pm_pdir[ptepindex] = 0;
 1348                 ptepa = 0;
 1349                 invltlb();
 1350         }
 1351 
 1352         /*
 1353          * If the page table page is mapped, we just increment the
 1354          * hold count, and activate it.
 1355          */
 1356         if (ptepa) {
 1357                 /*
 1358                  * In order to get the page table page, try the
 1359                  * hint first.
 1360                  */
 1361                 if (pmap->pm_ptphint &&
 1362                         (pmap->pm_ptphint->pindex == ptepindex)) {
 1363                         m = pmap->pm_ptphint;
 1364                 } else {
 1365                         m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
 1366                         pmap->pm_ptphint = m;
 1367                 }
 1368                 m->hold_count++;
 1369                 return m;
 1370         }
 1371         /*
 1372          * Here if the pte page isn't mapped, or if it has been deallocated.
 1373          */
 1374         return _pmap_allocpte(pmap, ptepindex);
 1375 }
 1376 
 1377 
 1378 /***************************************************
 1379 * Pmap allocation/deallocation routines.
 1380  ***************************************************/
 1381 
 1382 /*
 1383  * Release any resources held by the given physical map.
 1384  * Called when a pmap initialized by pmap_pinit is being released.
 1385  * Should only be called if the map contains no valid mappings.
 1386  */
 1387 void
 1388 pmap_release(pmap)
 1389         register struct pmap *pmap;
 1390 {
 1391         vm_page_t p,n,ptdpg;
 1392         vm_object_t object = pmap->pm_pteobj;
 1393         int curgeneration;
 1394 
 1395 #if defined(DIAGNOSTIC)
 1396         if (object->ref_count != 1)
 1397                 panic("pmap_release: pteobj reference count != 1");
 1398 #endif
 1399         
 1400         ptdpg = NULL;
 1401 retry:
 1402         curgeneration = object->generation;
 1403         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
 1404                 n = TAILQ_NEXT(p, listq);
 1405                 if (p->pindex == PTDPTDI) {
 1406                         ptdpg = p;
 1407                         continue;
 1408                 }
 1409                 while (1) {
 1410                         if (!pmap_release_free_page(pmap, p) &&
 1411                                 (object->generation != curgeneration))
 1412                                 goto retry;
 1413                 }
 1414         }
 1415 
 1416         if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
 1417                 goto retry;
 1418 }
 1419 
 1420 /*
 1421  * grow the number of kernel page table entries, if needed
 1422  */
 1423 void
 1424 pmap_growkernel(vm_offset_t addr)
 1425 {
 1426         struct proc *p;
 1427         struct pmap *pmap;
 1428         int s;
 1429         vm_offset_t ptppaddr;
 1430         vm_page_t nkpg;
 1431 #ifdef SMP
 1432         int i;
 1433 #endif
 1434         pd_entry_t newpdir;
 1435 
 1436         s = splhigh();
 1437         if (kernel_vm_end == 0) {
 1438                 kernel_vm_end = KERNBASE;
 1439                 nkpt = 0;
 1440                 while (pdir_pde(PTD, kernel_vm_end)) {
 1441                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1442                         nkpt++;
 1443                 }
 1444         }
 1445         addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1446         while (kernel_vm_end < addr) {
 1447                 if (pdir_pde(PTD, kernel_vm_end)) {
 1448                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1449                         continue;
 1450                 }
 1451 
 1452                 /*
 1453                  * This index is bogus, but out of the way
 1454                  */
 1455                 nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
 1456 #if !defined(MAX_PERF)
 1457                 if (!nkpg)
 1458                         panic("pmap_growkernel: no memory to grow kernel");
 1459 #endif
 1460 
 1461                 nkpt++;
 1462 
 1463                 vm_page_wire(nkpg);
 1464                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1465                 pmap_zero_page(ptppaddr);
 1466                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1467                 pdir_pde(PTD, kernel_vm_end) = newpdir;
 1468 
 1469 #ifdef SMP
 1470                 for (i = 0; i < mp_ncpus; i++) {
 1471                         if (IdlePTDS[i])
 1472                                 pdir_pde(IdlePTDS[i], kernel_vm_end) = newpdir;
 1473                 }
 1474 #endif
 1475 
 1476                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
 1477                         if (p->p_vmspace) {
 1478                                 pmap = &p->p_vmspace->vm_pmap;
 1479                                 *pmap_pde(pmap, kernel_vm_end) = newpdir;
 1480                         }
 1481                 }
 1482                 if (aiovmspace != NULL) {
 1483                         pmap = &aiovmspace->vm_pmap;
 1484                         *pmap_pde(pmap, kernel_vm_end) = newpdir;
 1485                 }
 1486                 *pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
 1487                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1488         }
 1489         splx(s);
 1490 }
 1491 
 1492 /*
 1493  *      Retire the given physical map from service.
 1494  *      Should only be called if the map contains
 1495  *      no valid mappings.
 1496  */
 1497 void
 1498 pmap_destroy(pmap)
 1499         register pmap_t pmap;
 1500 {
 1501         int count;
 1502 
 1503         if (pmap == NULL)
 1504                 return;
 1505 
 1506         count = --pmap->pm_count;
 1507         if (count == 0) {
 1508                 pmap_release(pmap);
 1509 #if !defined(MAX_PERF)
 1510                 panic("destroying a pmap is not yet implemented");
 1511 #endif
 1512         }
 1513 }
 1514 
 1515 /*
 1516  *      Add a reference to the specified pmap.
 1517  */
 1518 void
 1519 pmap_reference(pmap)
 1520         pmap_t pmap;
 1521 {
 1522         if (pmap != NULL) {
 1523                 pmap->pm_count++;
 1524         }
 1525 }
 1526 
 1527 /***************************************************
 1528 * page management routines.
 1529  ***************************************************/
 1530 
 1531 /*
 1532  * free the pv_entry back to the free list
 1533  */
 1534 static PMAP_INLINE void
 1535 free_pv_entry(pv)
 1536         pv_entry_t pv;
 1537 {
 1538         pv_entry_count--;
 1539         zfreei(pvzone, pv);
 1540 }
 1541 
 1542 /*
 1543  * get a new pv_entry, allocating a block from the system
 1544  * when needed.
 1545  * the memory allocation is performed bypassing the malloc code
 1546  * because of the possibility of allocations at interrupt time.
 1547  */
 1548 static pv_entry_t
 1549 get_pv_entry(void)
 1550 {
 1551         pv_entry_count++;
 1552         if (pv_entry_high_water &&
 1553                 (pv_entry_count > pv_entry_high_water) &&
 1554                 (pmap_pagedaemon_waken == 0)) {
 1555                 pmap_pagedaemon_waken = 1;
 1556                 wakeup (&vm_pages_needed);
 1557         }
 1558         return zalloci(pvzone);
 1559 }
 1560 
 1561 /*
 1562  * This routine is very drastic, but can save the system
 1563  * in a pinch.
 1564  */
 1565 void
 1566 pmap_collect() {
 1567         pv_table_t *ppv;
 1568         int i;
 1569         vm_offset_t pa;
 1570         vm_page_t m;
 1571         static int warningdone=0;
 1572 
 1573         if (pmap_pagedaemon_waken == 0)
 1574                 return;
 1575 
 1576         if (warningdone < 5) {
 1577                 printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
 1578                 warningdone++;
 1579         }
 1580 
 1581         for(i = 0; i < pv_npg; i++) {
 1582                 if ((ppv = &pv_table[i]) == 0)
 1583                         continue;
 1584                 m = ppv->pv_vm_page;
 1585                 if ((pa = VM_PAGE_TO_PHYS(m)) == 0)
 1586                         continue;
 1587                 if (m->wire_count || m->hold_count || m->busy ||
 1588                         (m->flags & PG_BUSY))
 1589                         continue;
 1590                 pmap_remove_all(pa);
 1591         }
 1592         pmap_pagedaemon_waken = 0;
 1593 }
 1594         
 1595 
 1596 /*
 1597  * If it is the first entry on the list, it is actually
 1598  * in the header and we must copy the following entry up
 1599  * to the header.  Otherwise we must search the list for
 1600  * the entry.  In either case we free the now unused entry.
 1601  */
 1602 
 1603 static int
 1604 pmap_remove_entry(pmap, ppv, va)
 1605         struct pmap *pmap;
 1606         pv_table_t *ppv;
 1607         vm_offset_t va;
 1608 {
 1609         pv_entry_t pv;
 1610         int rtval;
 1611         int s;
 1612 
 1613         s = splvm();
 1614         if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
 1615                 for (pv = TAILQ_FIRST(&ppv->pv_list);
 1616                         pv;
 1617                         pv = TAILQ_NEXT(pv, pv_list)) {
 1618                         if (pmap == pv->pv_pmap && va == pv->pv_va) 
 1619                                 break;
 1620                 }
 1621         } else {
 1622                 for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
 1623                         pv;
 1624                         pv = TAILQ_NEXT(pv, pv_plist)) {
 1625                         if (va == pv->pv_va) 
 1626                                 break;
 1627                 }
 1628         }
 1629 
 1630         rtval = 0;
 1631         if (pv) {
 1632 
 1633                 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
 1634                 TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
 1635                 ppv->pv_list_count--;
 1636                 if (TAILQ_FIRST(&ppv->pv_list) == NULL)
 1637                         ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
 1638 
 1639                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1640                 free_pv_entry(pv);
 1641         }
 1642                         
 1643         splx(s);
 1644         return rtval;
 1645 }
 1646 
 1647 /*
 1648  * Create a pv entry for page at pa for
 1649  * (pmap, va).
 1650  */
 1651 static void
 1652 pmap_insert_entry(pmap, va, mpte, pa)
 1653         pmap_t pmap;
 1654         vm_offset_t va;
 1655         vm_page_t mpte;
 1656         vm_offset_t pa;
 1657 {
 1658 
 1659         int s;
 1660         pv_entry_t pv;
 1661         pv_table_t *ppv;
 1662 
 1663         s = splvm();
 1664         pv = get_pv_entry();
 1665         pv->pv_va = va;
 1666         pv->pv_pmap = pmap;
 1667         pv->pv_ptem = mpte;
 1668 
 1669         TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1670 
 1671         ppv = pa_to_pvh(pa);
 1672         TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
 1673         ppv->pv_list_count++;
 1674 
 1675         splx(s);
 1676 }
 1677 
 1678 /*
 1679  * pmap_remove_pte: do the things to unmap a page in a process
 1680  */
 1681 static int
 1682 pmap_remove_pte(pmap, ptq, va)
 1683         struct pmap *pmap;
 1684         unsigned *ptq;
 1685         vm_offset_t va;
 1686 {
 1687         unsigned oldpte;
 1688         pv_table_t *ppv;
 1689 
 1690         oldpte = *ptq;
 1691         *ptq = 0;
 1692         if (oldpte & PG_W)
 1693                 pmap->pm_stats.wired_count -= 1;
 1694         /*
 1695          * Machines that don't support invlpg, also don't support
 1696          * PG_G.
 1697          */
 1698         if (oldpte & PG_G)
 1699                 invlpg(va);
 1700         pmap->pm_stats.resident_count -= 1;
 1701         if (oldpte & PG_MANAGED) {
 1702                 ppv = pa_to_pvh(oldpte);
 1703                 if (oldpte & PG_M) {
 1704 #if defined(PMAP_DIAGNOSTIC)
 1705                         if (pmap_nw_modified((pt_entry_t) oldpte)) {
 1706                                 printf(
 1707         "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
 1708                                     va, oldpte);
 1709                         }
 1710 #endif
 1711                         if (pmap_track_modified(va))
 1712                                 ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
 1713                 }
 1714                 if (oldpte & PG_A)
 1715                         ppv->pv_vm_page->flags |= PG_REFERENCED;
 1716                 return pmap_remove_entry(pmap, ppv, va);
 1717         } else {
 1718                 return pmap_unuse_pt(pmap, va, NULL);
 1719         }
 1720 
 1721         return 0;
 1722 }
 1723 
 1724 /*
 1725  * Remove a single page from a process address space
 1726  */
 1727 static void
 1728 pmap_remove_page(pmap, va)
 1729         struct pmap *pmap;
 1730         register vm_offset_t va;
 1731 {
 1732         register unsigned *ptq;
 1733 
 1734         /*
 1735          * if there is no pte for this address, just skip it!!!
 1736          */
 1737         if (*pmap_pde(pmap, va) == 0) {
 1738                 return;
 1739         }
 1740 
 1741         /*
 1742          * get a local va for mappings for this pmap.
 1743          */
 1744         ptq = get_ptbase(pmap) + i386_btop(va);
 1745         if (*ptq) {
 1746                 (void) pmap_remove_pte(pmap, ptq, va);
 1747                 invltlb_1pg(va);
 1748         }
 1749         return;
 1750 }
 1751 
 1752 /*
 1753  *      Remove the given range of addresses from the specified map.
 1754  *
 1755  *      It is assumed that the start and end are properly
 1756  *      rounded to the page size.
 1757  */
 1758 void
 1759 pmap_remove(pmap, sva, eva)
 1760         struct pmap *pmap;
 1761         register vm_offset_t sva;
 1762         register vm_offset_t eva;
 1763 {
 1764         register unsigned *ptbase;
 1765         vm_offset_t pdnxt;
 1766         vm_offset_t ptpaddr;
 1767         vm_offset_t sindex, eindex;
 1768         int anyvalid;
 1769 
 1770         if (pmap == NULL)
 1771                 return;
 1772 
 1773         if (pmap->pm_stats.resident_count == 0)
 1774                 return;
 1775 
 1776         /*
 1777          * special handling of removing one page.  a very
 1778          * common operation and easy to short circuit some
 1779          * code.
 1780          */
 1781         if (((sva + PAGE_SIZE) == eva) && 
 1782                 (((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 1783                 pmap_remove_page(pmap, sva);
 1784                 return;
 1785         }
 1786 
 1787         anyvalid = 0;
 1788 
 1789         /*
 1790          * Get a local virtual address for the mappings that are being
 1791          * worked with.
 1792          */
 1793         ptbase = get_ptbase(pmap);
 1794 
 1795         sindex = i386_btop(sva);
 1796         eindex = i386_btop(eva);
 1797 
 1798         for (; sindex < eindex; sindex = pdnxt) {
 1799                 unsigned pdirindex;
 1800 
 1801                 /*
 1802                  * Calculate index for next page table.
 1803                  */
 1804                 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
 1805                 if (pmap->pm_stats.resident_count == 0)
 1806                         break;
 1807 
 1808                 pdirindex = sindex / NPDEPG;
 1809                 if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
 1810                         pmap->pm_pdir[pdirindex] = 0;
 1811                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1812                         anyvalid++;
 1813                         continue;
 1814                 }
 1815 
 1816                 /*
 1817                  * Weed out invalid mappings. Note: we assume that the page
 1818                  * directory table is always allocated, and in kernel virtual.
 1819                  */
 1820                 if (ptpaddr == 0)
 1821                         continue;
 1822 
 1823                 /*
 1824                  * Limit our scan to either the end of the va represented
 1825                  * by the current page table page, or to the end of the
 1826                  * range being removed.
 1827                  */
 1828                 if (pdnxt > eindex) {
 1829                         pdnxt = eindex;
 1830                 }
 1831 
 1832                 for ( ;sindex != pdnxt; sindex++) {
 1833                         vm_offset_t va;
 1834                         if (ptbase[sindex] == 0) {
 1835                                 continue;
 1836                         }
 1837                         va = i386_ptob(sindex);
 1838                         
 1839                         anyvalid++;
 1840                         if (pmap_remove_pte(pmap,
 1841                                 ptbase + sindex, va))
 1842                                 break;
 1843                 }
 1844         }
 1845 
 1846         if (anyvalid) {
 1847                 invltlb();
 1848         }
 1849 }
 1850 
 1851 /*
 1852  *      Routine:        pmap_remove_all
 1853  *      Function:
 1854  *              Removes this physical page from
 1855  *              all physical maps in which it resides.
 1856  *              Reflects back modify bits to the pager.
 1857  *
 1858  *      Notes:
 1859  *              Original versions of this routine were very
 1860  *              inefficient because they iteratively called
 1861  *              pmap_remove (slow...)
 1862  */
 1863 
 1864 static void
 1865 pmap_remove_all(pa)
 1866         vm_offset_t pa;
 1867 {
 1868         register pv_entry_t pv;
 1869         pv_table_t *ppv;
 1870         register unsigned *pte, tpte;
 1871         int nmodify;
 1872         int update_needed;
 1873         int s;
 1874 
 1875         nmodify = 0;
 1876         update_needed = 0;
 1877 #if defined(PMAP_DIAGNOSTIC)
 1878         /*
 1879          * XXX this makes pmap_page_protect(NONE) illegal for non-managed
 1880          * pages!
 1881          */
 1882         if (!pmap_is_managed(pa)) {
 1883                 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", pa);
 1884         }
 1885 #endif
 1886 
 1887         s = splvm();
 1888         ppv = pa_to_pvh(pa);
 1889         while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
 1890                 pv->pv_pmap->pm_stats.resident_count--;
 1891 
 1892                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 1893 
 1894                 tpte = loadandclear(pte);
 1895                 if (tpte & PG_W)
 1896                         pv->pv_pmap->pm_stats.wired_count--;
 1897 
 1898                 if (tpte & PG_A)
 1899                         ppv->pv_vm_page->flags |= PG_REFERENCED;
 1900 
 1901                 /*
 1902                  * Update the vm_page_t clean and reference bits.
 1903                  */
 1904                 if (tpte & PG_M) {
 1905 #if defined(PMAP_DIAGNOSTIC)
 1906                         if (pmap_nw_modified((pt_entry_t) tpte)) {
 1907                                 printf(
 1908         "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
 1909                                     pv->pv_va, tpte);
 1910                         }
 1911 #endif
 1912                         if (pmap_track_modified(pv->pv_va))
 1913                                 ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
 1914                 }
 1915 #ifdef SMP
 1916                 update_needed = 1;
 1917 #else
 1918                 if (!update_needed &&
 1919                         ((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
 1920                         (pv->pv_pmap == kernel_pmap))) {
 1921                         update_needed = 1;
 1922                 }
 1923 #endif
 1924                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1925                 TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
 1926                 ppv->pv_list_count--;
 1927                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 1928                 free_pv_entry(pv);
 1929         }
 1930 
 1931         ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
 1932 
 1933         if (update_needed)
 1934                 invltlb();
 1935 
 1936         splx(s);
 1937         return;
 1938 }
 1939 
 1940 /*
 1941  *      Set the physical protection on the
 1942  *      specified range of this map as requested.
 1943  */
 1944 void
 1945 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1946 {
 1947         register unsigned *ptbase;
 1948         vm_offset_t pdnxt, ptpaddr;
 1949         vm_pindex_t sindex, eindex;
 1950         int anychanged;
 1951 
 1952 
 1953         if (pmap == NULL)
 1954                 return;
 1955 
 1956         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1957                 pmap_remove(pmap, sva, eva);
 1958                 return;
 1959         }
 1960 
 1961         if (prot & VM_PROT_WRITE)
 1962                 return;
 1963 
 1964         anychanged = 0;
 1965 
 1966         ptbase = get_ptbase(pmap);
 1967 
 1968         sindex = i386_btop(sva);
 1969         eindex = i386_btop(eva);
 1970 
 1971         for (; sindex < eindex; sindex = pdnxt) {
 1972 
 1973                 unsigned pdirindex;
 1974 
 1975                 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
 1976 
 1977                 pdirindex = sindex / NPDEPG;
 1978                 if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
 1979                         (unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 1980                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1981                         anychanged++;
 1982                         continue;
 1983                 }
 1984 
 1985                 /*
 1986                  * Weed out invalid mappings. Note: we assume that the page
 1987                  * directory table is always allocated, and in kernel virtual.
 1988                  */
 1989                 if (ptpaddr == 0)
 1990                         continue;
 1991 
 1992                 if (pdnxt > eindex) {
 1993                         pdnxt = eindex;
 1994                 }
 1995 
 1996                 for (; sindex != pdnxt; sindex++) {
 1997 
 1998                         unsigned pbits;
 1999                         pv_table_t *ppv;
 2000 
 2001                         pbits = ptbase[sindex];
 2002 
 2003                         if (pbits & PG_MANAGED) {
 2004                                 ppv = NULL;
 2005                                 if (pbits & PG_A) {
 2006                                         ppv = pa_to_pvh(pbits);
 2007                                         ppv->pv_vm_page->flags |= PG_REFERENCED;
 2008                                         pbits &= ~PG_A;
 2009                                 }
 2010                                 if (pbits & PG_M) {
 2011                                         if (pmap_track_modified(i386_ptob(sindex))) {
 2012                                                 if (ppv == NULL)
 2013                                                         ppv = pa_to_pvh(pbits);
 2014                                                 ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
 2015                                                 pbits &= ~PG_M;
 2016                                         }
 2017                                 }
 2018                         }
 2019 
 2020                         pbits &= ~PG_RW;
 2021 
 2022                         if (pbits != ptbase[sindex]) {
 2023                                 ptbase[sindex] = pbits;
 2024                                 anychanged = 1;
 2025                         }
 2026                 }
 2027         }
 2028         if (anychanged)
 2029                 invltlb();
 2030 }
 2031 
 2032 /*
 2033  *      Insert the given physical page (p) at
 2034  *      the specified virtual address (v) in the
 2035  *      target physical map with the protection requested.
 2036  *
 2037  *      If specified, the page will be wired down, meaning
 2038  *      that the related pte can not be reclaimed.
 2039  *
 2040  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2041  *      or lose information.  That is, this routine must actually
 2042  *      insert this page into the given map NOW.
 2043  */
 2044 void
 2045 pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
 2046            boolean_t wired)
 2047 {
 2048         register unsigned *pte;
 2049         vm_offset_t opa;
 2050         vm_offset_t origpte, newpte;
 2051         vm_page_t mpte;
 2052 
 2053         if (pmap == NULL)
 2054                 return;
 2055 
 2056         va &= PG_FRAME;
 2057 #ifdef PMAP_DIAGNOSTIC
 2058         if (va > VM_MAX_KERNEL_ADDRESS)
 2059                 panic("pmap_enter: toobig");
 2060         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 2061                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 2062 #endif
 2063 
 2064         mpte = NULL;
 2065         /*
 2066          * In the case that a page table page is not
 2067          * resident, we are creating it here.
 2068          */
 2069         if (va < UPT_MIN_ADDRESS) {
 2070                 mpte = pmap_allocpte(pmap, va);
 2071         }
 2072 #if 0 && defined(PMAP_DIAGNOSTIC)
 2073         else {
 2074                 vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
 2075                 if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) { 
 2076                         panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
 2077                                 pmap->pm_pdir[PTDPTDI], origpte, va);
 2078                 }
 2079                 if (smp_active) {
 2080                         pdeaddr = (vm_offset_t *) IdlePTDS[cpuid];
 2081                         if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
 2082                                 if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
 2083                                         printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
 2084                                 printf("cpuid: %d, pdeaddr: 0x%x\n", cpuid, pdeaddr);
 2085                                 panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
 2086                                         pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
 2087                         }
 2088                 }
 2089         }
 2090 #endif
 2091 
 2092         pte = pmap_pte(pmap, va);
 2093 
 2094 #if !defined(MAX_PERF)
 2095         /*
 2096          * Page Directory table entry not valid, we need a new PT page
 2097          */
 2098         if (pte == NULL) {
 2099                 panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
 2100                         (void *)pmap->pm_pdir[PTDPTDI], va);
 2101         }
 2102 #endif
 2103 
 2104         origpte = *(vm_offset_t *)pte;
 2105         pa &= PG_FRAME;
 2106         opa = origpte & PG_FRAME;
 2107 
 2108 #if !defined(MAX_PERF)
 2109         if (origpte & PG_PS)
 2110                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2111 #endif
 2112 
 2113         /*
 2114          * Mapping has not changed, must be protection or wiring change.
 2115          */
 2116         if (origpte && (opa == pa)) {
 2117                 /*
 2118                  * Wiring change, just update stats. We don't worry about
 2119                  * wiring PT pages as they remain resident as long as there
 2120                  * are valid mappings in them. Hence, if a user page is wired,
 2121                  * the PT page will be also.
 2122                  */
 2123                 if (wired && ((origpte & PG_W) == 0))
 2124                         pmap->pm_stats.wired_count++;
 2125                 else if (!wired && (origpte & PG_W))
 2126                         pmap->pm_stats.wired_count--;
 2127 
 2128 #if defined(PMAP_DIAGNOSTIC)
 2129                 if (pmap_nw_modified((pt_entry_t) origpte)) {
 2130                         printf(
 2131         "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
 2132                             va, origpte);
 2133                 }
 2134 #endif
 2135 
 2136                 /*
 2137                  * Remove extra pte reference
 2138                  */
 2139                 if (mpte)
 2140                         mpte->hold_count--;
 2141 
 2142                 if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
 2143                         if ((origpte & PG_RW) == 0) {
 2144                                 *pte |= PG_RW;
 2145                                 invltlb_1pg(va);
 2146                         }
 2147                         return;
 2148                 }
 2149 
 2150                 /*
 2151                  * We might be turning off write access to the page,
 2152                  * so we go ahead and sense modify status.
 2153                  */
 2154                 if (origpte & PG_MANAGED) {
 2155                         if ((origpte & PG_M) && pmap_track_modified(va)) {
 2156                                 pv_table_t *ppv;
 2157                                 ppv = pa_to_pvh(opa);
 2158                                 ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
 2159                         }
 2160                         pa |= PG_MANAGED;
 2161                 }
 2162                 goto validate;
 2163         } 
 2164         /*
 2165          * Mapping has changed, invalidate old range and fall through to
 2166          * handle validating new mapping.
 2167          */
 2168         if (opa) {
 2169                 int err;
 2170                 err = pmap_remove_pte(pmap, pte, va);
 2171 #if !defined(MAX_PERF)
 2172                 if (err)
 2173                         panic("pmap_enter: pte vanished, va: 0x%x", va);
 2174 #endif
 2175         }
 2176 
 2177         /*
 2178          * Enter on the PV list if part of our managed memory Note that we
 2179          * raise IPL while manipulating pv_table since pmap_enter can be
 2180          * called at interrupt time.
 2181          */
 2182         if (pmap_is_managed(pa)) {
 2183                 pmap_insert_entry(pmap, va, mpte, pa);
 2184                 pa |= PG_MANAGED;
 2185         }
 2186 
 2187         /*
 2188          * Increment counters
 2189          */
 2190         pmap->pm_stats.resident_count++;
 2191         if (wired)
 2192                 pmap->pm_stats.wired_count++;
 2193 
 2194 validate:
 2195         /*
 2196          * Now validate mapping with desired protection/wiring.
 2197          */
 2198         newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
 2199 
 2200         if (wired)
 2201                 newpte |= PG_W;
 2202         if (va < UPT_MIN_ADDRESS)
 2203                 newpte |= PG_U;
 2204         if (pmap == kernel_pmap)
 2205                 newpte |= pgeflag;
 2206 
 2207         /*
 2208          * if the mapping or permission bits are different, we need
 2209          * to update the pte.
 2210          */
 2211         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2212                 *pte = newpte | PG_A;
 2213                 if (origpte)
 2214                         invltlb_1pg(va);
 2215         }
 2216 }
 2217 
 2218 /*
 2219  * this code makes some *MAJOR* assumptions:
 2220  * 1. Current pmap & pmap exists.
 2221  * 2. Not wired.
 2222  * 3. Read access.
 2223  * 4. No page table pages.
 2224  * 5. Tlbflush is deferred to calling procedure.
 2225  * 6. Page IS managed.
 2226  * but is *MUCH* faster than pmap_enter...
 2227  */
 2228 
 2229 static vm_page_t
 2230 pmap_enter_quick(pmap, va, pa, mpte)
 2231         register pmap_t pmap;
 2232         vm_offset_t va;
 2233         register vm_offset_t pa;
 2234         vm_page_t mpte;
 2235 {
 2236         register unsigned *pte;
 2237 
 2238         /*
 2239          * In the case that a page table page is not
 2240          * resident, we are creating it here.
 2241          */
 2242         if (va < UPT_MIN_ADDRESS) {
 2243                 unsigned ptepindex;
 2244                 vm_offset_t ptepa;
 2245 
 2246                 /*
 2247                  * Calculate pagetable page index
 2248                  */
 2249                 ptepindex = va >> PDRSHIFT;
 2250                 if (mpte && (mpte->pindex == ptepindex)) {
 2251                         mpte->hold_count++;
 2252                 } else {
 2253 retry:
 2254                         /*
 2255                          * Get the page directory entry
 2256                          */
 2257                         ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
 2258 
 2259                         /*
 2260                          * If the page table page is mapped, we just increment
 2261                          * the hold count, and activate it.
 2262                          */
 2263                         if (ptepa) {
 2264 #if !defined(MAX_PERF)
 2265                                 if (ptepa & PG_PS)
 2266                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2267 #endif
 2268                                 if (pmap->pm_ptphint &&
 2269                                         (pmap->pm_ptphint->pindex == ptepindex)) {
 2270                                         mpte = pmap->pm_ptphint;
 2271                                 } else {
 2272                                         mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
 2273                                         pmap->pm_ptphint = mpte;
 2274                                 }
 2275                                 if (mpte == NULL)
 2276                                         goto retry;
 2277                                 mpte->hold_count++;
 2278                         } else {
 2279                                 mpte = _pmap_allocpte(pmap, ptepindex);
 2280                         }
 2281                 }
 2282         } else {
 2283                 mpte = NULL;
 2284         }
 2285 
 2286         /*
 2287          * This call to vtopte makes the assumption that we are
 2288          * entering the page into the current pmap.  In order to support
 2289          * quick entry into any pmap, one would likely use pmap_pte_quick.
 2290          * But that isn't as quick as vtopte.
 2291          */
 2292         pte = (unsigned *)vtopte(va);
 2293         if (*pte) {
 2294                 if (mpte)
 2295                         pmap_unwire_pte_hold(pmap, mpte);
 2296                 return 0;
 2297         }
 2298 
 2299         /*
 2300          * Enter on the PV list if part of our managed memory Note that we
 2301          * raise IPL while manipulating pv_table since pmap_enter can be
 2302          * called at interrupt time.
 2303          */
 2304         pmap_insert_entry(pmap, va, mpte, pa);
 2305 
 2306         /*
 2307          * Increment counters
 2308          */
 2309         pmap->pm_stats.resident_count++;
 2310 
 2311         /*
 2312          * Now validate mapping with RO protection
 2313          */
 2314         *pte = pa | PG_V | PG_U | PG_MANAGED;
 2315 
 2316         return mpte;
 2317 }
 2318 
 2319 #define MAX_INIT_PT (96)
 2320 /*
 2321  * pmap_object_init_pt preloads the ptes for a given object
 2322  * into the specified pmap.  This eliminates the blast of soft
 2323  * faults on process startup and immediately after an mmap.
 2324  */
 2325 void
 2326 pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
 2327         pmap_t pmap;
 2328         vm_offset_t addr;
 2329         vm_object_t object;
 2330         vm_pindex_t pindex;
 2331         vm_size_t size;
 2332         int limit;
 2333 {
 2334         vm_offset_t tmpidx;
 2335         int psize;
 2336         vm_page_t p, mpte;
 2337         int objpgs;
 2338 
 2339         if (!pmap)
 2340                 return;
 2341 
 2342         /*
 2343          * This code maps large physical mmap regions into the
 2344          * processor address space.  Note that some shortcuts
 2345          * are taken, but the code works.
 2346          */
 2347         if (pseflag &&
 2348                 (object->type == OBJT_DEVICE) &&
 2349                 ((addr & (NBPDR - 1)) == 0) &&
 2350                 ((size & (NBPDR - 1)) == 0) ) {
 2351                 int i;
 2352                 vm_page_t m[1];
 2353                 unsigned int ptepindex;
 2354                 int npdes;
 2355                 vm_offset_t ptepa;
 2356 
 2357                 if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
 2358                         return;
 2359 
 2360 retry:
 2361                 p = vm_page_lookup(object, pindex);
 2362                 if (p && vm_page_sleep(p, "init4p", NULL))
 2363                         goto retry;
 2364 
 2365                 if (p == NULL) {
 2366                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2367                         if (p == NULL)
 2368                                 return;
 2369                         m[0] = p;
 2370 
 2371                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2372                                 vm_page_free(p);
 2373                                 return;
 2374                         }
 2375 
 2376                         p = vm_page_lookup(object, pindex);
 2377                         vm_page_wakeup(p);
 2378                 }
 2379 
 2380                 ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
 2381                 if (ptepa & (NBPDR - 1)) {
 2382                         return;
 2383                 }
 2384 
 2385                 p->valid = VM_PAGE_BITS_ALL;
 2386 
 2387                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2388                 npdes = size >> PDRSHIFT;
 2389                 for(i=0;i<npdes;i++) {
 2390                         pmap->pm_pdir[ptepindex] =
 2391                                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2392                         ptepa += NBPDR;
 2393                         ptepindex += 1;
 2394                 }
 2395                 p->flags |= PG_MAPPED;
 2396                 invltlb();
 2397                 return;
 2398         }
 2399 
 2400         psize = i386_btop(size);
 2401 
 2402         if ((object->type != OBJT_VNODE) ||
 2403                 (limit && (psize > MAX_INIT_PT) &&
 2404                         (object->resident_page_count > MAX_INIT_PT))) {
 2405                 return;
 2406         }
 2407 
 2408         if (psize + pindex > object->size) {
 2409                 if (object->size < pindex)
 2410                         return;           
 2411                 psize = object->size - pindex;
 2412         }
 2413 
 2414         mpte = NULL;
 2415         /*
 2416          * if we are processing a major portion of the object, then scan the
 2417          * entire thing.
 2418          */
 2419         if (psize > (object->size >> 2)) {
 2420                 objpgs = psize;
 2421 
 2422                 for (p = TAILQ_FIRST(&object->memq);
 2423                     ((objpgs > 0) && (p != NULL));
 2424                     p = TAILQ_NEXT(p, listq)) {
 2425 
 2426                         tmpidx = p->pindex;
 2427                         if (tmpidx < pindex) {
 2428                                 continue;
 2429                         }
 2430                         tmpidx -= pindex;
 2431                         if (tmpidx >= psize) {
 2432                                 continue;
 2433                         }
 2434                         if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
 2435                                 (p->busy == 0) &&
 2436                             (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2437                                 if ((p->queue - p->pc) == PQ_CACHE)
 2438                                         vm_page_deactivate(p);
 2439                                 p->flags |= PG_BUSY;
 2440                                 mpte = pmap_enter_quick(pmap, 
 2441                                         addr + i386_ptob(tmpidx),
 2442                                         VM_PAGE_TO_PHYS(p), mpte);
 2443                                 p->flags |= PG_MAPPED;
 2444                                 vm_page_wakeup(p);
 2445                         }
 2446                         objpgs -= 1;
 2447                 }
 2448         } else {
 2449                 /*
 2450                  * else lookup the pages one-by-one.
 2451                  */
 2452                 for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
 2453                         p = vm_page_lookup(object, tmpidx + pindex);
 2454                         if (p &&
 2455                             ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
 2456                                 (p->busy == 0) &&
 2457                             (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2458                                 if ((p->queue - p->pc) == PQ_CACHE)
 2459                                         vm_page_deactivate(p);
 2460                                 p->flags |= PG_BUSY;
 2461                                 mpte = pmap_enter_quick(pmap, 
 2462                                         addr + i386_ptob(tmpidx),
 2463                                         VM_PAGE_TO_PHYS(p), mpte);
 2464                                 p->flags |= PG_MAPPED;
 2465                                 vm_page_wakeup(p);
 2466                         }
 2467                 }
 2468         }
 2469         return;
 2470 }
 2471 
 2472 /*
 2473  * pmap_prefault provides a quick way of clustering
 2474  * pagefaults into a processes address space.  It is a "cousin"
 2475  * of pmap_object_init_pt, except it runs at page fault time instead
 2476  * of mmap time.
 2477  */
 2478 #define PFBAK 4
 2479 #define PFFOR 4
 2480 #define PAGEORDER_SIZE (PFBAK+PFFOR)
 2481 
 2482 static int pmap_prefault_pageorder[] = {
 2483         -PAGE_SIZE, PAGE_SIZE,
 2484         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
 2485         -3 * PAGE_SIZE, 3 * PAGE_SIZE
 2486         -4 * PAGE_SIZE, 4 * PAGE_SIZE
 2487 };
 2488 
 2489 void
 2490 pmap_prefault(pmap, addra, entry)
 2491         pmap_t pmap;
 2492         vm_offset_t addra;
 2493         vm_map_entry_t entry;
 2494 {
 2495         int i;
 2496         vm_offset_t starta;
 2497         vm_offset_t addr;
 2498         vm_pindex_t pindex;
 2499         vm_page_t m, mpte;
 2500         vm_object_t object;
 2501 
 2502         if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
 2503                 return;
 2504 
 2505         object = entry->object.vm_object;
 2506 
 2507         starta = addra - PFBAK * PAGE_SIZE;
 2508         if (starta < entry->start) {
 2509                 starta = entry->start;
 2510         } else if (starta > addra) {
 2511                 starta = 0;
 2512         }
 2513 
 2514         mpte = NULL;
 2515         for (i = 0; i < PAGEORDER_SIZE; i++) {
 2516                 vm_object_t lobject;
 2517                 unsigned *pte;
 2518 
 2519                 addr = addra + pmap_prefault_pageorder[i];
 2520                 if (addr > addra + (PFFOR * PAGE_SIZE))
 2521                         addr = 0;
 2522 
 2523                 if (addr < starta || addr >= entry->end)
 2524                         continue;
 2525 
 2526                 if ((*pmap_pde(pmap, addr)) == NULL) 
 2527                         continue;
 2528 
 2529                 pte = (unsigned *) vtopte(addr);
 2530                 if (*pte)
 2531                         continue;
 2532 
 2533                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 2534                 lobject = object;
 2535                 for (m = vm_page_lookup(lobject, pindex);
 2536                     (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
 2537                     lobject = lobject->backing_object) {
 2538                         if (lobject->backing_object_offset & PAGE_MASK)
 2539                                 break;
 2540                         pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
 2541                         m = vm_page_lookup(lobject->backing_object, pindex);
 2542                 }
 2543 
 2544                 /*
 2545                  * give-up when a page is not in memory
 2546                  */
 2547                 if (m == NULL)
 2548                         break;
 2549 
 2550                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
 2551                         (m->busy == 0) &&
 2552                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2553 
 2554                         if ((m->queue - m->pc) == PQ_CACHE) {
 2555                                 vm_page_deactivate(m);
 2556                         }
 2557                         m->flags |= PG_BUSY;
 2558                         mpte = pmap_enter_quick(pmap, addr,
 2559                                 VM_PAGE_TO_PHYS(m), mpte);
 2560                         m->flags |= PG_MAPPED;
 2561                         vm_page_wakeup(m);
 2562                 }
 2563         }
 2564 }
 2565 
 2566 /*
 2567  *      Routine:        pmap_change_wiring
 2568  *      Function:       Change the wiring attribute for a map/virtual-address
 2569  *                      pair.
 2570  *      In/out conditions:
 2571  *                      The mapping must already exist in the pmap.
 2572  */
 2573 void
 2574 pmap_change_wiring(pmap, va, wired)
 2575         register pmap_t pmap;
 2576         vm_offset_t va;
 2577         boolean_t wired;
 2578 {
 2579         register unsigned *pte;
 2580 
 2581         if (pmap == NULL)
 2582                 return;
 2583 
 2584         pte = pmap_pte(pmap, va);
 2585 
 2586         if (wired && !pmap_pte_w(pte))
 2587                 pmap->pm_stats.wired_count++;
 2588         else if (!wired && pmap_pte_w(pte))
 2589                 pmap->pm_stats.wired_count--;
 2590 
 2591         /*
 2592          * Wiring is not a hardware characteristic so there is no need to
 2593          * invalidate TLB.
 2594          */
 2595         pmap_pte_set_w(pte, wired);
 2596 }
 2597 
 2598 
 2599 
 2600 /*
 2601  *      Copy the range specified by src_addr/len
 2602  *      from the source map to the range dst_addr/len
 2603  *      in the destination map.
 2604  *
 2605  *      This routine is only advisory and need not do anything.
 2606  */
 2607 
 2608 void
 2609 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
 2610         pmap_t dst_pmap, src_pmap;
 2611         vm_offset_t dst_addr;
 2612         vm_size_t len;
 2613         vm_offset_t src_addr;
 2614 {
 2615         vm_offset_t addr;
 2616         vm_offset_t end_addr = src_addr + len;
 2617         vm_offset_t pdnxt;
 2618         unsigned src_frame, dst_frame;
 2619 
 2620         if (dst_addr != src_addr)
 2621                 return;
 2622 
 2623         src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
 2624         if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
 2625                 return;
 2626         }
 2627 
 2628         dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
 2629         if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
 2630                 APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
 2631                 invltlb();
 2632         }
 2633 
 2634         for(addr = src_addr; addr < end_addr; addr = pdnxt) {
 2635                 unsigned *src_pte, *dst_pte;
 2636                 vm_page_t dstmpte, srcmpte;
 2637                 vm_offset_t srcptepaddr;
 2638                 unsigned ptepindex;
 2639 
 2640 #if !defined(MAX_PERF)
 2641                 if (addr >= UPT_MIN_ADDRESS)
 2642                         panic("pmap_copy: invalid to pmap_copy page tables\n");
 2643 #endif
 2644 
 2645                 /*
 2646                  * Don't let optional prefaulting of pages make us go
 2647                  * way below the low water mark of free pages or way
 2648                  * above high water mark of used pv entries.
 2649                  */
 2650                 if (cnt.v_free_count < cnt.v_free_reserved ||
 2651                     pv_entry_count > pv_entry_high_water)
 2652                         break;
 2653                 
 2654                 pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
 2655                 ptepindex = addr >> PDRSHIFT;
 2656 
 2657                 srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
 2658                 if (srcptepaddr == 0)
 2659                         continue;
 2660                         
 2661                 if (srcptepaddr & PG_PS) {
 2662                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 2663                                 dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
 2664                                 dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 2665                         }
 2666                         continue;
 2667                 }
 2668 
 2669                 srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
 2670                 if ((srcmpte == NULL) ||
 2671                         (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
 2672                         continue;
 2673 
 2674                 if (pdnxt > end_addr)
 2675                         pdnxt = end_addr;
 2676 
 2677                 src_pte = (unsigned *) vtopte(addr);
 2678                 dst_pte = (unsigned *) avtopte(addr);
 2679                 while (addr < pdnxt) {
 2680                         unsigned ptetemp;
 2681                         ptetemp = *src_pte;
 2682                         /*
 2683                          * we only virtual copy managed pages
 2684                          */
 2685                         if ((ptetemp & PG_MANAGED) != 0) {
 2686                                 /*
 2687                                  * We have to check after allocpte for the
 2688                                  * pte still being around...  allocpte can
 2689                                  * block.
 2690                                  */
 2691                                 dstmpte = pmap_allocpte(dst_pmap, addr);
 2692                                 if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
 2693                                         /*
 2694                                          * Clear the modified and
 2695                                          * accessed (referenced) bits
 2696                                          * during the copy.
 2697                                          */
 2698                                         *dst_pte = ptetemp & ~(PG_M | PG_A);
 2699                                         dst_pmap->pm_stats.resident_count++;
 2700                                         pmap_insert_entry(dst_pmap, addr,
 2701                                                 dstmpte,
 2702                                                 (ptetemp & PG_FRAME));
 2703                                 } else {
 2704                                         pmap_unwire_pte_hold(dst_pmap, dstmpte);
 2705                                 }
 2706                                 if (dstmpte->hold_count >= srcmpte->hold_count)
 2707                                         break;
 2708                         }
 2709                         addr += PAGE_SIZE;
 2710                         src_pte++;
 2711                         dst_pte++;
 2712                 }
 2713         }
 2714 }       
 2715 
 2716 /*
 2717  *      Routine:        pmap_kernel
 2718  *      Function:
 2719  *              Returns the physical map handle for the kernel.
 2720  */
 2721 pmap_t
 2722 pmap_kernel()
 2723 {
 2724         return (kernel_pmap);
 2725 }
 2726 
 2727 /*
 2728  *      pmap_zero_page zeros the specified (machine independent)
 2729  *      page by mapping the page into virtual memory and using
 2730  *      bzero to clear its contents, one machine dependent page
 2731  *      at a time.
 2732  */
 2733 void
 2734 pmap_zero_page(phys)
 2735         vm_offset_t phys;
 2736 {
 2737 #ifdef SMP
 2738 #if !defined(MAX_PERF)
 2739         if (*(int *) prv_CMAP3)
 2740                 panic("pmap_zero_page: prv_CMAP3 busy");
 2741 #endif
 2742 
 2743         *(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
 2744         cpu_invlpg(&prv_CPAGE3);
 2745 
 2746 #if defined(I686_CPU)
 2747         if (cpu_class == CPUCLASS_686)
 2748                 i686_pagezero(&prv_CPAGE3);
 2749         else
 2750 #endif
 2751                 bzero(&prv_CPAGE3, PAGE_SIZE);
 2752 
 2753         *(int *) prv_CMAP3 = 0;
 2754 #else
 2755 #if !defined(MAX_PERF)
 2756         if (*(int *) CMAP2)
 2757                 panic("pmap_zero_page: CMAP2 busy");
 2758 #endif
 2759 
 2760         *(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
 2761         if (cpu_class == CPUCLASS_386) {
 2762                 invltlb();
 2763         } else {
 2764                 invlpg((u_int)CADDR2);
 2765         }
 2766 
 2767 #if defined(I686_CPU)
 2768         if (cpu_class == CPUCLASS_686)
 2769                 i686_pagezero(CADDR2);
 2770         else
 2771 #endif
 2772                 bzero(CADDR2, PAGE_SIZE);
 2773         *(int *) CMAP2 = 0;
 2774 #endif
 2775 }
 2776 
 2777 /*
 2778  *      pmap_copy_page copies the specified (machine independent)
 2779  *      page by mapping the page into virtual memory and using
 2780  *      bcopy to copy the page, one machine dependent page at a
 2781  *      time.
 2782  */
 2783 void
 2784 pmap_copy_page(src, dst)
 2785         vm_offset_t src;
 2786         vm_offset_t dst;
 2787 {
 2788 #ifdef SMP
 2789 #if !defined(MAX_PERF)
 2790         if (*(int *) prv_CMAP1)
 2791                 panic("pmap_copy_page: prv_CMAP1 busy");
 2792         if (*(int *) prv_CMAP2)
 2793                 panic("pmap_copy_page: prv_CMAP2 busy");
 2794 #endif
 2795 
 2796         *(int *) prv_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
 2797         *(int *) prv_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
 2798 
 2799         cpu_invlpg(&prv_CPAGE1);
 2800         cpu_invlpg(&prv_CPAGE2);
 2801 
 2802         bcopy(&prv_CPAGE1, &prv_CPAGE2, PAGE_SIZE);
 2803 
 2804         *(int *) prv_CMAP1 = 0;
 2805         *(int *) prv_CMAP2 = 0;
 2806 #else
 2807 #if !defined(MAX_PERF)
 2808         if (*(int *) CMAP1 || *(int *) CMAP2)
 2809                 panic("pmap_copy_page: CMAP busy");
 2810 #endif
 2811 
 2812         *(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
 2813         *(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
 2814         if (cpu_class == CPUCLASS_386) {
 2815                 invltlb();
 2816         } else {
 2817                 invlpg((u_int)CADDR1);
 2818                 invlpg((u_int)CADDR2);
 2819         }
 2820 
 2821         bcopy(CADDR1, CADDR2, PAGE_SIZE);
 2822 
 2823         *(int *) CMAP1 = 0;
 2824         *(int *) CMAP2 = 0;
 2825 #endif
 2826 }
 2827 
 2828 
 2829 /*
 2830  *      Routine:        pmap_pageable
 2831  *      Function:
 2832  *              Make the specified pages (by pmap, offset)
 2833  *              pageable (or not) as requested.
 2834  *
 2835  *              A page which is not pageable may not take
 2836  *              a fault; therefore, its page table entry
 2837  *              must remain valid for the duration.
 2838  *
 2839  *              This routine is merely advisory; pmap_enter
 2840  *              will specify that these pages are to be wired
 2841  *              down (or not) as appropriate.
 2842  */
 2843 void
 2844 pmap_pageable(pmap, sva, eva, pageable)
 2845         pmap_t pmap;
 2846         vm_offset_t sva, eva;
 2847         boolean_t pageable;
 2848 {
 2849 }
 2850 
 2851 /*
 2852  * this routine returns true if a physical page resides
 2853  * in the given pmap.
 2854  */
 2855 boolean_t
 2856 pmap_page_exists(pmap, pa)
 2857         pmap_t pmap;
 2858         vm_offset_t pa;
 2859 {
 2860         register pv_entry_t pv;
 2861         pv_table_t *ppv;
 2862         int s;
 2863 
 2864         if (!pmap_is_managed(pa))
 2865                 return FALSE;
 2866 
 2867         s = splvm();
 2868 
 2869         ppv = pa_to_pvh(pa);
 2870         /*
 2871          * Not found, check current mappings returning immediately if found.
 2872          */
 2873         for (pv = TAILQ_FIRST(&ppv->pv_list);
 2874                 pv;
 2875                 pv = TAILQ_NEXT(pv, pv_list)) {
 2876                 if (pv->pv_pmap == pmap) {
 2877                         splx(s);
 2878                         return TRUE;
 2879                 }
 2880         }
 2881         splx(s);
 2882         return (FALSE);
 2883 }
 2884 
 2885 #define PMAP_REMOVE_PAGES_CURPROC_ONLY
 2886 /*
 2887  * Remove all pages from specified address space
 2888  * this aids process exit speeds.  Also, this code
 2889  * is special cased for current process only, but
 2890  * can have the more generic (and slightly slower)
 2891  * mode enabled.  This is much faster than pmap_remove
 2892  * in the case of running down an entire address space.
 2893  */
 2894 void
 2895 pmap_remove_pages(pmap, sva, eva)
 2896         pmap_t pmap;
 2897         vm_offset_t sva, eva;
 2898 {
 2899         unsigned *pte, tpte;
 2900         pv_table_t *ppv;
 2901         pv_entry_t pv, npv;
 2902         int s;
 2903 
 2904 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2905         if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
 2906                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2907                 return;
 2908         }
 2909 #endif
 2910 
 2911         s = splvm();
 2912         for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
 2913                 pv;
 2914                 pv = npv) {
 2915 
 2916                 if (pv->pv_va >= eva || pv->pv_va < sva) {
 2917                         npv = TAILQ_NEXT(pv, pv_plist);
 2918                         continue;
 2919                 }
 2920 
 2921 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2922                 pte = (unsigned *)vtopte(pv->pv_va);
 2923 #else
 2924                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2925 #endif
 2926                 tpte = *pte;
 2927 
 2928 /*
 2929  * We cannot remove wired pages from a process' mapping at this time
 2930  */
 2931                 if (tpte & PG_W) {
 2932                         npv = TAILQ_NEXT(pv, pv_plist);
 2933                         continue;
 2934                 }
 2935                 *pte = 0;
 2936 
 2937                 ppv = pa_to_pvh(tpte);
 2938 
 2939                 pv->pv_pmap->pm_stats.resident_count--;
 2940 
 2941                 /*
 2942                  * Update the vm_page_t clean and reference bits.
 2943                  */
 2944                 if (tpte & PG_M) {
 2945                         ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
 2946                 }
 2947 
 2948 
 2949                 npv = TAILQ_NEXT(pv, pv_plist);
 2950                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 2951 
 2952                 ppv->pv_list_count--;
 2953                 TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
 2954                 if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
 2955                         ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
 2956                 }
 2957 
 2958                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 2959                 free_pv_entry(pv);
 2960         }
 2961         splx(s);
 2962         invltlb();
 2963 }
 2964 
 2965 /*
 2966  * pmap_testbit tests bits in pte's
 2967  * note that the testbit/changebit routines are inline,
 2968  * and a lot of things compile-time evaluate.
 2969  */
 2970 static boolean_t
 2971 pmap_testbit(pa, bit)
 2972         register vm_offset_t pa;
 2973         int bit;
 2974 {
 2975         register pv_entry_t pv;
 2976         pv_table_t *ppv;
 2977         unsigned *pte;
 2978         int s;
 2979 
 2980         if (!pmap_is_managed(pa))
 2981                 return FALSE;
 2982 
 2983         ppv = pa_to_pvh(pa);
 2984         if (TAILQ_FIRST(&ppv->pv_list) == NULL)
 2985                 return FALSE;
 2986 
 2987         s = splvm();
 2988 
 2989         for (pv = TAILQ_FIRST(&ppv->pv_list);
 2990                 pv;
 2991                 pv = TAILQ_NEXT(pv, pv_list)) {
 2992 
 2993                 /*
 2994                  * if the bit being tested is the modified bit, then
 2995                  * mark clean_map and ptes as never
 2996                  * modified.
 2997                  */
 2998                 if (bit & (PG_A|PG_M)) {
 2999                         if (!pmap_track_modified(pv->pv_va))
 3000                                 continue;
 3001                 }
 3002 
 3003 #if defined(PMAP_DIAGNOSTIC)
 3004                 if (!pv->pv_pmap) {
 3005                         printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
 3006                         continue;
 3007                 }
 3008 #endif
 3009                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3010                 if (*pte & bit) {
 3011                         splx(s);
 3012                         return TRUE;
 3013                 }
 3014         }
 3015         splx(s);
 3016         return (FALSE);
 3017 }
 3018 
 3019 /*
 3020  * this routine is used to modify bits in ptes
 3021  */
 3022 static void
 3023 pmap_changebit(pa, bit, setem)
 3024         vm_offset_t pa;
 3025         int bit;
 3026         boolean_t setem;
 3027 {
 3028         register pv_entry_t pv;
 3029         pv_table_t *ppv;
 3030         register unsigned *pte;
 3031         int changed;
 3032         int s;
 3033 
 3034         if (!pmap_is_managed(pa))
 3035                 return;
 3036 
 3037         s = splvm();
 3038         changed = 0;
 3039         ppv = pa_to_pvh(pa);
 3040 
 3041         /*
 3042          * Loop over all current mappings setting/clearing as appropos If
 3043          * setting RO do we need to clear the VAC?
 3044          */
 3045         for (pv = TAILQ_FIRST(&ppv->pv_list);
 3046                 pv;
 3047                 pv = TAILQ_NEXT(pv, pv_list)) {
 3048 
 3049                 /*
 3050                  * don't write protect pager mappings
 3051                  */
 3052                 if (!setem && (bit == PG_RW)) {
 3053                         if (!pmap_track_modified(pv->pv_va))
 3054                                 continue;
 3055                 }
 3056 
 3057 #if defined(PMAP_DIAGNOSTIC)
 3058                 if (!pv->pv_pmap) {
 3059                         printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
 3060                         continue;
 3061                 }
 3062 #endif
 3063 
 3064                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3065 
 3066                 if (setem) {
 3067                         *(int *)pte |= bit;
 3068                         changed = 1;
 3069                 } else {
 3070                         vm_offset_t pbits = *(vm_offset_t *)pte;
 3071                         if (pbits & bit) {
 3072                                 changed = 1;
 3073                                 if (bit == PG_RW) {
 3074                                         if (pbits & PG_M) {
 3075                                                 ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
 3076                                         }
 3077                                         *(int *)pte = pbits & ~(PG_M|PG_RW);
 3078                                 } else {
 3079                                         *(int *)pte = pbits & ~bit;
 3080                                 }
 3081                         }
 3082                 }
 3083         }
 3084         splx(s);
 3085         if (changed)
 3086                 invltlb();
 3087 }
 3088 
 3089 /*
 3090  *      pmap_page_protect:
 3091  *
 3092  *      Lower the permission for all mappings to a given page.
 3093  */
 3094 void
 3095 pmap_page_protect(vm_offset_t phys, vm_prot_t prot)
 3096 {
 3097         if ((prot & VM_PROT_WRITE) == 0) {
 3098                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
 3099                         pmap_changebit(phys, PG_RW, FALSE);
 3100                 } else {
 3101                         pmap_remove_all(phys);
 3102                 }
 3103         }
 3104 }
 3105 
 3106 vm_offset_t
 3107 pmap_phys_address(ppn)
 3108         int ppn;
 3109 {
 3110         return (i386_ptob(ppn));
 3111 }
 3112 
 3113 /*
 3114  *      pmap_ts_referenced:
 3115  *
 3116  *      Return the count of reference bits for a page, clearing all of them.
 3117  *      
 3118  */
 3119 int
 3120 pmap_ts_referenced(vm_offset_t pa)
 3121 {
 3122         register pv_entry_t pv, pvf, pvn;
 3123         pv_table_t *ppv;
 3124         unsigned *pte;
 3125         int s;
 3126         int rtval = 0;
 3127 
 3128         if (!pmap_is_managed(pa))
 3129                 return FALSE;
 3130 
 3131         s = splvm();
 3132 
 3133         ppv = pa_to_pvh(pa);
 3134 
 3135         if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
 3136                 splx(s);
 3137                 return 0;
 3138         }
 3139                 
 3140         /*
 3141          * Not found, check current mappings returning immediately if found.
 3142          */
 3143         pvf = 0;
 3144         for (pv = TAILQ_FIRST(&ppv->pv_list); pv && pv != pvf; pv = pvn) {
 3145                 if (!pvf)
 3146                         pvf = pv;
 3147                 pvn = TAILQ_NEXT(pv, pv_list);
 3148 
 3149                 TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
 3150                 /*
 3151                  * if the bit being tested is the modified bit, then
 3152                  * mark clean_map and ptes as never
 3153                  * modified.
 3154                  */
 3155                 if (!pmap_track_modified(pv->pv_va)) {
 3156                         TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
 3157                         continue;
 3158                 }
 3159 
 3160                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3161                 if (pte == NULL) {
 3162                         TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
 3163                         continue;
 3164                 }
 3165 
 3166                 if (*pte & PG_A) {
 3167                         rtval++;
 3168                         *pte &= ~PG_A;
 3169                         if (rtval > 4) {
 3170                                 TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
 3171                                 break;
 3172                         }
 3173                 }
 3174                 TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
 3175         }
 3176 
 3177         splx(s);
 3178         if (rtval) {
 3179                 invltlb();
 3180         }
 3181         return (rtval);
 3182 }
 3183 
 3184 /*
 3185  *      pmap_is_modified:
 3186  *
 3187  *      Return whether or not the specified physical page was modified
 3188  *      in any physical maps.
 3189  */
 3190 boolean_t
 3191 pmap_is_modified(vm_offset_t pa)
 3192 {
 3193         return pmap_testbit((pa), PG_M);
 3194 }
 3195 
 3196 /*
 3197  *      Clear the modify bits on the specified physical page.
 3198  */
 3199 void
 3200 pmap_clear_modify(vm_offset_t pa)
 3201 {
 3202         pmap_changebit((pa), PG_M, FALSE);
 3203 }
 3204 
 3205 /*
 3206  *      pmap_clear_reference:
 3207  *
 3208  *      Clear the reference bit on the specified physical page.
 3209  */
 3210 void
 3211 pmap_clear_reference(vm_offset_t pa)
 3212 {
 3213         pmap_changebit((pa), PG_A, FALSE);
 3214 }
 3215 
 3216 /*
 3217  * Miscellaneous support routines follow
 3218  */
 3219 
 3220 static void
 3221 i386_protection_init()
 3222 {
 3223         register int *kp, prot;
 3224 
 3225         kp = protection_codes;
 3226         for (prot = 0; prot < 8; prot++) {
 3227                 switch (prot) {
 3228                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
 3229                         /*
 3230                          * Read access is also 0. There isn't any execute bit,
 3231                          * so just make it readable.
 3232                          */
 3233                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
 3234                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
 3235                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
 3236                         *kp++ = 0;
 3237                         break;
 3238                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
 3239                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
 3240                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
 3241                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
 3242                         *kp++ = PG_RW;
 3243                         break;
 3244                 }
 3245         }
 3246 }
 3247 
 3248 /*
 3249  * Map a set of physical memory pages into the kernel virtual
 3250  * address space. Return a pointer to where it is mapped. This
 3251  * routine is intended to be used for mapping device memory,
 3252  * NOT real memory.
 3253  */
 3254 void *
 3255 pmap_mapdev(pa, size)
 3256         vm_offset_t pa;
 3257         vm_size_t size;
 3258 {
 3259         vm_offset_t va, tmpva;
 3260         unsigned *pte;
 3261 
 3262         size = roundup(size, PAGE_SIZE);
 3263 
 3264         va = kmem_alloc_pageable(kernel_map, size);
 3265 #if !defined(MAX_PERF)
 3266         if (!va)
 3267                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3268 #endif
 3269 
 3270         pa = pa & PG_FRAME;
 3271         for (tmpva = va; size > 0;) {
 3272                 pte = (unsigned *)vtopte(tmpva);
 3273                 *pte = pa | PG_RW | PG_V | pgeflag;
 3274                 size -= PAGE_SIZE;
 3275                 tmpva += PAGE_SIZE;
 3276                 pa += PAGE_SIZE;
 3277         }
 3278         invltlb();
 3279 
 3280         return ((void *) va);
 3281 }
 3282 
 3283 /*
 3284  * perform the pmap work for mincore
 3285  */
 3286 int
 3287 pmap_mincore(pmap, addr)
 3288         pmap_t pmap;
 3289         vm_offset_t addr;
 3290 {
 3291         
 3292         unsigned *ptep, pte;
 3293         vm_page_t m;
 3294         int val = 0;
 3295         
 3296         ptep = pmap_pte(pmap, addr);
 3297         if (ptep == 0) {
 3298                 return 0;
 3299         }
 3300 
 3301         if (pte = *ptep) {
 3302                 pv_table_t *ppv;
 3303                 vm_offset_t pa;
 3304 
 3305                 val = MINCORE_INCORE;
 3306                 if ((pte & PG_MANAGED) == 0)
 3307                         return val;
 3308 
 3309                 pa = pte & PG_FRAME;
 3310 
 3311                 ppv = pa_to_pvh((pa & PG_FRAME));
 3312                 m = ppv->pv_vm_page;
 3313 
 3314                 /*
 3315                  * Modified by us
 3316                  */
 3317                 if (pte & PG_M)
 3318                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 3319                 /*
 3320                  * Modified by someone
 3321                  */
 3322                 else if (m->dirty || pmap_is_modified(pa))
 3323                         val |= MINCORE_MODIFIED_OTHER;
 3324                 /*
 3325                  * Referenced by us
 3326                  */
 3327                 if (pte & PG_A)
 3328                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 3329 
 3330                 /*
 3331                  * Referenced by someone
 3332                  */
 3333                 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(pa)) {
 3334                         val |= MINCORE_REFERENCED_OTHER;
 3335                         m->flags |= PG_REFERENCED;
 3336                 }
 3337         } 
 3338         return val;
 3339 }
 3340 
 3341 void
 3342 pmap_activate(struct proc *p)
 3343 {
 3344 #if defined(SWTCH_OPTIM_STATS)
 3345         tlb_flush_count++;
 3346 #endif
 3347         load_cr3(p->p_addr->u_pcb.pcb_cr3 =
 3348                 vtophys(p->p_vmspace->vm_pmap.pm_pdir));
 3349 }
 3350 
 3351 vm_offset_t
 3352 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
 3353 
 3354         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 3355                 return addr;
 3356         }
 3357 
 3358         addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
 3359         return addr;
 3360 }
 3361 
 3362 
 3363 #if defined(PMAP_DEBUG)
 3364 pmap_pid_dump(int pid) {
 3365         pmap_t pmap;
 3366         struct proc *p;
 3367         int npte = 0;
 3368         int index;
 3369         for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
 3370                 if (p->p_pid != pid)
 3371                         continue;
 3372 
 3373                 if (p->p_vmspace) {
 3374                         int i,j;
 3375                         index = 0;
 3376                         pmap = &p->p_vmspace->vm_pmap;
 3377                         for(i=0;i<1024;i++) {
 3378                                 pd_entry_t *pde;
 3379                                 unsigned *pte;
 3380                                 unsigned base = i << PDRSHIFT;
 3381                                 
 3382                                 pde = &pmap->pm_pdir[i];
 3383                                 if (pde && pmap_pde_v(pde)) {
 3384                                         for(j=0;j<1024;j++) {
 3385                                                 unsigned va = base + (j << PAGE_SHIFT);
 3386                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 3387                                                         if (index) {
 3388                                                                 index = 0;
 3389                                                                 printf("\n");
 3390                                                         }
 3391                                                         return npte;
 3392                                                 }
 3393                                                 pte = pmap_pte_quick( pmap, va);
 3394                                                 if (pte && pmap_pte_v(pte)) {
 3395                                                         vm_offset_t pa;
 3396                                                         vm_page_t m;
 3397                                                         pa = *(int *)pte;
 3398                                                         m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
 3399                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 3400                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 3401                                                         npte++;
 3402                                                         index++;
 3403                                                         if (index >= 2) {
 3404                                                                 index = 0;
 3405                                                                 printf("\n");
 3406                                                         } else {
 3407                                                                 printf(" ");
 3408                                                         }
 3409                                                 }
 3410                                         }
 3411                                 }
 3412                         }
 3413                 }
 3414         }
 3415         return npte;
 3416 }
 3417 #endif
 3418 
 3419 #if defined(DEBUG)
 3420 
 3421 static void     pads __P((pmap_t pm));
 3422 void            pmap_pvdump __P((vm_offset_t pa));
 3423 
 3424 /* print address space of pmap*/
 3425 static void
 3426 pads(pm)
 3427         pmap_t pm;
 3428 {
 3429         unsigned va, i, j;
 3430         unsigned *ptep;
 3431 
 3432         if (pm == kernel_pmap)
 3433                 return;
 3434         for (i = 0; i < 1024; i++)
 3435                 if (pm->pm_pdir[i])
 3436                         for (j = 0; j < 1024; j++) {
 3437                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 3438                                 if (pm == kernel_pmap && va < KERNBASE)
 3439                                         continue;
 3440                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 3441                                         continue;
 3442                                 ptep = pmap_pte_quick(pm, va);
 3443                                 if (pmap_pte_v(ptep))
 3444                                         printf("%x:%x ", va, *(int *) ptep);
 3445                         };
 3446 
 3447 }
 3448 
 3449 void
 3450 pmap_pvdump(pa)
 3451         vm_offset_t pa;
 3452 {
 3453         pv_table_t *ppv;
 3454         register pv_entry_t pv;
 3455 
 3456         printf("pa %x", pa);
 3457         ppv = pa_to_pvh(pa);
 3458         for (pv = TAILQ_FIRST(&ppv->pv_list);
 3459                 pv;
 3460                 pv = TAILQ_NEXT(pv, pv_list)) {
 3461 #ifdef used_to_be
 3462                 printf(" -> pmap %p, va %x, flags %x",
 3463                     (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
 3464 #endif
 3465                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3466                 pads(pv->pv_pmap);
 3467         }
 3468         printf(" ");
 3469 }
 3470 #endif

Cache object: d549f424e483f61fbaa19065c0f70ef9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.