The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   42  * $FreeBSD: releng/5.1/sys/i386/i386/pmap.c 114177 2003-04-28 20:35:36Z jake $
   43  */
   44 /*-
   45  * Copyright (c) 2003 Networks Associates Technology, Inc.
   46  * All rights reserved.
   47  *
   48  * This software was developed for the FreeBSD Project by Jake Burkholder,
   49  * Safeport Network Services, and Network Associates Laboratories, the
   50  * Security Research Division of Network Associates, Inc. under
   51  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   52  * CHATS research program.
   53  *
   54  * Redistribution and use in source and binary forms, with or without
   55  * modification, are permitted provided that the following conditions
   56  * are met:
   57  * 1. Redistributions of source code must retain the above copyright
   58  *    notice, this list of conditions and the following disclaimer.
   59  * 2. Redistributions in binary form must reproduce the above copyright
   60  *    notice, this list of conditions and the following disclaimer in the
   61  *    documentation and/or other materials provided with the distribution.
   62  *
   63  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   73  * SUCH DAMAGE.
   74  */
   75 
   76 /*
   77  *      Manages physical address maps.
   78  *
   79  *      In addition to hardware address maps, this
   80  *      module is called upon to provide software-use-only
   81  *      maps which may or may not be stored in the same
   82  *      form as hardware maps.  These pseudo-maps are
   83  *      used to store intermediate results from copy
   84  *      operations to and from address spaces.
   85  *
   86  *      Since the information managed by this module is
   87  *      also stored by the logical address mapping module,
   88  *      this module may throw away valid virtual-to-physical
   89  *      mappings at almost any time.  However, invalidations
   90  *      of virtual-to-physical mappings must be done as
   91  *      requested.
   92  *
   93  *      In order to cope with hardware architectures which
   94  *      make virtual-to-physical map invalidates expensive,
   95  *      this module may delay invalidate or reduced protection
   96  *      operations until such time as they are actually
   97  *      necessary.  This module is given full information as
   98  *      to which processors are currently using which maps,
   99  *      and to when physical maps must be made correct.
  100  */
  101 
  102 #include "opt_pmap.h"
  103 #include "opt_msgbuf.h"
  104 #include "opt_kstack_pages.h"
  105 #include "opt_swtch.h"
  106 
  107 #include <sys/param.h>
  108 #include <sys/systm.h>
  109 #include <sys/kernel.h>
  110 #include <sys/lock.h>
  111 #include <sys/mman.h>
  112 #include <sys/msgbuf.h>
  113 #include <sys/mutex.h>
  114 #include <sys/proc.h>
  115 #include <sys/sx.h>
  116 #include <sys/user.h>
  117 #include <sys/vmmeter.h>
  118 #include <sys/sysctl.h>
  119 #ifdef SMP
  120 #include <sys/smp.h>
  121 #endif
  122 
  123 #include <vm/vm.h>
  124 #include <vm/vm_param.h>
  125 #include <vm/vm_kern.h>
  126 #include <vm/vm_page.h>
  127 #include <vm/vm_map.h>
  128 #include <vm/vm_object.h>
  129 #include <vm/vm_extern.h>
  130 #include <vm/vm_pageout.h>
  131 #include <vm/vm_pager.h>
  132 #include <vm/uma.h>
  133 
  134 #include <machine/cpu.h>
  135 #include <machine/cputypes.h>
  136 #include <machine/md_var.h>
  137 #include <machine/specialreg.h>
  138 #if defined(SMP) || defined(APIC_IO)
  139 #include <machine/smp.h>
  140 #include <machine/apic.h>
  141 #include <machine/segments.h>
  142 #include <machine/tss.h>
  143 #endif /* SMP || APIC_IO */
  144 
  145 #define PMAP_KEEP_PDIRS
  146 #ifndef PMAP_SHPGPERPROC
  147 #define PMAP_SHPGPERPROC 200
  148 #endif
  149 
  150 #if defined(DIAGNOSTIC)
  151 #define PMAP_DIAGNOSTIC
  152 #endif
  153 
  154 #define MINPV 2048
  155 
  156 #if !defined(PMAP_DIAGNOSTIC)
  157 #define PMAP_INLINE __inline
  158 #else
  159 #define PMAP_INLINE
  160 #endif
  161 
  162 /*
  163  * Get PDEs and PTEs for user/kernel address space
  164  */
  165 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  166 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  167 
  168 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  169 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  170 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  171 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  172 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  173 
  174 #define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
  175 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  176 
  177 /*
  178  * Given a map and a machine independent protection code,
  179  * convert to a vax protection code.
  180  */
  181 #define pte_prot(m, p)  (protection_codes[p])
  182 static int protection_codes[8];
  183 
  184 struct pmap kernel_pmap_store;
  185 LIST_HEAD(pmaplist, pmap);
  186 static struct pmaplist allpmaps;
  187 static struct mtx allpmaps_lock;
  188 #if defined(SMP) && defined(LAZY_SWITCH)
  189 static struct mtx lazypmap_lock;
  190 #endif
  191 
  192 vm_paddr_t avail_start; /* PA of first available physical page */
  193 vm_paddr_t avail_end;   /* PA of last available physical page */
  194 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  195 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  196 static boolean_t pmap_initialized = FALSE;      /* Has pmap_init completed? */
  197 static int pgeflag;             /* PG_G or-in */
  198 static int pseflag;             /* PG_PS or-in */
  199 
  200 static int nkpt;
  201 vm_offset_t kernel_vm_end;
  202 extern u_int32_t KERNend;
  203 
  204 #ifdef PAE
  205 static uma_zone_t pdptzone;
  206 #endif
  207 
  208 /*
  209  * Data for the pv entry allocation mechanism
  210  */
  211 static uma_zone_t pvzone;
  212 static struct vm_object pvzone_obj;
  213 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  214 int pmap_pagedaemon_waken;
  215 
  216 /*
  217  * All those kernel PT submaps that BSD is so fond of
  218  */
  219 pt_entry_t *CMAP1 = 0;
  220 static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
  221 caddr_t CADDR1 = 0, ptvmmap = 0;
  222 static caddr_t CADDR2, CADDR3;
  223 static struct mtx CMAPCADDR12_lock;
  224 static pt_entry_t *msgbufmap;
  225 struct msgbuf *msgbufp = 0;
  226 
  227 /*
  228  * Crashdump maps.
  229  */
  230 static pt_entry_t *pt_crashdumpmap;
  231 static caddr_t crashdumpmap;
  232 
  233 #ifdef SMP
  234 extern pt_entry_t *SMPpt;
  235 #endif
  236 static pt_entry_t *PMAP1 = 0;
  237 static pt_entry_t *PADDR1 = 0;
  238 
  239 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  240 static pv_entry_t get_pv_entry(void);
  241 static void     i386_protection_init(void);
  242 static __inline void    pmap_changebit(vm_page_t m, int bit, boolean_t setem);
  243 
  244 static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
  245                                       vm_page_t m, vm_page_t mpte);
  246 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
  247 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  248 static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  249                                         vm_offset_t va);
  250 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
  251                 vm_page_t mpte, vm_page_t m);
  252 
  253 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
  254 
  255 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
  256 static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
  257 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
  258 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  259 static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  260 #ifdef PAE
  261 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  262 #endif
  263 
  264 static pd_entry_t pdir4mb;
  265 
  266 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  267 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  268 
  269 /*
  270  * Move the kernel virtual free pointer to the next
  271  * 4MB.  This is used to help improve performance
  272  * by using a large (4MB) page for much of the kernel
  273  * (.text, .data, .bss)
  274  */
  275 static vm_offset_t
  276 pmap_kmem_choose(vm_offset_t addr)
  277 {
  278         vm_offset_t newaddr = addr;
  279 
  280 #ifdef I686_CPU_not     /* Problem seems to have gone away */
  281         /* Deal with un-resolved Pentium4 issues */
  282         if (cpu_class == CPUCLASS_686 &&
  283             strcmp(cpu_vendor, "GenuineIntel") == 0 &&
  284             (cpu_id & 0xf00) == 0xf00)
  285                 return newaddr;
  286 #endif
  287 #ifndef DISABLE_PSE
  288         if (cpu_feature & CPUID_PSE)
  289                 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
  290 #endif
  291         return newaddr;
  292 }
  293 
  294 /*
  295  *      Bootstrap the system enough to run with virtual memory.
  296  *
  297  *      On the i386 this is called after mapping has already been enabled
  298  *      and just syncs the pmap module with what has already been done.
  299  *      [We can't call it easily with mapping off since the kernel is not
  300  *      mapped with PA == VA, hence we would have to relocate every address
  301  *      from the linked base (virtual) address "KERNBASE" to the actual
  302  *      (physical) address starting relative to 0]
  303  */
  304 void
  305 pmap_bootstrap(firstaddr, loadaddr)
  306         vm_paddr_t firstaddr;
  307         vm_paddr_t loadaddr;
  308 {
  309         vm_offset_t va;
  310         pt_entry_t *pte;
  311         int i;
  312 
  313         avail_start = firstaddr;
  314 
  315         /*
  316          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  317          * large. It should instead be correctly calculated in locore.s and
  318          * not based on 'first' (which is a physical address, not a virtual
  319          * address, for the start of unused physical memory). The kernel
  320          * page tables are NOT double mapped and thus should not be included
  321          * in this calculation.
  322          */
  323         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  324         virtual_avail = pmap_kmem_choose(virtual_avail);
  325 
  326         virtual_end = VM_MAX_KERNEL_ADDRESS;
  327 
  328         /*
  329          * Initialize protection array.
  330          */
  331         i386_protection_init();
  332 
  333         /*
  334          * Initialize the kernel pmap (which is statically allocated).
  335          */
  336         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  337 #ifdef PAE
  338         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  339 #endif
  340         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  341         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  342         LIST_INIT(&allpmaps);
  343 #if defined(SMP) && defined(LAZY_SWITCH)
  344         mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
  345 #endif
  346         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  347         mtx_lock_spin(&allpmaps_lock);
  348         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  349         mtx_unlock_spin(&allpmaps_lock);
  350         nkpt = NKPT;
  351 
  352         /*
  353          * Reserve some special page table entries/VA space for temporary
  354          * mapping of pages.
  355          */
  356 #define SYSMAP(c, p, v, n)      \
  357         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  358 
  359         va = virtual_avail;
  360         pte = vtopte(va);
  361 
  362         /*
  363          * CMAP1/CMAP2 are used for zeroing and copying pages.
  364          * CMAP3 is used for the idle process page zeroing.
  365          */
  366         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  367         SYSMAP(caddr_t, CMAP2, CADDR2, 1)
  368         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  369 
  370         mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
  371 
  372         /*
  373          * Crashdump maps.
  374          */
  375         SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
  376 
  377         /*
  378          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  379          * XXX ptmmap is not used.
  380          */
  381         SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
  382 
  383         /*
  384          * msgbufp is used to map the system message buffer.
  385          * XXX msgbufmap is not used.
  386          */
  387         SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
  388                atop(round_page(MSGBUF_SIZE)))
  389 
  390         /*
  391          * ptemap is used for pmap_pte_quick
  392          */
  393         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
  394 
  395         virtual_avail = va;
  396 
  397         *CMAP1 = *CMAP2 = 0;
  398         for (i = 0; i < NKPT; i++)
  399                 PTD[i] = 0;
  400 
  401         pgeflag = 0;
  402 #ifndef DISABLE_PG_G
  403         if (cpu_feature & CPUID_PGE)
  404                 pgeflag = PG_G;
  405 #endif
  406 #ifdef I686_CPU_not     /* Problem seems to have gone away */
  407         /* Deal with un-resolved Pentium4 issues */
  408         if (cpu_class == CPUCLASS_686 &&
  409             strcmp(cpu_vendor, "GenuineIntel") == 0 &&
  410             (cpu_id & 0xf00) == 0xf00) {
  411                 printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
  412                 pgeflag = 0;
  413         }
  414 #endif
  415         
  416 /*
  417  * Initialize the 4MB page size flag
  418  */
  419         pseflag = 0;
  420 /*
  421  * The 4MB page version of the initial
  422  * kernel page mapping.
  423  */
  424         pdir4mb = 0;
  425 
  426 #ifndef DISABLE_PSE
  427         if (cpu_feature & CPUID_PSE)
  428                 pseflag = PG_PS;
  429 #endif
  430 #ifdef I686_CPU_not     /* Problem seems to have gone away */
  431         /* Deal with un-resolved Pentium4 issues */
  432         if (cpu_class == CPUCLASS_686 &&
  433             strcmp(cpu_vendor, "GenuineIntel") == 0 &&
  434             (cpu_id & 0xf00) == 0xf00) {
  435                 printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
  436                 pseflag = 0;
  437         }
  438 #endif
  439 #ifndef DISABLE_PSE
  440         if (pseflag) {
  441                 pd_entry_t ptditmp;
  442                 /*
  443                  * Note that we have enabled PSE mode
  444                  */
  445                 ptditmp = *(PTmap + i386_btop(KERNBASE));
  446                 ptditmp &= ~(NBPDR - 1);
  447                 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
  448                 pdir4mb = ptditmp;
  449         }
  450 #endif
  451 #ifndef SMP
  452         /*
  453          * Turn on PGE/PSE.  SMP does this later on since the
  454          * 4K page tables are required for AP boot (for now).
  455          * XXX fixme.
  456          */
  457         pmap_set_opt();
  458 #endif
  459 #ifdef SMP
  460         if (cpu_apic_address == 0)
  461                 panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
  462 
  463         /* local apic is mapped on last page */
  464         SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
  465             (cpu_apic_address & PG_FRAME));
  466 #endif
  467         invltlb();
  468 }
  469 
  470 /*
  471  * Enable 4MB page mode for MP startup.  Turn on PG_G support.
  472  * BSP will run this after all the AP's have started up.
  473  */
  474 void
  475 pmap_set_opt(void)
  476 {
  477         pt_entry_t *pte;
  478         vm_offset_t va, endva;
  479 
  480         if (pgeflag && (cpu_feature & CPUID_PGE)) {
  481                 load_cr4(rcr4() | CR4_PGE);
  482                 invltlb();              /* Insurance */
  483         }
  484 #ifndef DISABLE_PSE
  485         if (pseflag && (cpu_feature & CPUID_PSE)) {
  486                 load_cr4(rcr4() | CR4_PSE);
  487                 invltlb();              /* Insurance */
  488         }
  489 #endif
  490         if (PCPU_GET(cpuid) == 0) {
  491 #ifndef DISABLE_PSE
  492                 if (pdir4mb) {
  493                         kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
  494                         invltlb();      /* Insurance */
  495                 }
  496 #endif
  497                 if (pgeflag) {
  498                         /* Turn on PG_G for text, data, bss pages. */
  499                         va = (vm_offset_t)btext;
  500 #ifndef DISABLE_PSE
  501                         if (pseflag && (cpu_feature & CPUID_PSE)) {
  502                                 if (va < KERNBASE + (1 << PDRSHIFT))
  503                                         va = KERNBASE + (1 << PDRSHIFT);
  504                         }
  505 #endif
  506                         endva = KERNBASE + KERNend;
  507                         while (va < endva) {
  508                                 pte = vtopte(va);
  509                                 if (*pte)
  510                                         *pte |= pgeflag;
  511                                 va += PAGE_SIZE;
  512                         }
  513                         invltlb();      /* Insurance */
  514                 }
  515                 /*
  516                  * We do not need to broadcast the invltlb here, because
  517                  * each AP does it the moment it is released from the boot
  518                  * lock.  See ap_init().
  519                  */
  520         }
  521 }
  522 
  523 static void *
  524 pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  525 {
  526         *flags = UMA_SLAB_PRIV;
  527         return (void *)kmem_alloc(kernel_map, bytes);
  528 }
  529 
  530 #ifdef PAE
  531 static void *
  532 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  533 {
  534         *flags = UMA_SLAB_PRIV;
  535         return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
  536 }
  537 #endif
  538 
  539 /*
  540  *      Initialize the pmap module.
  541  *      Called by vm_init, to initialize any structures that the pmap
  542  *      system needs to map virtual memory.
  543  *      pmap_init has been enhanced to support in a fairly consistant
  544  *      way, discontiguous physical memory.
  545  */
  546 void
  547 pmap_init(phys_start, phys_end)
  548         vm_paddr_t phys_start, phys_end;
  549 {
  550         int i;
  551         int initial_pvs;
  552 
  553         /*
  554          * Allocate memory for random pmap data structures.  Includes the
  555          * pv_head_table.
  556          */
  557 
  558         for(i = 0; i < vm_page_array_size; i++) {
  559                 vm_page_t m;
  560 
  561                 m = &vm_page_array[i];
  562                 TAILQ_INIT(&m->md.pv_list);
  563                 m->md.pv_list_count = 0;
  564         }
  565 
  566         /*
  567          * init the pv free list
  568          */
  569         initial_pvs = vm_page_array_size;
  570         if (initial_pvs < MINPV)
  571                 initial_pvs = MINPV;
  572         pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL, 
  573             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
  574         uma_zone_set_allocf(pvzone, pmap_pv_allocf);
  575         uma_prealloc(pvzone, initial_pvs);
  576 
  577 #ifdef PAE
  578         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  579             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1, 0);
  580         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  581 #endif
  582 
  583         /*
  584          * Now it is safe to enable pv_table recording.
  585          */
  586         pmap_initialized = TRUE;
  587 }
  588 
  589 /*
  590  * Initialize the address space (zone) for the pv_entries.  Set a
  591  * high water mark so that the system can recover from excessive
  592  * numbers of pv entries.
  593  */
  594 void
  595 pmap_init2()
  596 {
  597         int shpgperproc = PMAP_SHPGPERPROC;
  598 
  599         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  600         pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
  601         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  602         pv_entry_high_water = 9 * (pv_entry_max / 10);
  603         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  604 }
  605 
  606 
  607 /***************************************************
  608  * Low level helper routines.....
  609  ***************************************************/
  610 
  611 #if defined(PMAP_DIAGNOSTIC)
  612 
  613 /*
  614  * This code checks for non-writeable/modified pages.
  615  * This should be an invalid condition.
  616  */
  617 static int
  618 pmap_nw_modified(pt_entry_t ptea)
  619 {
  620         int pte;
  621 
  622         pte = (int) ptea;
  623 
  624         if ((pte & (PG_M|PG_RW)) == PG_M)
  625                 return 1;
  626         else
  627                 return 0;
  628 }
  629 #endif
  630 
  631 
  632 /*
  633  * this routine defines the region(s) of memory that should
  634  * not be tested for the modified bit.
  635  */
  636 static PMAP_INLINE int
  637 pmap_track_modified(vm_offset_t va)
  638 {
  639         if ((va < kmi.clean_sva) || (va >= kmi.clean_eva)) 
  640                 return 1;
  641         else
  642                 return 0;
  643 }
  644 
  645 #ifdef I386_CPU
  646 /*
  647  * i386 only has "invalidate everything" and no SMP to worry about.
  648  */
  649 PMAP_INLINE void
  650 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  651 {
  652 
  653         if (pmap == kernel_pmap || pmap->pm_active)
  654                 invltlb();
  655 }
  656 
  657 PMAP_INLINE void
  658 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  659 {
  660 
  661         if (pmap == kernel_pmap || pmap->pm_active)
  662                 invltlb();
  663 }
  664 
  665 PMAP_INLINE void
  666 pmap_invalidate_all(pmap_t pmap)
  667 {
  668 
  669         if (pmap == kernel_pmap || pmap->pm_active)
  670                 invltlb();
  671 }
  672 #else /* !I386_CPU */
  673 #ifdef SMP
  674 /*
  675  * For SMP, these functions have to use the IPI mechanism for coherence.
  676  */
  677 void
  678 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  679 {
  680         u_int cpumask;
  681         u_int other_cpus;
  682 
  683         critical_enter();
  684         /*
  685          * We need to disable interrupt preemption but MUST NOT have
  686          * interrupts disabled here.
  687          * XXX we may need to hold schedlock to get a coherent pm_active
  688          */
  689         if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
  690                 invlpg(va);
  691                 smp_invlpg(va);
  692         } else {
  693                 cpumask = PCPU_GET(cpumask);
  694                 other_cpus = PCPU_GET(other_cpus);
  695                 if (pmap->pm_active & cpumask)
  696                         invlpg(va);
  697                 if (pmap->pm_active & other_cpus)
  698                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  699         }
  700         critical_exit();
  701 }
  702 
  703 void
  704 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  705 {
  706         u_int cpumask;
  707         u_int other_cpus;
  708         vm_offset_t addr;
  709 
  710         critical_enter();
  711         /*
  712          * We need to disable interrupt preemption but MUST NOT have
  713          * interrupts disabled here.
  714          * XXX we may need to hold schedlock to get a coherent pm_active
  715          */
  716         if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
  717                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  718                         invlpg(addr);
  719                 smp_invlpg_range(sva, eva);
  720         } else {
  721                 cpumask = PCPU_GET(cpumask);
  722                 other_cpus = PCPU_GET(other_cpus);
  723                 if (pmap->pm_active & cpumask)
  724                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  725                                 invlpg(addr);
  726                 if (pmap->pm_active & other_cpus)
  727                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  728                             sva, eva);
  729         }
  730         critical_exit();
  731 }
  732 
  733 void
  734 pmap_invalidate_all(pmap_t pmap)
  735 {
  736         u_int cpumask;
  737         u_int other_cpus;
  738 
  739 #ifdef SWTCH_OPTIM_STATS
  740         tlb_flush_count++;
  741 #endif
  742         critical_enter();
  743         /*
  744          * We need to disable interrupt preemption but MUST NOT have
  745          * interrupts disabled here.
  746          * XXX we may need to hold schedlock to get a coherent pm_active
  747          */
  748         if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
  749                 invltlb();
  750                 smp_invltlb();
  751         } else {
  752                 cpumask = PCPU_GET(cpumask);
  753                 other_cpus = PCPU_GET(other_cpus);
  754                 if (pmap->pm_active & cpumask)
  755                         invltlb();
  756                 if (pmap->pm_active & other_cpus)
  757                         smp_masked_invltlb(pmap->pm_active & other_cpus);
  758         }
  759         critical_exit();
  760 }
  761 #else /* !SMP */
  762 /*
  763  * Normal, non-SMP, 486+ invalidation functions.
  764  * We inline these within pmap.c for speed.
  765  */
  766 PMAP_INLINE void
  767 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  768 {
  769 
  770         if (pmap == kernel_pmap || pmap->pm_active)
  771                 invlpg(va);
  772 }
  773 
  774 PMAP_INLINE void
  775 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  776 {
  777         vm_offset_t addr;
  778 
  779         if (pmap == kernel_pmap || pmap->pm_active)
  780                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  781                         invlpg(addr);
  782 }
  783 
  784 PMAP_INLINE void
  785 pmap_invalidate_all(pmap_t pmap)
  786 {
  787 
  788         if (pmap == kernel_pmap || pmap->pm_active)
  789                 invltlb();
  790 }
  791 #endif /* !SMP */
  792 #endif /* !I386_CPU */
  793 
  794 /*
  795  * Are we current address space or kernel?
  796  */
  797 static __inline int
  798 pmap_is_current(pmap_t pmap)
  799 {
  800         return (pmap == kernel_pmap ||
  801             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
  802 }
  803 
  804 /*
  805  * Super fast pmap_pte routine best used when scanning
  806  * the pv lists.  This eliminates many coarse-grained
  807  * invltlb calls.  Note that many of the pv list
  808  * scans are across different pmaps.  It is very wasteful
  809  * to do an entire invltlb for checking a single mapping.
  810  */
  811 pt_entry_t * 
  812 pmap_pte_quick(pmap, va)
  813         register pmap_t pmap;
  814         vm_offset_t va;
  815 {
  816         pd_entry_t newpf;
  817         pd_entry_t *pde;
  818 
  819         pde = pmap_pde(pmap, va);
  820         if (*pde & PG_PS)
  821                 return (pde);
  822         if (*pde != 0) {
  823                 /* are we current address space or kernel? */
  824                 if (pmap_is_current(pmap))
  825                         return vtopte(va);
  826                 newpf = *pde & PG_FRAME;
  827                 if (((*PMAP1) & PG_FRAME) != newpf) {
  828                         *PMAP1 = newpf | PG_RW | PG_V;
  829                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
  830                 }
  831                 return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
  832         }
  833         return (0);
  834 }
  835 
  836 /*
  837  *      Routine:        pmap_extract
  838  *      Function:
  839  *              Extract the physical page address associated
  840  *              with the given map/virtual_address pair.
  841  */
  842 vm_paddr_t 
  843 pmap_extract(pmap, va)
  844         register pmap_t pmap;
  845         vm_offset_t va;
  846 {
  847         vm_paddr_t rtval;
  848         pt_entry_t *pte;
  849         pd_entry_t pde;
  850 
  851         if (pmap == 0)
  852                 return 0;
  853         pde = pmap->pm_pdir[va >> PDRSHIFT];
  854         if (pde != 0) {
  855                 if ((pde & PG_PS) != 0) {
  856                         rtval = (pde & ~PDRMASK) | (va & PDRMASK);
  857                         return rtval;
  858                 }
  859                 pte = pmap_pte_quick(pmap, va);
  860                 rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
  861                 return rtval;
  862         }
  863         return 0;
  864 
  865 }
  866 
  867 /***************************************************
  868  * Low level mapping routines.....
  869  ***************************************************/
  870 
  871 /*
  872  * Add a wired page to the kva.
  873  * Note: not SMP coherent.
  874  */
  875 PMAP_INLINE void 
  876 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  877 {
  878         pt_entry_t *pte;
  879 
  880         pte = vtopte(va);
  881         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
  882 }
  883 
  884 /*
  885  * Remove a page from the kernel pagetables.
  886  * Note: not SMP coherent.
  887  */
  888 PMAP_INLINE void
  889 pmap_kremove(vm_offset_t va)
  890 {
  891         pt_entry_t *pte;
  892 
  893         pte = vtopte(va);
  894         pte_clear(pte);
  895 }
  896 
  897 /*
  898  *      Used to map a range of physical addresses into kernel
  899  *      virtual address space.
  900  *
  901  *      The value passed in '*virt' is a suggested virtual address for
  902  *      the mapping. Architectures which can support a direct-mapped
  903  *      physical to virtual region can return the appropriate address
  904  *      within that region, leaving '*virt' unchanged. Other
  905  *      architectures should map the pages starting at '*virt' and
  906  *      update '*virt' with the first usable address after the mapped
  907  *      region.
  908  */
  909 vm_offset_t
  910 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  911 {
  912         vm_offset_t va, sva;
  913 
  914         va = sva = *virt;
  915         while (start < end) {
  916                 pmap_kenter(va, start);
  917                 va += PAGE_SIZE;
  918                 start += PAGE_SIZE;
  919         }
  920         pmap_invalidate_range(kernel_pmap, sva, va);
  921         *virt = va;
  922         return (sva);
  923 }
  924 
  925 
  926 /*
  927  * Add a list of wired pages to the kva
  928  * this routine is only used for temporary
  929  * kernel mappings that do not need to have
  930  * page modification or references recorded.
  931  * Note that old mappings are simply written
  932  * over.  The page *must* be wired.
  933  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  934  */
  935 void
  936 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
  937 {
  938         vm_offset_t va;
  939 
  940         va = sva;
  941         while (count-- > 0) {
  942                 pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
  943                 va += PAGE_SIZE;
  944                 m++;
  945         }
  946         pmap_invalidate_range(kernel_pmap, sva, va);
  947 }
  948 
  949 /*
  950  * This routine tears out page mappings from the
  951  * kernel -- it is meant only for temporary mappings.
  952  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  953  */
  954 void
  955 pmap_qremove(vm_offset_t sva, int count)
  956 {
  957         vm_offset_t va;
  958 
  959         va = sva;
  960         while (count-- > 0) {
  961                 pmap_kremove(va);
  962                 va += PAGE_SIZE;
  963         }
  964         pmap_invalidate_range(kernel_pmap, sva, va);
  965 }
  966 
  967 static vm_page_t
  968 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
  969 {
  970         vm_page_t m;
  971 
  972 retry:
  973         m = vm_page_lookup(object, pindex);
  974         if (m != NULL) {
  975                 vm_page_lock_queues();
  976                 if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
  977                         goto retry;
  978                 vm_page_unlock_queues();
  979         }
  980         return m;
  981 }
  982 
  983 #ifndef KSTACK_MAX_PAGES
  984 #define KSTACK_MAX_PAGES 32
  985 #endif
  986 
  987 /*
  988  * Create the kernel stack (including pcb for i386) for a new thread.
  989  * This routine directly affects the fork perf for a process and
  990  * create performance for a thread.
  991  */
  992 void
  993 pmap_new_thread(struct thread *td, int pages)
  994 {
  995         int i;
  996         vm_page_t ma[KSTACK_MAX_PAGES];
  997         vm_object_t ksobj;
  998         vm_page_t m;
  999         vm_offset_t ks;
 1000 
 1001         /* Bounds check */
 1002         if (pages <= 1)
 1003                 pages = KSTACK_PAGES;
 1004         else if (pages > KSTACK_MAX_PAGES)
 1005                 pages = KSTACK_MAX_PAGES;
 1006 
 1007         /*
 1008          * allocate object for the kstack
 1009          */
 1010         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
 1011         td->td_kstack_obj = ksobj;
 1012 
 1013         /* get a kernel virtual address for the kstack for this thread */
 1014 #ifdef KSTACK_GUARD
 1015         ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
 1016         if (ks == 0)
 1017                 panic("pmap_new_thread: kstack allocation failed");
 1018         if (*vtopte(ks) != 0)
 1019                 pmap_qremove(ks, 1);
 1020         ks += PAGE_SIZE;
 1021         td->td_kstack = ks;
 1022 #else
 1023         /* get a kernel virtual address for the kstack for this thread */
 1024         ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
 1025         if (ks == 0)
 1026                 panic("pmap_new_thread: kstack allocation failed");
 1027         td->td_kstack = ks;
 1028 #endif
 1029         /*
 1030          * Knowing the number of pages allocated is useful when you
 1031          * want to deallocate them.
 1032          */
 1033         td->td_kstack_pages = pages;
 1034 
 1035         /* 
 1036          * For the length of the stack, link in a real page of ram for each
 1037          * page of stack.
 1038          */
 1039         for (i = 0; i < pages; i++) {
 1040                 /*
 1041                  * Get a kernel stack page
 1042                  */
 1043                 m = vm_page_grab(ksobj, i,
 1044                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
 1045                 ma[i] = m;
 1046 
 1047                 vm_page_lock_queues();
 1048                 vm_page_wakeup(m);
 1049                 vm_page_flag_clear(m, PG_ZERO);
 1050                 m->valid = VM_PAGE_BITS_ALL;
 1051                 vm_page_unlock_queues();
 1052         }
 1053         pmap_qenter(ks, ma, pages);
 1054 }
 1055 
 1056 /*
 1057  * Dispose the kernel stack for a thread that has exited.
 1058  * This routine directly impacts the exit perf of a process and thread.
 1059  */
 1060 void
 1061 pmap_dispose_thread(td)
 1062         struct thread *td;
 1063 {
 1064         int i;
 1065         int pages;
 1066         vm_object_t ksobj;
 1067         vm_offset_t ks;
 1068         vm_page_t m;
 1069 
 1070         pages = td->td_kstack_pages;
 1071         ksobj = td->td_kstack_obj;
 1072         ks = td->td_kstack;
 1073         pmap_qremove(ks, pages);
 1074         for (i = 0; i < pages; i++) {
 1075                 m = vm_page_lookup(ksobj, i);
 1076                 if (m == NULL)
 1077                         panic("pmap_dispose_thread: kstack already missing?");
 1078                 vm_page_lock_queues();
 1079                 vm_page_busy(m);
 1080                 vm_page_unwire(m, 0);
 1081                 vm_page_free(m);
 1082                 vm_page_unlock_queues();
 1083         }
 1084         /*
 1085          * Free the space that this stack was mapped to in the kernel
 1086          * address map.
 1087          */
 1088 #ifdef KSTACK_GUARD
 1089         kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
 1090 #else
 1091         kmem_free(kernel_map, ks, pages * PAGE_SIZE);
 1092 #endif
 1093         vm_object_deallocate(ksobj);
 1094 }
 1095 
 1096 /*
 1097  * Set up a variable sized alternate kstack.  Though it may look MI, it may
 1098  * need to be different on certain arches like ia64.
 1099  */
 1100 void
 1101 pmap_new_altkstack(struct thread *td, int pages)
 1102 {
 1103         /* shuffle the original stack */
 1104         td->td_altkstack_obj = td->td_kstack_obj;
 1105         td->td_altkstack = td->td_kstack;
 1106         td->td_altkstack_pages = td->td_kstack_pages;
 1107 
 1108         pmap_new_thread(td, pages);
 1109 }
 1110 
 1111 void
 1112 pmap_dispose_altkstack(td)
 1113         struct thread *td;
 1114 {
 1115         pmap_dispose_thread(td);
 1116 
 1117         /* restore the original kstack */
 1118         td->td_kstack = td->td_altkstack;
 1119         td->td_kstack_obj = td->td_altkstack_obj;
 1120         td->td_kstack_pages = td->td_altkstack_pages;
 1121         td->td_altkstack = 0;
 1122         td->td_altkstack_obj = NULL;
 1123         td->td_altkstack_pages = 0;
 1124 }
 1125 
 1126 /*
 1127  * Allow the Kernel stack for a thread to be prejudicially paged out.
 1128  */
 1129 void
 1130 pmap_swapout_thread(td)
 1131         struct thread *td;
 1132 {
 1133         int i;
 1134         int pages;
 1135         vm_object_t ksobj;
 1136         vm_offset_t ks;
 1137         vm_page_t m;
 1138 
 1139         pages = td->td_kstack_pages;
 1140         ksobj = td->td_kstack_obj;
 1141         ks = td->td_kstack;
 1142         pmap_qremove(ks, pages);
 1143         for (i = 0; i < pages; i++) {
 1144                 m = vm_page_lookup(ksobj, i);
 1145                 if (m == NULL)
 1146                         panic("pmap_swapout_thread: kstack already missing?");
 1147                 vm_page_lock_queues();
 1148                 vm_page_dirty(m);
 1149                 vm_page_unwire(m, 0);
 1150                 vm_page_unlock_queues();
 1151         }
 1152 }
 1153 
 1154 /*
 1155  * Bring the kernel stack for a specified thread back in.
 1156  */
 1157 void
 1158 pmap_swapin_thread(td)
 1159         struct thread *td;
 1160 {
 1161         int i, rv;
 1162         int pages;
 1163         vm_page_t ma[KSTACK_MAX_PAGES];
 1164         vm_object_t ksobj;
 1165         vm_offset_t ks;
 1166         vm_page_t m;
 1167 
 1168         pages = td->td_kstack_pages;
 1169         ksobj = td->td_kstack_obj;
 1170         ks = td->td_kstack;
 1171         for (i = 0; i < pages; i++) {
 1172                 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
 1173                 if (m->valid != VM_PAGE_BITS_ALL) {
 1174                         rv = vm_pager_get_pages(ksobj, &m, 1, 0);
 1175                         if (rv != VM_PAGER_OK)
 1176                                 panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
 1177                         m = vm_page_lookup(ksobj, i);
 1178                         m->valid = VM_PAGE_BITS_ALL;
 1179                 }
 1180                 ma[i] = m;
 1181                 vm_page_lock_queues();
 1182                 vm_page_wire(m);
 1183                 vm_page_wakeup(m);
 1184                 vm_page_unlock_queues();
 1185         }
 1186         pmap_qenter(ks, ma, pages);
 1187 }
 1188 
 1189 /***************************************************
 1190  * Page table page management routines.....
 1191  ***************************************************/
 1192 
 1193 /*
 1194  * This routine unholds page table pages, and if the hold count
 1195  * drops to zero, then it decrements the wire count.
 1196  */
 1197 static int 
 1198 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
 1199 {
 1200 
 1201         while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
 1202                 vm_page_lock_queues();
 1203 
 1204         if (m->hold_count == 0) {
 1205                 vm_offset_t pteva;
 1206                 /*
 1207                  * unmap the page table page
 1208                  */
 1209                 pmap->pm_pdir[m->pindex] = 0;
 1210                 --pmap->pm_stats.resident_count;
 1211                 if (pmap_is_current(pmap)) {
 1212                         /*
 1213                          * Do an invltlb to make the invalidated mapping
 1214                          * take effect immediately.
 1215                          */
 1216                         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1217                         pmap_invalidate_page(pmap, pteva);
 1218                 }
 1219 
 1220                 /*
 1221                  * If the page is finally unwired, simply free it.
 1222                  */
 1223                 --m->wire_count;
 1224                 if (m->wire_count == 0) {
 1225                         vm_page_busy(m);
 1226                         vm_page_free_zero(m);
 1227                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1228                 }
 1229                 return 1;
 1230         }
 1231         return 0;
 1232 }
 1233 
 1234 static PMAP_INLINE int
 1235 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
 1236 {
 1237         vm_page_unhold(m);
 1238         if (m->hold_count == 0)
 1239                 return _pmap_unwire_pte_hold(pmap, m);
 1240         else
 1241                 return 0;
 1242 }
 1243 
 1244 /*
 1245  * After removing a page table entry, this routine is used to
 1246  * conditionally free the page, and manage the hold/wire counts.
 1247  */
 1248 static int
 1249 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
 1250 {
 1251         unsigned ptepindex;
 1252         if (va >= VM_MAXUSER_ADDRESS)
 1253                 return 0;
 1254 
 1255         if (mpte == NULL) {
 1256                 ptepindex = (va >> PDRSHIFT);
 1257                 if (pmap->pm_pteobj->root &&
 1258                         (pmap->pm_pteobj->root->pindex == ptepindex)) {
 1259                         mpte = pmap->pm_pteobj->root;
 1260                 } else {
 1261                         while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
 1262                                vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
 1263                                 vm_page_lock_queues();
 1264                 }
 1265         }
 1266 
 1267         return pmap_unwire_pte_hold(pmap, mpte);
 1268 }
 1269 
 1270 void
 1271 pmap_pinit0(pmap)
 1272         struct pmap *pmap;
 1273 {
 1274 
 1275         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1276 #ifdef PAE
 1277         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1278 #endif
 1279         pmap->pm_active = 0;
 1280         TAILQ_INIT(&pmap->pm_pvlist);
 1281         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1282         mtx_lock_spin(&allpmaps_lock);
 1283         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1284         mtx_unlock_spin(&allpmaps_lock);
 1285 }
 1286 
 1287 /*
 1288  * Initialize a preallocated and zeroed pmap structure,
 1289  * such as one in a vmspace structure.
 1290  */
 1291 void
 1292 pmap_pinit(pmap)
 1293         register struct pmap *pmap;
 1294 {
 1295         vm_page_t ptdpg[NPGPTD];
 1296         vm_paddr_t pa;
 1297         int i;
 1298 
 1299         /*
 1300          * No need to allocate page table space yet but we do need a valid
 1301          * page directory table.
 1302          */
 1303         if (pmap->pm_pdir == NULL) {
 1304                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
 1305                     NBPTD);
 1306 #ifdef PAE
 1307                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1308                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1309                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1310                     ("pmap_pinit: pdpt misaligned"));
 1311                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1312                     ("pmap_pinit: pdpt above 4g"));
 1313 #endif
 1314         }
 1315 
 1316         /*
 1317          * allocate object for the ptes
 1318          */
 1319         if (pmap->pm_pteobj == NULL)
 1320                 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
 1321                     NPGPTD);
 1322 
 1323         /*
 1324          * allocate the page directory page(s)
 1325          */
 1326         for (i = 0; i < NPGPTD; i++) {
 1327                 ptdpg[i] = vm_page_grab(pmap->pm_pteobj, PTDPTDI + i,
 1328                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED |
 1329                     VM_ALLOC_ZERO);
 1330                 vm_page_lock_queues();
 1331                 vm_page_flag_clear(ptdpg[i], PG_BUSY);
 1332                 ptdpg[i]->valid = VM_PAGE_BITS_ALL;
 1333                 vm_page_unlock_queues();
 1334         }
 1335 
 1336         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1337 
 1338         for (i = 0; i < NPGPTD; i++) {
 1339                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1340                         bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
 1341         }
 1342 
 1343         mtx_lock_spin(&allpmaps_lock);
 1344         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1345         mtx_unlock_spin(&allpmaps_lock);
 1346         /* Wire in kernel global address entries. */
 1347         /* XXX copies current process, does not fill in MPPTDI */
 1348         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1349 #ifdef SMP
 1350         pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
 1351 #endif
 1352 
 1353         /* install self-referential address mapping entry(s) */
 1354         for (i = 0; i < NPGPTD; i++) {
 1355                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1356                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1357 #ifdef PAE
 1358                 pmap->pm_pdpt[i] = pa | PG_V;
 1359 #endif
 1360         }
 1361 
 1362         pmap->pm_active = 0;
 1363         TAILQ_INIT(&pmap->pm_pvlist);
 1364         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1365 }
 1366 
 1367 /*
 1368  * Wire in kernel global address entries.  To avoid a race condition
 1369  * between pmap initialization and pmap_growkernel, this procedure
 1370  * should be called after the vmspace is attached to the process
 1371  * but before this pmap is activated.
 1372  */
 1373 void
 1374 pmap_pinit2(pmap)
 1375         struct pmap *pmap;
 1376 {
 1377         /* XXX: Remove this stub when no longer called */
 1378 }
 1379 
 1380 /*
 1381  * this routine is called if the page table page is not
 1382  * mapped correctly.
 1383  */
 1384 static vm_page_t
 1385 _pmap_allocpte(pmap, ptepindex)
 1386         pmap_t  pmap;
 1387         unsigned ptepindex;
 1388 {
 1389         vm_paddr_t ptepa;
 1390         vm_offset_t pteva;
 1391         vm_page_t m;
 1392 
 1393         /*
 1394          * Find or fabricate a new pagetable page
 1395          */
 1396         m = vm_page_grab(pmap->pm_pteobj, ptepindex,
 1397             VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
 1398 
 1399         KASSERT(m->queue == PQ_NONE,
 1400                 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
 1401 
 1402         /*
 1403          * Increment the hold count for the page table page
 1404          * (denoting a new mapping.)
 1405          */
 1406         m->hold_count++;
 1407 
 1408         /*
 1409          * Map the pagetable page into the process address space, if
 1410          * it isn't already there.
 1411          */
 1412 
 1413         pmap->pm_stats.resident_count++;
 1414 
 1415         ptepa = VM_PAGE_TO_PHYS(m);
 1416         pmap->pm_pdir[ptepindex] =
 1417                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1418 
 1419         /*
 1420          * Try to use the new mapping, but if we cannot, then
 1421          * do it with the routine that maps the page explicitly.
 1422          */
 1423         if ((m->flags & PG_ZERO) == 0) {
 1424                 if (pmap_is_current(pmap)) {
 1425                         pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
 1426                         bzero((caddr_t) pteva, PAGE_SIZE);
 1427                 } else {
 1428                         pmap_zero_page(m);
 1429                 }
 1430         }
 1431         vm_page_lock_queues();
 1432         m->valid = VM_PAGE_BITS_ALL;
 1433         vm_page_flag_clear(m, PG_ZERO);
 1434         vm_page_wakeup(m);
 1435         vm_page_unlock_queues();
 1436 
 1437         return m;
 1438 }
 1439 
 1440 static vm_page_t
 1441 pmap_allocpte(pmap_t pmap, vm_offset_t va)
 1442 {
 1443         unsigned ptepindex;
 1444         pd_entry_t ptepa;
 1445         vm_page_t m;
 1446 
 1447         /*
 1448          * Calculate pagetable page index
 1449          */
 1450         ptepindex = va >> PDRSHIFT;
 1451 
 1452         /*
 1453          * Get the page directory entry
 1454          */
 1455         ptepa = pmap->pm_pdir[ptepindex];
 1456 
 1457         /*
 1458          * This supports switching from a 4MB page to a
 1459          * normal 4K page.
 1460          */
 1461         if (ptepa & PG_PS) {
 1462                 pmap->pm_pdir[ptepindex] = 0;
 1463                 ptepa = 0;
 1464                 pmap_invalidate_all(kernel_pmap);
 1465         }
 1466 
 1467         /*
 1468          * If the page table page is mapped, we just increment the
 1469          * hold count, and activate it.
 1470          */
 1471         if (ptepa) {
 1472                 /*
 1473                  * In order to get the page table page, try the
 1474                  * hint first.
 1475                  */
 1476                 if (pmap->pm_pteobj->root &&
 1477                         (pmap->pm_pteobj->root->pindex == ptepindex)) {
 1478                         m = pmap->pm_pteobj->root;
 1479                 } else {
 1480                         m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
 1481                 }
 1482                 m->hold_count++;
 1483                 return m;
 1484         }
 1485         /*
 1486          * Here if the pte page isn't mapped, or if it has been deallocated.
 1487          */
 1488         return _pmap_allocpte(pmap, ptepindex);
 1489 }
 1490 
 1491 
 1492 /***************************************************
 1493 * Pmap allocation/deallocation routines.
 1494  ***************************************************/
 1495 
 1496 #ifdef LAZY_SWITCH
 1497 #ifdef SMP
 1498 /*
 1499  * Deal with a SMP shootdown of other users of the pmap that we are
 1500  * trying to dispose of.  This can be a bit hairy.
 1501  */
 1502 static u_int *lazymask;
 1503 static u_int lazyptd;
 1504 static volatile u_int lazywait;
 1505 
 1506 void pmap_lazyfix_action(void);
 1507 
 1508 void
 1509 pmap_lazyfix_action(void)
 1510 {
 1511         u_int mymask = PCPU_GET(cpumask);
 1512 
 1513         if (rcr3() == lazyptd) {
 1514                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1515 #ifdef SWTCH_OPTIM_STATS
 1516                 atomic_add_int(&lazy_flush_smpfixup, 1);
 1517         } else {
 1518                 if (*lazymask & mymask)
 1519                         lazy_flush_smpbadcr3++;
 1520                 else
 1521                         lazy_flush_smpmiss++;
 1522 #endif
 1523         }
 1524         atomic_clear_int(lazymask, mymask);
 1525         atomic_store_rel_int(&lazywait, 1);
 1526 }
 1527 
 1528 static void
 1529 pmap_lazyfix_self(u_int mymask)
 1530 {
 1531 
 1532         if (rcr3() == lazyptd) {
 1533                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1534 #ifdef SWTCH_OPTIM_STATS
 1535                 lazy_flush_fixup++;
 1536         } else {
 1537                 if (*lazymask & mymask)
 1538                         lazy_flush_smpbadcr3++;
 1539                 else
 1540                         lazy_flush_smpmiss++;
 1541 #endif
 1542         }
 1543         atomic_clear_int(lazymask, mymask);
 1544 }
 1545 
 1546 
 1547 static void
 1548 pmap_lazyfix(pmap_t pmap)
 1549 {
 1550         u_int mymask = PCPU_GET(cpumask);
 1551         u_int mask;
 1552         register u_int spins;
 1553 
 1554         while ((mask = pmap->pm_active) != 0) {
 1555                 spins = 50000000;
 1556                 mask = mask & -mask;    /* Find least significant set bit */
 1557                 mtx_lock_spin(&lazypmap_lock);
 1558 #ifdef PAE
 1559                 lazyptd = vtophys(pmap->pm_pdpt);
 1560 #else
 1561                 lazyptd = vtophys(pmap->pm_pdir);
 1562 #endif
 1563                 if (mask == mymask) {
 1564                         lazymask = &pmap->pm_active;
 1565                         pmap_lazyfix_self(mymask);
 1566                 } else {
 1567                         atomic_store_rel_int((u_int *)&lazymask,
 1568                             (u_int)&pmap->pm_active);
 1569                         atomic_store_rel_int(&lazywait, 0);
 1570                         ipi_selected(mask, IPI_LAZYPMAP);
 1571                         while (lazywait == 0) {
 1572                                 ia32_pause();
 1573                                 if (--spins == 0)
 1574                                         break;
 1575                         }
 1576 #ifdef SWTCH_OPTIM_STATS
 1577                         lazy_flush_smpipi++;
 1578 #endif
 1579                 }
 1580                 mtx_unlock_spin(&lazypmap_lock);
 1581                 if (spins == 0)
 1582                         printf("pmap_lazyfix: spun for 50000000\n");
 1583         }
 1584 }
 1585 
 1586 #else   /* SMP */
 1587 
 1588 /*
 1589  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1590  * unlikely to have to even execute this code, including the fact
 1591  * that the cleanup is deferred until the parent does a wait(2), which
 1592  * means that another userland process has run.
 1593  */
 1594 static void
 1595 pmap_lazyfix(pmap_t pmap)
 1596 {
 1597         u_int cr3;
 1598 
 1599         cr3 = vtophys(pmap->pm_pdir);
 1600         if (cr3 == rcr3()) {
 1601                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1602                 pmap->pm_active &= ~(PCPU_GET(cpumask));
 1603 #ifdef SWTCH_OPTIM_STATS
 1604                 lazy_flush_fixup++;
 1605 #endif
 1606         }
 1607 }
 1608 #endif  /* SMP */
 1609 #endif  /* LAZY_SWITCH */
 1610 
 1611 /*
 1612  * Release any resources held by the given physical map.
 1613  * Called when a pmap initialized by pmap_pinit is being released.
 1614  * Should only be called if the map contains no valid mappings.
 1615  */
 1616 void
 1617 pmap_release(pmap_t pmap)
 1618 {
 1619         vm_object_t object;
 1620         vm_page_t m;
 1621         int i;
 1622 
 1623         object = pmap->pm_pteobj;
 1624 
 1625         KASSERT(object->ref_count == 1,
 1626             ("pmap_release: pteobj reference count %d != 1",
 1627             object->ref_count));
 1628         KASSERT(pmap->pm_stats.resident_count == 0,
 1629             ("pmap_release: pmap resident count %ld != 0",
 1630             pmap->pm_stats.resident_count));
 1631 
 1632 #ifdef LAZY_SWITCH
 1633         pmap_lazyfix(pmap);
 1634 #endif
 1635         mtx_lock_spin(&allpmaps_lock);
 1636         LIST_REMOVE(pmap, pm_list);
 1637         mtx_unlock_spin(&allpmaps_lock);
 1638 
 1639         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 1640             sizeof(*pmap->pm_pdir));
 1641 #ifdef SMP
 1642         pmap->pm_pdir[MPPTDI] = 0;
 1643 #endif
 1644 
 1645         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1646 
 1647         vm_page_lock_queues();
 1648         for (i = 0; i < NPGPTD; i++) {
 1649                 m = TAILQ_FIRST(&object->memq);
 1650 #ifdef PAE
 1651                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 1652                     ("pmap_release: got wrong ptd page"));
 1653 #endif
 1654                 m->wire_count--;
 1655                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1656                 vm_page_busy(m);
 1657                 vm_page_free_zero(m);
 1658         }
 1659         KASSERT(TAILQ_EMPTY(&object->memq),
 1660             ("pmap_release: leaking page table pages"));
 1661         vm_page_unlock_queues();
 1662 }
 1663 
 1664 static int
 1665 kvm_size(SYSCTL_HANDLER_ARGS)
 1666 {
 1667         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1668 
 1669         return sysctl_handle_long(oidp, &ksize, 0, req);
 1670 }
 1671 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1672     0, 0, kvm_size, "IU", "Size of KVM");
 1673 
 1674 static int
 1675 kvm_free(SYSCTL_HANDLER_ARGS)
 1676 {
 1677         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1678 
 1679         return sysctl_handle_long(oidp, &kfree, 0, req);
 1680 }
 1681 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1682     0, 0, kvm_free, "IU", "Amount of KVM free");
 1683 
 1684 /*
 1685  * grow the number of kernel page table entries, if needed
 1686  */
 1687 void
 1688 pmap_growkernel(vm_offset_t addr)
 1689 {
 1690         struct pmap *pmap;
 1691         int s;
 1692         vm_paddr_t ptppaddr;
 1693         vm_page_t nkpg;
 1694         pd_entry_t newpdir;
 1695         pt_entry_t *pde;
 1696 
 1697         s = splhigh();
 1698         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1699         if (kernel_vm_end == 0) {
 1700                 kernel_vm_end = KERNBASE;
 1701                 nkpt = 0;
 1702                 while (pdir_pde(PTD, kernel_vm_end)) {
 1703                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1704                         nkpt++;
 1705                 }
 1706         }
 1707         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1708         while (kernel_vm_end < addr) {
 1709                 if (pdir_pde(PTD, kernel_vm_end)) {
 1710                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1711                         continue;
 1712                 }
 1713 
 1714                 /*
 1715                  * This index is bogus, but out of the way
 1716                  */
 1717                 nkpg = vm_page_alloc(NULL, nkpt,
 1718                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1719                 if (!nkpg)
 1720                         panic("pmap_growkernel: no memory to grow kernel");
 1721 
 1722                 nkpt++;
 1723 
 1724                 pmap_zero_page(nkpg);
 1725                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1726                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1727                 pdir_pde(PTD, kernel_vm_end) = newpdir;
 1728 
 1729                 mtx_lock_spin(&allpmaps_lock);
 1730                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1731                         pde = pmap_pde(pmap, kernel_vm_end);
 1732                         pde_store(pde, newpdir);
 1733                 }
 1734                 mtx_unlock_spin(&allpmaps_lock);
 1735                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1736         }
 1737         splx(s);
 1738 }
 1739 
 1740 
 1741 /***************************************************
 1742  * page management routines.
 1743  ***************************************************/
 1744 
 1745 /*
 1746  * free the pv_entry back to the free list
 1747  */
 1748 static PMAP_INLINE void
 1749 free_pv_entry(pv_entry_t pv)
 1750 {
 1751         pv_entry_count--;
 1752         uma_zfree(pvzone, pv);
 1753 }
 1754 
 1755 /*
 1756  * get a new pv_entry, allocating a block from the system
 1757  * when needed.
 1758  * the memory allocation is performed bypassing the malloc code
 1759  * because of the possibility of allocations at interrupt time.
 1760  */
 1761 static pv_entry_t
 1762 get_pv_entry(void)
 1763 {
 1764         pv_entry_count++;
 1765         if (pv_entry_high_water &&
 1766                 (pv_entry_count > pv_entry_high_water) &&
 1767                 (pmap_pagedaemon_waken == 0)) {
 1768                 pmap_pagedaemon_waken = 1;
 1769                 wakeup (&vm_pages_needed);
 1770         }
 1771         return uma_zalloc(pvzone, M_NOWAIT);
 1772 }
 1773 
 1774 /*
 1775  * If it is the first entry on the list, it is actually
 1776  * in the header and we must copy the following entry up
 1777  * to the header.  Otherwise we must search the list for
 1778  * the entry.  In either case we free the now unused entry.
 1779  */
 1780 
 1781 static int
 1782 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1783 {
 1784         pv_entry_t pv;
 1785         int rtval;
 1786         int s;
 1787 
 1788         s = splvm();
 1789         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1790         if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
 1791                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 1792                         if (pmap == pv->pv_pmap && va == pv->pv_va) 
 1793                                 break;
 1794                 }
 1795         } else {
 1796                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1797                         if (va == pv->pv_va) 
 1798                                 break;
 1799                 }
 1800         }
 1801 
 1802         rtval = 0;
 1803         if (pv) {
 1804                 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
 1805                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1806                 m->md.pv_list_count--;
 1807                 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
 1808                         vm_page_flag_clear(m, PG_WRITEABLE);
 1809 
 1810                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1811                 free_pv_entry(pv);
 1812         }
 1813                         
 1814         splx(s);
 1815         return rtval;
 1816 }
 1817 
 1818 /*
 1819  * Create a pv entry for page at pa for
 1820  * (pmap, va).
 1821  */
 1822 static void
 1823 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
 1824 {
 1825 
 1826         int s;
 1827         pv_entry_t pv;
 1828 
 1829         s = splvm();
 1830         pv = get_pv_entry();
 1831         pv->pv_va = va;
 1832         pv->pv_pmap = pmap;
 1833         pv->pv_ptem = mpte;
 1834 
 1835         TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1836         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1837         m->md.pv_list_count++;
 1838 
 1839         splx(s);
 1840 }
 1841 
 1842 /*
 1843  * pmap_remove_pte: do the things to unmap a page in a process
 1844  */
 1845 static int
 1846 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
 1847 {
 1848         pt_entry_t oldpte;
 1849         vm_page_t m;
 1850 
 1851         oldpte = pte_load_clear(ptq);
 1852         if (oldpte & PG_W)
 1853                 pmap->pm_stats.wired_count -= 1;
 1854         /*
 1855          * Machines that don't support invlpg, also don't support
 1856          * PG_G.
 1857          */
 1858         if (oldpte & PG_G)
 1859                 pmap_invalidate_page(kernel_pmap, va);
 1860         pmap->pm_stats.resident_count -= 1;
 1861         if (oldpte & PG_MANAGED) {
 1862                 m = PHYS_TO_VM_PAGE(oldpte);
 1863                 if (oldpte & PG_M) {
 1864 #if defined(PMAP_DIAGNOSTIC)
 1865                         if (pmap_nw_modified((pt_entry_t) oldpte)) {
 1866                                 printf(
 1867         "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
 1868                                     va, oldpte);
 1869                         }
 1870 #endif
 1871                         if (pmap_track_modified(va))
 1872                                 vm_page_dirty(m);
 1873                 }
 1874                 if (oldpte & PG_A)
 1875                         vm_page_flag_set(m, PG_REFERENCED);
 1876                 return pmap_remove_entry(pmap, m, va);
 1877         } else {
 1878                 return pmap_unuse_pt(pmap, va, NULL);
 1879         }
 1880 
 1881         return 0;
 1882 }
 1883 
 1884 /*
 1885  * Remove a single page from a process address space
 1886  */
 1887 static void
 1888 pmap_remove_page(pmap_t pmap, vm_offset_t va)
 1889 {
 1890         pt_entry_t *pte;
 1891 
 1892         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 1893                 return;
 1894         pmap_remove_pte(pmap, pte, va);
 1895         pmap_invalidate_page(pmap, va);
 1896 }
 1897 
 1898 /*
 1899  *      Remove the given range of addresses from the specified map.
 1900  *
 1901  *      It is assumed that the start and end are properly
 1902  *      rounded to the page size.
 1903  */
 1904 void
 1905 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1906 {
 1907         vm_offset_t pdnxt;
 1908         pd_entry_t ptpaddr;
 1909         pt_entry_t *pte;
 1910         int anyvalid;
 1911 
 1912         if (pmap == NULL)
 1913                 return;
 1914 
 1915         if (pmap->pm_stats.resident_count == 0)
 1916                 return;
 1917 
 1918         /*
 1919          * special handling of removing one page.  a very
 1920          * common operation and easy to short circuit some
 1921          * code.
 1922          */
 1923         if ((sva + PAGE_SIZE == eva) && 
 1924             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 1925                 pmap_remove_page(pmap, sva);
 1926                 return;
 1927         }
 1928 
 1929         anyvalid = 0;
 1930 
 1931         for (; sva < eva; sva = pdnxt) {
 1932                 unsigned pdirindex;
 1933 
 1934                 /*
 1935                  * Calculate index for next page table.
 1936                  */
 1937                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1938                 if (pmap->pm_stats.resident_count == 0)
 1939                         break;
 1940 
 1941                 pdirindex = sva >> PDRSHIFT;
 1942                 ptpaddr = pmap->pm_pdir[pdirindex];
 1943 
 1944                 /*
 1945                  * Weed out invalid mappings. Note: we assume that the page
 1946                  * directory table is always allocated, and in kernel virtual.
 1947                  */
 1948                 if (ptpaddr == 0)
 1949                         continue;
 1950 
 1951                 /*
 1952                  * Check for large page.
 1953                  */
 1954                 if ((ptpaddr & PG_PS) != 0) {
 1955                         pmap->pm_pdir[pdirindex] = 0;
 1956                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1957                         anyvalid = 1;
 1958                         continue;
 1959                 }
 1960 
 1961                 /*
 1962                  * Limit our scan to either the end of the va represented
 1963                  * by the current page table page, or to the end of the
 1964                  * range being removed.
 1965                  */
 1966                 if (pdnxt > eva)
 1967                         pdnxt = eva;
 1968 
 1969                 for (; sva != pdnxt; sva += PAGE_SIZE) {
 1970                         if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
 1971                             *pte == 0)
 1972                                 continue;
 1973                         anyvalid = 1;
 1974                         if (pmap_remove_pte(pmap, pte, sva))
 1975                                 break;
 1976                 }
 1977         }
 1978 
 1979         if (anyvalid)
 1980                 pmap_invalidate_all(pmap);
 1981 }
 1982 
 1983 /*
 1984  *      Routine:        pmap_remove_all
 1985  *      Function:
 1986  *              Removes this physical page from
 1987  *              all physical maps in which it resides.
 1988  *              Reflects back modify bits to the pager.
 1989  *
 1990  *      Notes:
 1991  *              Original versions of this routine were very
 1992  *              inefficient because they iteratively called
 1993  *              pmap_remove (slow...)
 1994  */
 1995 
 1996 void
 1997 pmap_remove_all(vm_page_t m)
 1998 {
 1999         register pv_entry_t pv;
 2000         pt_entry_t *pte, tpte;
 2001         int s;
 2002 
 2003 #if defined(PMAP_DIAGNOSTIC)
 2004         /*
 2005          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 2006          */
 2007         if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
 2008                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
 2009                     VM_PAGE_TO_PHYS(m));
 2010         }
 2011 #endif
 2012         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2013         s = splvm();
 2014         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2015                 pv->pv_pmap->pm_stats.resident_count--;
 2016                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2017                 tpte = pte_load_clear(pte);
 2018                 if (tpte & PG_W)
 2019                         pv->pv_pmap->pm_stats.wired_count--;
 2020                 if (tpte & PG_A)
 2021                         vm_page_flag_set(m, PG_REFERENCED);
 2022 
 2023                 /*
 2024                  * Update the vm_page_t clean and reference bits.
 2025                  */
 2026                 if (tpte & PG_M) {
 2027 #if defined(PMAP_DIAGNOSTIC)
 2028                         if (pmap_nw_modified((pt_entry_t) tpte)) {
 2029                                 printf(
 2030         "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
 2031                                     pv->pv_va, tpte);
 2032                         }
 2033 #endif
 2034                         if (pmap_track_modified(pv->pv_va))
 2035                                 vm_page_dirty(m);
 2036                 }
 2037                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2038                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 2039                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2040                 m->md.pv_list_count--;
 2041                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 2042                 free_pv_entry(pv);
 2043         }
 2044         vm_page_flag_clear(m, PG_WRITEABLE);
 2045         splx(s);
 2046 }
 2047 
 2048 /*
 2049  *      Set the physical protection on the
 2050  *      specified range of this map as requested.
 2051  */
 2052 void
 2053 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 2054 {
 2055         vm_offset_t pdnxt;
 2056         pd_entry_t ptpaddr;
 2057         int anychanged;
 2058 
 2059         if (pmap == NULL)
 2060                 return;
 2061 
 2062         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 2063                 pmap_remove(pmap, sva, eva);
 2064                 return;
 2065         }
 2066 
 2067         if (prot & VM_PROT_WRITE)
 2068                 return;
 2069 
 2070         anychanged = 0;
 2071 
 2072         for (; sva < eva; sva = pdnxt) {
 2073                 unsigned pdirindex;
 2074 
 2075                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2076 
 2077                 pdirindex = sva >> PDRSHIFT;
 2078                 ptpaddr = pmap->pm_pdir[pdirindex];
 2079 
 2080                 /*
 2081                  * Weed out invalid mappings. Note: we assume that the page
 2082                  * directory table is always allocated, and in kernel virtual.
 2083                  */
 2084                 if (ptpaddr == 0)
 2085                         continue;
 2086 
 2087                 /*
 2088                  * Check for large page.
 2089                  */
 2090                 if ((ptpaddr & PG_PS) != 0) {
 2091                         pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 2092                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2093                         anychanged = 1;
 2094                         continue;
 2095                 }
 2096 
 2097                 if (pdnxt > eva)
 2098                         pdnxt = eva;
 2099 
 2100                 for (; sva != pdnxt; sva += PAGE_SIZE) {
 2101                         pt_entry_t pbits;
 2102                         pt_entry_t *pte;
 2103                         vm_page_t m;
 2104 
 2105                         if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
 2106                                 continue;
 2107                         pbits = *pte;
 2108                         if (pbits & PG_MANAGED) {
 2109                                 m = NULL;
 2110                                 if (pbits & PG_A) {
 2111                                         m = PHYS_TO_VM_PAGE(pbits);
 2112                                         vm_page_flag_set(m, PG_REFERENCED);
 2113                                         pbits &= ~PG_A;
 2114                                 }
 2115                                 if ((pbits & PG_M) != 0 &&
 2116                                     pmap_track_modified(sva)) {
 2117                                         if (m == NULL)
 2118                                                 m = PHYS_TO_VM_PAGE(pbits);
 2119                                         vm_page_dirty(m);
 2120                                         pbits &= ~PG_M;
 2121                                 }
 2122                         }
 2123 
 2124                         pbits &= ~PG_RW;
 2125 
 2126                         if (pbits != *pte) {
 2127                                 pte_store(pte, pbits);
 2128                                 anychanged = 1;
 2129                         }
 2130                 }
 2131         }
 2132         if (anychanged)
 2133                 pmap_invalidate_all(pmap);
 2134 }
 2135 
 2136 /*
 2137  *      Insert the given physical page (p) at
 2138  *      the specified virtual address (v) in the
 2139  *      target physical map with the protection requested.
 2140  *
 2141  *      If specified, the page will be wired down, meaning
 2142  *      that the related pte can not be reclaimed.
 2143  *
 2144  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2145  *      or lose information.  That is, this routine must actually
 2146  *      insert this page into the given map NOW.
 2147  */
 2148 void
 2149 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2150            boolean_t wired)
 2151 {
 2152         vm_paddr_t pa;
 2153         register pt_entry_t *pte;
 2154         vm_paddr_t opa;
 2155         pt_entry_t origpte, newpte;
 2156         vm_page_t mpte;
 2157 
 2158         if (pmap == NULL)
 2159                 return;
 2160 
 2161         va &= PG_FRAME;
 2162 #ifdef PMAP_DIAGNOSTIC
 2163         if (va > VM_MAX_KERNEL_ADDRESS)
 2164                 panic("pmap_enter: toobig");
 2165         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 2166                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 2167 #endif
 2168 
 2169         mpte = NULL;
 2170         /*
 2171          * In the case that a page table page is not
 2172          * resident, we are creating it here.
 2173          */
 2174         if (va < VM_MAXUSER_ADDRESS) {
 2175                 mpte = pmap_allocpte(pmap, va);
 2176         }
 2177 #if 0 && defined(PMAP_DIAGNOSTIC)
 2178         else {
 2179                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 2180                 origpte = *pdeaddr;
 2181                 if ((origpte & PG_V) == 0) { 
 2182                         panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
 2183                                 pmap->pm_pdir[PTDPTDI], origpte, va);
 2184                 }
 2185         }
 2186 #endif
 2187 
 2188         pte = pmap_pte_quick(pmap, va);
 2189 
 2190         /*
 2191          * Page Directory table entry not valid, we need a new PT page
 2192          */
 2193         if (pte == NULL) {
 2194                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
 2195                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 2196         }
 2197 
 2198         pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
 2199         origpte = *pte;
 2200         opa = origpte & PG_FRAME;
 2201 
 2202         if (origpte & PG_PS)
 2203                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2204 
 2205         /*
 2206          * Mapping has not changed, must be protection or wiring change.
 2207          */
 2208         if (origpte && (opa == pa)) {
 2209                 /*
 2210                  * Wiring change, just update stats. We don't worry about
 2211                  * wiring PT pages as they remain resident as long as there
 2212                  * are valid mappings in them. Hence, if a user page is wired,
 2213                  * the PT page will be also.
 2214                  */
 2215                 if (wired && ((origpte & PG_W) == 0))
 2216                         pmap->pm_stats.wired_count++;
 2217                 else if (!wired && (origpte & PG_W))
 2218                         pmap->pm_stats.wired_count--;
 2219 
 2220 #if defined(PMAP_DIAGNOSTIC)
 2221                 if (pmap_nw_modified((pt_entry_t) origpte)) {
 2222                         printf(
 2223         "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
 2224                             va, origpte);
 2225                 }
 2226 #endif
 2227 
 2228                 /*
 2229                  * Remove extra pte reference
 2230                  */
 2231                 if (mpte)
 2232                         mpte->hold_count--;
 2233 
 2234                 if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
 2235                         if ((origpte & PG_RW) == 0) {
 2236                                 pte_store(pte, origpte | PG_RW);
 2237                                 pmap_invalidate_page(pmap, va);
 2238                         }
 2239                         return;
 2240                 }
 2241 
 2242                 /*
 2243                  * We might be turning off write access to the page,
 2244                  * so we go ahead and sense modify status.
 2245                  */
 2246                 if (origpte & PG_MANAGED) {
 2247                         if ((origpte & PG_M) && pmap_track_modified(va)) {
 2248                                 vm_page_t om;
 2249                                 om = PHYS_TO_VM_PAGE(opa);
 2250                                 vm_page_dirty(om);
 2251                         }
 2252                         pa |= PG_MANAGED;
 2253                 }
 2254                 goto validate;
 2255         } 
 2256         /*
 2257          * Mapping has changed, invalidate old range and fall through to
 2258          * handle validating new mapping.
 2259          */
 2260         if (opa) {
 2261                 int err;
 2262                 vm_page_lock_queues();
 2263                 err = pmap_remove_pte(pmap, pte, va);
 2264                 vm_page_unlock_queues();
 2265                 if (err)
 2266                         panic("pmap_enter: pte vanished, va: 0x%x", va);
 2267         }
 2268 
 2269         /*
 2270          * Enter on the PV list if part of our managed memory. Note that we
 2271          * raise IPL while manipulating pv_table since pmap_enter can be
 2272          * called at interrupt time.
 2273          */
 2274         if (pmap_initialized && 
 2275             (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
 2276                 pmap_insert_entry(pmap, va, mpte, m);
 2277                 pa |= PG_MANAGED;
 2278         }
 2279 
 2280         /*
 2281          * Increment counters
 2282          */
 2283         pmap->pm_stats.resident_count++;
 2284         if (wired)
 2285                 pmap->pm_stats.wired_count++;
 2286 
 2287 validate:
 2288         /*
 2289          * Now validate mapping with desired protection/wiring.
 2290          */
 2291         newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
 2292 
 2293         if (wired)
 2294                 newpte |= PG_W;
 2295         if (va < VM_MAXUSER_ADDRESS)
 2296                 newpte |= PG_U;
 2297         if (pmap == kernel_pmap)
 2298                 newpte |= pgeflag;
 2299 
 2300         /*
 2301          * if the mapping or permission bits are different, we need
 2302          * to update the pte.
 2303          */
 2304         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2305                 pte_store(pte, newpte | PG_A);
 2306                 /*if (origpte)*/ {
 2307                         pmap_invalidate_page(pmap, va);
 2308                 }
 2309         }
 2310 }
 2311 
 2312 /*
 2313  * this code makes some *MAJOR* assumptions:
 2314  * 1. Current pmap & pmap exists.
 2315  * 2. Not wired.
 2316  * 3. Read access.
 2317  * 4. No page table pages.
 2318  * 5. Tlbflush is deferred to calling procedure.
 2319  * 6. Page IS managed.
 2320  * but is *MUCH* faster than pmap_enter...
 2321  */
 2322 
 2323 static vm_page_t
 2324 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
 2325 {
 2326         pt_entry_t *pte;
 2327         vm_paddr_t pa;
 2328 
 2329         /*
 2330          * In the case that a page table page is not
 2331          * resident, we are creating it here.
 2332          */
 2333         if (va < VM_MAXUSER_ADDRESS) {
 2334                 unsigned ptepindex;
 2335                 pd_entry_t ptepa;
 2336 
 2337                 /*
 2338                  * Calculate pagetable page index
 2339                  */
 2340                 ptepindex = va >> PDRSHIFT;
 2341                 if (mpte && (mpte->pindex == ptepindex)) {
 2342                         mpte->hold_count++;
 2343                 } else {
 2344 retry:
 2345                         /*
 2346                          * Get the page directory entry
 2347                          */
 2348                         ptepa = pmap->pm_pdir[ptepindex];
 2349 
 2350                         /*
 2351                          * If the page table page is mapped, we just increment
 2352                          * the hold count, and activate it.
 2353                          */
 2354                         if (ptepa) {
 2355                                 if (ptepa & PG_PS)
 2356                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2357                                 if (pmap->pm_pteobj->root &&
 2358                                         (pmap->pm_pteobj->root->pindex == ptepindex)) {
 2359                                         mpte = pmap->pm_pteobj->root;
 2360                                 } else {
 2361                                         mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
 2362                                 }
 2363                                 if (mpte == NULL)
 2364                                         goto retry;
 2365                                 mpte->hold_count++;
 2366                         } else {
 2367                                 mpte = _pmap_allocpte(pmap, ptepindex);
 2368                         }
 2369                 }
 2370         } else {
 2371                 mpte = NULL;
 2372         }
 2373 
 2374         /*
 2375          * This call to vtopte makes the assumption that we are
 2376          * entering the page into the current pmap.  In order to support
 2377          * quick entry into any pmap, one would likely use pmap_pte_quick.
 2378          * But that isn't as quick as vtopte.
 2379          */
 2380         pte = vtopte(va);
 2381         if (*pte) {
 2382                 if (mpte != NULL) {
 2383                         vm_page_lock_queues();
 2384                         pmap_unwire_pte_hold(pmap, mpte);
 2385                         vm_page_unlock_queues();
 2386                 }
 2387                 return 0;
 2388         }
 2389 
 2390         /*
 2391          * Enter on the PV list if part of our managed memory. Note that we
 2392          * raise IPL while manipulating pv_table since pmap_enter can be
 2393          * called at interrupt time.
 2394          */
 2395         if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
 2396                 pmap_insert_entry(pmap, va, mpte, m);
 2397 
 2398         /*
 2399          * Increment counters
 2400          */
 2401         pmap->pm_stats.resident_count++;
 2402 
 2403         pa = VM_PAGE_TO_PHYS(m);
 2404 
 2405         /*
 2406          * Now validate mapping with RO protection
 2407          */
 2408         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 2409                 pte_store(pte, pa | PG_V | PG_U);
 2410         else
 2411                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 2412 
 2413         return mpte;
 2414 }
 2415 
 2416 /*
 2417  * Make a temporary mapping for a physical address.  This is only intended
 2418  * to be used for panic dumps.
 2419  */
 2420 void *
 2421 pmap_kenter_temporary(vm_offset_t pa, int i)
 2422 {
 2423         vm_offset_t va;
 2424 
 2425         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 2426         pmap_kenter(va, pa);
 2427 #ifndef I386_CPU
 2428         invlpg(va);
 2429 #else
 2430         invltlb();
 2431 #endif
 2432         return ((void *)crashdumpmap);
 2433 }
 2434 
 2435 #define MAX_INIT_PT (96)
 2436 /*
 2437  * pmap_object_init_pt preloads the ptes for a given object
 2438  * into the specified pmap.  This eliminates the blast of soft
 2439  * faults on process startup and immediately after an mmap.
 2440  */
 2441 void
 2442 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2443                     vm_object_t object, vm_pindex_t pindex,
 2444                     vm_size_t size, int limit)
 2445 {
 2446         vm_offset_t tmpidx;
 2447         int psize;
 2448         vm_page_t p, mpte;
 2449 
 2450         if (pmap == NULL || object == NULL)
 2451                 return;
 2452 
 2453         /*
 2454          * This code maps large physical mmap regions into the
 2455          * processor address space.  Note that some shortcuts
 2456          * are taken, but the code works.
 2457          */
 2458         if (pseflag && (object->type == OBJT_DEVICE) &&
 2459             ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 2460                 int i;
 2461                 vm_page_t m[1];
 2462                 unsigned int ptepindex;
 2463                 int npdes;
 2464                 pd_entry_t ptepa;
 2465 
 2466                 if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
 2467                         return;
 2468 
 2469 retry:
 2470                 p = vm_page_lookup(object, pindex);
 2471                 if (p != NULL) {
 2472                         vm_page_lock_queues();
 2473                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 2474                                 goto retry;
 2475                 } else {
 2476                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2477                         if (p == NULL)
 2478                                 return;
 2479                         m[0] = p;
 2480 
 2481                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2482                                 vm_page_lock_queues();
 2483                                 vm_page_free(p);
 2484                                 vm_page_unlock_queues();
 2485                                 return;
 2486                         }
 2487 
 2488                         p = vm_page_lookup(object, pindex);
 2489                         vm_page_lock_queues();
 2490                         vm_page_wakeup(p);
 2491                 }
 2492                 vm_page_unlock_queues();
 2493 
 2494                 ptepa = VM_PAGE_TO_PHYS(p);
 2495                 if (ptepa & (NBPDR - 1)) {
 2496                         return;
 2497                 }
 2498 
 2499                 p->valid = VM_PAGE_BITS_ALL;
 2500 
 2501                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2502                 npdes = size >> PDRSHIFT;
 2503                 for(i = 0; i < npdes; i++) {
 2504                         pde_store(&pmap->pm_pdir[ptepindex],
 2505                             ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2506                         ptepa += NBPDR;
 2507                         ptepindex += 1;
 2508                 }
 2509                 pmap_invalidate_all(kernel_pmap);
 2510                 return;
 2511         }
 2512 
 2513         psize = i386_btop(size);
 2514 
 2515         if ((object->type != OBJT_VNODE) ||
 2516             ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
 2517              (object->resident_page_count > MAX_INIT_PT))) {
 2518                 return;
 2519         }
 2520 
 2521         if (psize + pindex > object->size) {
 2522                 if (object->size < pindex)
 2523                         return;
 2524                 psize = object->size - pindex;
 2525         }
 2526 
 2527         mpte = NULL;
 2528 
 2529         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
 2530                 if (p->pindex < pindex) {
 2531                         p = vm_page_splay(pindex, object->root);
 2532                         if ((object->root = p)->pindex < pindex)
 2533                                 p = TAILQ_NEXT(p, listq);
 2534                 }
 2535         }
 2536         /*
 2537          * Assert: the variable p is either (1) the page with the
 2538          * least pindex greater than or equal to the parameter pindex
 2539          * or (2) NULL.
 2540          */
 2541         for (;
 2542              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 2543              p = TAILQ_NEXT(p, listq)) {
 2544                 /*
 2545                  * don't allow an madvise to blow away our really
 2546                  * free pages allocating pv entries.
 2547                  */
 2548                 if ((limit & MAP_PREFAULT_MADVISE) &&
 2549                     cnt.v_free_count < cnt.v_free_reserved) {
 2550                         break;
 2551                 }
 2552                 vm_page_lock_queues();
 2553                 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
 2554                     (p->busy == 0) &&
 2555                     (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2556                         if ((p->queue - p->pc) == PQ_CACHE)
 2557                                 vm_page_deactivate(p);
 2558                         vm_page_busy(p);
 2559                         vm_page_unlock_queues();
 2560                         mpte = pmap_enter_quick(pmap, 
 2561                                 addr + i386_ptob(tmpidx), p, mpte);
 2562                         vm_page_lock_queues();
 2563                         vm_page_wakeup(p);
 2564                 }
 2565                 vm_page_unlock_queues();
 2566         }
 2567         return;
 2568 }
 2569 
 2570 /*
 2571  * pmap_prefault provides a quick way of clustering
 2572  * pagefaults into a processes address space.  It is a "cousin"
 2573  * of pmap_object_init_pt, except it runs at page fault time instead
 2574  * of mmap time.
 2575  */
 2576 #define PFBAK 4
 2577 #define PFFOR 4
 2578 #define PAGEORDER_SIZE (PFBAK+PFFOR)
 2579 
 2580 static int pmap_prefault_pageorder[] = {
 2581         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
 2582         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
 2583         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
 2584         -4 * PAGE_SIZE, 4 * PAGE_SIZE
 2585 };
 2586 
 2587 void
 2588 pmap_prefault(pmap, addra, entry)
 2589         pmap_t pmap;
 2590         vm_offset_t addra;
 2591         vm_map_entry_t entry;
 2592 {
 2593         int i;
 2594         vm_offset_t starta;
 2595         vm_offset_t addr;
 2596         vm_pindex_t pindex;
 2597         vm_page_t m, mpte;
 2598         vm_object_t object;
 2599 
 2600         if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
 2601                 return;
 2602 
 2603         object = entry->object.vm_object;
 2604 
 2605         starta = addra - PFBAK * PAGE_SIZE;
 2606         if (starta < entry->start) {
 2607                 starta = entry->start;
 2608         } else if (starta > addra) {
 2609                 starta = 0;
 2610         }
 2611 
 2612         mpte = NULL;
 2613         for (i = 0; i < PAGEORDER_SIZE; i++) {
 2614                 vm_object_t lobject;
 2615                 pt_entry_t *pte;
 2616 
 2617                 addr = addra + pmap_prefault_pageorder[i];
 2618                 if (addr > addra + (PFFOR * PAGE_SIZE))
 2619                         addr = 0;
 2620 
 2621                 if (addr < starta || addr >= entry->end)
 2622                         continue;
 2623 
 2624                 if ((*pmap_pde(pmap, addr)) == 0) 
 2625                         continue;
 2626 
 2627                 pte = vtopte(addr);
 2628                 if (*pte)
 2629                         continue;
 2630 
 2631                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 2632                 lobject = object;
 2633                 for (m = vm_page_lookup(lobject, pindex);
 2634                     (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
 2635                     lobject = lobject->backing_object) {
 2636                         if (lobject->backing_object_offset & PAGE_MASK)
 2637                                 break;
 2638                         pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
 2639                         m = vm_page_lookup(lobject->backing_object, pindex);
 2640                 }
 2641 
 2642                 /*
 2643                  * give-up when a page is not in memory
 2644                  */
 2645                 if (m == NULL)
 2646                         break;
 2647                 vm_page_lock_queues();
 2648                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
 2649                         (m->busy == 0) &&
 2650                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2651 
 2652                         if ((m->queue - m->pc) == PQ_CACHE) {
 2653                                 vm_page_deactivate(m);
 2654                         }
 2655                         vm_page_busy(m);
 2656                         vm_page_unlock_queues();
 2657                         mpte = pmap_enter_quick(pmap, addr, m, mpte);
 2658                         vm_page_lock_queues();
 2659                         vm_page_wakeup(m);
 2660                 }
 2661                 vm_page_unlock_queues();
 2662         }
 2663 }
 2664 
 2665 /*
 2666  *      Routine:        pmap_change_wiring
 2667  *      Function:       Change the wiring attribute for a map/virtual-address
 2668  *                      pair.
 2669  *      In/out conditions:
 2670  *                      The mapping must already exist in the pmap.
 2671  */
 2672 void
 2673 pmap_change_wiring(pmap, va, wired)
 2674         register pmap_t pmap;
 2675         vm_offset_t va;
 2676         boolean_t wired;
 2677 {
 2678         register pt_entry_t *pte;
 2679 
 2680         if (pmap == NULL)
 2681                 return;
 2682 
 2683         pte = pmap_pte_quick(pmap, va);
 2684 
 2685         if (wired && !pmap_pte_w(pte))
 2686                 pmap->pm_stats.wired_count++;
 2687         else if (!wired && pmap_pte_w(pte))
 2688                 pmap->pm_stats.wired_count--;
 2689 
 2690         /*
 2691          * Wiring is not a hardware characteristic so there is no need to
 2692          * invalidate TLB.
 2693          */
 2694         pmap_pte_set_w(pte, wired);
 2695 }
 2696 
 2697 
 2698 
 2699 /*
 2700  *      Copy the range specified by src_addr/len
 2701  *      from the source map to the range dst_addr/len
 2702  *      in the destination map.
 2703  *
 2704  *      This routine is only advisory and need not do anything.
 2705  */
 2706 
 2707 void
 2708 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 2709           vm_offset_t src_addr)
 2710 {
 2711         vm_offset_t addr;
 2712         vm_offset_t end_addr = src_addr + len;
 2713         vm_offset_t pdnxt;
 2714         vm_page_t m;
 2715 
 2716         if (dst_addr != src_addr)
 2717                 return;
 2718 
 2719         if (!pmap_is_current(src_pmap))
 2720                 return;
 2721 
 2722         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 2723                 pt_entry_t *src_pte, *dst_pte;
 2724                 vm_page_t dstmpte, srcmpte;
 2725                 pd_entry_t srcptepaddr;
 2726                 unsigned ptepindex;
 2727 
 2728                 if (addr >= UPT_MIN_ADDRESS)
 2729                         panic("pmap_copy: invalid to pmap_copy page tables\n");
 2730 
 2731                 /*
 2732                  * Don't let optional prefaulting of pages make us go
 2733                  * way below the low water mark of free pages or way
 2734                  * above high water mark of used pv entries.
 2735                  */
 2736                 if (cnt.v_free_count < cnt.v_free_reserved ||
 2737                     pv_entry_count > pv_entry_high_water)
 2738                         break;
 2739                 
 2740                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 2741                 ptepindex = addr >> PDRSHIFT;
 2742 
 2743                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 2744                 if (srcptepaddr == 0)
 2745                         continue;
 2746                         
 2747                 if (srcptepaddr & PG_PS) {
 2748                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 2749                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
 2750                                 dst_pmap->pm_stats.resident_count +=
 2751                                     NBPDR / PAGE_SIZE;
 2752                         }
 2753                         continue;
 2754                 }
 2755 
 2756                 srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
 2757                 if ((srcmpte == NULL) ||
 2758                     (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
 2759                         continue;
 2760 
 2761                 if (pdnxt > end_addr)
 2762                         pdnxt = end_addr;
 2763 
 2764                 src_pte = vtopte(addr);
 2765                 while (addr < pdnxt) {
 2766                         pt_entry_t ptetemp;
 2767                         ptetemp = *src_pte;
 2768                         /*
 2769                          * we only virtual copy managed pages
 2770                          */
 2771                         if ((ptetemp & PG_MANAGED) != 0) {
 2772                                 /*
 2773                                  * We have to check after allocpte for the
 2774                                  * pte still being around...  allocpte can
 2775                                  * block.
 2776                                  */
 2777                                 dstmpte = pmap_allocpte(dst_pmap, addr);
 2778                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 2779                                 if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
 2780                                         /*
 2781                                          * Clear the modified and
 2782                                          * accessed (referenced) bits
 2783                                          * during the copy.
 2784                                          */
 2785                                         m = PHYS_TO_VM_PAGE(ptetemp);
 2786                                         *dst_pte = ptetemp & ~(PG_M | PG_A);
 2787                                         dst_pmap->pm_stats.resident_count++;
 2788                                         pmap_insert_entry(dst_pmap, addr,
 2789                                                 dstmpte, m);
 2790                                 } else {
 2791                                         vm_page_lock_queues();
 2792                                         pmap_unwire_pte_hold(dst_pmap, dstmpte);
 2793                                         vm_page_unlock_queues();
 2794                                 }
 2795                                 if (dstmpte->hold_count >= srcmpte->hold_count)
 2796                                         break;
 2797                         }
 2798                         addr += PAGE_SIZE;
 2799                         src_pte++;
 2800                 }
 2801         }
 2802 }       
 2803 
 2804 #ifdef SMP
 2805 
 2806 /*
 2807  *      pmap_zpi_switchin*()
 2808  *
 2809  *      These functions allow us to avoid doing IPIs alltogether in certain
 2810  *      temporary page-mapping situations (page zeroing).  Instead to deal
 2811  *      with being preempted and moved onto a different cpu we invalidate
 2812  *      the page when the scheduler switches us in.  This does not occur
 2813  *      very often so we remain relatively optimal with very little effort.
 2814  */
 2815 static void
 2816 pmap_zpi_switchin12(void)
 2817 {
 2818         invlpg((u_int)CADDR1);
 2819         invlpg((u_int)CADDR2);
 2820 }
 2821 
 2822 static void
 2823 pmap_zpi_switchin2(void)
 2824 {
 2825         invlpg((u_int)CADDR2);
 2826 }
 2827 
 2828 static void
 2829 pmap_zpi_switchin3(void)
 2830 {
 2831         invlpg((u_int)CADDR3);
 2832 }
 2833 
 2834 #endif
 2835 
 2836 /*
 2837  *      pmap_zero_page zeros the specified hardware page by mapping 
 2838  *      the page into KVM and using bzero to clear its contents.
 2839  */
 2840 void
 2841 pmap_zero_page(vm_page_t m)
 2842 {
 2843 
 2844         mtx_lock(&CMAPCADDR12_lock);
 2845         if (*CMAP2)
 2846                 panic("pmap_zero_page: CMAP2 busy");
 2847         *CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2848 #ifdef I386_CPU
 2849         invltlb();
 2850 #else
 2851 #ifdef SMP
 2852         curthread->td_switchin = pmap_zpi_switchin2;
 2853 #endif
 2854         invlpg((u_int)CADDR2);
 2855 #endif
 2856 #if defined(I686_CPU)
 2857         if (cpu_class == CPUCLASS_686)
 2858                 i686_pagezero(CADDR2);
 2859         else
 2860 #endif
 2861                 bzero(CADDR2, PAGE_SIZE);
 2862 #ifdef SMP
 2863         curthread->td_switchin = NULL;
 2864 #endif
 2865         *CMAP2 = 0;
 2866         mtx_unlock(&CMAPCADDR12_lock);
 2867 }
 2868 
 2869 /*
 2870  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 2871  *      the page into KVM and using bzero to clear its contents.
 2872  *
 2873  *      off and size may not cover an area beyond a single hardware page.
 2874  */
 2875 void
 2876 pmap_zero_page_area(vm_page_t m, int off, int size)
 2877 {
 2878 
 2879         mtx_lock(&CMAPCADDR12_lock);
 2880         if (*CMAP2)
 2881                 panic("pmap_zero_page: CMAP2 busy");
 2882         *CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2883 #ifdef I386_CPU
 2884         invltlb();
 2885 #else
 2886 #ifdef SMP
 2887         curthread->td_switchin = pmap_zpi_switchin2;
 2888 #endif
 2889         invlpg((u_int)CADDR2);
 2890 #endif
 2891 #if defined(I686_CPU)
 2892         if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
 2893                 i686_pagezero(CADDR2);
 2894         else
 2895 #endif
 2896                 bzero((char *)CADDR2 + off, size);
 2897 #ifdef SMP
 2898         curthread->td_switchin = NULL;
 2899 #endif
 2900         *CMAP2 = 0;
 2901         mtx_unlock(&CMAPCADDR12_lock);
 2902 }
 2903 
 2904 /*
 2905  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 2906  *      the page into KVM and using bzero to clear its contents.  This
 2907  *      is intended to be called from the vm_pagezero process only and
 2908  *      outside of Giant.
 2909  */
 2910 void
 2911 pmap_zero_page_idle(vm_page_t m)
 2912 {
 2913 
 2914         if (*CMAP3)
 2915                 panic("pmap_zero_page: CMAP3 busy");
 2916         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2917 #ifdef I386_CPU
 2918         invltlb();
 2919 #else
 2920 #ifdef SMP
 2921         curthread->td_switchin = pmap_zpi_switchin3;
 2922 #endif
 2923         invlpg((u_int)CADDR3);
 2924 #endif
 2925 #if defined(I686_CPU)
 2926         if (cpu_class == CPUCLASS_686)
 2927                 i686_pagezero(CADDR3);
 2928         else
 2929 #endif
 2930                 bzero(CADDR3, PAGE_SIZE);
 2931 #ifdef SMP
 2932         curthread->td_switchin = NULL;
 2933 #endif
 2934         *CMAP3 = 0;
 2935 }
 2936 
 2937 /*
 2938  *      pmap_copy_page copies the specified (machine independent)
 2939  *      page by mapping the page into virtual memory and using
 2940  *      bcopy to copy the page, one machine dependent page at a
 2941  *      time.
 2942  */
 2943 void
 2944 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2945 {
 2946 
 2947         mtx_lock(&CMAPCADDR12_lock);
 2948         if (*CMAP1)
 2949                 panic("pmap_copy_page: CMAP1 busy");
 2950         if (*CMAP2)
 2951                 panic("pmap_copy_page: CMAP2 busy");
 2952         *CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
 2953         *CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
 2954 #ifdef I386_CPU
 2955         invltlb();
 2956 #else
 2957 #ifdef SMP
 2958         curthread->td_switchin = pmap_zpi_switchin12;
 2959 #endif
 2960         invlpg((u_int)CADDR1);
 2961         invlpg((u_int)CADDR2);
 2962 #endif
 2963         bcopy(CADDR1, CADDR2, PAGE_SIZE);
 2964 #ifdef SMP
 2965         curthread->td_switchin = NULL;
 2966 #endif
 2967         *CMAP1 = 0;
 2968         *CMAP2 = 0;
 2969         mtx_unlock(&CMAPCADDR12_lock);
 2970 }
 2971 
 2972 /*
 2973  * Returns true if the pmap's pv is one of the first
 2974  * 16 pvs linked to from this page.  This count may
 2975  * be changed upwards or downwards in the future; it
 2976  * is only necessary that true be returned for a small
 2977  * subset of pmaps for proper page aging.
 2978  */
 2979 boolean_t
 2980 pmap_page_exists_quick(pmap, m)
 2981         pmap_t pmap;
 2982         vm_page_t m;
 2983 {
 2984         pv_entry_t pv;
 2985         int loops = 0;
 2986         int s;
 2987 
 2988         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 2989                 return FALSE;
 2990 
 2991         s = splvm();
 2992         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2993         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2994                 if (pv->pv_pmap == pmap) {
 2995                         splx(s);
 2996                         return TRUE;
 2997                 }
 2998                 loops++;
 2999                 if (loops >= 16)
 3000                         break;
 3001         }
 3002         splx(s);
 3003         return (FALSE);
 3004 }
 3005 
 3006 #define PMAP_REMOVE_PAGES_CURPROC_ONLY
 3007 /*
 3008  * Remove all pages from specified address space
 3009  * this aids process exit speeds.  Also, this code
 3010  * is special cased for current process only, but
 3011  * can have the more generic (and slightly slower)
 3012  * mode enabled.  This is much faster than pmap_remove
 3013  * in the case of running down an entire address space.
 3014  */
 3015 void
 3016 pmap_remove_pages(pmap, sva, eva)
 3017         pmap_t pmap;
 3018         vm_offset_t sva, eva;
 3019 {
 3020         pt_entry_t *pte, tpte;
 3021         vm_page_t m;
 3022         pv_entry_t pv, npv;
 3023         int s;
 3024 
 3025 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 3026         if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
 3027                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 3028                 return;
 3029         }
 3030 #endif
 3031         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3032         s = splvm();
 3033         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
 3034 
 3035                 if (pv->pv_va >= eva || pv->pv_va < sva) {
 3036                         npv = TAILQ_NEXT(pv, pv_plist);
 3037                         continue;
 3038                 }
 3039 
 3040 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 3041                 pte = vtopte(pv->pv_va);
 3042 #else
 3043                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3044 #endif
 3045                 tpte = *pte;
 3046 
 3047                 if (tpte == 0) {
 3048                         printf("TPTE at %p  IS ZERO @ VA %08x\n",
 3049                                                         pte, pv->pv_va);
 3050                         panic("bad pte");
 3051                 }
 3052 
 3053 /*
 3054  * We cannot remove wired pages from a process' mapping at this time
 3055  */
 3056                 if (tpte & PG_W) {
 3057                         npv = TAILQ_NEXT(pv, pv_plist);
 3058                         continue;
 3059                 }
 3060 
 3061                 m = PHYS_TO_VM_PAGE(tpte);
 3062                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 3063                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 3064                     m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
 3065 
 3066                 KASSERT(m < &vm_page_array[vm_page_array_size],
 3067                         ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 3068 
 3069                 pv->pv_pmap->pm_stats.resident_count--;
 3070 
 3071                 pte_clear(pte);
 3072 
 3073                 /*
 3074                  * Update the vm_page_t clean and reference bits.
 3075                  */
 3076                 if (tpte & PG_M) {
 3077                         vm_page_dirty(m);
 3078                 }
 3079 
 3080                 npv = TAILQ_NEXT(pv, pv_plist);
 3081                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 3082 
 3083                 m->md.pv_list_count--;
 3084                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3085                 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
 3086                         vm_page_flag_clear(m, PG_WRITEABLE);
 3087                 }
 3088 
 3089                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 3090                 free_pv_entry(pv);
 3091         }
 3092         splx(s);
 3093         pmap_invalidate_all(pmap);
 3094 }
 3095 
 3096 /*
 3097  *      pmap_is_modified:
 3098  *
 3099  *      Return whether or not the specified physical page was modified
 3100  *      in any physical maps.
 3101  */
 3102 boolean_t
 3103 pmap_is_modified(vm_page_t m)
 3104 {
 3105         pv_entry_t pv;
 3106         pt_entry_t *pte;
 3107         int s;
 3108 
 3109         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 3110                 return FALSE;
 3111 
 3112         s = splvm();
 3113         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3114         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3115                 /*
 3116                  * if the bit being tested is the modified bit, then
 3117                  * mark clean_map and ptes as never
 3118                  * modified.
 3119                  */
 3120                 if (!pmap_track_modified(pv->pv_va))
 3121                         continue;
 3122 #if defined(PMAP_DIAGNOSTIC)
 3123                 if (!pv->pv_pmap) {
 3124                         printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
 3125                         continue;
 3126                 }
 3127 #endif
 3128                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3129                 if (*pte & PG_M) {
 3130                         splx(s);
 3131                         return TRUE;
 3132                 }
 3133         }
 3134         splx(s);
 3135         return (FALSE);
 3136 }
 3137 
 3138 /*
 3139  * this routine is used to modify bits in ptes
 3140  */
 3141 static __inline void
 3142 pmap_changebit(vm_page_t m, int bit, boolean_t setem)
 3143 {
 3144         register pv_entry_t pv;
 3145         register pt_entry_t *pte;
 3146         int s;
 3147 
 3148         if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
 3149             (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
 3150                 return;
 3151 
 3152         s = splvm();
 3153         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3154         /*
 3155          * Loop over all current mappings setting/clearing as appropos If
 3156          * setting RO do we need to clear the VAC?
 3157          */
 3158         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3159                 /*
 3160                  * don't write protect pager mappings
 3161                  */
 3162                 if (!setem && (bit == PG_RW)) {
 3163                         if (!pmap_track_modified(pv->pv_va))
 3164                                 continue;
 3165                 }
 3166 
 3167 #if defined(PMAP_DIAGNOSTIC)
 3168                 if (!pv->pv_pmap) {
 3169                         printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
 3170                         continue;
 3171                 }
 3172 #endif
 3173 
 3174                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3175 
 3176                 if (setem) {
 3177                         *pte |= bit;
 3178                         pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 3179                 } else {
 3180                         pt_entry_t pbits = *pte;
 3181                         if (pbits & bit) {
 3182                                 if (bit == PG_RW) {
 3183                                         if (pbits & PG_M) {
 3184                                                 vm_page_dirty(m);
 3185                                         }
 3186                                         pte_store(pte, pbits & ~(PG_M|PG_RW));
 3187                                 } else {
 3188                                         pte_store(pte, pbits & ~bit);
 3189                                 }
 3190                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 3191                         }
 3192                 }
 3193         }
 3194         if (!setem && bit == PG_RW)
 3195                 vm_page_flag_clear(m, PG_WRITEABLE);
 3196         splx(s);
 3197 }
 3198 
 3199 /*
 3200  *      pmap_page_protect:
 3201  *
 3202  *      Lower the permission for all mappings to a given page.
 3203  */
 3204 void
 3205 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 3206 {
 3207         if ((prot & VM_PROT_WRITE) == 0) {
 3208                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
 3209                         pmap_changebit(m, PG_RW, FALSE);
 3210                 } else {
 3211                         pmap_remove_all(m);
 3212                 }
 3213         }
 3214 }
 3215 
 3216 /*
 3217  *      pmap_ts_referenced:
 3218  *
 3219  *      Return a count of reference bits for a page, clearing those bits.
 3220  *      It is not necessary for every reference bit to be cleared, but it
 3221  *      is necessary that 0 only be returned when there are truly no
 3222  *      reference bits set.
 3223  *
 3224  *      XXX: The exact number of bits to check and clear is a matter that
 3225  *      should be tested and standardized at some point in the future for
 3226  *      optimal aging of shared pages.
 3227  */
 3228 int
 3229 pmap_ts_referenced(vm_page_t m)
 3230 {
 3231         register pv_entry_t pv, pvf, pvn;
 3232         pt_entry_t *pte;
 3233         pt_entry_t v;
 3234         int s;
 3235         int rtval = 0;
 3236 
 3237         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 3238                 return (rtval);
 3239 
 3240         s = splvm();
 3241         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3242         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3243 
 3244                 pvf = pv;
 3245 
 3246                 do {
 3247                         pvn = TAILQ_NEXT(pv, pv_list);
 3248 
 3249                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3250 
 3251                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 3252 
 3253                         if (!pmap_track_modified(pv->pv_va))
 3254                                 continue;
 3255 
 3256                         pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 3257 
 3258                         if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
 3259                                 pte_store(pte, v & ~PG_A);
 3260                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 3261 
 3262                                 rtval++;
 3263                                 if (rtval > 4) {
 3264                                         break;
 3265                                 }
 3266                         }
 3267                 } while ((pv = pvn) != NULL && pv != pvf);
 3268         }
 3269         splx(s);
 3270 
 3271         return (rtval);
 3272 }
 3273 
 3274 /*
 3275  *      Clear the modify bits on the specified physical page.
 3276  */
 3277 void
 3278 pmap_clear_modify(vm_page_t m)
 3279 {
 3280         pmap_changebit(m, PG_M, FALSE);
 3281 }
 3282 
 3283 /*
 3284  *      pmap_clear_reference:
 3285  *
 3286  *      Clear the reference bit on the specified physical page.
 3287  */
 3288 void
 3289 pmap_clear_reference(vm_page_t m)
 3290 {
 3291         pmap_changebit(m, PG_A, FALSE);
 3292 }
 3293 
 3294 /*
 3295  * Miscellaneous support routines follow
 3296  */
 3297 
 3298 static void
 3299 i386_protection_init()
 3300 {
 3301         register int *kp, prot;
 3302 
 3303         kp = protection_codes;
 3304         for (prot = 0; prot < 8; prot++) {
 3305                 switch (prot) {
 3306                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
 3307                         /*
 3308                          * Read access is also 0. There isn't any execute bit,
 3309                          * so just make it readable.
 3310                          */
 3311                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
 3312                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
 3313                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
 3314                         *kp++ = 0;
 3315                         break;
 3316                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
 3317                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
 3318                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
 3319                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
 3320                         *kp++ = PG_RW;
 3321                         break;
 3322                 }
 3323         }
 3324 }
 3325 
 3326 /*
 3327  * Map a set of physical memory pages into the kernel virtual
 3328  * address space. Return a pointer to where it is mapped. This
 3329  * routine is intended to be used for mapping device memory,
 3330  * NOT real memory.
 3331  */
 3332 void *
 3333 pmap_mapdev(pa, size)
 3334         vm_paddr_t pa;
 3335         vm_size_t size;
 3336 {
 3337         vm_offset_t va, tmpva, offset;
 3338 
 3339         offset = pa & PAGE_MASK;
 3340         size = roundup(offset + size, PAGE_SIZE);
 3341 
 3342         GIANT_REQUIRED;
 3343 
 3344         va = kmem_alloc_pageable(kernel_map, size);
 3345         if (!va)
 3346                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3347 
 3348         pa = pa & PG_FRAME;
 3349         for (tmpva = va; size > 0; ) {
 3350                 pmap_kenter(tmpva, pa);
 3351                 size -= PAGE_SIZE;
 3352                 tmpva += PAGE_SIZE;
 3353                 pa += PAGE_SIZE;
 3354         }
 3355         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3356         return ((void *)(va + offset));
 3357 }
 3358 
 3359 void
 3360 pmap_unmapdev(va, size)
 3361         vm_offset_t va;
 3362         vm_size_t size;
 3363 {
 3364         vm_offset_t base, offset, tmpva;
 3365         pt_entry_t *pte;
 3366 
 3367         base = va & PG_FRAME;
 3368         offset = va & PAGE_MASK;
 3369         size = roundup(offset + size, PAGE_SIZE);
 3370         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 3371                 pte = vtopte(tmpva);
 3372                 pte_clear(pte);
 3373         }
 3374         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3375         kmem_free(kernel_map, base, size);
 3376 }
 3377 
 3378 /*
 3379  * perform the pmap work for mincore
 3380  */
 3381 int
 3382 pmap_mincore(pmap, addr)
 3383         pmap_t pmap;
 3384         vm_offset_t addr;
 3385 {
 3386         pt_entry_t *ptep, pte;
 3387         vm_page_t m;
 3388         int val = 0;
 3389         
 3390         ptep = pmap_pte_quick(pmap, addr);
 3391         if (ptep == 0) {
 3392                 return 0;
 3393         }
 3394 
 3395         if ((pte = *ptep) != 0) {
 3396                 vm_paddr_t pa;
 3397 
 3398                 val = MINCORE_INCORE;
 3399                 if ((pte & PG_MANAGED) == 0)
 3400                         return val;
 3401 
 3402                 pa = pte & PG_FRAME;
 3403 
 3404                 m = PHYS_TO_VM_PAGE(pa);
 3405 
 3406                 /*
 3407                  * Modified by us
 3408                  */
 3409                 if (pte & PG_M)
 3410                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 3411                 else {
 3412                         /*
 3413                          * Modified by someone else
 3414                          */
 3415                         vm_page_lock_queues();
 3416                         if (m->dirty || pmap_is_modified(m))
 3417                                 val |= MINCORE_MODIFIED_OTHER;
 3418                         vm_page_unlock_queues();
 3419                 }
 3420                 /*
 3421                  * Referenced by us
 3422                  */
 3423                 if (pte & PG_A)
 3424                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 3425                 else {
 3426                         /*
 3427                          * Referenced by someone else
 3428                          */
 3429                         vm_page_lock_queues();
 3430                         if ((m->flags & PG_REFERENCED) ||
 3431                             pmap_ts_referenced(m)) {
 3432                                 val |= MINCORE_REFERENCED_OTHER;
 3433                                 vm_page_flag_set(m, PG_REFERENCED);
 3434                         }
 3435                         vm_page_unlock_queues();
 3436                 }
 3437         } 
 3438         return val;
 3439 }
 3440 
 3441 void
 3442 pmap_activate(struct thread *td)
 3443 {
 3444         struct proc *p = td->td_proc;
 3445         pmap_t  pmap;
 3446         u_int32_t  cr3;
 3447 
 3448         critical_enter();
 3449         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 3450 #if defined(SMP)
 3451         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 3452 #else
 3453         pmap->pm_active |= 1;
 3454 #endif
 3455 #ifdef PAE
 3456         cr3 = vtophys(pmap->pm_pdpt);
 3457 #else
 3458         cr3 = vtophys(pmap->pm_pdir);
 3459 #endif
 3460         /* XXXKSE this is wrong.
 3461          * pmap_activate is for the current thread on the current cpu
 3462          */
 3463         if (p->p_flag & P_THREADED) {
 3464                 /* Make sure all other cr3 entries are updated. */
 3465                 /* what if they are running?  XXXKSE (maybe abort them) */
 3466                 FOREACH_THREAD_IN_PROC(p, td) {
 3467                         td->td_pcb->pcb_cr3 = cr3;
 3468                 }
 3469         } else {
 3470                 td->td_pcb->pcb_cr3 = cr3;
 3471         }
 3472         load_cr3(cr3);
 3473 #ifdef SWTCH_OPTIM_STATS
 3474         tlb_flush_count++;
 3475 #endif
 3476         critical_exit();
 3477 }
 3478 
 3479 vm_offset_t
 3480 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 3481 {
 3482 
 3483         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 3484                 return addr;
 3485         }
 3486 
 3487         addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
 3488         return addr;
 3489 }
 3490 
 3491 
 3492 #if defined(PMAP_DEBUG)
 3493 pmap_pid_dump(int pid)
 3494 {
 3495         pmap_t pmap;
 3496         struct proc *p;
 3497         int npte = 0;
 3498         int index;
 3499 
 3500         sx_slock(&allproc_lock);
 3501         LIST_FOREACH(p, &allproc, p_list) {
 3502                 if (p->p_pid != pid)
 3503                         continue;
 3504 
 3505                 if (p->p_vmspace) {
 3506                         int i,j;
 3507                         index = 0;
 3508                         pmap = vmspace_pmap(p->p_vmspace);
 3509                         for (i = 0; i < NPDEPTD; i++) {
 3510                                 pd_entry_t *pde;
 3511                                 pt_entry_t *pte;
 3512                                 vm_offset_t base = i << PDRSHIFT;
 3513                                 
 3514                                 pde = &pmap->pm_pdir[i];
 3515                                 if (pde && pmap_pde_v(pde)) {
 3516                                         for (j = 0; j < NPTEPG; j++) {
 3517                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 3518                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 3519                                                         if (index) {
 3520                                                                 index = 0;
 3521                                                                 printf("\n");
 3522                                                         }
 3523                                                         sx_sunlock(&allproc_lock);
 3524                                                         return npte;
 3525                                                 }
 3526                                                 pte = pmap_pte_quick(pmap, va);
 3527                                                 if (pte && pmap_pte_v(pte)) {
 3528                                                         pt_entry_t pa;
 3529                                                         vm_page_t m;
 3530                                                         pa = *pte;
 3531                                                         m = PHYS_TO_VM_PAGE(pa);
 3532                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 3533                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 3534                                                         npte++;
 3535                                                         index++;
 3536                                                         if (index >= 2) {
 3537                                                                 index = 0;
 3538                                                                 printf("\n");
 3539                                                         } else {
 3540                                                                 printf(" ");
 3541                                                         }
 3542                                                 }
 3543                                         }
 3544                                 }
 3545                         }
 3546                 }
 3547         }
 3548         sx_sunlock(&allproc_lock);
 3549         return npte;
 3550 }
 3551 #endif
 3552 
 3553 #if defined(DEBUG)
 3554 
 3555 static void     pads(pmap_t pm);
 3556 void            pmap_pvdump(vm_offset_t pa);
 3557 
 3558 /* print address space of pmap*/
 3559 static void
 3560 pads(pm)
 3561         pmap_t pm;
 3562 {
 3563         int i, j;
 3564         vm_paddr_t va;
 3565         pt_entry_t *ptep;
 3566 
 3567         if (pm == kernel_pmap)
 3568                 return;
 3569         for (i = 0; i < NPDEPTD; i++)
 3570                 if (pm->pm_pdir[i])
 3571                         for (j = 0; j < NPTEPG; j++) {
 3572                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 3573                                 if (pm == kernel_pmap && va < KERNBASE)
 3574                                         continue;
 3575                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 3576                                         continue;
 3577                                 ptep = pmap_pte_quick(pm, va);
 3578                                 if (pmap_pte_v(ptep))
 3579                                         printf("%x:%x ", va, *ptep);
 3580                         };
 3581 
 3582 }
 3583 
 3584 void
 3585 pmap_pvdump(pa)
 3586         vm_paddr_t pa;
 3587 {
 3588         pv_entry_t pv;
 3589         vm_page_t m;
 3590 
 3591         printf("pa %x", pa);
 3592         m = PHYS_TO_VM_PAGE(pa);
 3593         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3594                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3595                 pads(pv->pv_pmap);
 3596         }
 3597         printf(" ");
 3598 }
 3599 #endif

Cache object: cc455e0b3ae0b49bf8825cd5e7a57017


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.