The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/6.3/sys/i386/i386/pmap.c 173886 2007-11-24 19:45:58Z cvs2svn $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_cpu.h"
  107 #include "opt_pmap.h"
  108 #include "opt_msgbuf.h"
  109 #include "opt_xbox.h"
  110 
  111 #include <sys/param.h>
  112 #include <sys/systm.h>
  113 #include <sys/kernel.h>
  114 #include <sys/lock.h>
  115 #include <sys/malloc.h>
  116 #include <sys/mman.h>
  117 #include <sys/msgbuf.h>
  118 #include <sys/mutex.h>
  119 #include <sys/proc.h>
  120 #include <sys/sx.h>
  121 #include <sys/vmmeter.h>
  122 #include <sys/sched.h>
  123 #include <sys/sysctl.h>
  124 #ifdef SMP
  125 #include <sys/smp.h>
  126 #endif
  127 
  128 #ifdef XBOX
  129 #include <machine/xbox.h>
  130 #endif
  131 
  132 #include <vm/vm.h>
  133 #include <vm/vm_param.h>
  134 #include <vm/vm_kern.h>
  135 #include <vm/vm_page.h>
  136 #include <vm/vm_map.h>
  137 #include <vm/vm_object.h>
  138 #include <vm/vm_extern.h>
  139 #include <vm/vm_pageout.h>
  140 #include <vm/vm_pager.h>
  141 #include <vm/uma.h>
  142 
  143 #include <machine/cpu.h>
  144 #include <machine/cputypes.h>
  145 #include <machine/md_var.h>
  146 #include <machine/pcb.h>
  147 #include <machine/specialreg.h>
  148 #ifdef SMP
  149 #include <machine/smp.h>
  150 #endif
  151 
  152 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  153 #define CPU_ENABLE_SSE
  154 #endif
  155 
  156 #ifndef PMAP_SHPGPERPROC
  157 #define PMAP_SHPGPERPROC 200
  158 #endif
  159 
  160 #if defined(DIAGNOSTIC)
  161 #define PMAP_DIAGNOSTIC
  162 #endif
  163 
  164 #if !defined(PMAP_DIAGNOSTIC)
  165 #define PMAP_INLINE __inline
  166 #else
  167 #define PMAP_INLINE
  168 #endif
  169 
  170 /*
  171  * Get PDEs and PTEs for user/kernel address space
  172  */
  173 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  174 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  175 
  176 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  177 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  178 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  179 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  180 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  181 
  182 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  183     atomic_clear_int((u_int *)(pte), PG_W))
  184 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  185 
  186 struct pmap kernel_pmap_store;
  187 LIST_HEAD(pmaplist, pmap);
  188 static struct pmaplist allpmaps;
  189 static struct mtx allpmaps_lock;
  190 
  191 vm_paddr_t avail_end;   /* PA of last available physical page */
  192 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  193 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  194 int pgeflag = 0;                /* PG_G or-in */
  195 int pseflag = 0;                /* PG_PS or-in */
  196 
  197 static int nkpt;
  198 vm_offset_t kernel_vm_end;
  199 extern u_int32_t KERNend;
  200 
  201 #ifdef PAE
  202 static uma_zone_t pdptzone;
  203 #endif
  204 
  205 /*
  206  * Data for the pv entry allocation mechanism
  207  */
  208 static uma_zone_t pvzone;
  209 static struct vm_object pvzone_obj;
  210 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  211 int pmap_pagedaemon_waken;
  212 
  213 /*
  214  * All those kernel PT submaps that BSD is so fond of
  215  */
  216 struct sysmaps {
  217         struct  mtx lock;
  218         pt_entry_t *CMAP1;
  219         pt_entry_t *CMAP2;
  220         caddr_t CADDR1;
  221         caddr_t CADDR2;
  222 };
  223 static struct sysmaps sysmaps_pcpu[MAXCPU];
  224 pt_entry_t *CMAP1 = 0;
  225 static pt_entry_t *CMAP3;
  226 caddr_t CADDR1 = 0, ptvmmap = 0;
  227 static caddr_t CADDR3;
  228 struct msgbuf *msgbufp = 0;
  229 
  230 /*
  231  * Crashdump maps.
  232  */
  233 static caddr_t crashdumpmap;
  234 
  235 #ifdef SMP
  236 extern pt_entry_t *SMPpt;
  237 #endif
  238 static pt_entry_t *PMAP1 = 0, *PMAP2;
  239 static pt_entry_t *PADDR1 = 0, *PADDR2;
  240 #ifdef SMP
  241 static int PMAP1cpu;
  242 static int PMAP1changedcpu;
  243 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  244            &PMAP1changedcpu, 0,
  245            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  246 #endif
  247 static int PMAP1changed;
  248 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  249            &PMAP1changed, 0,
  250            "Number of times pmap_pte_quick changed PMAP1");
  251 static int PMAP1unchanged;
  252 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  253            &PMAP1unchanged, 0,
  254            "Number of times pmap_pte_quick didn't change PMAP1");
  255 static struct mtx PMAP2mutex;
  256 
  257 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  258 static pv_entry_t get_pv_entry(void);
  259 static void     pmap_clear_ptes(vm_page_t m, int bit);
  260 
  261 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  262     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  263 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  264     vm_page_t *free);
  265 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  266 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  267                                         vm_offset_t va);
  268 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  269 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  270     vm_page_t m);
  271 
  272 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  273 
  274 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  275 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
  276 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  277 static void pmap_pte_release(pt_entry_t *pte);
  278 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  279 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  280 #ifdef PAE
  281 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  282 #endif
  283 
  284 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  285 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  286 
  287 /*
  288  * Move the kernel virtual free pointer to the next
  289  * 4MB.  This is used to help improve performance
  290  * by using a large (4MB) page for much of the kernel
  291  * (.text, .data, .bss)
  292  */
  293 static vm_offset_t
  294 pmap_kmem_choose(vm_offset_t addr)
  295 {
  296         vm_offset_t newaddr = addr;
  297 
  298 #ifndef DISABLE_PSE
  299         if (cpu_feature & CPUID_PSE)
  300                 newaddr = (addr + PDRMASK) & ~PDRMASK;
  301 #endif
  302         return newaddr;
  303 }
  304 
  305 /*
  306  *      Bootstrap the system enough to run with virtual memory.
  307  *
  308  *      On the i386 this is called after mapping has already been enabled
  309  *      and just syncs the pmap module with what has already been done.
  310  *      [We can't call it easily with mapping off since the kernel is not
  311  *      mapped with PA == VA, hence we would have to relocate every address
  312  *      from the linked base (virtual) address "KERNBASE" to the actual
  313  *      (physical) address starting relative to 0]
  314  */
  315 void
  316 pmap_bootstrap(firstaddr, loadaddr)
  317         vm_paddr_t firstaddr;
  318         vm_paddr_t loadaddr;
  319 {
  320         vm_offset_t va;
  321         pt_entry_t *pte, *unused;
  322         struct sysmaps *sysmaps;
  323         int i;
  324 
  325         /*
  326          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  327          * large. It should instead be correctly calculated in locore.s and
  328          * not based on 'first' (which is a physical address, not a virtual
  329          * address, for the start of unused physical memory). The kernel
  330          * page tables are NOT double mapped and thus should not be included
  331          * in this calculation.
  332          */
  333         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  334         virtual_avail = pmap_kmem_choose(virtual_avail);
  335 
  336         virtual_end = VM_MAX_KERNEL_ADDRESS;
  337 
  338         /*
  339          * Initialize the kernel pmap (which is statically allocated).
  340          */
  341         PMAP_LOCK_INIT(kernel_pmap);
  342         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  343 #ifdef PAE
  344         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  345 #endif
  346         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  347         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  348         LIST_INIT(&allpmaps);
  349         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  350         mtx_lock_spin(&allpmaps_lock);
  351         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  352         mtx_unlock_spin(&allpmaps_lock);
  353         nkpt = NKPT;
  354 
  355         /*
  356          * Reserve some special page table entries/VA space for temporary
  357          * mapping of pages.
  358          */
  359 #define SYSMAP(c, p, v, n)      \
  360         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  361 
  362         va = virtual_avail;
  363         pte = vtopte(va);
  364 
  365         /*
  366          * CMAP1/CMAP2 are used for zeroing and copying pages.
  367          * CMAP3 is used for the idle process page zeroing.
  368          */
  369         for (i = 0; i < MAXCPU; i++) {
  370                 sysmaps = &sysmaps_pcpu[i];
  371                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  372                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  373                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  374         }
  375         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  376         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  377         *CMAP3 = 0;
  378 
  379         /*
  380          * Crashdump maps.
  381          */
  382         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  383 
  384         /*
  385          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  386          */
  387         SYSMAP(caddr_t, unused, ptvmmap, 1)
  388 
  389         /*
  390          * msgbufp is used to map the system message buffer.
  391          */
  392         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
  393 
  394         /*
  395          * ptemap is used for pmap_pte_quick
  396          */
  397         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
  398         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
  399 
  400         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  401 
  402         virtual_avail = va;
  403 
  404         *CMAP1 = 0;
  405 
  406 #ifdef XBOX
  407         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  408          * an early stadium, we cannot yet neatly map video memory ... :-(
  409          * Better fixes are very welcome!
  410          */
  411         if (!arch_i386_is_xbox)
  412 #endif
  413         for (i = 0; i < NKPT; i++)
  414                 PTD[i] = 0;
  415 
  416         /* Initialize the PAT MSR if present. */
  417         pmap_init_pat();
  418 
  419         /* Turn on PG_G on kernel page(s) */
  420         pmap_set_pg();
  421 }
  422 
  423 /*
  424  * Setup the PAT MSR.
  425  */
  426 void
  427 pmap_init_pat(void)
  428 {
  429         uint64_t pat_msr;
  430 
  431         /* Bail if this CPU doesn't implement PAT. */
  432         if (!(cpu_feature & CPUID_PAT))
  433                 return;
  434 
  435 #ifdef PAT_WORKS
  436         /*
  437          * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
  438          * Program 4 and 5 as WP and WC.
  439          * Leave 6 and 7 as UC and UC-.
  440          */
  441         pat_msr = rdmsr(MSR_PAT);
  442         pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
  443         pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
  444             PAT_VALUE(5, PAT_WRITE_COMBINING);
  445 #else
  446         /*
  447          * Due to some Intel errata, we can only safely use the lower 4
  448          * PAT entries.  Thus, just replace PAT Index 2 with WC instead
  449          * of UC-.
  450          *
  451          *   Intel Pentium III Processor Specification Update
  452          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  453          * or Mode C Paging)
  454          *
  455          *   Intel Pentium IV  Processor Specification Update
  456          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  457          */
  458         pat_msr = rdmsr(MSR_PAT);
  459         pat_msr &= ~PAT_MASK(2);
  460         pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  461 #endif
  462         wrmsr(MSR_PAT, pat_msr);
  463 }
  464 
  465 /*
  466  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  467  */
  468 void
  469 pmap_set_pg(void)
  470 {
  471         pd_entry_t pdir;
  472         pt_entry_t *pte;
  473         vm_offset_t va, endva;
  474         int i; 
  475 
  476         if (pgeflag == 0)
  477                 return;
  478 
  479         i = KERNLOAD/NBPDR;
  480         endva = KERNBASE + KERNend;
  481 
  482         if (pseflag) {
  483                 va = KERNBASE + KERNLOAD;
  484                 while (va  < endva) {
  485                         pdir = kernel_pmap->pm_pdir[KPTDI+i];
  486                         pdir |= pgeflag;
  487                         kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
  488                         invltlb();      /* Play it safe, invltlb() every time */
  489                         i++;
  490                         va += NBPDR;
  491                 }
  492         } else {
  493                 va = (vm_offset_t)btext;
  494                 while (va < endva) {
  495                         pte = vtopte(va);
  496                         if (*pte)
  497                                 *pte |= pgeflag;
  498                         invltlb();      /* Play it safe, invltlb() every time */
  499                         va += PAGE_SIZE;
  500                 }
  501         }
  502 }
  503 
  504 /*
  505  * Initialize a vm_page's machine-dependent fields.
  506  */
  507 void
  508 pmap_page_init(vm_page_t m)
  509 {
  510 
  511         TAILQ_INIT(&m->md.pv_list);
  512         m->md.pv_list_count = 0;
  513 }
  514 
  515 #ifdef PAE
  516 
  517 static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
  518 
  519 static void *
  520 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  521 {
  522         *flags = UMA_SLAB_PRIV;
  523         return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
  524             1, 0));
  525 }
  526 #endif
  527 
  528 /*
  529  *      Initialize the pmap module.
  530  *      Called by vm_init, to initialize any structures that the pmap
  531  *      system needs to map virtual memory.
  532  */
  533 void
  534 pmap_init(void)
  535 {
  536         int shpgperproc = PMAP_SHPGPERPROC;
  537 
  538         /*
  539          * Initialize the address space (zone) for the pv entries.  Set a
  540          * high water mark so that the system can recover from excessive
  541          * numbers of pv entries.
  542          */
  543         pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 
  544             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
  545         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  546         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  547         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  548         pv_entry_high_water = 9 * (pv_entry_max / 10);
  549         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  550 
  551 #ifdef PAE
  552         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  553             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  554             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  555         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  556 #endif
  557 }
  558 
  559 void
  560 pmap_init2()
  561 {
  562 }
  563 
  564 
  565 /***************************************************
  566  * Low level helper routines.....
  567  ***************************************************/
  568 
  569 /*
  570  * Determine the appropriate bits to set in a PTE or PDE for a specified
  571  * caching mode.
  572  */
  573 static int
  574 pmap_cache_bits(int mode, boolean_t is_pde)
  575 {
  576         int pat_flag, pat_index, cache_bits;
  577 
  578         /* The PAT bit is different for PTE's and PDE's. */
  579         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  580 
  581         /* If we don't support PAT, map extended modes to older ones. */
  582         if (!(cpu_feature & CPUID_PAT)) {
  583                 switch (mode) {
  584                 case PAT_UNCACHEABLE:
  585                 case PAT_WRITE_THROUGH:
  586                 case PAT_WRITE_BACK:
  587                         break;
  588                 case PAT_UNCACHED:
  589                 case PAT_WRITE_COMBINING:
  590                 case PAT_WRITE_PROTECTED:
  591                         mode = PAT_UNCACHEABLE;
  592                         break;
  593                 }
  594         }
  595         
  596         /* Map the caching mode to a PAT index. */
  597         switch (mode) {
  598 #ifdef PAT_WORKS
  599         case PAT_UNCACHEABLE:
  600                 pat_index = 3;
  601                 break;
  602         case PAT_WRITE_THROUGH:
  603                 pat_index = 1;
  604                 break;
  605         case PAT_WRITE_BACK:
  606                 pat_index = 0;
  607                 break;
  608         case PAT_UNCACHED:
  609                 pat_index = 2;
  610                 break;
  611         case PAT_WRITE_COMBINING:
  612                 pat_index = 5;
  613                 break;
  614         case PAT_WRITE_PROTECTED:
  615                 pat_index = 4;
  616                 break;
  617 #else
  618         case PAT_UNCACHED:
  619         case PAT_UNCACHEABLE:
  620         case PAT_WRITE_PROTECTED:
  621                 pat_index = 3;
  622                 break;
  623         case PAT_WRITE_THROUGH:
  624                 pat_index = 1;
  625                 break;
  626         case PAT_WRITE_BACK:
  627                 pat_index = 0;
  628                 break;
  629         case PAT_WRITE_COMBINING:
  630                 pat_index = 2;
  631                 break;
  632 #endif
  633         default:
  634                 panic("Unknown caching mode %d\n", mode);
  635         }       
  636 
  637         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  638         cache_bits = 0;
  639         if (pat_index & 0x4)
  640                 cache_bits |= pat_flag;
  641         if (pat_index & 0x2)
  642                 cache_bits |= PG_NC_PCD;
  643         if (pat_index & 0x1)
  644                 cache_bits |= PG_NC_PWT;
  645         return (cache_bits);
  646 }
  647 #ifdef SMP
  648 /*
  649  * For SMP, these functions have to use the IPI mechanism for coherence.
  650  *
  651  * N.B.: Before calling any of the following TLB invalidation functions,
  652  * the calling processor must ensure that all stores updating a non-
  653  * kernel page table are globally performed.  Otherwise, another
  654  * processor could cache an old, pre-update entry without being
  655  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  656  * active on another processor after its pm_active field is checked by
  657  * one of the following functions but before a store updating the page
  658  * table is globally performed. (2) The pmap becomes active on another
  659  * processor before its pm_active field is checked but due to
  660  * speculative loads one of the following functions stills reads the
  661  * pmap as inactive on the other processor.
  662  * 
  663  * The kernel page table is exempt because its pm_active field is
  664  * immutable.  The kernel page table is always active on every
  665  * processor.
  666  */
  667 void
  668 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  669 {
  670         u_int cpumask;
  671         u_int other_cpus;
  672 
  673         sched_pin();
  674         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  675                 invlpg(va);
  676                 smp_invlpg(va);
  677         } else {
  678                 cpumask = PCPU_GET(cpumask);
  679                 other_cpus = PCPU_GET(other_cpus);
  680                 if (pmap->pm_active & cpumask)
  681                         invlpg(va);
  682                 if (pmap->pm_active & other_cpus)
  683                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  684         }
  685         sched_unpin();
  686 }
  687 
  688 void
  689 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  690 {
  691         u_int cpumask;
  692         u_int other_cpus;
  693         vm_offset_t addr;
  694 
  695         sched_pin();
  696         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  697                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  698                         invlpg(addr);
  699                 smp_invlpg_range(sva, eva);
  700         } else {
  701                 cpumask = PCPU_GET(cpumask);
  702                 other_cpus = PCPU_GET(other_cpus);
  703                 if (pmap->pm_active & cpumask)
  704                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  705                                 invlpg(addr);
  706                 if (pmap->pm_active & other_cpus)
  707                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  708                             sva, eva);
  709         }
  710         sched_unpin();
  711 }
  712 
  713 void
  714 pmap_invalidate_all(pmap_t pmap)
  715 {
  716         u_int cpumask;
  717         u_int other_cpus;
  718 
  719         sched_pin();
  720         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  721                 invltlb();
  722                 smp_invltlb();
  723         } else {
  724                 cpumask = PCPU_GET(cpumask);
  725                 other_cpus = PCPU_GET(other_cpus);
  726                 if (pmap->pm_active & cpumask)
  727                         invltlb();
  728                 if (pmap->pm_active & other_cpus)
  729                         smp_masked_invltlb(pmap->pm_active & other_cpus);
  730         }
  731         sched_unpin();
  732 }
  733 
  734 void
  735 pmap_invalidate_cache(void)
  736 {
  737 
  738         sched_pin();
  739         wbinvd();
  740         smp_cache_flush();
  741         sched_unpin();
  742 }
  743 #else /* !SMP */
  744 /*
  745  * Normal, non-SMP, 486+ invalidation functions.
  746  * We inline these within pmap.c for speed.
  747  */
  748 PMAP_INLINE void
  749 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  750 {
  751 
  752         if (pmap == kernel_pmap || pmap->pm_active)
  753                 invlpg(va);
  754 }
  755 
  756 PMAP_INLINE void
  757 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  758 {
  759         vm_offset_t addr;
  760 
  761         if (pmap == kernel_pmap || pmap->pm_active)
  762                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  763                         invlpg(addr);
  764 }
  765 
  766 PMAP_INLINE void
  767 pmap_invalidate_all(pmap_t pmap)
  768 {
  769 
  770         if (pmap == kernel_pmap || pmap->pm_active)
  771                 invltlb();
  772 }
  773 
  774 PMAP_INLINE void
  775 pmap_invalidate_cache(void)
  776 {
  777 
  778         wbinvd();
  779 }
  780 #endif /* !SMP */
  781 
  782 /*
  783  * Are we current address space or kernel?  N.B. We return FALSE when
  784  * a pmap's page table is in use because a kernel thread is borrowing
  785  * it.  The borrowed page table can change spontaneously, making any
  786  * dependence on its continued use subject to a race condition.
  787  */
  788 static __inline int
  789 pmap_is_current(pmap_t pmap)
  790 {
  791 
  792         return (pmap == kernel_pmap ||
  793                 (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
  794             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
  795 }
  796 
  797 /*
  798  * If the given pmap is not the current or kernel pmap, the returned pte must
  799  * be released by passing it to pmap_pte_release().
  800  */
  801 pt_entry_t *
  802 pmap_pte(pmap_t pmap, vm_offset_t va)
  803 {
  804         pd_entry_t newpf;
  805         pd_entry_t *pde;
  806 
  807         pde = pmap_pde(pmap, va);
  808         if (*pde & PG_PS)
  809                 return (pde);
  810         if (*pde != 0) {
  811                 /* are we current address space or kernel? */
  812                 if (pmap_is_current(pmap))
  813                         return (vtopte(va));
  814                 mtx_lock(&PMAP2mutex);
  815                 newpf = *pde & PG_FRAME;
  816                 if ((*PMAP2 & PG_FRAME) != newpf) {
  817                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
  818                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
  819                 }
  820                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
  821         }
  822         return (0);
  823 }
  824 
  825 /*
  826  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
  827  * being NULL.
  828  */
  829 static __inline void
  830 pmap_pte_release(pt_entry_t *pte)
  831 {
  832 
  833         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
  834                 mtx_unlock(&PMAP2mutex);
  835 }
  836 
  837 static __inline void
  838 invlcaddr(void *caddr)
  839 {
  840 
  841         invlpg((u_int)caddr);
  842 }
  843 
  844 /*
  845  * Super fast pmap_pte routine best used when scanning
  846  * the pv lists.  This eliminates many coarse-grained
  847  * invltlb calls.  Note that many of the pv list
  848  * scans are across different pmaps.  It is very wasteful
  849  * to do an entire invltlb for checking a single mapping.
  850  *
  851  * If the given pmap is not the current pmap, vm_page_queue_mtx
  852  * must be held and curthread pinned to a CPU.
  853  */
  854 static pt_entry_t *
  855 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
  856 {
  857         pd_entry_t newpf;
  858         pd_entry_t *pde;
  859 
  860         pde = pmap_pde(pmap, va);
  861         if (*pde & PG_PS)
  862                 return (pde);
  863         if (*pde != 0) {
  864                 /* are we current address space or kernel? */
  865                 if (pmap_is_current(pmap))
  866                         return (vtopte(va));
  867                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  868                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
  869                 newpf = *pde & PG_FRAME;
  870                 if ((*PMAP1 & PG_FRAME) != newpf) {
  871                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
  872 #ifdef SMP
  873                         PMAP1cpu = PCPU_GET(cpuid);
  874 #endif
  875                         invlcaddr(PADDR1);
  876                         PMAP1changed++;
  877                 } else
  878 #ifdef SMP
  879                 if (PMAP1cpu != PCPU_GET(cpuid)) {
  880                         PMAP1cpu = PCPU_GET(cpuid);
  881                         invlcaddr(PADDR1);
  882                         PMAP1changedcpu++;
  883                 } else
  884 #endif
  885                         PMAP1unchanged++;
  886                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
  887         }
  888         return (0);
  889 }
  890 
  891 /*
  892  *      Routine:        pmap_extract
  893  *      Function:
  894  *              Extract the physical page address associated
  895  *              with the given map/virtual_address pair.
  896  */
  897 vm_paddr_t 
  898 pmap_extract(pmap_t pmap, vm_offset_t va)
  899 {
  900         vm_paddr_t rtval;
  901         pt_entry_t *pte;
  902         pd_entry_t pde;
  903 
  904         rtval = 0;
  905         PMAP_LOCK(pmap);
  906         pde = pmap->pm_pdir[va >> PDRSHIFT];
  907         if (pde != 0) {
  908                 if ((pde & PG_PS) != 0) {
  909                         rtval = (pde & ~PDRMASK) | (va & PDRMASK);
  910                         PMAP_UNLOCK(pmap);
  911                         return rtval;
  912                 }
  913                 pte = pmap_pte(pmap, va);
  914                 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
  915                 pmap_pte_release(pte);
  916         }
  917         PMAP_UNLOCK(pmap);
  918         return (rtval);
  919 }
  920 
  921 /*
  922  *      Routine:        pmap_extract_and_hold
  923  *      Function:
  924  *              Atomically extract and hold the physical page
  925  *              with the given pmap and virtual address pair
  926  *              if that mapping permits the given protection.
  927  */
  928 vm_page_t
  929 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  930 {
  931         pd_entry_t pde;
  932         pt_entry_t pte;
  933         vm_page_t m;
  934 
  935         m = NULL;
  936         vm_page_lock_queues();
  937         PMAP_LOCK(pmap);
  938         pde = *pmap_pde(pmap, va);
  939         if (pde != 0) {
  940                 if (pde & PG_PS) {
  941                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
  942                                 m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
  943                                     (va & PDRMASK));
  944                                 vm_page_hold(m);
  945                         }
  946                 } else {
  947                         sched_pin();
  948                         pte = *pmap_pte_quick(pmap, va);
  949                         if (pte != 0 &&
  950                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
  951                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
  952                                 vm_page_hold(m);
  953                         }
  954                         sched_unpin();
  955                 }
  956         }
  957         vm_page_unlock_queues();
  958         PMAP_UNLOCK(pmap);
  959         return (m);
  960 }
  961 
  962 /***************************************************
  963  * Low level mapping routines.....
  964  ***************************************************/
  965 
  966 /*
  967  * Add a wired page to the kva.
  968  * Note: not SMP coherent.
  969  */
  970 PMAP_INLINE void 
  971 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  972 {
  973         pt_entry_t *pte;
  974 
  975         pte = vtopte(va);
  976         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
  977 }
  978 
  979 PMAP_INLINE void 
  980 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
  981 {
  982         pt_entry_t *pte;
  983 
  984         pte = vtopte(va);
  985         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
  986 }
  987 
  988 /*
  989  * Remove a page from the kernel pagetables.
  990  * Note: not SMP coherent.
  991  */
  992 PMAP_INLINE void
  993 pmap_kremove(vm_offset_t va)
  994 {
  995         pt_entry_t *pte;
  996 
  997         pte = vtopte(va);
  998         pte_clear(pte);
  999 }
 1000 
 1001 /*
 1002  *      Used to map a range of physical addresses into kernel
 1003  *      virtual address space.
 1004  *
 1005  *      The value passed in '*virt' is a suggested virtual address for
 1006  *      the mapping. Architectures which can support a direct-mapped
 1007  *      physical to virtual region can return the appropriate address
 1008  *      within that region, leaving '*virt' unchanged. Other
 1009  *      architectures should map the pages starting at '*virt' and
 1010  *      update '*virt' with the first usable address after the mapped
 1011  *      region.
 1012  */
 1013 vm_offset_t
 1014 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1015 {
 1016         vm_offset_t va, sva;
 1017 
 1018         va = sva = *virt;
 1019         while (start < end) {
 1020                 pmap_kenter(va, start);
 1021                 va += PAGE_SIZE;
 1022                 start += PAGE_SIZE;
 1023         }
 1024         pmap_invalidate_range(kernel_pmap, sva, va);
 1025         *virt = va;
 1026         return (sva);
 1027 }
 1028 
 1029 
 1030 /*
 1031  * Add a list of wired pages to the kva
 1032  * this routine is only used for temporary
 1033  * kernel mappings that do not need to have
 1034  * page modification or references recorded.
 1035  * Note that old mappings are simply written
 1036  * over.  The page *must* be wired.
 1037  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1038  */
 1039 void
 1040 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1041 {
 1042         pt_entry_t *endpte, oldpte, *pte;
 1043 
 1044         oldpte = 0;
 1045         pte = vtopte(sva);
 1046         endpte = pte + count;
 1047         while (pte < endpte) {
 1048                 oldpte |= *pte;
 1049                 pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
 1050                 pte++;
 1051                 ma++;
 1052         }
 1053         if ((oldpte & PG_V) != 0)
 1054                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1055                     PAGE_SIZE);
 1056 }
 1057 
 1058 /*
 1059  * This routine tears out page mappings from the
 1060  * kernel -- it is meant only for temporary mappings.
 1061  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1062  */
 1063 void
 1064 pmap_qremove(vm_offset_t sva, int count)
 1065 {
 1066         vm_offset_t va;
 1067 
 1068         va = sva;
 1069         while (count-- > 0) {
 1070                 pmap_kremove(va);
 1071                 va += PAGE_SIZE;
 1072         }
 1073         pmap_invalidate_range(kernel_pmap, sva, va);
 1074 }
 1075 
 1076 /***************************************************
 1077  * Page table page management routines.....
 1078  ***************************************************/
 1079 static PMAP_INLINE void
 1080 pmap_free_zero_pages(vm_page_t free)
 1081 {
 1082         vm_page_t m;
 1083 
 1084         while (free != NULL) {
 1085                 m = free;
 1086                 free = m->right;
 1087                 vm_page_free_zero(m);
 1088         }
 1089 }
 1090 
 1091 /*
 1092  * This routine unholds page table pages, and if the hold count
 1093  * drops to zero, then it decrements the wire count.
 1094  */
 1095 static PMAP_INLINE int
 1096 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1097 {
 1098 
 1099         --m->wire_count;
 1100         if (m->wire_count == 0)
 1101                 return _pmap_unwire_pte_hold(pmap, m, free);
 1102         else
 1103                 return 0;
 1104 }
 1105 
 1106 static int 
 1107 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1108 {
 1109         vm_offset_t pteva;
 1110 
 1111         /*
 1112          * unmap the page table page
 1113          */
 1114         pmap->pm_pdir[m->pindex] = 0;
 1115         --pmap->pm_stats.resident_count;
 1116 
 1117         /*
 1118          * This is a release store so that the ordinary store unmapping
 1119          * the page table page is globally performed before TLB shoot-
 1120          * down is begun.
 1121          */
 1122         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1123 
 1124         /*
 1125          * Do an invltlb to make the invalidated mapping
 1126          * take effect immediately.
 1127          */
 1128         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1129         pmap_invalidate_page(pmap, pteva);
 1130 
 1131         /* 
 1132          * Put page on a list so that it is released after
 1133          * *ALL* TLB shootdown is done
 1134          */
 1135         m->right = *free;
 1136         *free = m;
 1137 
 1138         return 1;
 1139 }
 1140 
 1141 /*
 1142  * After removing a page table entry, this routine is used to
 1143  * conditionally free the page, and manage the hold/wire counts.
 1144  */
 1145 static int
 1146 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1147 {
 1148         pd_entry_t ptepde;
 1149         vm_page_t mpte;
 1150 
 1151         if (va >= VM_MAXUSER_ADDRESS)
 1152                 return 0;
 1153         ptepde = *pmap_pde(pmap, va);
 1154         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1155         return pmap_unwire_pte_hold(pmap, mpte, free);
 1156 }
 1157 
 1158 void
 1159 pmap_pinit0(pmap)
 1160         struct pmap *pmap;
 1161 {
 1162 
 1163         PMAP_LOCK_INIT(pmap);
 1164         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1165 #ifdef PAE
 1166         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1167 #endif
 1168         pmap->pm_active = 0;
 1169         PCPU_SET(curpmap, pmap);
 1170         TAILQ_INIT(&pmap->pm_pvlist);
 1171         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1172         mtx_lock_spin(&allpmaps_lock);
 1173         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1174         mtx_unlock_spin(&allpmaps_lock);
 1175 }
 1176 
 1177 /*
 1178  * Initialize a preallocated and zeroed pmap structure,
 1179  * such as one in a vmspace structure.
 1180  */
 1181 void
 1182 pmap_pinit(pmap)
 1183         register struct pmap *pmap;
 1184 {
 1185         vm_page_t m, ptdpg[NPGPTD];
 1186         vm_paddr_t pa;
 1187         static int color;
 1188         int i;
 1189 
 1190         PMAP_LOCK_INIT(pmap);
 1191 
 1192         /*
 1193          * No need to allocate page table space yet but we do need a valid
 1194          * page directory table.
 1195          */
 1196         if (pmap->pm_pdir == NULL) {
 1197                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1198                     NBPTD);
 1199 #ifdef PAE
 1200                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1201                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1202                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1203                     ("pmap_pinit: pdpt misaligned"));
 1204                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1205                     ("pmap_pinit: pdpt above 4g"));
 1206 #endif
 1207         }
 1208 
 1209         /*
 1210          * allocate the page directory page(s)
 1211          */
 1212         for (i = 0; i < NPGPTD;) {
 1213                 m = vm_page_alloc(NULL, color++,
 1214                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1215                     VM_ALLOC_ZERO);
 1216                 if (m == NULL)
 1217                         VM_WAIT;
 1218                 else {
 1219                         ptdpg[i++] = m;
 1220                 }
 1221         }
 1222 
 1223         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1224 
 1225         for (i = 0; i < NPGPTD; i++) {
 1226                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1227                         bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
 1228         }
 1229 
 1230         mtx_lock_spin(&allpmaps_lock);
 1231         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1232         mtx_unlock_spin(&allpmaps_lock);
 1233         /* Wire in kernel global address entries. */
 1234         /* XXX copies current process, does not fill in MPPTDI */
 1235         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1236 #ifdef SMP
 1237         pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
 1238 #endif
 1239 
 1240         /* install self-referential address mapping entry(s) */
 1241         for (i = 0; i < NPGPTD; i++) {
 1242                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1243                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1244 #ifdef PAE
 1245                 pmap->pm_pdpt[i] = pa | PG_V;
 1246 #endif
 1247         }
 1248 
 1249         pmap->pm_active = 0;
 1250         TAILQ_INIT(&pmap->pm_pvlist);
 1251         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1252 }
 1253 
 1254 /*
 1255  * this routine is called if the page table page is not
 1256  * mapped correctly.
 1257  */
 1258 static vm_page_t
 1259 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
 1260 {
 1261         vm_paddr_t ptepa;
 1262         vm_page_t m;
 1263 
 1264         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1265             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1266             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1267 
 1268         /*
 1269          * Allocate a page table page.
 1270          */
 1271         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1272             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1273                 if (flags & M_WAITOK) {
 1274                         PMAP_UNLOCK(pmap);
 1275                         vm_page_unlock_queues();
 1276                         VM_WAIT;
 1277                         vm_page_lock_queues();
 1278                         PMAP_LOCK(pmap);
 1279                 }
 1280 
 1281                 /*
 1282                  * Indicate the need to retry.  While waiting, the page table
 1283                  * page may have been allocated.
 1284                  */
 1285                 return (NULL);
 1286         }
 1287         if ((m->flags & PG_ZERO) == 0)
 1288                 pmap_zero_page(m);
 1289 
 1290         /*
 1291          * Map the pagetable page into the process address space, if
 1292          * it isn't already there.
 1293          */
 1294 
 1295         pmap->pm_stats.resident_count++;
 1296 
 1297         ptepa = VM_PAGE_TO_PHYS(m);
 1298         pmap->pm_pdir[ptepindex] =
 1299                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1300 
 1301         return m;
 1302 }
 1303 
 1304 static vm_page_t
 1305 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1306 {
 1307         unsigned ptepindex;
 1308         pd_entry_t ptepa;
 1309         vm_page_t m;
 1310 
 1311         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1312             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1313             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1314 
 1315         /*
 1316          * Calculate pagetable page index
 1317          */
 1318         ptepindex = va >> PDRSHIFT;
 1319 retry:
 1320         /*
 1321          * Get the page directory entry
 1322          */
 1323         ptepa = pmap->pm_pdir[ptepindex];
 1324 
 1325         /*
 1326          * This supports switching from a 4MB page to a
 1327          * normal 4K page.
 1328          */
 1329         if (ptepa & PG_PS) {
 1330                 pmap->pm_pdir[ptepindex] = 0;
 1331                 ptepa = 0;
 1332                 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1333                 pmap_invalidate_all(kernel_pmap);
 1334         }
 1335 
 1336         /*
 1337          * If the page table page is mapped, we just increment the
 1338          * hold count, and activate it.
 1339          */
 1340         if (ptepa) {
 1341                 m = PHYS_TO_VM_PAGE(ptepa);
 1342                 m->wire_count++;
 1343         } else {
 1344                 /*
 1345                  * Here if the pte page isn't mapped, or if it has
 1346                  * been deallocated. 
 1347                  */
 1348                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1349                 if (m == NULL && (flags & M_WAITOK))
 1350                         goto retry;
 1351         }
 1352         return (m);
 1353 }
 1354 
 1355 
 1356 /***************************************************
 1357 * Pmap allocation/deallocation routines.
 1358  ***************************************************/
 1359 
 1360 #ifdef SMP
 1361 /*
 1362  * Deal with a SMP shootdown of other users of the pmap that we are
 1363  * trying to dispose of.  This can be a bit hairy.
 1364  */
 1365 static u_int *lazymask;
 1366 static u_int lazyptd;
 1367 static volatile u_int lazywait;
 1368 
 1369 void pmap_lazyfix_action(void);
 1370 
 1371 void
 1372 pmap_lazyfix_action(void)
 1373 {
 1374         u_int mymask = PCPU_GET(cpumask);
 1375 
 1376         if (rcr3() == lazyptd)
 1377                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1378         atomic_clear_int(lazymask, mymask);
 1379         atomic_store_rel_int(&lazywait, 1);
 1380 }
 1381 
 1382 static void
 1383 pmap_lazyfix_self(u_int mymask)
 1384 {
 1385 
 1386         if (rcr3() == lazyptd)
 1387                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1388         atomic_clear_int(lazymask, mymask);
 1389 }
 1390 
 1391 
 1392 static void
 1393 pmap_lazyfix(pmap_t pmap)
 1394 {
 1395         u_int mymask;
 1396         u_int mask;
 1397         register u_int spins;
 1398 
 1399         while ((mask = pmap->pm_active) != 0) {
 1400                 spins = 50000000;
 1401                 mask = mask & -mask;    /* Find least significant set bit */
 1402                 mtx_lock_spin(&smp_ipi_mtx);
 1403 #ifdef PAE
 1404                 lazyptd = vtophys(pmap->pm_pdpt);
 1405 #else
 1406                 lazyptd = vtophys(pmap->pm_pdir);
 1407 #endif
 1408                 mymask = PCPU_GET(cpumask);
 1409                 if (mask == mymask) {
 1410                         lazymask = &pmap->pm_active;
 1411                         pmap_lazyfix_self(mymask);
 1412                 } else {
 1413                         atomic_store_rel_int((u_int *)&lazymask,
 1414                             (u_int)&pmap->pm_active);
 1415                         atomic_store_rel_int(&lazywait, 0);
 1416                         ipi_selected(mask, IPI_LAZYPMAP);
 1417                         while (lazywait == 0) {
 1418                                 ia32_pause();
 1419                                 if (--spins == 0)
 1420                                         break;
 1421                         }
 1422                 }
 1423                 mtx_unlock_spin(&smp_ipi_mtx);
 1424                 if (spins == 0)
 1425                         printf("pmap_lazyfix: spun for 50000000\n");
 1426         }
 1427 }
 1428 
 1429 #else   /* SMP */
 1430 
 1431 /*
 1432  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1433  * unlikely to have to even execute this code, including the fact
 1434  * that the cleanup is deferred until the parent does a wait(2), which
 1435  * means that another userland process has run.
 1436  */
 1437 static void
 1438 pmap_lazyfix(pmap_t pmap)
 1439 {
 1440         u_int cr3;
 1441 
 1442         cr3 = vtophys(pmap->pm_pdir);
 1443         if (cr3 == rcr3()) {
 1444                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1445                 pmap->pm_active &= ~(PCPU_GET(cpumask));
 1446         }
 1447 }
 1448 #endif  /* SMP */
 1449 
 1450 /*
 1451  * Release any resources held by the given physical map.
 1452  * Called when a pmap initialized by pmap_pinit is being released.
 1453  * Should only be called if the map contains no valid mappings.
 1454  */
 1455 void
 1456 pmap_release(pmap_t pmap)
 1457 {
 1458         vm_page_t m, ptdpg[NPGPTD];
 1459         int i;
 1460 
 1461         KASSERT(pmap->pm_stats.resident_count == 0,
 1462             ("pmap_release: pmap resident count %ld != 0",
 1463             pmap->pm_stats.resident_count));
 1464 
 1465         pmap_lazyfix(pmap);
 1466         mtx_lock_spin(&allpmaps_lock);
 1467         LIST_REMOVE(pmap, pm_list);
 1468         mtx_unlock_spin(&allpmaps_lock);
 1469 
 1470         for (i = 0; i < NPGPTD; i++)
 1471                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
 1472 
 1473         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 1474             sizeof(*pmap->pm_pdir));
 1475 #ifdef SMP
 1476         pmap->pm_pdir[MPPTDI] = 0;
 1477 #endif
 1478 
 1479         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1480 
 1481         vm_page_lock_queues();
 1482         for (i = 0; i < NPGPTD; i++) {
 1483                 m = ptdpg[i];
 1484 #ifdef PAE
 1485                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 1486                     ("pmap_release: got wrong ptd page"));
 1487 #endif
 1488                 m->wire_count--;
 1489                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1490                 vm_page_free_zero(m);
 1491         }
 1492         vm_page_unlock_queues();
 1493         PMAP_LOCK_DESTROY(pmap);
 1494 }
 1495 
 1496 static int
 1497 kvm_size(SYSCTL_HANDLER_ARGS)
 1498 {
 1499         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1500 
 1501         return sysctl_handle_long(oidp, &ksize, 0, req);
 1502 }
 1503 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1504     0, 0, kvm_size, "IU", "Size of KVM");
 1505 
 1506 static int
 1507 kvm_free(SYSCTL_HANDLER_ARGS)
 1508 {
 1509         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1510 
 1511         return sysctl_handle_long(oidp, &kfree, 0, req);
 1512 }
 1513 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1514     0, 0, kvm_free, "IU", "Amount of KVM free");
 1515 
 1516 /*
 1517  * grow the number of kernel page table entries, if needed
 1518  */
 1519 void
 1520 pmap_growkernel(vm_offset_t addr)
 1521 {
 1522         struct pmap *pmap;
 1523         vm_paddr_t ptppaddr;
 1524         vm_page_t nkpg;
 1525         pd_entry_t newpdir;
 1526         pt_entry_t *pde;
 1527 
 1528         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1529         if (kernel_vm_end == 0) {
 1530                 kernel_vm_end = KERNBASE;
 1531                 nkpt = 0;
 1532                 while (pdir_pde(PTD, kernel_vm_end)) {
 1533                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1534                         nkpt++;
 1535                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1536                                 kernel_vm_end = kernel_map->max_offset;
 1537                                 break;
 1538                         }
 1539                 }
 1540         }
 1541         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1542         if (addr - 1 >= kernel_map->max_offset)
 1543                 addr = kernel_map->max_offset;
 1544         while (kernel_vm_end < addr) {
 1545                 if (pdir_pde(PTD, kernel_vm_end)) {
 1546                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1547                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1548                                 kernel_vm_end = kernel_map->max_offset;
 1549                                 break;
 1550                         }
 1551                         continue;
 1552                 }
 1553 
 1554                 /*
 1555                  * This index is bogus, but out of the way
 1556                  */
 1557                 nkpg = vm_page_alloc(NULL, nkpt,
 1558                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1559                 if (!nkpg)
 1560                         panic("pmap_growkernel: no memory to grow kernel");
 1561 
 1562                 nkpt++;
 1563 
 1564                 pmap_zero_page(nkpg);
 1565                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1566                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1567                 pdir_pde(PTD, kernel_vm_end) = newpdir;
 1568 
 1569                 mtx_lock_spin(&allpmaps_lock);
 1570                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1571                         pde = pmap_pde(pmap, kernel_vm_end);
 1572                         pde_store(pde, newpdir);
 1573                 }
 1574                 mtx_unlock_spin(&allpmaps_lock);
 1575                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1576                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1577                         kernel_vm_end = kernel_map->max_offset;
 1578                         break;
 1579                 }
 1580         }
 1581 }
 1582 
 1583 
 1584 /***************************************************
 1585  * page management routines.
 1586  ***************************************************/
 1587 
 1588 /*
 1589  * free the pv_entry back to the free list
 1590  */
 1591 static PMAP_INLINE void
 1592 free_pv_entry(pv_entry_t pv)
 1593 {
 1594         pv_entry_count--;
 1595         uma_zfree(pvzone, pv);
 1596 }
 1597 
 1598 /*
 1599  * get a new pv_entry, allocating a block from the system
 1600  * when needed.
 1601  * the memory allocation is performed bypassing the malloc code
 1602  * because of the possibility of allocations at interrupt time.
 1603  */
 1604 static pv_entry_t
 1605 get_pv_entry(void)
 1606 {
 1607         pv_entry_count++;
 1608         if ((pv_entry_count > pv_entry_high_water) &&
 1609                 (pmap_pagedaemon_waken == 0)) {
 1610                 pmap_pagedaemon_waken = 1;
 1611                 wakeup (&vm_pages_needed);
 1612         }
 1613         return uma_zalloc(pvzone, M_NOWAIT);
 1614 }
 1615 
 1616 
 1617 static void
 1618 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1619 {
 1620         pv_entry_t pv;
 1621 
 1622         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1623         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1624         if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
 1625                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 1626                         if (pmap == pv->pv_pmap && va == pv->pv_va) 
 1627                                 break;
 1628                 }
 1629         } else {
 1630                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1631                         if (va == pv->pv_va) 
 1632                                 break;
 1633                 }
 1634         }
 1635         KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
 1636         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1637         m->md.pv_list_count--;
 1638         if (TAILQ_EMPTY(&m->md.pv_list))
 1639                 vm_page_flag_clear(m, PG_WRITEABLE);
 1640         TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1641         free_pv_entry(pv);
 1642 }
 1643 
 1644 /*
 1645  * Create a pv entry for page at pa for
 1646  * (pmap, va).
 1647  */
 1648 static void
 1649 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1650 {
 1651         pv_entry_t pv;
 1652 
 1653         pv = get_pv_entry();
 1654         if (pv == NULL)
 1655                 panic("no pv entries: increase vm.pmap.shpgperproc");
 1656         pv->pv_va = va;
 1657         pv->pv_pmap = pmap;
 1658 
 1659         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1660         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1661         TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1662         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1663         m->md.pv_list_count++;
 1664 }
 1665 
 1666 /*
 1667  * Conditionally create a pv entry.
 1668  */
 1669 static boolean_t
 1670 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1671 {
 1672         pv_entry_t pv;
 1673 
 1674         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1675         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1676         if (pv_entry_count < pv_entry_high_water && 
 1677             (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
 1678                 pv_entry_count++;
 1679                 pv->pv_va = va;
 1680                 pv->pv_pmap = pmap;
 1681                 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1682                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1683                 m->md.pv_list_count++;
 1684                 return (TRUE);
 1685         } else
 1686                 return (FALSE);
 1687 }
 1688 
 1689 /*
 1690  * pmap_remove_pte: do the things to unmap a page in a process
 1691  */
 1692 static int
 1693 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 1694 {
 1695         pt_entry_t oldpte;
 1696         vm_page_t m;
 1697 
 1698         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1699         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1700         oldpte = pte_load_clear(ptq);
 1701         if (oldpte & PG_W)
 1702                 pmap->pm_stats.wired_count -= 1;
 1703         /*
 1704          * Machines that don't support invlpg, also don't support
 1705          * PG_G.
 1706          */
 1707         if (oldpte & PG_G)
 1708                 pmap_invalidate_page(kernel_pmap, va);
 1709         pmap->pm_stats.resident_count -= 1;
 1710         if (oldpte & PG_MANAGED) {
 1711                 m = PHYS_TO_VM_PAGE(oldpte);
 1712                 if (oldpte & PG_M) {
 1713                         KASSERT((oldpte & PG_RW),
 1714         ("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
 1715                             va, (uintmax_t)oldpte));
 1716                         vm_page_dirty(m);
 1717                 }
 1718                 if (oldpte & PG_A)
 1719                         vm_page_flag_set(m, PG_REFERENCED);
 1720                 pmap_remove_entry(pmap, m, va);
 1721         }
 1722         return (pmap_unuse_pt(pmap, va, free));
 1723 }
 1724 
 1725 /*
 1726  * Remove a single page from a process address space
 1727  */
 1728 static void
 1729 pmap_remove_page(pmap_t pmap, vm_offset_t va)
 1730 {
 1731         pt_entry_t *pte;
 1732         vm_page_t free = NULL;
 1733 
 1734         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1735         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1736         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1737         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 1738                 return;
 1739         pmap_remove_pte(pmap, pte, va, &free);
 1740         pmap_invalidate_page(pmap, va);
 1741         pmap_free_zero_pages(free);
 1742 }
 1743 
 1744 /*
 1745  *      Remove the given range of addresses from the specified map.
 1746  *
 1747  *      It is assumed that the start and end are properly
 1748  *      rounded to the page size.
 1749  */
 1750 void
 1751 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1752 {
 1753         vm_offset_t pdnxt;
 1754         pd_entry_t ptpaddr;
 1755         pt_entry_t *pte;
 1756         vm_page_t free = NULL;
 1757         int anyvalid;
 1758 
 1759         /*
 1760          * Perform an unsynchronized read.  This is, however, safe.
 1761          */
 1762         if (pmap->pm_stats.resident_count == 0)
 1763                 return;
 1764 
 1765         anyvalid = 0;
 1766 
 1767         vm_page_lock_queues();
 1768         sched_pin();
 1769         PMAP_LOCK(pmap);
 1770 
 1771         /*
 1772          * special handling of removing one page.  a very
 1773          * common operation and easy to short circuit some
 1774          * code.
 1775          */
 1776         if ((sva + PAGE_SIZE == eva) && 
 1777             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 1778                 pmap_remove_page(pmap, sva);
 1779                 goto out;
 1780         }
 1781 
 1782         for (; sva < eva; sva = pdnxt) {
 1783                 unsigned pdirindex;
 1784 
 1785                 /*
 1786                  * Calculate index for next page table.
 1787                  */
 1788                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1789                 if (pmap->pm_stats.resident_count == 0)
 1790                         break;
 1791 
 1792                 pdirindex = sva >> PDRSHIFT;
 1793                 ptpaddr = pmap->pm_pdir[pdirindex];
 1794 
 1795                 /*
 1796                  * Weed out invalid mappings. Note: we assume that the page
 1797                  * directory table is always allocated, and in kernel virtual.
 1798                  */
 1799                 if (ptpaddr == 0)
 1800                         continue;
 1801 
 1802                 /*
 1803                  * Check for large page.
 1804                  */
 1805                 if ((ptpaddr & PG_PS) != 0) {
 1806                         pmap->pm_pdir[pdirindex] = 0;
 1807                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1808                         anyvalid = 1;
 1809                         continue;
 1810                 }
 1811 
 1812                 /*
 1813                  * Limit our scan to either the end of the va represented
 1814                  * by the current page table page, or to the end of the
 1815                  * range being removed.
 1816                  */
 1817                 if (pdnxt > eva)
 1818                         pdnxt = eva;
 1819 
 1820                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 1821                     sva += PAGE_SIZE) {
 1822                         if (*pte == 0)
 1823                                 continue;
 1824 
 1825                         /*
 1826                          * The TLB entry for a PG_G mapping is invalidated
 1827                          * by pmap_remove_pte().
 1828                          */
 1829                         if ((*pte & PG_G) == 0)
 1830                                 anyvalid = 1;
 1831                         if (pmap_remove_pte(pmap, pte, sva, &free))
 1832                                 break;
 1833                 }
 1834         }
 1835 out:
 1836         sched_unpin();
 1837         if (anyvalid) {
 1838                 pmap_invalidate_all(pmap);
 1839                 pmap_free_zero_pages(free);
 1840         }
 1841         vm_page_unlock_queues();
 1842         PMAP_UNLOCK(pmap);
 1843 }
 1844 
 1845 /*
 1846  *      Routine:        pmap_remove_all
 1847  *      Function:
 1848  *              Removes this physical page from
 1849  *              all physical maps in which it resides.
 1850  *              Reflects back modify bits to the pager.
 1851  *
 1852  *      Notes:
 1853  *              Original versions of this routine were very
 1854  *              inefficient because they iteratively called
 1855  *              pmap_remove (slow...)
 1856  */
 1857 
 1858 void
 1859 pmap_remove_all(vm_page_t m)
 1860 {
 1861         register pv_entry_t pv;
 1862         pt_entry_t *pte, tpte;
 1863         vm_page_t free;
 1864 
 1865 #if defined(PMAP_DIAGNOSTIC)
 1866         /*
 1867          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 1868          */
 1869         if (m->flags & PG_FICTITIOUS) {
 1870                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
 1871                     VM_PAGE_TO_PHYS(m));
 1872         }
 1873 #endif
 1874         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1875         sched_pin();
 1876         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1877                 PMAP_LOCK(pv->pv_pmap);
 1878                 pv->pv_pmap->pm_stats.resident_count--;
 1879                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 1880                 tpte = pte_load_clear(pte);
 1881                 if (tpte & PG_W)
 1882                         pv->pv_pmap->pm_stats.wired_count--;
 1883                 if (tpte & PG_A)
 1884                         vm_page_flag_set(m, PG_REFERENCED);
 1885 
 1886                 /*
 1887                  * Update the vm_page_t clean and reference bits.
 1888                  */
 1889                 if (tpte & PG_M) {
 1890                         KASSERT((tpte & PG_RW),
 1891         ("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
 1892                             pv->pv_va, (uintmax_t)tpte));
 1893                         vm_page_dirty(m);
 1894                 }
 1895                 free = NULL;
 1896                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, &free);
 1897                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 1898                 pmap_free_zero_pages(free);
 1899                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1900                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1901                 m->md.pv_list_count--;
 1902                 PMAP_UNLOCK(pv->pv_pmap);
 1903                 free_pv_entry(pv);
 1904         }
 1905         vm_page_flag_clear(m, PG_WRITEABLE);
 1906         sched_unpin();
 1907 }
 1908 
 1909 /*
 1910  *      Set the physical protection on the
 1911  *      specified range of this map as requested.
 1912  */
 1913 void
 1914 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1915 {
 1916         vm_offset_t pdnxt;
 1917         pd_entry_t ptpaddr;
 1918         pt_entry_t *pte;
 1919         int anychanged;
 1920 
 1921         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1922                 pmap_remove(pmap, sva, eva);
 1923                 return;
 1924         }
 1925 
 1926         if (prot & VM_PROT_WRITE)
 1927                 return;
 1928 
 1929         anychanged = 0;
 1930 
 1931         vm_page_lock_queues();
 1932         sched_pin();
 1933         PMAP_LOCK(pmap);
 1934         for (; sva < eva; sva = pdnxt) {
 1935                 unsigned obits, pbits, pdirindex;
 1936 
 1937                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1938 
 1939                 pdirindex = sva >> PDRSHIFT;
 1940                 ptpaddr = pmap->pm_pdir[pdirindex];
 1941 
 1942                 /*
 1943                  * Weed out invalid mappings. Note: we assume that the page
 1944                  * directory table is always allocated, and in kernel virtual.
 1945                  */
 1946                 if (ptpaddr == 0)
 1947                         continue;
 1948 
 1949                 /*
 1950                  * Check for large page.
 1951                  */
 1952                 if ((ptpaddr & PG_PS) != 0) {
 1953                         pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 1954                         anychanged = 1;
 1955                         continue;
 1956                 }
 1957 
 1958                 if (pdnxt > eva)
 1959                         pdnxt = eva;
 1960 
 1961                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 1962                     sva += PAGE_SIZE) {
 1963                         vm_page_t m;
 1964 
 1965 retry:
 1966                         /*
 1967                          * Regardless of whether a pte is 32 or 64 bits in
 1968                          * size, PG_RW, PG_A, and PG_M are among the least
 1969                          * significant 32 bits.
 1970                          */
 1971                         obits = pbits = *(u_int *)pte;
 1972                         if (pbits & PG_MANAGED) {
 1973                                 m = NULL;
 1974                                 if (pbits & PG_A) {
 1975                                         m = PHYS_TO_VM_PAGE(*pte);
 1976                                         vm_page_flag_set(m, PG_REFERENCED);
 1977                                         pbits &= ~PG_A;
 1978                                 }
 1979                                 if ((pbits & PG_M) != 0) {
 1980                                         if (m == NULL)
 1981                                                 m = PHYS_TO_VM_PAGE(*pte);
 1982                                         vm_page_dirty(m);
 1983                                 }
 1984                         }
 1985 
 1986                         pbits &= ~(PG_RW | PG_M);
 1987 
 1988                         if (pbits != obits) {
 1989                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 1990                                     pbits))
 1991                                         goto retry;
 1992                                 if (obits & PG_G)
 1993                                         pmap_invalidate_page(pmap, sva);
 1994                                 else
 1995                                         anychanged = 1;
 1996                         }
 1997                 }
 1998         }
 1999         sched_unpin();
 2000         if (anychanged)
 2001                 pmap_invalidate_all(pmap);
 2002         vm_page_unlock_queues();
 2003         PMAP_UNLOCK(pmap);
 2004 }
 2005 
 2006 /*
 2007  *      Insert the given physical page (p) at
 2008  *      the specified virtual address (v) in the
 2009  *      target physical map with the protection requested.
 2010  *
 2011  *      If specified, the page will be wired down, meaning
 2012  *      that the related pte can not be reclaimed.
 2013  *
 2014  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2015  *      or lose information.  That is, this routine must actually
 2016  *      insert this page into the given map NOW.
 2017  */
 2018 void
 2019 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2020            boolean_t wired)
 2021 {
 2022         vm_paddr_t pa;
 2023         pd_entry_t *pde;
 2024         register pt_entry_t *pte;
 2025         vm_paddr_t opa;
 2026         pt_entry_t origpte, newpte;
 2027         vm_page_t mpte, om;
 2028         boolean_t invlva;
 2029 
 2030         va &= PG_FRAME;
 2031 #ifdef PMAP_DIAGNOSTIC
 2032         if (va > VM_MAX_KERNEL_ADDRESS)
 2033                 panic("pmap_enter: toobig");
 2034         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 2035                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 2036 #endif
 2037 
 2038         mpte = NULL;
 2039 
 2040         vm_page_lock_queues();
 2041         PMAP_LOCK(pmap);
 2042         sched_pin();
 2043 
 2044         /*
 2045          * In the case that a page table page is not
 2046          * resident, we are creating it here.
 2047          */
 2048         if (va < VM_MAXUSER_ADDRESS) {
 2049                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 2050         }
 2051 #if 0 && defined(PMAP_DIAGNOSTIC)
 2052         else {
 2053                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 2054                 origpte = *pdeaddr;
 2055                 if ((origpte & PG_V) == 0) { 
 2056                         panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
 2057                                 pmap->pm_pdir[PTDPTDI], origpte, va);
 2058                 }
 2059         }
 2060 #endif
 2061 
 2062         pde = pmap_pde(pmap, va);
 2063         if ((*pde & PG_PS) != 0)
 2064                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2065         pte = pmap_pte_quick(pmap, va);
 2066 
 2067         /*
 2068          * Page Directory table entry not valid, we need a new PT page
 2069          */
 2070         if (pte == NULL) {
 2071                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
 2072                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 2073         }
 2074 
 2075         pa = VM_PAGE_TO_PHYS(m);
 2076         om = NULL;
 2077         origpte = *pte;
 2078         opa = origpte & PG_FRAME;
 2079 
 2080         /*
 2081          * Mapping has not changed, must be protection or wiring change.
 2082          */
 2083         if (origpte && (opa == pa)) {
 2084                 /*
 2085                  * Wiring change, just update stats. We don't worry about
 2086                  * wiring PT pages as they remain resident as long as there
 2087                  * are valid mappings in them. Hence, if a user page is wired,
 2088                  * the PT page will be also.
 2089                  */
 2090                 if (wired && ((origpte & PG_W) == 0))
 2091                         pmap->pm_stats.wired_count++;
 2092                 else if (!wired && (origpte & PG_W))
 2093                         pmap->pm_stats.wired_count--;
 2094 
 2095                 /*
 2096                  * Remove extra pte reference
 2097                  */
 2098                 if (mpte)
 2099                         mpte->wire_count--;
 2100 
 2101                 /*
 2102                  * We might be turning off write access to the page,
 2103                  * so we go ahead and sense modify status.
 2104                  */
 2105                 if (origpte & PG_MANAGED) {
 2106                         om = m;
 2107                         pa |= PG_MANAGED;
 2108                 }
 2109                 goto validate;
 2110         } 
 2111         /*
 2112          * Mapping has changed, invalidate old range and fall through to
 2113          * handle validating new mapping.
 2114          */
 2115         if (opa) {
 2116                 if (origpte & PG_W)
 2117                         pmap->pm_stats.wired_count--;
 2118                 if (origpte & PG_MANAGED) {
 2119                         om = PHYS_TO_VM_PAGE(opa);
 2120                         pmap_remove_entry(pmap, om, va);
 2121                 }
 2122                 if (mpte != NULL) {
 2123                         mpte->wire_count--;
 2124                         KASSERT(mpte->wire_count > 0,
 2125                             ("pmap_enter: missing reference to page table page,"
 2126                              " va: 0x%x", va));
 2127                 }
 2128         } else
 2129                 pmap->pm_stats.resident_count++;
 2130 
 2131         /*
 2132          * Enter on the PV list if part of our managed memory.
 2133          */
 2134         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 2135                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 2136                     ("pmap_enter: managed mapping within the clean submap"));
 2137                 pmap_insert_entry(pmap, va, m);
 2138                 pa |= PG_MANAGED;
 2139         }
 2140 
 2141         /*
 2142          * Increment counters
 2143          */
 2144         if (wired)
 2145                 pmap->pm_stats.wired_count++;
 2146 
 2147 validate:
 2148         /*
 2149          * Now validate mapping with desired protection/wiring.
 2150          */
 2151         newpte = (pt_entry_t)(pa | PG_V);
 2152         if ((prot & VM_PROT_WRITE) != 0)
 2153                 newpte |= PG_RW;
 2154         if (wired)
 2155                 newpte |= PG_W;
 2156         if (va < VM_MAXUSER_ADDRESS)
 2157                 newpte |= PG_U;
 2158         if (pmap == kernel_pmap)
 2159                 newpte |= pgeflag;
 2160 
 2161         /*
 2162          * if the mapping or permission bits are different, we need
 2163          * to update the pte.
 2164          */
 2165         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2166                 if (origpte & PG_V) {
 2167                         invlva = FALSE;
 2168                         origpte = pte_load_store(pte, newpte | PG_A);
 2169                         if (origpte & PG_A) {
 2170                                 if (origpte & PG_MANAGED)
 2171                                         vm_page_flag_set(om, PG_REFERENCED);
 2172                                 if (opa != VM_PAGE_TO_PHYS(m))
 2173                                         invlva = TRUE;
 2174                         }
 2175                         if (origpte & PG_M) {
 2176                                 KASSERT((origpte & PG_RW),
 2177         ("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
 2178                                     va, (uintmax_t)origpte));
 2179                                 if ((origpte & PG_MANAGED) != 0)
 2180                                         vm_page_dirty(om);
 2181                                 if ((prot & VM_PROT_WRITE) == 0)
 2182                                         invlva = TRUE;
 2183                         }
 2184                         if (invlva)
 2185                                 pmap_invalidate_page(pmap, va);
 2186                 } else
 2187                         pte_store(pte, newpte | PG_A);
 2188         }
 2189         sched_unpin();
 2190         vm_page_unlock_queues();
 2191         PMAP_UNLOCK(pmap);
 2192 }
 2193 
 2194 /*
 2195  * Maps a sequence of resident pages belonging to the same object.
 2196  * The sequence begins with the given page m_start.  This page is
 2197  * mapped at the given virtual address start.  Each subsequent page is
 2198  * mapped at a virtual address that is offset from start by the same
 2199  * amount as the page is offset from m_start within the object.  The
 2200  * last page in the sequence is the page with the largest offset from
 2201  * m_start that can be mapped at a virtual address less than the given
 2202  * virtual address end.  Not every virtual page between start and end
 2203  * is mapped; only those for which a resident page exists with the
 2204  * corresponding offset from m_start are mapped.
 2205  */
 2206 void
 2207 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2208     vm_page_t m_start, vm_prot_t prot)
 2209 {
 2210         vm_page_t m, mpte;
 2211         vm_pindex_t diff, psize;
 2212 
 2213         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2214         psize = atop(end - start);
 2215         mpte = NULL;
 2216         m = m_start;
 2217         PMAP_LOCK(pmap);
 2218         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2219                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2220                     prot, mpte);
 2221                 m = TAILQ_NEXT(m, listq);
 2222         }
 2223         PMAP_UNLOCK(pmap);
 2224 }
 2225 
 2226 /*
 2227  * this code makes some *MAJOR* assumptions:
 2228  * 1. Current pmap & pmap exists.
 2229  * 2. Not wired.
 2230  * 3. Read access.
 2231  * 4. No page table pages.
 2232  * but is *MUCH* faster than pmap_enter...
 2233  */
 2234 
 2235 void
 2236 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2237 {
 2238 
 2239         PMAP_LOCK(pmap);
 2240         (void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2241         PMAP_UNLOCK(pmap);
 2242 }
 2243 
 2244 static vm_page_t
 2245 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2246     vm_prot_t prot, vm_page_t mpte)
 2247 {
 2248         pt_entry_t *pte;
 2249         vm_paddr_t pa;
 2250         vm_page_t free;
 2251 
 2252         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2253             (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
 2254             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2255         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2256         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2257 
 2258         /*
 2259          * In the case that a page table page is not
 2260          * resident, we are creating it here.
 2261          */
 2262         if (va < VM_MAXUSER_ADDRESS) {
 2263                 unsigned ptepindex;
 2264                 pd_entry_t ptepa;
 2265 
 2266                 /*
 2267                  * Calculate pagetable page index
 2268                  */
 2269                 ptepindex = va >> PDRSHIFT;
 2270                 if (mpte && (mpte->pindex == ptepindex)) {
 2271                         mpte->wire_count++;
 2272                 } else {
 2273                         /*
 2274                          * Get the page directory entry
 2275                          */
 2276                         ptepa = pmap->pm_pdir[ptepindex];
 2277 
 2278                         /*
 2279                          * If the page table page is mapped, we just increment
 2280                          * the hold count, and activate it.
 2281                          */
 2282                         if (ptepa) {
 2283                                 if (ptepa & PG_PS)
 2284                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2285                                 mpte = PHYS_TO_VM_PAGE(ptepa);
 2286                                 mpte->wire_count++;
 2287                         } else {
 2288                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2289                                     M_NOWAIT);
 2290                                 if (mpte == NULL)
 2291                                         return (mpte);
 2292                         }
 2293                 }
 2294         } else {
 2295                 mpte = NULL;
 2296         }
 2297 
 2298         /*
 2299          * This call to vtopte makes the assumption that we are
 2300          * entering the page into the current pmap.  In order to support
 2301          * quick entry into any pmap, one would likely use pmap_pte_quick.
 2302          * But that isn't as quick as vtopte.
 2303          */
 2304         pte = vtopte(va);
 2305         if (*pte) {
 2306                 if (mpte != NULL) {
 2307                         mpte->wire_count--;
 2308                         mpte = NULL;
 2309                 }
 2310                 return (mpte);
 2311         }
 2312 
 2313         /*
 2314          * Enter on the PV list if part of our managed memory.
 2315          */
 2316         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
 2317             !pmap_try_insert_pv_entry(pmap, va, m)) {
 2318                 if (mpte != NULL) {
 2319                         free = NULL;
 2320                         if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
 2321                                 pmap_invalidate_page(pmap, va);
 2322                                 pmap_free_zero_pages(free);
 2323                         }
 2324                         
 2325                         mpte = NULL;
 2326                 }
 2327                 return (mpte);
 2328         }
 2329 
 2330         /*
 2331          * Increment counters
 2332          */
 2333         pmap->pm_stats.resident_count++;
 2334 
 2335         pa = VM_PAGE_TO_PHYS(m);
 2336 
 2337         /*
 2338          * Now validate mapping with RO protection
 2339          */
 2340         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 2341                 pte_store(pte, pa | PG_V | PG_U);
 2342         else
 2343                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 2344         return mpte;
 2345 }
 2346 
 2347 /*
 2348  * Make a temporary mapping for a physical address.  This is only intended
 2349  * to be used for panic dumps.
 2350  */
 2351 void *
 2352 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2353 {
 2354         vm_offset_t va;
 2355 
 2356         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 2357         pmap_kenter(va, pa);
 2358         invlpg(va);
 2359         return ((void *)crashdumpmap);
 2360 }
 2361 
 2362 /*
 2363  * This code maps large physical mmap regions into the
 2364  * processor address space.  Note that some shortcuts
 2365  * are taken, but the code works.
 2366  */
 2367 void
 2368 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2369                     vm_object_t object, vm_pindex_t pindex,
 2370                     vm_size_t size)
 2371 {
 2372         vm_page_t p;
 2373 
 2374         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2375         KASSERT(object->type == OBJT_DEVICE,
 2376             ("pmap_object_init_pt: non-device object"));
 2377         if (pseflag && 
 2378             ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 2379                 int i;
 2380                 vm_page_t m[1];
 2381                 unsigned int ptepindex;
 2382                 int npdes;
 2383                 pd_entry_t ptepa;
 2384 
 2385                 PMAP_LOCK(pmap);
 2386                 if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
 2387                         goto out;
 2388                 PMAP_UNLOCK(pmap);
 2389 retry:
 2390                 p = vm_page_lookup(object, pindex);
 2391                 if (p != NULL) {
 2392                         vm_page_lock_queues();
 2393                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 2394                                 goto retry;
 2395                 } else {
 2396                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2397                         if (p == NULL)
 2398                                 return;
 2399                         m[0] = p;
 2400 
 2401                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2402                                 vm_page_lock_queues();
 2403                                 vm_page_free(p);
 2404                                 vm_page_unlock_queues();
 2405                                 return;
 2406                         }
 2407 
 2408                         p = vm_page_lookup(object, pindex);
 2409                         vm_page_lock_queues();
 2410                         vm_page_wakeup(p);
 2411                 }
 2412                 vm_page_unlock_queues();
 2413 
 2414                 ptepa = VM_PAGE_TO_PHYS(p);
 2415                 if (ptepa & (NBPDR - 1))
 2416                         return;
 2417 
 2418                 p->valid = VM_PAGE_BITS_ALL;
 2419 
 2420                 PMAP_LOCK(pmap);
 2421                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2422                 npdes = size >> PDRSHIFT;
 2423                 for(i = 0; i < npdes; i++) {
 2424                         pde_store(&pmap->pm_pdir[ptepindex],
 2425                             ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2426                         ptepa += NBPDR;
 2427                         ptepindex += 1;
 2428                 }
 2429                 pmap_invalidate_all(pmap);
 2430 out:
 2431                 PMAP_UNLOCK(pmap);
 2432         }
 2433 }
 2434 
 2435 /*
 2436  *      Routine:        pmap_change_wiring
 2437  *      Function:       Change the wiring attribute for a map/virtual-address
 2438  *                      pair.
 2439  *      In/out conditions:
 2440  *                      The mapping must already exist in the pmap.
 2441  */
 2442 void
 2443 pmap_change_wiring(pmap, va, wired)
 2444         register pmap_t pmap;
 2445         vm_offset_t va;
 2446         boolean_t wired;
 2447 {
 2448         register pt_entry_t *pte;
 2449 
 2450         PMAP_LOCK(pmap);
 2451         pte = pmap_pte(pmap, va);
 2452 
 2453         if (wired && !pmap_pte_w(pte))
 2454                 pmap->pm_stats.wired_count++;
 2455         else if (!wired && pmap_pte_w(pte))
 2456                 pmap->pm_stats.wired_count--;
 2457 
 2458         /*
 2459          * Wiring is not a hardware characteristic so there is no need to
 2460          * invalidate TLB.
 2461          */
 2462         pmap_pte_set_w(pte, wired);
 2463         pmap_pte_release(pte);
 2464         PMAP_UNLOCK(pmap);
 2465 }
 2466 
 2467 
 2468 
 2469 /*
 2470  *      Copy the range specified by src_addr/len
 2471  *      from the source map to the range dst_addr/len
 2472  *      in the destination map.
 2473  *
 2474  *      This routine is only advisory and need not do anything.
 2475  */
 2476 
 2477 void
 2478 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 2479           vm_offset_t src_addr)
 2480 {
 2481         vm_page_t   free;
 2482         vm_offset_t addr;
 2483         vm_offset_t end_addr = src_addr + len;
 2484         vm_offset_t pdnxt;
 2485 
 2486         if (dst_addr != src_addr)
 2487                 return;
 2488 
 2489         if (!pmap_is_current(src_pmap))
 2490                 return;
 2491 
 2492         vm_page_lock_queues();
 2493         if (dst_pmap < src_pmap) {
 2494                 PMAP_LOCK(dst_pmap);
 2495                 PMAP_LOCK(src_pmap);
 2496         } else {
 2497                 PMAP_LOCK(src_pmap);
 2498                 PMAP_LOCK(dst_pmap);
 2499         }
 2500         sched_pin();
 2501         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 2502                 pt_entry_t *src_pte, *dst_pte;
 2503                 vm_page_t dstmpte, srcmpte;
 2504                 pd_entry_t srcptepaddr;
 2505                 unsigned ptepindex;
 2506 
 2507                 if (addr >= UPT_MIN_ADDRESS)
 2508                         panic("pmap_copy: invalid to pmap_copy page tables");
 2509 
 2510                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 2511                 ptepindex = addr >> PDRSHIFT;
 2512 
 2513                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 2514                 if (srcptepaddr == 0)
 2515                         continue;
 2516                         
 2517                 if (srcptepaddr & PG_PS) {
 2518                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 2519                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 2520                                     ~PG_W;
 2521                                 dst_pmap->pm_stats.resident_count +=
 2522                                     NBPDR / PAGE_SIZE;
 2523                         }
 2524                         continue;
 2525                 }
 2526 
 2527                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
 2528                 if (srcmpte->wire_count == 0)
 2529                         panic("pmap_copy: source page table page is unused");
 2530 
 2531                 if (pdnxt > end_addr)
 2532                         pdnxt = end_addr;
 2533 
 2534                 src_pte = vtopte(addr);
 2535                 while (addr < pdnxt) {
 2536                         pt_entry_t ptetemp;
 2537                         ptetemp = *src_pte;
 2538                         /*
 2539                          * we only virtual copy managed pages
 2540                          */
 2541                         if ((ptetemp & PG_MANAGED) != 0) {
 2542                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 2543                                     M_NOWAIT);
 2544                                 if (dstmpte == NULL)
 2545                                         break;
 2546                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 2547                                 if (*dst_pte == 0 &&
 2548                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 2549                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 2550                                         /*
 2551                                          * Clear the wired, modified, and
 2552                                          * accessed (referenced) bits
 2553                                          * during the copy.
 2554                                          */
 2555                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 2556                                             PG_A);
 2557                                         dst_pmap->pm_stats.resident_count++;
 2558                                 } else {
 2559                                         free = NULL;
 2560                                         if (pmap_unwire_pte_hold( dst_pmap,
 2561                                             dstmpte, &free)) {
 2562                                                 pmap_invalidate_page(dst_pmap,
 2563                                                     addr);
 2564                                                 pmap_free_zero_pages(free);
 2565                                         }
 2566                                 }
 2567                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 2568                                         break;
 2569                         }
 2570                         addr += PAGE_SIZE;
 2571                         src_pte++;
 2572                 }
 2573         }
 2574         sched_unpin();
 2575         vm_page_unlock_queues();
 2576         PMAP_UNLOCK(src_pmap);
 2577         PMAP_UNLOCK(dst_pmap);
 2578 }       
 2579 
 2580 static __inline void
 2581 pagezero(void *page)
 2582 {
 2583 #if defined(I686_CPU)
 2584         if (cpu_class == CPUCLASS_686) {
 2585 #if defined(CPU_ENABLE_SSE)
 2586                 if (cpu_feature & CPUID_SSE2)
 2587                         sse2_pagezero(page);
 2588                 else
 2589 #endif
 2590                         i686_pagezero(page);
 2591         } else
 2592 #endif
 2593                 bzero(page, PAGE_SIZE);
 2594 }
 2595 
 2596 /*
 2597  *      pmap_zero_page zeros the specified hardware page by mapping 
 2598  *      the page into KVM and using bzero to clear its contents.
 2599  */
 2600 void
 2601 pmap_zero_page(vm_page_t m)
 2602 {
 2603         struct sysmaps *sysmaps;
 2604 
 2605         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2606         mtx_lock(&sysmaps->lock);
 2607         if (*sysmaps->CMAP2)
 2608                 panic("pmap_zero_page: CMAP2 busy");
 2609         sched_pin();
 2610         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2611         invlcaddr(sysmaps->CADDR2);
 2612         pagezero(sysmaps->CADDR2);
 2613         *sysmaps->CMAP2 = 0;
 2614         sched_unpin();
 2615         mtx_unlock(&sysmaps->lock);
 2616 }
 2617 
 2618 /*
 2619  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 2620  *      the page into KVM and using bzero to clear its contents.
 2621  *
 2622  *      off and size may not cover an area beyond a single hardware page.
 2623  */
 2624 void
 2625 pmap_zero_page_area(vm_page_t m, int off, int size)
 2626 {
 2627         struct sysmaps *sysmaps;
 2628 
 2629         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2630         mtx_lock(&sysmaps->lock);
 2631         if (*sysmaps->CMAP2)
 2632                 panic("pmap_zero_page: CMAP2 busy");
 2633         sched_pin();
 2634         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2635         invlcaddr(sysmaps->CADDR2);
 2636         if (off == 0 && size == PAGE_SIZE) 
 2637                 pagezero(sysmaps->CADDR2);
 2638         else
 2639                 bzero((char *)sysmaps->CADDR2 + off, size);
 2640         *sysmaps->CMAP2 = 0;
 2641         sched_unpin();
 2642         mtx_unlock(&sysmaps->lock);
 2643 }
 2644 
 2645 /*
 2646  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 2647  *      the page into KVM and using bzero to clear its contents.  This
 2648  *      is intended to be called from the vm_pagezero process only and
 2649  *      outside of Giant.
 2650  */
 2651 void
 2652 pmap_zero_page_idle(vm_page_t m)
 2653 {
 2654 
 2655         if (*CMAP3)
 2656                 panic("pmap_zero_page: CMAP3 busy");
 2657         sched_pin();
 2658         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2659         invlcaddr(CADDR3);
 2660         pagezero(CADDR3);
 2661         *CMAP3 = 0;
 2662         sched_unpin();
 2663 }
 2664 
 2665 /*
 2666  *      pmap_copy_page copies the specified (machine independent)
 2667  *      page by mapping the page into virtual memory and using
 2668  *      bcopy to copy the page, one machine dependent page at a
 2669  *      time.
 2670  */
 2671 void
 2672 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2673 {
 2674         struct sysmaps *sysmaps;
 2675 
 2676         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2677         mtx_lock(&sysmaps->lock);
 2678         if (*sysmaps->CMAP1)
 2679                 panic("pmap_copy_page: CMAP1 busy");
 2680         if (*sysmaps->CMAP2)
 2681                 panic("pmap_copy_page: CMAP2 busy");
 2682         sched_pin();
 2683         invlpg((u_int)sysmaps->CADDR1);
 2684         invlpg((u_int)sysmaps->CADDR2);
 2685         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
 2686         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
 2687         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 2688         *sysmaps->CMAP1 = 0;
 2689         *sysmaps->CMAP2 = 0;
 2690         sched_unpin();
 2691         mtx_unlock(&sysmaps->lock);
 2692 }
 2693 
 2694 /*
 2695  * Returns true if the pmap's pv is one of the first
 2696  * 16 pvs linked to from this page.  This count may
 2697  * be changed upwards or downwards in the future; it
 2698  * is only necessary that true be returned for a small
 2699  * subset of pmaps for proper page aging.
 2700  */
 2701 boolean_t
 2702 pmap_page_exists_quick(pmap, m)
 2703         pmap_t pmap;
 2704         vm_page_t m;
 2705 {
 2706         pv_entry_t pv;
 2707         int loops = 0;
 2708 
 2709         if (m->flags & PG_FICTITIOUS)
 2710                 return FALSE;
 2711 
 2712         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2713         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2714                 if (pv->pv_pmap == pmap) {
 2715                         return TRUE;
 2716                 }
 2717                 loops++;
 2718                 if (loops >= 16)
 2719                         break;
 2720         }
 2721         return (FALSE);
 2722 }
 2723 
 2724 #define PMAP_REMOVE_PAGES_CURPROC_ONLY
 2725 /*
 2726  * Remove all pages from specified address space
 2727  * this aids process exit speeds.  Also, this code
 2728  * is special cased for current process only, but
 2729  * can have the more generic (and slightly slower)
 2730  * mode enabled.  This is much faster than pmap_remove
 2731  * in the case of running down an entire address space.
 2732  */
 2733 void
 2734 pmap_remove_pages(pmap, sva, eva)
 2735         pmap_t pmap;
 2736         vm_offset_t sva, eva;
 2737 {
 2738         pt_entry_t *pte, tpte;
 2739         vm_page_t m, free = NULL;
 2740         pv_entry_t pv, npv;
 2741 
 2742 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2743         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2744                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2745                 return;
 2746         }
 2747 #endif
 2748         vm_page_lock_queues();
 2749         PMAP_LOCK(pmap);
 2750         sched_pin();
 2751         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
 2752 
 2753                 if (pv->pv_va >= eva || pv->pv_va < sva) {
 2754                         npv = TAILQ_NEXT(pv, pv_plist);
 2755                         continue;
 2756                 }
 2757 
 2758 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2759                 pte = vtopte(pv->pv_va);
 2760 #else
 2761                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2762 #endif
 2763                 tpte = *pte;
 2764 
 2765                 if (tpte == 0) {
 2766                         printf("TPTE at %p  IS ZERO @ VA %08x\n",
 2767                                                         pte, pv->pv_va);
 2768                         panic("bad pte");
 2769                 }
 2770 
 2771 /*
 2772  * We cannot remove wired pages from a process' mapping at this time
 2773  */
 2774                 if (tpte & PG_W) {
 2775                         npv = TAILQ_NEXT(pv, pv_plist);
 2776                         continue;
 2777                 }
 2778 
 2779                 m = PHYS_TO_VM_PAGE(tpte);
 2780                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 2781                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 2782                     m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
 2783 
 2784                 KASSERT(m < &vm_page_array[vm_page_array_size],
 2785                         ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 2786 
 2787                 pmap->pm_stats.resident_count--;
 2788 
 2789                 pte_clear(pte);
 2790 
 2791                 /*
 2792                  * Update the vm_page_t clean and reference bits.
 2793                  */
 2794                 if (tpte & PG_M) {
 2795                         vm_page_dirty(m);
 2796                 }
 2797 
 2798                 npv = TAILQ_NEXT(pv, pv_plist);
 2799                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 2800 
 2801                 m->md.pv_list_count--;
 2802                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2803                 if (TAILQ_EMPTY(&m->md.pv_list))
 2804                         vm_page_flag_clear(m, PG_WRITEABLE);
 2805 
 2806                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2807                 free_pv_entry(pv);
 2808         }
 2809         sched_unpin();
 2810         pmap_invalidate_all(pmap);
 2811         pmap_free_zero_pages(free);
 2812         vm_page_unlock_queues();
 2813         PMAP_UNLOCK(pmap);
 2814 }
 2815 
 2816 /*
 2817  *      pmap_is_modified:
 2818  *
 2819  *      Return whether or not the specified physical page was modified
 2820  *      in any physical maps.
 2821  */
 2822 boolean_t
 2823 pmap_is_modified(vm_page_t m)
 2824 {
 2825         pv_entry_t pv;
 2826         pt_entry_t *pte;
 2827         boolean_t rv;
 2828 
 2829         rv = FALSE;
 2830         if (m->flags & PG_FICTITIOUS)
 2831                 return (rv);
 2832 
 2833         sched_pin();
 2834         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2835         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2836                 PMAP_LOCK(pv->pv_pmap);
 2837                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2838                 rv = (*pte & PG_M) != 0;
 2839                 PMAP_UNLOCK(pv->pv_pmap);
 2840                 if (rv)
 2841                         break;
 2842         }
 2843         sched_unpin();
 2844         return (rv);
 2845 }
 2846 
 2847 /*
 2848  *      pmap_is_prefaultable:
 2849  *
 2850  *      Return whether or not the specified virtual address is elgible
 2851  *      for prefault.
 2852  */
 2853 boolean_t
 2854 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2855 {
 2856         pt_entry_t *pte;
 2857         boolean_t rv;
 2858 
 2859         rv = FALSE;
 2860         PMAP_LOCK(pmap);
 2861         if (*pmap_pde(pmap, addr)) {
 2862                 pte = vtopte(addr);
 2863                 rv = *pte == 0;
 2864         }
 2865         PMAP_UNLOCK(pmap);
 2866         return (rv);
 2867 }
 2868 
 2869 /*
 2870  *      Clear the given bit in each of the given page's ptes.  The bit is
 2871  *      expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
 2872  *      size, only a bit within the least significant 32 can be cleared.
 2873  */
 2874 static __inline void
 2875 pmap_clear_ptes(vm_page_t m, int bit)
 2876 {
 2877         register pv_entry_t pv;
 2878         pt_entry_t pbits, *pte;
 2879 
 2880         if ((m->flags & PG_FICTITIOUS) ||
 2881             (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
 2882                 return;
 2883 
 2884         sched_pin();
 2885         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2886         /*
 2887          * Loop over all current mappings setting/clearing as appropos If
 2888          * setting RO do we need to clear the VAC?
 2889          */
 2890         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2891                 PMAP_LOCK(pv->pv_pmap);
 2892                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2893 retry:
 2894                 pbits = *pte;
 2895                 if (pbits & bit) {
 2896                         if (bit == PG_RW) {
 2897                                 /*
 2898                                  * Regardless of whether a pte is 32 or 64 bits
 2899                                  * in size, PG_RW and PG_M are among the least
 2900                                  * significant 32 bits.
 2901                                  */
 2902                                 if (!atomic_cmpset_int((u_int *)pte, pbits,
 2903                                     pbits & ~(PG_RW | PG_M)))
 2904                                         goto retry;
 2905                                 if (pbits & PG_M) {
 2906                                         vm_page_dirty(m);
 2907                                 }
 2908                         } else {
 2909                                 atomic_clear_int((u_int *)pte, bit);
 2910                         }
 2911                         pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2912                 }
 2913                 PMAP_UNLOCK(pv->pv_pmap);
 2914         }
 2915         if (bit == PG_RW)
 2916                 vm_page_flag_clear(m, PG_WRITEABLE);
 2917         sched_unpin();
 2918 }
 2919 
 2920 /*
 2921  *      pmap_page_protect:
 2922  *
 2923  *      Lower the permission for all mappings to a given page.
 2924  */
 2925 void
 2926 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 2927 {
 2928         if ((prot & VM_PROT_WRITE) == 0) {
 2929                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
 2930                         pmap_clear_ptes(m, PG_RW);
 2931                 } else {
 2932                         pmap_remove_all(m);
 2933                 }
 2934         }
 2935 }
 2936 
 2937 /*
 2938  *      pmap_ts_referenced:
 2939  *
 2940  *      Return a count of reference bits for a page, clearing those bits.
 2941  *      It is not necessary for every reference bit to be cleared, but it
 2942  *      is necessary that 0 only be returned when there are truly no
 2943  *      reference bits set.
 2944  *
 2945  *      XXX: The exact number of bits to check and clear is a matter that
 2946  *      should be tested and standardized at some point in the future for
 2947  *      optimal aging of shared pages.
 2948  */
 2949 int
 2950 pmap_ts_referenced(vm_page_t m)
 2951 {
 2952         register pv_entry_t pv, pvf, pvn;
 2953         pt_entry_t *pte;
 2954         pt_entry_t v;
 2955         int rtval = 0;
 2956 
 2957         if (m->flags & PG_FICTITIOUS)
 2958                 return (rtval);
 2959 
 2960         sched_pin();
 2961         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2962         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2963 
 2964                 pvf = pv;
 2965 
 2966                 do {
 2967                         pvn = TAILQ_NEXT(pv, pv_list);
 2968 
 2969                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2970 
 2971                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2972 
 2973                         PMAP_LOCK(pv->pv_pmap);
 2974                         pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2975 
 2976                         if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
 2977                                 atomic_clear_int((u_int *)pte, PG_A);
 2978                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2979 
 2980                                 rtval++;
 2981                                 if (rtval > 4) {
 2982                                         PMAP_UNLOCK(pv->pv_pmap);
 2983                                         break;
 2984                                 }
 2985                         }
 2986                         PMAP_UNLOCK(pv->pv_pmap);
 2987                 } while ((pv = pvn) != NULL && pv != pvf);
 2988         }
 2989         sched_unpin();
 2990 
 2991         return (rtval);
 2992 }
 2993 
 2994 /*
 2995  *      Clear the modify bits on the specified physical page.
 2996  */
 2997 void
 2998 pmap_clear_modify(vm_page_t m)
 2999 {
 3000         pmap_clear_ptes(m, PG_M);
 3001 }
 3002 
 3003 /*
 3004  *      pmap_clear_reference:
 3005  *
 3006  *      Clear the reference bit on the specified physical page.
 3007  */
 3008 void
 3009 pmap_clear_reference(vm_page_t m)
 3010 {
 3011         pmap_clear_ptes(m, PG_A);
 3012 }
 3013 
 3014 /*
 3015  * Miscellaneous support routines follow
 3016  */
 3017 
 3018 /*
 3019  * Map a set of physical memory pages into the kernel virtual
 3020  * address space. Return a pointer to where it is mapped. This
 3021  * routine is intended to be used for mapping device memory,
 3022  * NOT real memory.
 3023  */
 3024 void *
 3025 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 3026 {
 3027         vm_offset_t va, tmpva, offset;
 3028 
 3029         offset = pa & PAGE_MASK;
 3030         size = roundup(offset + size, PAGE_SIZE);
 3031         pa = pa & PG_FRAME;
 3032 
 3033         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 3034                 va = KERNBASE + pa;
 3035         else
 3036                 va = kmem_alloc_nofault(kernel_map, size);
 3037         if (!va)
 3038                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3039 
 3040         for (tmpva = va; size > 0; ) {
 3041                 pmap_kenter_attr(tmpva, pa, mode);
 3042                 size -= PAGE_SIZE;
 3043                 tmpva += PAGE_SIZE;
 3044                 pa += PAGE_SIZE;
 3045         }
 3046         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3047         pmap_invalidate_cache();
 3048         return ((void *)(va + offset));
 3049 }
 3050 
 3051 void *
 3052 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3053 {
 3054 
 3055         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 3056 }
 3057 
 3058 void *
 3059 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 3060 {
 3061 
 3062         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 3063 }
 3064 
 3065 void
 3066 pmap_unmapdev(va, size)
 3067         vm_offset_t va;
 3068         vm_size_t size;
 3069 {
 3070         vm_offset_t base, offset, tmpva;
 3071 
 3072         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 3073                 return;
 3074         base = va & PG_FRAME;
 3075         offset = va & PAGE_MASK;
 3076         size = roundup(offset + size, PAGE_SIZE);
 3077         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 3078                 pmap_kremove(tmpva);
 3079         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3080         kmem_free(kernel_map, base, size);
 3081 }
 3082 
 3083 int
 3084 pmap_change_attr(va, size, mode)
 3085         vm_offset_t va;
 3086         vm_size_t size;
 3087         int mode;
 3088 {
 3089         vm_offset_t base, offset, tmpva;
 3090         pt_entry_t *pte;
 3091         u_int opte, npte;
 3092         pd_entry_t *pde;
 3093 
 3094         base = va & PG_FRAME;
 3095         offset = va & PAGE_MASK;
 3096         size = roundup(offset + size, PAGE_SIZE);
 3097 
 3098         /* Only supported on kernel virtual addresses. */
 3099         if (base <= VM_MAXUSER_ADDRESS)
 3100                 return (EINVAL);
 3101 
 3102         /* 4MB pages and pages that aren't mapped aren't supported. */
 3103         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 3104                 pde = pmap_pde(kernel_pmap, tmpva);
 3105                 if (*pde & PG_PS)
 3106                         return (EINVAL);
 3107                 if (*pde == 0)
 3108                         return (EINVAL);
 3109                 pte = vtopte(va);
 3110                 if (*pte == 0)
 3111                         return (EINVAL);
 3112         }
 3113 
 3114         /*
 3115          * Ok, all the pages exist and are 4k, so run through them updating
 3116          * their cache mode.
 3117          */
 3118         for (tmpva = base; size > 0; ) {
 3119                 pte = vtopte(tmpva);
 3120 
 3121                 /*
 3122                  * The cache mode bits are all in the low 32-bits of the
 3123                  * PTE, so we can just spin on updating the low 32-bits.
 3124                  */
 3125                 do {
 3126                         opte = *(u_int *)pte;
 3127                         npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
 3128                         npte |= pmap_cache_bits(mode, 0);
 3129                 } while (npte != opte &&
 3130                     !atomic_cmpset_int((u_int *)pte, opte, npte));
 3131                 tmpva += PAGE_SIZE;
 3132                 size -= PAGE_SIZE;
 3133         }
 3134 
 3135         /*
 3136          * Flush CPU caches to make sure any data isn't cached that shouldn't
 3137          * be, etc.
 3138          */    
 3139         pmap_invalidate_range(kernel_pmap, base, tmpva);
 3140         pmap_invalidate_cache();
 3141         return (0);
 3142 }
 3143 
 3144 /*
 3145  * perform the pmap work for mincore
 3146  */
 3147 int
 3148 pmap_mincore(pmap, addr)
 3149         pmap_t pmap;
 3150         vm_offset_t addr;
 3151 {
 3152         pt_entry_t *ptep, pte;
 3153         vm_page_t m;
 3154         int val = 0;
 3155         
 3156         PMAP_LOCK(pmap);
 3157         ptep = pmap_pte(pmap, addr);
 3158         pte = (ptep != NULL) ? *ptep : 0;
 3159         pmap_pte_release(ptep);
 3160         PMAP_UNLOCK(pmap);
 3161 
 3162         if (pte != 0) {
 3163                 vm_paddr_t pa;
 3164 
 3165                 val = MINCORE_INCORE;
 3166                 if ((pte & PG_MANAGED) == 0)
 3167                         return val;
 3168 
 3169                 pa = pte & PG_FRAME;
 3170 
 3171                 m = PHYS_TO_VM_PAGE(pa);
 3172 
 3173                 /*
 3174                  * Modified by us
 3175                  */
 3176                 if (pte & PG_M)
 3177                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 3178                 else {
 3179                         /*
 3180                          * Modified by someone else
 3181                          */
 3182                         vm_page_lock_queues();
 3183                         if (m->dirty || pmap_is_modified(m))
 3184                                 val |= MINCORE_MODIFIED_OTHER;
 3185                         vm_page_unlock_queues();
 3186                 }
 3187                 /*
 3188                  * Referenced by us
 3189                  */
 3190                 if (pte & PG_A)
 3191                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 3192                 else {
 3193                         /*
 3194                          * Referenced by someone else
 3195                          */
 3196                         vm_page_lock_queues();
 3197                         if ((m->flags & PG_REFERENCED) ||
 3198                             pmap_ts_referenced(m)) {
 3199                                 val |= MINCORE_REFERENCED_OTHER;
 3200                                 vm_page_flag_set(m, PG_REFERENCED);
 3201                         }
 3202                         vm_page_unlock_queues();
 3203                 }
 3204         } 
 3205         return val;
 3206 }
 3207 
 3208 void
 3209 pmap_activate(struct thread *td)
 3210 {
 3211         pmap_t  pmap, oldpmap;
 3212         u_int32_t  cr3;
 3213 
 3214         critical_enter();
 3215         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 3216         oldpmap = PCPU_GET(curpmap);
 3217 #if defined(SMP)
 3218         atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
 3219         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 3220 #else
 3221         oldpmap->pm_active &= ~1;
 3222         pmap->pm_active |= 1;
 3223 #endif
 3224 #ifdef PAE
 3225         cr3 = vtophys(pmap->pm_pdpt);
 3226 #else
 3227         cr3 = vtophys(pmap->pm_pdir);
 3228 #endif
 3229         /*
 3230          * pmap_activate is for the current thread on the current cpu
 3231          */
 3232         td->td_pcb->pcb_cr3 = cr3;
 3233         load_cr3(cr3);
 3234         PCPU_SET(curpmap, pmap);
 3235         critical_exit();
 3236 }
 3237 
 3238 vm_offset_t
 3239 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 3240 {
 3241 
 3242         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 3243                 return addr;
 3244         }
 3245 
 3246         addr = (addr + PDRMASK) & ~PDRMASK;
 3247         return addr;
 3248 }
 3249 
 3250 
 3251 #if defined(PMAP_DEBUG)
 3252 pmap_pid_dump(int pid)
 3253 {
 3254         pmap_t pmap;
 3255         struct proc *p;
 3256         int npte = 0;
 3257         int index;
 3258 
 3259         sx_slock(&allproc_lock);
 3260         FOREACH_PROC_IN_SYSTEM(p) {
 3261                 if (p->p_pid != pid)
 3262                         continue;
 3263 
 3264                 if (p->p_vmspace) {
 3265                         int i,j;
 3266                         index = 0;
 3267                         pmap = vmspace_pmap(p->p_vmspace);
 3268                         for (i = 0; i < NPDEPTD; i++) {
 3269                                 pd_entry_t *pde;
 3270                                 pt_entry_t *pte;
 3271                                 vm_offset_t base = i << PDRSHIFT;
 3272                                 
 3273                                 pde = &pmap->pm_pdir[i];
 3274                                 if (pde && pmap_pde_v(pde)) {
 3275                                         for (j = 0; j < NPTEPG; j++) {
 3276                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 3277                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 3278                                                         if (index) {
 3279                                                                 index = 0;
 3280                                                                 printf("\n");
 3281                                                         }
 3282                                                         sx_sunlock(&allproc_lock);
 3283                                                         return npte;
 3284                                                 }
 3285                                                 pte = pmap_pte(pmap, va);
 3286                                                 if (pte && pmap_pte_v(pte)) {
 3287                                                         pt_entry_t pa;
 3288                                                         vm_page_t m;
 3289                                                         pa = *pte;
 3290                                                         m = PHYS_TO_VM_PAGE(pa);
 3291                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 3292                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 3293                                                         npte++;
 3294                                                         index++;
 3295                                                         if (index >= 2) {
 3296                                                                 index = 0;
 3297                                                                 printf("\n");
 3298                                                         } else {
 3299                                                                 printf(" ");
 3300                                                         }
 3301                                                 }
 3302                                         }
 3303                                 }
 3304                         }
 3305                 }
 3306         }
 3307         sx_sunlock(&allproc_lock);
 3308         return npte;
 3309 }
 3310 #endif
 3311 
 3312 #if defined(DEBUG)
 3313 
 3314 static void     pads(pmap_t pm);
 3315 void            pmap_pvdump(vm_offset_t pa);
 3316 
 3317 /* print address space of pmap*/
 3318 static void
 3319 pads(pm)
 3320         pmap_t pm;
 3321 {
 3322         int i, j;
 3323         vm_paddr_t va;
 3324         pt_entry_t *ptep;
 3325 
 3326         if (pm == kernel_pmap)
 3327                 return;
 3328         for (i = 0; i < NPDEPTD; i++)
 3329                 if (pm->pm_pdir[i])
 3330                         for (j = 0; j < NPTEPG; j++) {
 3331                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 3332                                 if (pm == kernel_pmap && va < KERNBASE)
 3333                                         continue;
 3334                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 3335                                         continue;
 3336                                 ptep = pmap_pte(pm, va);
 3337                                 if (pmap_pte_v(ptep))
 3338                                         printf("%x:%x ", va, *ptep);
 3339                         };
 3340 
 3341 }
 3342 
 3343 void
 3344 pmap_pvdump(pa)
 3345         vm_paddr_t pa;
 3346 {
 3347         pv_entry_t pv;
 3348         vm_page_t m;
 3349 
 3350         printf("pa %x", pa);
 3351         m = PHYS_TO_VM_PAGE(pa);
 3352         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3353                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3354                 pads(pv->pv_pmap);
 3355         }
 3356         printf(" ");
 3357 }
 3358 #endif

Cache object: 13c32304debbabe85e0b1fc4ed12927d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.