The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/6.4/sys/i386/i386/pmap.c 183313 2008-09-23 18:33:36Z jhb $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_cpu.h"
  107 #include "opt_pmap.h"
  108 #include "opt_msgbuf.h"
  109 #include "opt_xbox.h"
  110 
  111 #include <sys/param.h>
  112 #include <sys/systm.h>
  113 #include <sys/kernel.h>
  114 #include <sys/lock.h>
  115 #include <sys/malloc.h>
  116 #include <sys/mman.h>
  117 #include <sys/msgbuf.h>
  118 #include <sys/mutex.h>
  119 #include <sys/proc.h>
  120 #include <sys/sx.h>
  121 #include <sys/vmmeter.h>
  122 #include <sys/sched.h>
  123 #include <sys/sysctl.h>
  124 #ifdef SMP
  125 #include <sys/smp.h>
  126 #endif
  127 
  128 #ifdef XBOX
  129 #include <machine/xbox.h>
  130 #endif
  131 
  132 #include <vm/vm.h>
  133 #include <vm/vm_param.h>
  134 #include <vm/vm_kern.h>
  135 #include <vm/vm_page.h>
  136 #include <vm/vm_map.h>
  137 #include <vm/vm_object.h>
  138 #include <vm/vm_extern.h>
  139 #include <vm/vm_pageout.h>
  140 #include <vm/vm_pager.h>
  141 #include <vm/uma.h>
  142 
  143 #include <machine/cpu.h>
  144 #include <machine/cputypes.h>
  145 #include <machine/md_var.h>
  146 #include <machine/pcb.h>
  147 #include <machine/specialreg.h>
  148 #ifdef SMP
  149 #include <machine/smp.h>
  150 #endif
  151 
  152 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  153 #define CPU_ENABLE_SSE
  154 #endif
  155 
  156 #ifndef PMAP_SHPGPERPROC
  157 #define PMAP_SHPGPERPROC 200
  158 #endif
  159 
  160 #if defined(DIAGNOSTIC)
  161 #define PMAP_DIAGNOSTIC
  162 #endif
  163 
  164 #if !defined(PMAP_DIAGNOSTIC)
  165 #define PMAP_INLINE __inline
  166 #else
  167 #define PMAP_INLINE
  168 #endif
  169 
  170 /*
  171  * Get PDEs and PTEs for user/kernel address space
  172  */
  173 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  174 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  175 
  176 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  177 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  178 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  179 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  180 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  181 
  182 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  183     atomic_clear_int((u_int *)(pte), PG_W))
  184 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  185 
  186 struct pmap kernel_pmap_store;
  187 LIST_HEAD(pmaplist, pmap);
  188 static struct pmaplist allpmaps;
  189 static struct mtx allpmaps_lock;
  190 
  191 vm_paddr_t avail_end;   /* PA of last available physical page */
  192 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  193 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  194 int pgeflag = 0;                /* PG_G or-in */
  195 int pseflag = 0;                /* PG_PS or-in */
  196 
  197 static int nkpt;
  198 vm_offset_t kernel_vm_end;
  199 extern u_int32_t KERNend;
  200 
  201 #ifdef PAE
  202 static uma_zone_t pdptzone;
  203 #endif
  204 
  205 /*
  206  * Data for the pv entry allocation mechanism
  207  */
  208 static uma_zone_t pvzone;
  209 static struct vm_object pvzone_obj;
  210 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  211 int pmap_pagedaemon_waken;
  212 
  213 /*
  214  * All those kernel PT submaps that BSD is so fond of
  215  */
  216 struct sysmaps {
  217         struct  mtx lock;
  218         pt_entry_t *CMAP1;
  219         pt_entry_t *CMAP2;
  220         caddr_t CADDR1;
  221         caddr_t CADDR2;
  222 };
  223 static struct sysmaps sysmaps_pcpu[MAXCPU];
  224 pt_entry_t *CMAP1 = 0;
  225 static pt_entry_t *CMAP3;
  226 caddr_t CADDR1 = 0, ptvmmap = 0;
  227 static caddr_t CADDR3;
  228 struct msgbuf *msgbufp = 0;
  229 
  230 /*
  231  * Crashdump maps.
  232  */
  233 static caddr_t crashdumpmap;
  234 
  235 static pt_entry_t *PMAP1 = 0, *PMAP2;
  236 static pt_entry_t *PADDR1 = 0, *PADDR2;
  237 #ifdef SMP
  238 static int PMAP1cpu;
  239 static int PMAP1changedcpu;
  240 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  241            &PMAP1changedcpu, 0,
  242            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  243 #endif
  244 static int PMAP1changed;
  245 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  246            &PMAP1changed, 0,
  247            "Number of times pmap_pte_quick changed PMAP1");
  248 static int PMAP1unchanged;
  249 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  250            &PMAP1unchanged, 0,
  251            "Number of times pmap_pte_quick didn't change PMAP1");
  252 static struct mtx PMAP2mutex;
  253 
  254 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  255 static pv_entry_t get_pv_entry(void);
  256 static void     pmap_clear_ptes(vm_page_t m, int bit);
  257 
  258 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  259     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  260 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  261     vm_page_t *free);
  262 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  263 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  264                                         vm_offset_t va);
  265 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  266 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  267     vm_page_t m);
  268 
  269 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  270 
  271 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  272 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
  273 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  274 static void pmap_pte_release(pt_entry_t *pte);
  275 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  276 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  277 #ifdef PAE
  278 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  279 #endif
  280 
  281 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  282 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  283 
  284 /*
  285  * If you get an error here, then you set KVA_PAGES wrong! See the
  286  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  287  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  288  */
  289 CTASSERT(KERNBASE % (1 << 24) == 0);
  290 
  291 /*
  292  * Move the kernel virtual free pointer to the next
  293  * 4MB.  This is used to help improve performance
  294  * by using a large (4MB) page for much of the kernel
  295  * (.text, .data, .bss)
  296  */
  297 static vm_offset_t
  298 pmap_kmem_choose(vm_offset_t addr)
  299 {
  300         vm_offset_t newaddr = addr;
  301 
  302 #ifndef DISABLE_PSE
  303         if (cpu_feature & CPUID_PSE)
  304                 newaddr = (addr + PDRMASK) & ~PDRMASK;
  305 #endif
  306         return newaddr;
  307 }
  308 
  309 /*
  310  *      Bootstrap the system enough to run with virtual memory.
  311  *
  312  *      On the i386 this is called after mapping has already been enabled
  313  *      and just syncs the pmap module with what has already been done.
  314  *      [We can't call it easily with mapping off since the kernel is not
  315  *      mapped with PA == VA, hence we would have to relocate every address
  316  *      from the linked base (virtual) address "KERNBASE" to the actual
  317  *      (physical) address starting relative to 0]
  318  */
  319 void
  320 pmap_bootstrap(firstaddr, loadaddr)
  321         vm_paddr_t firstaddr;
  322         vm_paddr_t loadaddr;
  323 {
  324         vm_offset_t va;
  325         pt_entry_t *pte, *unused;
  326         struct sysmaps *sysmaps;
  327         int i;
  328 
  329         /*
  330          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  331          * large. It should instead be correctly calculated in locore.s and
  332          * not based on 'first' (which is a physical address, not a virtual
  333          * address, for the start of unused physical memory). The kernel
  334          * page tables are NOT double mapped and thus should not be included
  335          * in this calculation.
  336          */
  337         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  338         virtual_avail = pmap_kmem_choose(virtual_avail);
  339 
  340         virtual_end = VM_MAX_KERNEL_ADDRESS;
  341 
  342         /*
  343          * Initialize the kernel pmap (which is statically allocated).
  344          */
  345         PMAP_LOCK_INIT(kernel_pmap);
  346         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  347 #ifdef PAE
  348         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  349 #endif
  350         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  351         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  352         LIST_INIT(&allpmaps);
  353         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  354         mtx_lock_spin(&allpmaps_lock);
  355         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  356         mtx_unlock_spin(&allpmaps_lock);
  357         nkpt = NKPT;
  358 
  359         /*
  360          * Reserve some special page table entries/VA space for temporary
  361          * mapping of pages.
  362          */
  363 #define SYSMAP(c, p, v, n)      \
  364         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  365 
  366         va = virtual_avail;
  367         pte = vtopte(va);
  368 
  369         /*
  370          * CMAP1/CMAP2 are used for zeroing and copying pages.
  371          * CMAP3 is used for the idle process page zeroing.
  372          */
  373         for (i = 0; i < MAXCPU; i++) {
  374                 sysmaps = &sysmaps_pcpu[i];
  375                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  376                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  377                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  378         }
  379         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  380         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  381         *CMAP3 = 0;
  382 
  383         /*
  384          * Crashdump maps.
  385          */
  386         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  387 
  388         /*
  389          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  390          */
  391         SYSMAP(caddr_t, unused, ptvmmap, 1)
  392 
  393         /*
  394          * msgbufp is used to map the system message buffer.
  395          */
  396         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
  397 
  398         /*
  399          * ptemap is used for pmap_pte_quick
  400          */
  401         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
  402         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
  403 
  404         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  405 
  406         virtual_avail = va;
  407 
  408         *CMAP1 = 0;
  409 
  410 #ifdef XBOX
  411         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  412          * an early stadium, we cannot yet neatly map video memory ... :-(
  413          * Better fixes are very welcome!
  414          */
  415         if (!arch_i386_is_xbox)
  416 #endif
  417         for (i = 0; i < NKPT; i++)
  418                 PTD[i] = 0;
  419 
  420         /* Initialize the PAT MSR if present. */
  421         pmap_init_pat();
  422 
  423         /* Turn on PG_G on kernel page(s) */
  424         pmap_set_pg();
  425 }
  426 
  427 /*
  428  * Setup the PAT MSR.
  429  */
  430 void
  431 pmap_init_pat(void)
  432 {
  433         uint64_t pat_msr;
  434 
  435         /* Bail if this CPU doesn't implement PAT. */
  436         if (!(cpu_feature & CPUID_PAT))
  437                 return;
  438 
  439 #ifdef PAT_WORKS
  440         /*
  441          * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
  442          * Program 4 and 5 as WP and WC.
  443          * Leave 6 and 7 as UC and UC-.
  444          */
  445         pat_msr = rdmsr(MSR_PAT);
  446         pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
  447         pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
  448             PAT_VALUE(5, PAT_WRITE_COMBINING);
  449 #else
  450         /*
  451          * Due to some Intel errata, we can only safely use the lower 4
  452          * PAT entries.  Thus, just replace PAT Index 2 with WC instead
  453          * of UC-.
  454          *
  455          *   Intel Pentium III Processor Specification Update
  456          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  457          * or Mode C Paging)
  458          *
  459          *   Intel Pentium IV  Processor Specification Update
  460          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  461          */
  462         pat_msr = rdmsr(MSR_PAT);
  463         pat_msr &= ~PAT_MASK(2);
  464         pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  465 #endif
  466         wrmsr(MSR_PAT, pat_msr);
  467 }
  468 
  469 /*
  470  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  471  */
  472 void
  473 pmap_set_pg(void)
  474 {
  475         pd_entry_t pdir;
  476         pt_entry_t *pte;
  477         vm_offset_t va, endva;
  478         int i; 
  479 
  480         if (pgeflag == 0)
  481                 return;
  482 
  483         i = KERNLOAD/NBPDR;
  484         endva = KERNBASE + KERNend;
  485 
  486         if (pseflag) {
  487                 va = KERNBASE + KERNLOAD;
  488                 while (va  < endva) {
  489                         pdir = kernel_pmap->pm_pdir[KPTDI+i];
  490                         pdir |= pgeflag;
  491                         kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
  492                         invltlb();      /* Play it safe, invltlb() every time */
  493                         i++;
  494                         va += NBPDR;
  495                 }
  496         } else {
  497                 va = (vm_offset_t)btext;
  498                 while (va < endva) {
  499                         pte = vtopte(va);
  500                         if (*pte)
  501                                 *pte |= pgeflag;
  502                         invltlb();      /* Play it safe, invltlb() every time */
  503                         va += PAGE_SIZE;
  504                 }
  505         }
  506 }
  507 
  508 /*
  509  * Initialize a vm_page's machine-dependent fields.
  510  */
  511 void
  512 pmap_page_init(vm_page_t m)
  513 {
  514 
  515         TAILQ_INIT(&m->md.pv_list);
  516         m->md.pv_list_count = 0;
  517 }
  518 
  519 #ifdef PAE
  520 
  521 static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
  522 
  523 static void *
  524 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  525 {
  526         *flags = UMA_SLAB_PRIV;
  527         return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
  528             1, 0));
  529 }
  530 #endif
  531 
  532 /*
  533  *      Initialize the pmap module.
  534  *      Called by vm_init, to initialize any structures that the pmap
  535  *      system needs to map virtual memory.
  536  */
  537 void
  538 pmap_init(void)
  539 {
  540         int shpgperproc = PMAP_SHPGPERPROC;
  541 
  542         /*
  543          * Initialize the address space (zone) for the pv entries.  Set a
  544          * high water mark so that the system can recover from excessive
  545          * numbers of pv entries.
  546          */
  547         pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 
  548             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
  549         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  550         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  551         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  552         pv_entry_high_water = 9 * (pv_entry_max / 10);
  553         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  554 
  555 #ifdef PAE
  556         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  557             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  558             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  559         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  560 #endif
  561 }
  562 
  563 void
  564 pmap_init2()
  565 {
  566 }
  567 
  568 
  569 /***************************************************
  570  * Low level helper routines.....
  571  ***************************************************/
  572 
  573 /*
  574  * Determine the appropriate bits to set in a PTE or PDE for a specified
  575  * caching mode.
  576  */
  577 static int
  578 pmap_cache_bits(int mode, boolean_t is_pde)
  579 {
  580         int pat_flag, pat_index, cache_bits;
  581 
  582         /* The PAT bit is different for PTE's and PDE's. */
  583         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  584 
  585         /* If we don't support PAT, map extended modes to older ones. */
  586         if (!(cpu_feature & CPUID_PAT)) {
  587                 switch (mode) {
  588                 case PAT_UNCACHEABLE:
  589                 case PAT_WRITE_THROUGH:
  590                 case PAT_WRITE_BACK:
  591                         break;
  592                 case PAT_UNCACHED:
  593                 case PAT_WRITE_COMBINING:
  594                 case PAT_WRITE_PROTECTED:
  595                         mode = PAT_UNCACHEABLE;
  596                         break;
  597                 }
  598         }
  599         
  600         /* Map the caching mode to a PAT index. */
  601         switch (mode) {
  602 #ifdef PAT_WORKS
  603         case PAT_UNCACHEABLE:
  604                 pat_index = 3;
  605                 break;
  606         case PAT_WRITE_THROUGH:
  607                 pat_index = 1;
  608                 break;
  609         case PAT_WRITE_BACK:
  610                 pat_index = 0;
  611                 break;
  612         case PAT_UNCACHED:
  613                 pat_index = 2;
  614                 break;
  615         case PAT_WRITE_COMBINING:
  616                 pat_index = 5;
  617                 break;
  618         case PAT_WRITE_PROTECTED:
  619                 pat_index = 4;
  620                 break;
  621 #else
  622         case PAT_UNCACHED:
  623         case PAT_UNCACHEABLE:
  624         case PAT_WRITE_PROTECTED:
  625                 pat_index = 3;
  626                 break;
  627         case PAT_WRITE_THROUGH:
  628                 pat_index = 1;
  629                 break;
  630         case PAT_WRITE_BACK:
  631                 pat_index = 0;
  632                 break;
  633         case PAT_WRITE_COMBINING:
  634                 pat_index = 2;
  635                 break;
  636 #endif
  637         default:
  638                 panic("Unknown caching mode %d\n", mode);
  639         }       
  640 
  641         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  642         cache_bits = 0;
  643         if (pat_index & 0x4)
  644                 cache_bits |= pat_flag;
  645         if (pat_index & 0x2)
  646                 cache_bits |= PG_NC_PCD;
  647         if (pat_index & 0x1)
  648                 cache_bits |= PG_NC_PWT;
  649         return (cache_bits);
  650 }
  651 #ifdef SMP
  652 /*
  653  * For SMP, these functions have to use the IPI mechanism for coherence.
  654  *
  655  * N.B.: Before calling any of the following TLB invalidation functions,
  656  * the calling processor must ensure that all stores updating a non-
  657  * kernel page table are globally performed.  Otherwise, another
  658  * processor could cache an old, pre-update entry without being
  659  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  660  * active on another processor after its pm_active field is checked by
  661  * one of the following functions but before a store updating the page
  662  * table is globally performed. (2) The pmap becomes active on another
  663  * processor before its pm_active field is checked but due to
  664  * speculative loads one of the following functions stills reads the
  665  * pmap as inactive on the other processor.
  666  * 
  667  * The kernel page table is exempt because its pm_active field is
  668  * immutable.  The kernel page table is always active on every
  669  * processor.
  670  */
  671 void
  672 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  673 {
  674         u_int cpumask;
  675         u_int other_cpus;
  676 
  677         sched_pin();
  678         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  679                 invlpg(va);
  680                 smp_invlpg(va);
  681         } else {
  682                 cpumask = PCPU_GET(cpumask);
  683                 other_cpus = PCPU_GET(other_cpus);
  684                 if (pmap->pm_active & cpumask)
  685                         invlpg(va);
  686                 if (pmap->pm_active & other_cpus)
  687                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  688         }
  689         sched_unpin();
  690 }
  691 
  692 void
  693 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  694 {
  695         u_int cpumask;
  696         u_int other_cpus;
  697         vm_offset_t addr;
  698 
  699         sched_pin();
  700         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  701                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  702                         invlpg(addr);
  703                 smp_invlpg_range(sva, eva);
  704         } else {
  705                 cpumask = PCPU_GET(cpumask);
  706                 other_cpus = PCPU_GET(other_cpus);
  707                 if (pmap->pm_active & cpumask)
  708                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  709                                 invlpg(addr);
  710                 if (pmap->pm_active & other_cpus)
  711                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  712                             sva, eva);
  713         }
  714         sched_unpin();
  715 }
  716 
  717 void
  718 pmap_invalidate_all(pmap_t pmap)
  719 {
  720         u_int cpumask;
  721         u_int other_cpus;
  722 
  723         sched_pin();
  724         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  725                 invltlb();
  726                 smp_invltlb();
  727         } else {
  728                 cpumask = PCPU_GET(cpumask);
  729                 other_cpus = PCPU_GET(other_cpus);
  730                 if (pmap->pm_active & cpumask)
  731                         invltlb();
  732                 if (pmap->pm_active & other_cpus)
  733                         smp_masked_invltlb(pmap->pm_active & other_cpus);
  734         }
  735         sched_unpin();
  736 }
  737 
  738 void
  739 pmap_invalidate_cache(void)
  740 {
  741 
  742         sched_pin();
  743         wbinvd();
  744         smp_cache_flush();
  745         sched_unpin();
  746 }
  747 #else /* !SMP */
  748 /*
  749  * Normal, non-SMP, 486+ invalidation functions.
  750  * We inline these within pmap.c for speed.
  751  */
  752 PMAP_INLINE void
  753 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  754 {
  755 
  756         if (pmap == kernel_pmap || pmap->pm_active)
  757                 invlpg(va);
  758 }
  759 
  760 PMAP_INLINE void
  761 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  762 {
  763         vm_offset_t addr;
  764 
  765         if (pmap == kernel_pmap || pmap->pm_active)
  766                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  767                         invlpg(addr);
  768 }
  769 
  770 PMAP_INLINE void
  771 pmap_invalidate_all(pmap_t pmap)
  772 {
  773 
  774         if (pmap == kernel_pmap || pmap->pm_active)
  775                 invltlb();
  776 }
  777 
  778 PMAP_INLINE void
  779 pmap_invalidate_cache(void)
  780 {
  781 
  782         wbinvd();
  783 }
  784 #endif /* !SMP */
  785 
  786 /*
  787  * Are we current address space or kernel?  N.B. We return FALSE when
  788  * a pmap's page table is in use because a kernel thread is borrowing
  789  * it.  The borrowed page table can change spontaneously, making any
  790  * dependence on its continued use subject to a race condition.
  791  */
  792 static __inline int
  793 pmap_is_current(pmap_t pmap)
  794 {
  795 
  796         return (pmap == kernel_pmap ||
  797                 (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
  798             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
  799 }
  800 
  801 /*
  802  * If the given pmap is not the current or kernel pmap, the returned pte must
  803  * be released by passing it to pmap_pte_release().
  804  */
  805 pt_entry_t *
  806 pmap_pte(pmap_t pmap, vm_offset_t va)
  807 {
  808         pd_entry_t newpf;
  809         pd_entry_t *pde;
  810 
  811         pde = pmap_pde(pmap, va);
  812         if (*pde & PG_PS)
  813                 return (pde);
  814         if (*pde != 0) {
  815                 /* are we current address space or kernel? */
  816                 if (pmap_is_current(pmap))
  817                         return (vtopte(va));
  818                 mtx_lock(&PMAP2mutex);
  819                 newpf = *pde & PG_FRAME;
  820                 if ((*PMAP2 & PG_FRAME) != newpf) {
  821                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
  822                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
  823                 }
  824                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
  825         }
  826         return (0);
  827 }
  828 
  829 /*
  830  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
  831  * being NULL.
  832  */
  833 static __inline void
  834 pmap_pte_release(pt_entry_t *pte)
  835 {
  836 
  837         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
  838                 mtx_unlock(&PMAP2mutex);
  839 }
  840 
  841 static __inline void
  842 invlcaddr(void *caddr)
  843 {
  844 
  845         invlpg((u_int)caddr);
  846 }
  847 
  848 /*
  849  * Super fast pmap_pte routine best used when scanning
  850  * the pv lists.  This eliminates many coarse-grained
  851  * invltlb calls.  Note that many of the pv list
  852  * scans are across different pmaps.  It is very wasteful
  853  * to do an entire invltlb for checking a single mapping.
  854  *
  855  * If the given pmap is not the current pmap, vm_page_queue_mtx
  856  * must be held and curthread pinned to a CPU.
  857  */
  858 static pt_entry_t *
  859 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
  860 {
  861         pd_entry_t newpf;
  862         pd_entry_t *pde;
  863 
  864         pde = pmap_pde(pmap, va);
  865         if (*pde & PG_PS)
  866                 return (pde);
  867         if (*pde != 0) {
  868                 /* are we current address space or kernel? */
  869                 if (pmap_is_current(pmap))
  870                         return (vtopte(va));
  871                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  872                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
  873                 newpf = *pde & PG_FRAME;
  874                 if ((*PMAP1 & PG_FRAME) != newpf) {
  875                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
  876 #ifdef SMP
  877                         PMAP1cpu = PCPU_GET(cpuid);
  878 #endif
  879                         invlcaddr(PADDR1);
  880                         PMAP1changed++;
  881                 } else
  882 #ifdef SMP
  883                 if (PMAP1cpu != PCPU_GET(cpuid)) {
  884                         PMAP1cpu = PCPU_GET(cpuid);
  885                         invlcaddr(PADDR1);
  886                         PMAP1changedcpu++;
  887                 } else
  888 #endif
  889                         PMAP1unchanged++;
  890                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
  891         }
  892         return (0);
  893 }
  894 
  895 /*
  896  *      Routine:        pmap_extract
  897  *      Function:
  898  *              Extract the physical page address associated
  899  *              with the given map/virtual_address pair.
  900  */
  901 vm_paddr_t 
  902 pmap_extract(pmap_t pmap, vm_offset_t va)
  903 {
  904         vm_paddr_t rtval;
  905         pt_entry_t *pte;
  906         pd_entry_t pde;
  907 
  908         rtval = 0;
  909         PMAP_LOCK(pmap);
  910         pde = pmap->pm_pdir[va >> PDRSHIFT];
  911         if (pde != 0) {
  912                 if ((pde & PG_PS) != 0) {
  913                         rtval = (pde & ~PDRMASK) | (va & PDRMASK);
  914                         PMAP_UNLOCK(pmap);
  915                         return rtval;
  916                 }
  917                 pte = pmap_pte(pmap, va);
  918                 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
  919                 pmap_pte_release(pte);
  920         }
  921         PMAP_UNLOCK(pmap);
  922         return (rtval);
  923 }
  924 
  925 /*
  926  *      Routine:        pmap_extract_and_hold
  927  *      Function:
  928  *              Atomically extract and hold the physical page
  929  *              with the given pmap and virtual address pair
  930  *              if that mapping permits the given protection.
  931  */
  932 vm_page_t
  933 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  934 {
  935         pd_entry_t pde;
  936         pt_entry_t pte;
  937         vm_page_t m;
  938 
  939         m = NULL;
  940         vm_page_lock_queues();
  941         PMAP_LOCK(pmap);
  942         pde = *pmap_pde(pmap, va);
  943         if (pde != 0) {
  944                 if (pde & PG_PS) {
  945                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
  946                                 m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
  947                                     (va & PDRMASK));
  948                                 vm_page_hold(m);
  949                         }
  950                 } else {
  951                         sched_pin();
  952                         pte = *pmap_pte_quick(pmap, va);
  953                         if (pte != 0 &&
  954                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
  955                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
  956                                 vm_page_hold(m);
  957                         }
  958                         sched_unpin();
  959                 }
  960         }
  961         vm_page_unlock_queues();
  962         PMAP_UNLOCK(pmap);
  963         return (m);
  964 }
  965 
  966 /***************************************************
  967  * Low level mapping routines.....
  968  ***************************************************/
  969 
  970 /*
  971  * Add a wired page to the kva.
  972  * Note: not SMP coherent.
  973  */
  974 PMAP_INLINE void 
  975 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  976 {
  977         pt_entry_t *pte;
  978 
  979         pte = vtopte(va);
  980         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
  981 }
  982 
  983 PMAP_INLINE void 
  984 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
  985 {
  986         pt_entry_t *pte;
  987 
  988         pte = vtopte(va);
  989         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
  990 }
  991 
  992 /*
  993  * Remove a page from the kernel pagetables.
  994  * Note: not SMP coherent.
  995  */
  996 PMAP_INLINE void
  997 pmap_kremove(vm_offset_t va)
  998 {
  999         pt_entry_t *pte;
 1000 
 1001         pte = vtopte(va);
 1002         pte_clear(pte);
 1003 }
 1004 
 1005 /*
 1006  *      Used to map a range of physical addresses into kernel
 1007  *      virtual address space.
 1008  *
 1009  *      The value passed in '*virt' is a suggested virtual address for
 1010  *      the mapping. Architectures which can support a direct-mapped
 1011  *      physical to virtual region can return the appropriate address
 1012  *      within that region, leaving '*virt' unchanged. Other
 1013  *      architectures should map the pages starting at '*virt' and
 1014  *      update '*virt' with the first usable address after the mapped
 1015  *      region.
 1016  */
 1017 vm_offset_t
 1018 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1019 {
 1020         vm_offset_t va, sva;
 1021 
 1022         va = sva = *virt;
 1023         while (start < end) {
 1024                 pmap_kenter(va, start);
 1025                 va += PAGE_SIZE;
 1026                 start += PAGE_SIZE;
 1027         }
 1028         pmap_invalidate_range(kernel_pmap, sva, va);
 1029         *virt = va;
 1030         return (sva);
 1031 }
 1032 
 1033 
 1034 /*
 1035  * Add a list of wired pages to the kva
 1036  * this routine is only used for temporary
 1037  * kernel mappings that do not need to have
 1038  * page modification or references recorded.
 1039  * Note that old mappings are simply written
 1040  * over.  The page *must* be wired.
 1041  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1042  */
 1043 void
 1044 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1045 {
 1046         pt_entry_t *endpte, oldpte, *pte;
 1047 
 1048         oldpte = 0;
 1049         pte = vtopte(sva);
 1050         endpte = pte + count;
 1051         while (pte < endpte) {
 1052                 oldpte |= *pte;
 1053                 pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
 1054                 pte++;
 1055                 ma++;
 1056         }
 1057         if ((oldpte & PG_V) != 0)
 1058                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1059                     PAGE_SIZE);
 1060 }
 1061 
 1062 /*
 1063  * This routine tears out page mappings from the
 1064  * kernel -- it is meant only for temporary mappings.
 1065  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1066  */
 1067 void
 1068 pmap_qremove(vm_offset_t sva, int count)
 1069 {
 1070         vm_offset_t va;
 1071 
 1072         va = sva;
 1073         while (count-- > 0) {
 1074                 pmap_kremove(va);
 1075                 va += PAGE_SIZE;
 1076         }
 1077         pmap_invalidate_range(kernel_pmap, sva, va);
 1078 }
 1079 
 1080 /***************************************************
 1081  * Page table page management routines.....
 1082  ***************************************************/
 1083 static PMAP_INLINE void
 1084 pmap_free_zero_pages(vm_page_t free)
 1085 {
 1086         vm_page_t m;
 1087 
 1088         while (free != NULL) {
 1089                 m = free;
 1090                 free = m->right;
 1091                 vm_page_free_zero(m);
 1092         }
 1093 }
 1094 
 1095 /*
 1096  * This routine unholds page table pages, and if the hold count
 1097  * drops to zero, then it decrements the wire count.
 1098  */
 1099 static PMAP_INLINE int
 1100 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1101 {
 1102 
 1103         --m->wire_count;
 1104         if (m->wire_count == 0)
 1105                 return _pmap_unwire_pte_hold(pmap, m, free);
 1106         else
 1107                 return 0;
 1108 }
 1109 
 1110 static int 
 1111 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1112 {
 1113         vm_offset_t pteva;
 1114 
 1115         /*
 1116          * unmap the page table page
 1117          */
 1118         pmap->pm_pdir[m->pindex] = 0;
 1119         --pmap->pm_stats.resident_count;
 1120 
 1121         /*
 1122          * This is a release store so that the ordinary store unmapping
 1123          * the page table page is globally performed before TLB shoot-
 1124          * down is begun.
 1125          */
 1126         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1127 
 1128         /*
 1129          * Do an invltlb to make the invalidated mapping
 1130          * take effect immediately.
 1131          */
 1132         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1133         pmap_invalidate_page(pmap, pteva);
 1134 
 1135         /* 
 1136          * Put page on a list so that it is released after
 1137          * *ALL* TLB shootdown is done
 1138          */
 1139         m->right = *free;
 1140         *free = m;
 1141 
 1142         return 1;
 1143 }
 1144 
 1145 /*
 1146  * After removing a page table entry, this routine is used to
 1147  * conditionally free the page, and manage the hold/wire counts.
 1148  */
 1149 static int
 1150 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1151 {
 1152         pd_entry_t ptepde;
 1153         vm_page_t mpte;
 1154 
 1155         if (va >= VM_MAXUSER_ADDRESS)
 1156                 return 0;
 1157         ptepde = *pmap_pde(pmap, va);
 1158         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1159         return pmap_unwire_pte_hold(pmap, mpte, free);
 1160 }
 1161 
 1162 void
 1163 pmap_pinit0(pmap)
 1164         struct pmap *pmap;
 1165 {
 1166 
 1167         PMAP_LOCK_INIT(pmap);
 1168         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1169 #ifdef PAE
 1170         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1171 #endif
 1172         pmap->pm_active = 0;
 1173         PCPU_SET(curpmap, pmap);
 1174         TAILQ_INIT(&pmap->pm_pvlist);
 1175         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1176         mtx_lock_spin(&allpmaps_lock);
 1177         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1178         mtx_unlock_spin(&allpmaps_lock);
 1179 }
 1180 
 1181 /*
 1182  * Initialize a preallocated and zeroed pmap structure,
 1183  * such as one in a vmspace structure.
 1184  */
 1185 void
 1186 pmap_pinit(pmap)
 1187         register struct pmap *pmap;
 1188 {
 1189         vm_page_t m, ptdpg[NPGPTD];
 1190         vm_paddr_t pa;
 1191         static int color;
 1192         int i;
 1193 
 1194         PMAP_LOCK_INIT(pmap);
 1195 
 1196         /*
 1197          * No need to allocate page table space yet but we do need a valid
 1198          * page directory table.
 1199          */
 1200         if (pmap->pm_pdir == NULL) {
 1201                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1202                     NBPTD);
 1203 #ifdef PAE
 1204                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1205                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1206                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1207                     ("pmap_pinit: pdpt misaligned"));
 1208                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1209                     ("pmap_pinit: pdpt above 4g"));
 1210 #endif
 1211         }
 1212 
 1213         /*
 1214          * allocate the page directory page(s)
 1215          */
 1216         for (i = 0; i < NPGPTD;) {
 1217                 m = vm_page_alloc(NULL, color++,
 1218                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1219                     VM_ALLOC_ZERO);
 1220                 if (m == NULL)
 1221                         VM_WAIT;
 1222                 else {
 1223                         ptdpg[i++] = m;
 1224                 }
 1225         }
 1226 
 1227         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1228 
 1229         for (i = 0; i < NPGPTD; i++) {
 1230                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1231                         bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
 1232         }
 1233 
 1234         mtx_lock_spin(&allpmaps_lock);
 1235         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1236         mtx_unlock_spin(&allpmaps_lock);
 1237         /* Wire in kernel global address entries. */
 1238         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1239 
 1240         /* install self-referential address mapping entry(s) */
 1241         for (i = 0; i < NPGPTD; i++) {
 1242                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1243                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1244 #ifdef PAE
 1245                 pmap->pm_pdpt[i] = pa | PG_V;
 1246 #endif
 1247         }
 1248 
 1249         pmap->pm_active = 0;
 1250         TAILQ_INIT(&pmap->pm_pvlist);
 1251         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1252 }
 1253 
 1254 /*
 1255  * this routine is called if the page table page is not
 1256  * mapped correctly.
 1257  */
 1258 static vm_page_t
 1259 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
 1260 {
 1261         vm_paddr_t ptepa;
 1262         vm_page_t m;
 1263 
 1264         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1265             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1266             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1267 
 1268         /*
 1269          * Allocate a page table page.
 1270          */
 1271         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1272             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1273                 if (flags & M_WAITOK) {
 1274                         PMAP_UNLOCK(pmap);
 1275                         vm_page_unlock_queues();
 1276                         VM_WAIT;
 1277                         vm_page_lock_queues();
 1278                         PMAP_LOCK(pmap);
 1279                 }
 1280 
 1281                 /*
 1282                  * Indicate the need to retry.  While waiting, the page table
 1283                  * page may have been allocated.
 1284                  */
 1285                 return (NULL);
 1286         }
 1287         if ((m->flags & PG_ZERO) == 0)
 1288                 pmap_zero_page(m);
 1289 
 1290         /*
 1291          * Map the pagetable page into the process address space, if
 1292          * it isn't already there.
 1293          */
 1294 
 1295         pmap->pm_stats.resident_count++;
 1296 
 1297         ptepa = VM_PAGE_TO_PHYS(m);
 1298         pmap->pm_pdir[ptepindex] =
 1299                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1300 
 1301         return m;
 1302 }
 1303 
 1304 static vm_page_t
 1305 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1306 {
 1307         unsigned ptepindex;
 1308         pd_entry_t ptepa;
 1309         vm_page_t m;
 1310 
 1311         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1312             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1313             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1314 
 1315         /*
 1316          * Calculate pagetable page index
 1317          */
 1318         ptepindex = va >> PDRSHIFT;
 1319 retry:
 1320         /*
 1321          * Get the page directory entry
 1322          */
 1323         ptepa = pmap->pm_pdir[ptepindex];
 1324 
 1325         /*
 1326          * This supports switching from a 4MB page to a
 1327          * normal 4K page.
 1328          */
 1329         if (ptepa & PG_PS) {
 1330                 pmap->pm_pdir[ptepindex] = 0;
 1331                 ptepa = 0;
 1332                 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1333                 pmap_invalidate_all(kernel_pmap);
 1334         }
 1335 
 1336         /*
 1337          * If the page table page is mapped, we just increment the
 1338          * hold count, and activate it.
 1339          */
 1340         if (ptepa) {
 1341                 m = PHYS_TO_VM_PAGE(ptepa);
 1342                 m->wire_count++;
 1343         } else {
 1344                 /*
 1345                  * Here if the pte page isn't mapped, or if it has
 1346                  * been deallocated. 
 1347                  */
 1348                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1349                 if (m == NULL && (flags & M_WAITOK))
 1350                         goto retry;
 1351         }
 1352         return (m);
 1353 }
 1354 
 1355 
 1356 /***************************************************
 1357 * Pmap allocation/deallocation routines.
 1358  ***************************************************/
 1359 
 1360 #ifdef SMP
 1361 /*
 1362  * Deal with a SMP shootdown of other users of the pmap that we are
 1363  * trying to dispose of.  This can be a bit hairy.
 1364  */
 1365 static u_int *lazymask;
 1366 static u_int lazyptd;
 1367 static volatile u_int lazywait;
 1368 
 1369 void pmap_lazyfix_action(void);
 1370 
 1371 void
 1372 pmap_lazyfix_action(void)
 1373 {
 1374         u_int mymask = PCPU_GET(cpumask);
 1375 
 1376         if (rcr3() == lazyptd)
 1377                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1378         atomic_clear_int(lazymask, mymask);
 1379         atomic_store_rel_int(&lazywait, 1);
 1380 }
 1381 
 1382 static void
 1383 pmap_lazyfix_self(u_int mymask)
 1384 {
 1385 
 1386         if (rcr3() == lazyptd)
 1387                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1388         atomic_clear_int(lazymask, mymask);
 1389 }
 1390 
 1391 
 1392 static void
 1393 pmap_lazyfix(pmap_t pmap)
 1394 {
 1395         u_int mymask;
 1396         u_int mask;
 1397         register u_int spins;
 1398 
 1399         while ((mask = pmap->pm_active) != 0) {
 1400                 spins = 50000000;
 1401                 mask = mask & -mask;    /* Find least significant set bit */
 1402                 mtx_lock_spin(&smp_ipi_mtx);
 1403 #ifdef PAE
 1404                 lazyptd = vtophys(pmap->pm_pdpt);
 1405 #else
 1406                 lazyptd = vtophys(pmap->pm_pdir);
 1407 #endif
 1408                 mymask = PCPU_GET(cpumask);
 1409                 if (mask == mymask) {
 1410                         lazymask = &pmap->pm_active;
 1411                         pmap_lazyfix_self(mymask);
 1412                 } else {
 1413                         atomic_store_rel_int((u_int *)&lazymask,
 1414                             (u_int)&pmap->pm_active);
 1415                         atomic_store_rel_int(&lazywait, 0);
 1416                         ipi_selected(mask, IPI_LAZYPMAP);
 1417                         while (lazywait == 0) {
 1418                                 ia32_pause();
 1419                                 if (--spins == 0)
 1420                                         break;
 1421                         }
 1422                 }
 1423                 mtx_unlock_spin(&smp_ipi_mtx);
 1424                 if (spins == 0)
 1425                         printf("pmap_lazyfix: spun for 50000000\n");
 1426         }
 1427 }
 1428 
 1429 #else   /* SMP */
 1430 
 1431 /*
 1432  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1433  * unlikely to have to even execute this code, including the fact
 1434  * that the cleanup is deferred until the parent does a wait(2), which
 1435  * means that another userland process has run.
 1436  */
 1437 static void
 1438 pmap_lazyfix(pmap_t pmap)
 1439 {
 1440         u_int cr3;
 1441 
 1442         cr3 = vtophys(pmap->pm_pdir);
 1443         if (cr3 == rcr3()) {
 1444                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1445                 pmap->pm_active &= ~(PCPU_GET(cpumask));
 1446         }
 1447 }
 1448 #endif  /* SMP */
 1449 
 1450 /*
 1451  * Release any resources held by the given physical map.
 1452  * Called when a pmap initialized by pmap_pinit is being released.
 1453  * Should only be called if the map contains no valid mappings.
 1454  */
 1455 void
 1456 pmap_release(pmap_t pmap)
 1457 {
 1458         vm_page_t m, ptdpg[NPGPTD];
 1459         int i;
 1460 
 1461         KASSERT(pmap->pm_stats.resident_count == 0,
 1462             ("pmap_release: pmap resident count %ld != 0",
 1463             pmap->pm_stats.resident_count));
 1464 
 1465         pmap_lazyfix(pmap);
 1466         mtx_lock_spin(&allpmaps_lock);
 1467         LIST_REMOVE(pmap, pm_list);
 1468         mtx_unlock_spin(&allpmaps_lock);
 1469 
 1470         for (i = 0; i < NPGPTD; i++)
 1471                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
 1472 
 1473         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 1474             sizeof(*pmap->pm_pdir));
 1475 
 1476         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1477 
 1478         vm_page_lock_queues();
 1479         for (i = 0; i < NPGPTD; i++) {
 1480                 m = ptdpg[i];
 1481 #ifdef PAE
 1482                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 1483                     ("pmap_release: got wrong ptd page"));
 1484 #endif
 1485                 m->wire_count--;
 1486                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1487                 vm_page_free_zero(m);
 1488         }
 1489         vm_page_unlock_queues();
 1490         PMAP_LOCK_DESTROY(pmap);
 1491 }
 1492 
 1493 static int
 1494 kvm_size(SYSCTL_HANDLER_ARGS)
 1495 {
 1496         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1497 
 1498         return sysctl_handle_long(oidp, &ksize, 0, req);
 1499 }
 1500 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1501     0, 0, kvm_size, "IU", "Size of KVM");
 1502 
 1503 static int
 1504 kvm_free(SYSCTL_HANDLER_ARGS)
 1505 {
 1506         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1507 
 1508         return sysctl_handle_long(oidp, &kfree, 0, req);
 1509 }
 1510 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1511     0, 0, kvm_free, "IU", "Amount of KVM free");
 1512 
 1513 /*
 1514  * grow the number of kernel page table entries, if needed
 1515  */
 1516 void
 1517 pmap_growkernel(vm_offset_t addr)
 1518 {
 1519         struct pmap *pmap;
 1520         vm_paddr_t ptppaddr;
 1521         vm_page_t nkpg;
 1522         pd_entry_t newpdir;
 1523         pt_entry_t *pde;
 1524 
 1525         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1526         if (kernel_vm_end == 0) {
 1527                 kernel_vm_end = KERNBASE;
 1528                 nkpt = 0;
 1529                 while (pdir_pde(PTD, kernel_vm_end)) {
 1530                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1531                         nkpt++;
 1532                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1533                                 kernel_vm_end = kernel_map->max_offset;
 1534                                 break;
 1535                         }
 1536                 }
 1537         }
 1538         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1539         if (addr - 1 >= kernel_map->max_offset)
 1540                 addr = kernel_map->max_offset;
 1541         while (kernel_vm_end < addr) {
 1542                 if (pdir_pde(PTD, kernel_vm_end)) {
 1543                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1544                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1545                                 kernel_vm_end = kernel_map->max_offset;
 1546                                 break;
 1547                         }
 1548                         continue;
 1549                 }
 1550 
 1551                 /*
 1552                  * This index is bogus, but out of the way
 1553                  */
 1554                 nkpg = vm_page_alloc(NULL, nkpt,
 1555                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1556                 if (!nkpg)
 1557                         panic("pmap_growkernel: no memory to grow kernel");
 1558 
 1559                 nkpt++;
 1560 
 1561                 pmap_zero_page(nkpg);
 1562                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1563                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1564                 pdir_pde(PTD, kernel_vm_end) = newpdir;
 1565 
 1566                 mtx_lock_spin(&allpmaps_lock);
 1567                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1568                         pde = pmap_pde(pmap, kernel_vm_end);
 1569                         pde_store(pde, newpdir);
 1570                 }
 1571                 mtx_unlock_spin(&allpmaps_lock);
 1572                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1573                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1574                         kernel_vm_end = kernel_map->max_offset;
 1575                         break;
 1576                 }
 1577         }
 1578 }
 1579 
 1580 
 1581 /***************************************************
 1582  * page management routines.
 1583  ***************************************************/
 1584 
 1585 /*
 1586  * free the pv_entry back to the free list
 1587  */
 1588 static PMAP_INLINE void
 1589 free_pv_entry(pv_entry_t pv)
 1590 {
 1591         pv_entry_count--;
 1592         uma_zfree(pvzone, pv);
 1593 }
 1594 
 1595 /*
 1596  * get a new pv_entry, allocating a block from the system
 1597  * when needed.
 1598  * the memory allocation is performed bypassing the malloc code
 1599  * because of the possibility of allocations at interrupt time.
 1600  */
 1601 static pv_entry_t
 1602 get_pv_entry(void)
 1603 {
 1604         pv_entry_count++;
 1605         if ((pv_entry_count > pv_entry_high_water) &&
 1606             (pmap_pagedaemon_waken == 0)) {
 1607                 pmap_pagedaemon_waken = 1;
 1608                 wakeup(&vm_pages_needed);
 1609         }
 1610         return uma_zalloc(pvzone, M_NOWAIT);
 1611 }
 1612 
 1613 
 1614 static void
 1615 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1616 {
 1617         pv_entry_t pv;
 1618 
 1619         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1620         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1621         if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
 1622                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 1623                         if (pmap == pv->pv_pmap && va == pv->pv_va) 
 1624                                 break;
 1625                 }
 1626         } else {
 1627                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1628                         if (va == pv->pv_va) 
 1629                                 break;
 1630                 }
 1631         }
 1632         KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
 1633         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1634         m->md.pv_list_count--;
 1635         if (TAILQ_EMPTY(&m->md.pv_list))
 1636                 vm_page_flag_clear(m, PG_WRITEABLE);
 1637         TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1638         free_pv_entry(pv);
 1639 }
 1640 
 1641 /*
 1642  * Create a pv entry for page at pa for
 1643  * (pmap, va).
 1644  */
 1645 static void
 1646 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1647 {
 1648         pv_entry_t pv;
 1649 
 1650         pv = get_pv_entry();
 1651         if (pv == NULL)
 1652                 panic("no pv entries: increase vm.pmap.shpgperproc");
 1653         pv->pv_va = va;
 1654         pv->pv_pmap = pmap;
 1655 
 1656         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1657         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1658         TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1659         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1660         m->md.pv_list_count++;
 1661 }
 1662 
 1663 /*
 1664  * Conditionally create a pv entry.
 1665  */
 1666 static boolean_t
 1667 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1668 {
 1669         pv_entry_t pv;
 1670 
 1671         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1672         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1673         if (pv_entry_count < pv_entry_high_water && 
 1674             (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
 1675                 pv_entry_count++;
 1676                 pv->pv_va = va;
 1677                 pv->pv_pmap = pmap;
 1678                 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1679                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1680                 m->md.pv_list_count++;
 1681                 return (TRUE);
 1682         } else
 1683                 return (FALSE);
 1684 }
 1685 
 1686 /*
 1687  * pmap_remove_pte: do the things to unmap a page in a process
 1688  */
 1689 static int
 1690 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 1691 {
 1692         pt_entry_t oldpte;
 1693         vm_page_t m;
 1694 
 1695         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1696         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1697         oldpte = pte_load_clear(ptq);
 1698         if (oldpte & PG_W)
 1699                 pmap->pm_stats.wired_count -= 1;
 1700         /*
 1701          * Machines that don't support invlpg, also don't support
 1702          * PG_G.
 1703          */
 1704         if (oldpte & PG_G)
 1705                 pmap_invalidate_page(kernel_pmap, va);
 1706         pmap->pm_stats.resident_count -= 1;
 1707         if (oldpte & PG_MANAGED) {
 1708                 m = PHYS_TO_VM_PAGE(oldpte);
 1709                 if (oldpte & PG_M) {
 1710                         KASSERT((oldpte & PG_RW),
 1711         ("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
 1712                             va, (uintmax_t)oldpte));
 1713                         vm_page_dirty(m);
 1714                 }
 1715                 if (oldpte & PG_A)
 1716                         vm_page_flag_set(m, PG_REFERENCED);
 1717                 pmap_remove_entry(pmap, m, va);
 1718         }
 1719         return (pmap_unuse_pt(pmap, va, free));
 1720 }
 1721 
 1722 /*
 1723  * Remove a single page from a process address space
 1724  */
 1725 static void
 1726 pmap_remove_page(pmap_t pmap, vm_offset_t va)
 1727 {
 1728         pt_entry_t *pte;
 1729         vm_page_t free = NULL;
 1730 
 1731         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1732         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1733         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1734         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 1735                 return;
 1736         pmap_remove_pte(pmap, pte, va, &free);
 1737         pmap_invalidate_page(pmap, va);
 1738         pmap_free_zero_pages(free);
 1739 }
 1740 
 1741 /*
 1742  *      Remove the given range of addresses from the specified map.
 1743  *
 1744  *      It is assumed that the start and end are properly
 1745  *      rounded to the page size.
 1746  */
 1747 void
 1748 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1749 {
 1750         vm_offset_t pdnxt;
 1751         pd_entry_t ptpaddr;
 1752         pt_entry_t *pte;
 1753         vm_page_t free = NULL;
 1754         int anyvalid;
 1755 
 1756         /*
 1757          * Perform an unsynchronized read.  This is, however, safe.
 1758          */
 1759         if (pmap->pm_stats.resident_count == 0)
 1760                 return;
 1761 
 1762         anyvalid = 0;
 1763 
 1764         vm_page_lock_queues();
 1765         sched_pin();
 1766         PMAP_LOCK(pmap);
 1767 
 1768         /*
 1769          * special handling of removing one page.  a very
 1770          * common operation and easy to short circuit some
 1771          * code.
 1772          */
 1773         if ((sva + PAGE_SIZE == eva) && 
 1774             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 1775                 pmap_remove_page(pmap, sva);
 1776                 goto out;
 1777         }
 1778 
 1779         for (; sva < eva; sva = pdnxt) {
 1780                 unsigned pdirindex;
 1781 
 1782                 /*
 1783                  * Calculate index for next page table.
 1784                  */
 1785                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1786                 if (pmap->pm_stats.resident_count == 0)
 1787                         break;
 1788 
 1789                 pdirindex = sva >> PDRSHIFT;
 1790                 ptpaddr = pmap->pm_pdir[pdirindex];
 1791 
 1792                 /*
 1793                  * Weed out invalid mappings. Note: we assume that the page
 1794                  * directory table is always allocated, and in kernel virtual.
 1795                  */
 1796                 if (ptpaddr == 0)
 1797                         continue;
 1798 
 1799                 /*
 1800                  * Check for large page.
 1801                  */
 1802                 if ((ptpaddr & PG_PS) != 0) {
 1803                         pmap->pm_pdir[pdirindex] = 0;
 1804                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1805                         anyvalid = 1;
 1806                         continue;
 1807                 }
 1808 
 1809                 /*
 1810                  * Limit our scan to either the end of the va represented
 1811                  * by the current page table page, or to the end of the
 1812                  * range being removed.
 1813                  */
 1814                 if (pdnxt > eva)
 1815                         pdnxt = eva;
 1816 
 1817                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 1818                     sva += PAGE_SIZE) {
 1819                         if (*pte == 0)
 1820                                 continue;
 1821 
 1822                         /*
 1823                          * The TLB entry for a PG_G mapping is invalidated
 1824                          * by pmap_remove_pte().
 1825                          */
 1826                         if ((*pte & PG_G) == 0)
 1827                                 anyvalid = 1;
 1828                         if (pmap_remove_pte(pmap, pte, sva, &free))
 1829                                 break;
 1830                 }
 1831         }
 1832 out:
 1833         sched_unpin();
 1834         if (anyvalid) {
 1835                 pmap_invalidate_all(pmap);
 1836                 pmap_free_zero_pages(free);
 1837         }
 1838         vm_page_unlock_queues();
 1839         PMAP_UNLOCK(pmap);
 1840 }
 1841 
 1842 /*
 1843  *      Routine:        pmap_remove_all
 1844  *      Function:
 1845  *              Removes this physical page from
 1846  *              all physical maps in which it resides.
 1847  *              Reflects back modify bits to the pager.
 1848  *
 1849  *      Notes:
 1850  *              Original versions of this routine were very
 1851  *              inefficient because they iteratively called
 1852  *              pmap_remove (slow...)
 1853  */
 1854 
 1855 void
 1856 pmap_remove_all(vm_page_t m)
 1857 {
 1858         register pv_entry_t pv;
 1859         pt_entry_t *pte, tpte;
 1860         vm_page_t free;
 1861 
 1862 #if defined(PMAP_DIAGNOSTIC)
 1863         /*
 1864          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 1865          */
 1866         if (m->flags & PG_FICTITIOUS) {
 1867                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
 1868                     VM_PAGE_TO_PHYS(m));
 1869         }
 1870 #endif
 1871         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1872         sched_pin();
 1873         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1874                 PMAP_LOCK(pv->pv_pmap);
 1875                 pv->pv_pmap->pm_stats.resident_count--;
 1876                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 1877                 tpte = pte_load_clear(pte);
 1878                 if (tpte & PG_W)
 1879                         pv->pv_pmap->pm_stats.wired_count--;
 1880                 if (tpte & PG_A)
 1881                         vm_page_flag_set(m, PG_REFERENCED);
 1882 
 1883                 /*
 1884                  * Update the vm_page_t clean and reference bits.
 1885                  */
 1886                 if (tpte & PG_M) {
 1887                         KASSERT((tpte & PG_RW),
 1888         ("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
 1889                             pv->pv_va, (uintmax_t)tpte));
 1890                         vm_page_dirty(m);
 1891                 }
 1892                 free = NULL;
 1893                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, &free);
 1894                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 1895                 pmap_free_zero_pages(free);
 1896                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1897                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1898                 m->md.pv_list_count--;
 1899                 PMAP_UNLOCK(pv->pv_pmap);
 1900                 free_pv_entry(pv);
 1901         }
 1902         vm_page_flag_clear(m, PG_WRITEABLE);
 1903         sched_unpin();
 1904 }
 1905 
 1906 /*
 1907  *      Set the physical protection on the
 1908  *      specified range of this map as requested.
 1909  */
 1910 void
 1911 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1912 {
 1913         vm_offset_t pdnxt;
 1914         pd_entry_t ptpaddr;
 1915         pt_entry_t *pte;
 1916         int anychanged;
 1917 
 1918         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1919                 pmap_remove(pmap, sva, eva);
 1920                 return;
 1921         }
 1922 
 1923         if (prot & VM_PROT_WRITE)
 1924                 return;
 1925 
 1926         anychanged = 0;
 1927 
 1928         vm_page_lock_queues();
 1929         sched_pin();
 1930         PMAP_LOCK(pmap);
 1931         for (; sva < eva; sva = pdnxt) {
 1932                 unsigned obits, pbits, pdirindex;
 1933 
 1934                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1935 
 1936                 pdirindex = sva >> PDRSHIFT;
 1937                 ptpaddr = pmap->pm_pdir[pdirindex];
 1938 
 1939                 /*
 1940                  * Weed out invalid mappings. Note: we assume that the page
 1941                  * directory table is always allocated, and in kernel virtual.
 1942                  */
 1943                 if (ptpaddr == 0)
 1944                         continue;
 1945 
 1946                 /*
 1947                  * Check for large page.
 1948                  */
 1949                 if ((ptpaddr & PG_PS) != 0) {
 1950                         pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 1951                         anychanged = 1;
 1952                         continue;
 1953                 }
 1954 
 1955                 if (pdnxt > eva)
 1956                         pdnxt = eva;
 1957 
 1958                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 1959                     sva += PAGE_SIZE) {
 1960                         vm_page_t m;
 1961 
 1962 retry:
 1963                         /*
 1964                          * Regardless of whether a pte is 32 or 64 bits in
 1965                          * size, PG_RW, PG_A, and PG_M are among the least
 1966                          * significant 32 bits.
 1967                          */
 1968                         obits = pbits = *(u_int *)pte;
 1969                         if (pbits & PG_MANAGED) {
 1970                                 m = NULL;
 1971                                 if (pbits & PG_A) {
 1972                                         m = PHYS_TO_VM_PAGE(*pte);
 1973                                         vm_page_flag_set(m, PG_REFERENCED);
 1974                                         pbits &= ~PG_A;
 1975                                 }
 1976                                 if ((pbits & PG_M) != 0) {
 1977                                         if (m == NULL)
 1978                                                 m = PHYS_TO_VM_PAGE(*pte);
 1979                                         vm_page_dirty(m);
 1980                                 }
 1981                         }
 1982 
 1983                         pbits &= ~(PG_RW | PG_M);
 1984 
 1985                         if (pbits != obits) {
 1986                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 1987                                     pbits))
 1988                                         goto retry;
 1989                                 if (obits & PG_G)
 1990                                         pmap_invalidate_page(pmap, sva);
 1991                                 else
 1992                                         anychanged = 1;
 1993                         }
 1994                 }
 1995         }
 1996         sched_unpin();
 1997         if (anychanged)
 1998                 pmap_invalidate_all(pmap);
 1999         vm_page_unlock_queues();
 2000         PMAP_UNLOCK(pmap);
 2001 }
 2002 
 2003 /*
 2004  *      Insert the given physical page (p) at
 2005  *      the specified virtual address (v) in the
 2006  *      target physical map with the protection requested.
 2007  *
 2008  *      If specified, the page will be wired down, meaning
 2009  *      that the related pte can not be reclaimed.
 2010  *
 2011  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2012  *      or lose information.  That is, this routine must actually
 2013  *      insert this page into the given map NOW.
 2014  */
 2015 void
 2016 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2017            boolean_t wired)
 2018 {
 2019         vm_paddr_t pa;
 2020         pd_entry_t *pde;
 2021         register pt_entry_t *pte;
 2022         vm_paddr_t opa;
 2023         pt_entry_t origpte, newpte;
 2024         vm_page_t mpte, om;
 2025         boolean_t invlva;
 2026 
 2027         va &= PG_FRAME;
 2028 #ifdef PMAP_DIAGNOSTIC
 2029         if (va > VM_MAX_KERNEL_ADDRESS)
 2030                 panic("pmap_enter: toobig");
 2031         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 2032                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 2033 #endif
 2034 
 2035         mpte = NULL;
 2036 
 2037         vm_page_lock_queues();
 2038         PMAP_LOCK(pmap);
 2039         sched_pin();
 2040 
 2041         /*
 2042          * In the case that a page table page is not
 2043          * resident, we are creating it here.
 2044          */
 2045         if (va < VM_MAXUSER_ADDRESS) {
 2046                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 2047         }
 2048 #if 0 && defined(PMAP_DIAGNOSTIC)
 2049         else {
 2050                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 2051                 origpte = *pdeaddr;
 2052                 if ((origpte & PG_V) == 0) { 
 2053                         panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
 2054                                 pmap->pm_pdir[PTDPTDI], origpte, va);
 2055                 }
 2056         }
 2057 #endif
 2058 
 2059         pde = pmap_pde(pmap, va);
 2060         if ((*pde & PG_PS) != 0)
 2061                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2062         pte = pmap_pte_quick(pmap, va);
 2063 
 2064         /*
 2065          * Page Directory table entry not valid, we need a new PT page
 2066          */
 2067         if (pte == NULL) {
 2068                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
 2069                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 2070         }
 2071 
 2072         pa = VM_PAGE_TO_PHYS(m);
 2073         om = NULL;
 2074         origpte = *pte;
 2075         opa = origpte & PG_FRAME;
 2076 
 2077         /*
 2078          * Mapping has not changed, must be protection or wiring change.
 2079          */
 2080         if (origpte && (opa == pa)) {
 2081                 /*
 2082                  * Wiring change, just update stats. We don't worry about
 2083                  * wiring PT pages as they remain resident as long as there
 2084                  * are valid mappings in them. Hence, if a user page is wired,
 2085                  * the PT page will be also.
 2086                  */
 2087                 if (wired && ((origpte & PG_W) == 0))
 2088                         pmap->pm_stats.wired_count++;
 2089                 else if (!wired && (origpte & PG_W))
 2090                         pmap->pm_stats.wired_count--;
 2091 
 2092                 /*
 2093                  * Remove extra pte reference
 2094                  */
 2095                 if (mpte)
 2096                         mpte->wire_count--;
 2097 
 2098                 /*
 2099                  * We might be turning off write access to the page,
 2100                  * so we go ahead and sense modify status.
 2101                  */
 2102                 if (origpte & PG_MANAGED) {
 2103                         om = m;
 2104                         pa |= PG_MANAGED;
 2105                 }
 2106                 goto validate;
 2107         } 
 2108         /*
 2109          * Mapping has changed, invalidate old range and fall through to
 2110          * handle validating new mapping.
 2111          */
 2112         if (opa) {
 2113                 if (origpte & PG_W)
 2114                         pmap->pm_stats.wired_count--;
 2115                 if (origpte & PG_MANAGED) {
 2116                         om = PHYS_TO_VM_PAGE(opa);
 2117                         pmap_remove_entry(pmap, om, va);
 2118                 }
 2119                 if (mpte != NULL) {
 2120                         mpte->wire_count--;
 2121                         KASSERT(mpte->wire_count > 0,
 2122                             ("pmap_enter: missing reference to page table page,"
 2123                              " va: 0x%x", va));
 2124                 }
 2125         } else
 2126                 pmap->pm_stats.resident_count++;
 2127 
 2128         /*
 2129          * Enter on the PV list if part of our managed memory.
 2130          */
 2131         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 2132                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 2133                     ("pmap_enter: managed mapping within the clean submap"));
 2134                 pmap_insert_entry(pmap, va, m);
 2135                 pa |= PG_MANAGED;
 2136         }
 2137 
 2138         /*
 2139          * Increment counters
 2140          */
 2141         if (wired)
 2142                 pmap->pm_stats.wired_count++;
 2143 
 2144 validate:
 2145         /*
 2146          * Now validate mapping with desired protection/wiring.
 2147          */
 2148         newpte = (pt_entry_t)(pa | PG_V);
 2149         if ((prot & VM_PROT_WRITE) != 0)
 2150                 newpte |= PG_RW;
 2151         if (wired)
 2152                 newpte |= PG_W;
 2153         if (va < VM_MAXUSER_ADDRESS)
 2154                 newpte |= PG_U;
 2155         if (pmap == kernel_pmap)
 2156                 newpte |= pgeflag;
 2157 
 2158         /*
 2159          * if the mapping or permission bits are different, we need
 2160          * to update the pte.
 2161          */
 2162         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2163                 if (origpte & PG_V) {
 2164                         invlva = FALSE;
 2165                         origpte = pte_load_store(pte, newpte | PG_A);
 2166                         if (origpte & PG_A) {
 2167                                 if (origpte & PG_MANAGED)
 2168                                         vm_page_flag_set(om, PG_REFERENCED);
 2169                                 if (opa != VM_PAGE_TO_PHYS(m))
 2170                                         invlva = TRUE;
 2171                         }
 2172                         if (origpte & PG_M) {
 2173                                 KASSERT((origpte & PG_RW),
 2174         ("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
 2175                                     va, (uintmax_t)origpte));
 2176                                 if ((origpte & PG_MANAGED) != 0)
 2177                                         vm_page_dirty(om);
 2178                                 if ((prot & VM_PROT_WRITE) == 0)
 2179                                         invlva = TRUE;
 2180                         }
 2181                         if (invlva)
 2182                                 pmap_invalidate_page(pmap, va);
 2183                 } else
 2184                         pte_store(pte, newpte | PG_A);
 2185         }
 2186         sched_unpin();
 2187         vm_page_unlock_queues();
 2188         PMAP_UNLOCK(pmap);
 2189 }
 2190 
 2191 /*
 2192  * Maps a sequence of resident pages belonging to the same object.
 2193  * The sequence begins with the given page m_start.  This page is
 2194  * mapped at the given virtual address start.  Each subsequent page is
 2195  * mapped at a virtual address that is offset from start by the same
 2196  * amount as the page is offset from m_start within the object.  The
 2197  * last page in the sequence is the page with the largest offset from
 2198  * m_start that can be mapped at a virtual address less than the given
 2199  * virtual address end.  Not every virtual page between start and end
 2200  * is mapped; only those for which a resident page exists with the
 2201  * corresponding offset from m_start are mapped.
 2202  */
 2203 void
 2204 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2205     vm_page_t m_start, vm_prot_t prot)
 2206 {
 2207         vm_page_t m, mpte;
 2208         vm_pindex_t diff, psize;
 2209 
 2210         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2211         psize = atop(end - start);
 2212         mpte = NULL;
 2213         m = m_start;
 2214         PMAP_LOCK(pmap);
 2215         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2216                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2217                     prot, mpte);
 2218                 m = TAILQ_NEXT(m, listq);
 2219         }
 2220         PMAP_UNLOCK(pmap);
 2221 }
 2222 
 2223 /*
 2224  * this code makes some *MAJOR* assumptions:
 2225  * 1. Current pmap & pmap exists.
 2226  * 2. Not wired.
 2227  * 3. Read access.
 2228  * 4. No page table pages.
 2229  * but is *MUCH* faster than pmap_enter...
 2230  */
 2231 
 2232 void
 2233 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2234 {
 2235 
 2236         PMAP_LOCK(pmap);
 2237         (void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2238         PMAP_UNLOCK(pmap);
 2239 }
 2240 
 2241 static vm_page_t
 2242 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2243     vm_prot_t prot, vm_page_t mpte)
 2244 {
 2245         pt_entry_t *pte;
 2246         vm_paddr_t pa;
 2247         vm_page_t free;
 2248 
 2249         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2250             (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
 2251             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2252         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2253         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2254 
 2255         /*
 2256          * In the case that a page table page is not
 2257          * resident, we are creating it here.
 2258          */
 2259         if (va < VM_MAXUSER_ADDRESS) {
 2260                 unsigned ptepindex;
 2261                 pd_entry_t ptepa;
 2262 
 2263                 /*
 2264                  * Calculate pagetable page index
 2265                  */
 2266                 ptepindex = va >> PDRSHIFT;
 2267                 if (mpte && (mpte->pindex == ptepindex)) {
 2268                         mpte->wire_count++;
 2269                 } else {
 2270                         /*
 2271                          * Get the page directory entry
 2272                          */
 2273                         ptepa = pmap->pm_pdir[ptepindex];
 2274 
 2275                         /*
 2276                          * If the page table page is mapped, we just increment
 2277                          * the hold count, and activate it.
 2278                          */
 2279                         if (ptepa) {
 2280                                 if (ptepa & PG_PS)
 2281                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2282                                 mpte = PHYS_TO_VM_PAGE(ptepa);
 2283                                 mpte->wire_count++;
 2284                         } else {
 2285                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2286                                     M_NOWAIT);
 2287                                 if (mpte == NULL)
 2288                                         return (mpte);
 2289                         }
 2290                 }
 2291         } else {
 2292                 mpte = NULL;
 2293         }
 2294 
 2295         /*
 2296          * This call to vtopte makes the assumption that we are
 2297          * entering the page into the current pmap.  In order to support
 2298          * quick entry into any pmap, one would likely use pmap_pte_quick.
 2299          * But that isn't as quick as vtopte.
 2300          */
 2301         pte = vtopte(va);
 2302         if (*pte) {
 2303                 if (mpte != NULL) {
 2304                         mpte->wire_count--;
 2305                         mpte = NULL;
 2306                 }
 2307                 return (mpte);
 2308         }
 2309 
 2310         /*
 2311          * Enter on the PV list if part of our managed memory.
 2312          */
 2313         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
 2314             !pmap_try_insert_pv_entry(pmap, va, m)) {
 2315                 if (mpte != NULL) {
 2316                         free = NULL;
 2317                         if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
 2318                                 pmap_invalidate_page(pmap, va);
 2319                                 pmap_free_zero_pages(free);
 2320                         }
 2321                         
 2322                         mpte = NULL;
 2323                 }
 2324                 return (mpte);
 2325         }
 2326 
 2327         /*
 2328          * Increment counters
 2329          */
 2330         pmap->pm_stats.resident_count++;
 2331 
 2332         pa = VM_PAGE_TO_PHYS(m);
 2333 
 2334         /*
 2335          * Now validate mapping with RO protection
 2336          */
 2337         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 2338                 pte_store(pte, pa | PG_V | PG_U);
 2339         else
 2340                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 2341         return mpte;
 2342 }
 2343 
 2344 /*
 2345  * Make a temporary mapping for a physical address.  This is only intended
 2346  * to be used for panic dumps.
 2347  */
 2348 void *
 2349 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2350 {
 2351         vm_offset_t va;
 2352 
 2353         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 2354         pmap_kenter(va, pa);
 2355         invlpg(va);
 2356         return ((void *)crashdumpmap);
 2357 }
 2358 
 2359 /*
 2360  * This code maps large physical mmap regions into the
 2361  * processor address space.  Note that some shortcuts
 2362  * are taken, but the code works.
 2363  */
 2364 void
 2365 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2366                     vm_object_t object, vm_pindex_t pindex,
 2367                     vm_size_t size)
 2368 {
 2369         vm_page_t p;
 2370 
 2371         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2372         KASSERT(object->type == OBJT_DEVICE,
 2373             ("pmap_object_init_pt: non-device object"));
 2374         if (pseflag && 
 2375             ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 2376                 int i;
 2377                 vm_page_t m[1];
 2378                 unsigned int ptepindex;
 2379                 int npdes;
 2380                 pd_entry_t ptepa;
 2381 
 2382                 PMAP_LOCK(pmap);
 2383                 if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
 2384                         goto out;
 2385                 PMAP_UNLOCK(pmap);
 2386 retry:
 2387                 p = vm_page_lookup(object, pindex);
 2388                 if (p != NULL) {
 2389                         vm_page_lock_queues();
 2390                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 2391                                 goto retry;
 2392                 } else {
 2393                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2394                         if (p == NULL)
 2395                                 return;
 2396                         m[0] = p;
 2397 
 2398                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2399                                 vm_page_lock_queues();
 2400                                 vm_page_free(p);
 2401                                 vm_page_unlock_queues();
 2402                                 return;
 2403                         }
 2404 
 2405                         p = vm_page_lookup(object, pindex);
 2406                         vm_page_lock_queues();
 2407                         vm_page_wakeup(p);
 2408                 }
 2409                 vm_page_unlock_queues();
 2410 
 2411                 ptepa = VM_PAGE_TO_PHYS(p);
 2412                 if (ptepa & (NBPDR - 1))
 2413                         return;
 2414 
 2415                 p->valid = VM_PAGE_BITS_ALL;
 2416 
 2417                 PMAP_LOCK(pmap);
 2418                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2419                 npdes = size >> PDRSHIFT;
 2420                 for(i = 0; i < npdes; i++) {
 2421                         pde_store(&pmap->pm_pdir[ptepindex],
 2422                             ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2423                         ptepa += NBPDR;
 2424                         ptepindex += 1;
 2425                 }
 2426                 pmap_invalidate_all(pmap);
 2427 out:
 2428                 PMAP_UNLOCK(pmap);
 2429         }
 2430 }
 2431 
 2432 /*
 2433  *      Routine:        pmap_change_wiring
 2434  *      Function:       Change the wiring attribute for a map/virtual-address
 2435  *                      pair.
 2436  *      In/out conditions:
 2437  *                      The mapping must already exist in the pmap.
 2438  */
 2439 void
 2440 pmap_change_wiring(pmap, va, wired)
 2441         register pmap_t pmap;
 2442         vm_offset_t va;
 2443         boolean_t wired;
 2444 {
 2445         register pt_entry_t *pte;
 2446 
 2447         PMAP_LOCK(pmap);
 2448         pte = pmap_pte(pmap, va);
 2449 
 2450         if (wired && !pmap_pte_w(pte))
 2451                 pmap->pm_stats.wired_count++;
 2452         else if (!wired && pmap_pte_w(pte))
 2453                 pmap->pm_stats.wired_count--;
 2454 
 2455         /*
 2456          * Wiring is not a hardware characteristic so there is no need to
 2457          * invalidate TLB.
 2458          */
 2459         pmap_pte_set_w(pte, wired);
 2460         pmap_pte_release(pte);
 2461         PMAP_UNLOCK(pmap);
 2462 }
 2463 
 2464 
 2465 
 2466 /*
 2467  *      Copy the range specified by src_addr/len
 2468  *      from the source map to the range dst_addr/len
 2469  *      in the destination map.
 2470  *
 2471  *      This routine is only advisory and need not do anything.
 2472  */
 2473 
 2474 void
 2475 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 2476           vm_offset_t src_addr)
 2477 {
 2478         vm_page_t   free;
 2479         vm_offset_t addr;
 2480         vm_offset_t end_addr = src_addr + len;
 2481         vm_offset_t pdnxt;
 2482 
 2483         if (dst_addr != src_addr)
 2484                 return;
 2485 
 2486         if (!pmap_is_current(src_pmap))
 2487                 return;
 2488 
 2489         vm_page_lock_queues();
 2490         if (dst_pmap < src_pmap) {
 2491                 PMAP_LOCK(dst_pmap);
 2492                 PMAP_LOCK(src_pmap);
 2493         } else {
 2494                 PMAP_LOCK(src_pmap);
 2495                 PMAP_LOCK(dst_pmap);
 2496         }
 2497         sched_pin();
 2498         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 2499                 pt_entry_t *src_pte, *dst_pte;
 2500                 vm_page_t dstmpte, srcmpte;
 2501                 pd_entry_t srcptepaddr;
 2502                 unsigned ptepindex;
 2503 
 2504                 if (addr >= UPT_MIN_ADDRESS)
 2505                         panic("pmap_copy: invalid to pmap_copy page tables");
 2506 
 2507                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 2508                 ptepindex = addr >> PDRSHIFT;
 2509 
 2510                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 2511                 if (srcptepaddr == 0)
 2512                         continue;
 2513                         
 2514                 if (srcptepaddr & PG_PS) {
 2515                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 2516                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 2517                                     ~PG_W;
 2518                                 dst_pmap->pm_stats.resident_count +=
 2519                                     NBPDR / PAGE_SIZE;
 2520                         }
 2521                         continue;
 2522                 }
 2523 
 2524                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
 2525                 if (srcmpte->wire_count == 0)
 2526                         panic("pmap_copy: source page table page is unused");
 2527 
 2528                 if (pdnxt > end_addr)
 2529                         pdnxt = end_addr;
 2530 
 2531                 src_pte = vtopte(addr);
 2532                 while (addr < pdnxt) {
 2533                         pt_entry_t ptetemp;
 2534                         ptetemp = *src_pte;
 2535                         /*
 2536                          * we only virtual copy managed pages
 2537                          */
 2538                         if ((ptetemp & PG_MANAGED) != 0) {
 2539                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 2540                                     M_NOWAIT);
 2541                                 if (dstmpte == NULL)
 2542                                         break;
 2543                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 2544                                 if (*dst_pte == 0 &&
 2545                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 2546                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 2547                                         /*
 2548                                          * Clear the wired, modified, and
 2549                                          * accessed (referenced) bits
 2550                                          * during the copy.
 2551                                          */
 2552                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 2553                                             PG_A);
 2554                                         dst_pmap->pm_stats.resident_count++;
 2555                                 } else {
 2556                                         free = NULL;
 2557                                         if (pmap_unwire_pte_hold( dst_pmap,
 2558                                             dstmpte, &free)) {
 2559                                                 pmap_invalidate_page(dst_pmap,
 2560                                                     addr);
 2561                                                 pmap_free_zero_pages(free);
 2562                                         }
 2563                                 }
 2564                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 2565                                         break;
 2566                         }
 2567                         addr += PAGE_SIZE;
 2568                         src_pte++;
 2569                 }
 2570         }
 2571         sched_unpin();
 2572         vm_page_unlock_queues();
 2573         PMAP_UNLOCK(src_pmap);
 2574         PMAP_UNLOCK(dst_pmap);
 2575 }       
 2576 
 2577 static __inline void
 2578 pagezero(void *page)
 2579 {
 2580 #if defined(I686_CPU)
 2581         if (cpu_class == CPUCLASS_686) {
 2582 #if defined(CPU_ENABLE_SSE)
 2583                 if (cpu_feature & CPUID_SSE2)
 2584                         sse2_pagezero(page);
 2585                 else
 2586 #endif
 2587                         i686_pagezero(page);
 2588         } else
 2589 #endif
 2590                 bzero(page, PAGE_SIZE);
 2591 }
 2592 
 2593 /*
 2594  *      pmap_zero_page zeros the specified hardware page by mapping 
 2595  *      the page into KVM and using bzero to clear its contents.
 2596  */
 2597 void
 2598 pmap_zero_page(vm_page_t m)
 2599 {
 2600         struct sysmaps *sysmaps;
 2601 
 2602         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2603         mtx_lock(&sysmaps->lock);
 2604         if (*sysmaps->CMAP2)
 2605                 panic("pmap_zero_page: CMAP2 busy");
 2606         sched_pin();
 2607         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2608         invlcaddr(sysmaps->CADDR2);
 2609         pagezero(sysmaps->CADDR2);
 2610         *sysmaps->CMAP2 = 0;
 2611         sched_unpin();
 2612         mtx_unlock(&sysmaps->lock);
 2613 }
 2614 
 2615 /*
 2616  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 2617  *      the page into KVM and using bzero to clear its contents.
 2618  *
 2619  *      off and size may not cover an area beyond a single hardware page.
 2620  */
 2621 void
 2622 pmap_zero_page_area(vm_page_t m, int off, int size)
 2623 {
 2624         struct sysmaps *sysmaps;
 2625 
 2626         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2627         mtx_lock(&sysmaps->lock);
 2628         if (*sysmaps->CMAP2)
 2629                 panic("pmap_zero_page: CMAP2 busy");
 2630         sched_pin();
 2631         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2632         invlcaddr(sysmaps->CADDR2);
 2633         if (off == 0 && size == PAGE_SIZE) 
 2634                 pagezero(sysmaps->CADDR2);
 2635         else
 2636                 bzero((char *)sysmaps->CADDR2 + off, size);
 2637         *sysmaps->CMAP2 = 0;
 2638         sched_unpin();
 2639         mtx_unlock(&sysmaps->lock);
 2640 }
 2641 
 2642 /*
 2643  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 2644  *      the page into KVM and using bzero to clear its contents.  This
 2645  *      is intended to be called from the vm_pagezero process only and
 2646  *      outside of Giant.
 2647  */
 2648 void
 2649 pmap_zero_page_idle(vm_page_t m)
 2650 {
 2651 
 2652         if (*CMAP3)
 2653                 panic("pmap_zero_page: CMAP3 busy");
 2654         sched_pin();
 2655         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2656         invlcaddr(CADDR3);
 2657         pagezero(CADDR3);
 2658         *CMAP3 = 0;
 2659         sched_unpin();
 2660 }
 2661 
 2662 /*
 2663  *      pmap_copy_page copies the specified (machine independent)
 2664  *      page by mapping the page into virtual memory and using
 2665  *      bcopy to copy the page, one machine dependent page at a
 2666  *      time.
 2667  */
 2668 void
 2669 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2670 {
 2671         struct sysmaps *sysmaps;
 2672 
 2673         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2674         mtx_lock(&sysmaps->lock);
 2675         if (*sysmaps->CMAP1)
 2676                 panic("pmap_copy_page: CMAP1 busy");
 2677         if (*sysmaps->CMAP2)
 2678                 panic("pmap_copy_page: CMAP2 busy");
 2679         sched_pin();
 2680         invlpg((u_int)sysmaps->CADDR1);
 2681         invlpg((u_int)sysmaps->CADDR2);
 2682         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
 2683         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
 2684         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 2685         *sysmaps->CMAP1 = 0;
 2686         *sysmaps->CMAP2 = 0;
 2687         sched_unpin();
 2688         mtx_unlock(&sysmaps->lock);
 2689 }
 2690 
 2691 /*
 2692  * Returns true if the pmap's pv is one of the first
 2693  * 16 pvs linked to from this page.  This count may
 2694  * be changed upwards or downwards in the future; it
 2695  * is only necessary that true be returned for a small
 2696  * subset of pmaps for proper page aging.
 2697  */
 2698 boolean_t
 2699 pmap_page_exists_quick(pmap, m)
 2700         pmap_t pmap;
 2701         vm_page_t m;
 2702 {
 2703         pv_entry_t pv;
 2704         int loops = 0;
 2705 
 2706         if (m->flags & PG_FICTITIOUS)
 2707                 return FALSE;
 2708 
 2709         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2710         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2711                 if (pv->pv_pmap == pmap) {
 2712                         return TRUE;
 2713                 }
 2714                 loops++;
 2715                 if (loops >= 16)
 2716                         break;
 2717         }
 2718         return (FALSE);
 2719 }
 2720 
 2721 #define PMAP_REMOVE_PAGES_CURPROC_ONLY
 2722 /*
 2723  * Remove all pages from specified address space
 2724  * this aids process exit speeds.  Also, this code
 2725  * is special cased for current process only, but
 2726  * can have the more generic (and slightly slower)
 2727  * mode enabled.  This is much faster than pmap_remove
 2728  * in the case of running down an entire address space.
 2729  */
 2730 void
 2731 pmap_remove_pages(pmap, sva, eva)
 2732         pmap_t pmap;
 2733         vm_offset_t sva, eva;
 2734 {
 2735         pt_entry_t *pte, tpte;
 2736         vm_page_t m, free = NULL;
 2737         pv_entry_t pv, npv;
 2738 
 2739 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2740         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2741                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2742                 return;
 2743         }
 2744 #endif
 2745         vm_page_lock_queues();
 2746         PMAP_LOCK(pmap);
 2747         sched_pin();
 2748         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
 2749 
 2750                 if (pv->pv_va >= eva || pv->pv_va < sva) {
 2751                         npv = TAILQ_NEXT(pv, pv_plist);
 2752                         continue;
 2753                 }
 2754 
 2755 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2756                 pte = vtopte(pv->pv_va);
 2757 #else
 2758                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2759 #endif
 2760                 tpte = *pte;
 2761 
 2762                 if (tpte == 0) {
 2763                         printf("TPTE at %p  IS ZERO @ VA %08x\n",
 2764                                                         pte, pv->pv_va);
 2765                         panic("bad pte");
 2766                 }
 2767 
 2768 /*
 2769  * We cannot remove wired pages from a process' mapping at this time
 2770  */
 2771                 if (tpte & PG_W) {
 2772                         npv = TAILQ_NEXT(pv, pv_plist);
 2773                         continue;
 2774                 }
 2775 
 2776                 m = PHYS_TO_VM_PAGE(tpte);
 2777                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 2778                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 2779                     m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
 2780 
 2781                 KASSERT(m < &vm_page_array[vm_page_array_size],
 2782                         ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 2783 
 2784                 pmap->pm_stats.resident_count--;
 2785 
 2786                 pte_clear(pte);
 2787 
 2788                 /*
 2789                  * Update the vm_page_t clean and reference bits.
 2790                  */
 2791                 if (tpte & PG_M) {
 2792                         vm_page_dirty(m);
 2793                 }
 2794 
 2795                 npv = TAILQ_NEXT(pv, pv_plist);
 2796                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 2797 
 2798                 m->md.pv_list_count--;
 2799                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2800                 if (TAILQ_EMPTY(&m->md.pv_list))
 2801                         vm_page_flag_clear(m, PG_WRITEABLE);
 2802 
 2803                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2804                 free_pv_entry(pv);
 2805         }
 2806         sched_unpin();
 2807         pmap_invalidate_all(pmap);
 2808         pmap_free_zero_pages(free);
 2809         vm_page_unlock_queues();
 2810         PMAP_UNLOCK(pmap);
 2811 }
 2812 
 2813 /*
 2814  *      pmap_is_modified:
 2815  *
 2816  *      Return whether or not the specified physical page was modified
 2817  *      in any physical maps.
 2818  */
 2819 boolean_t
 2820 pmap_is_modified(vm_page_t m)
 2821 {
 2822         pv_entry_t pv;
 2823         pt_entry_t *pte;
 2824         boolean_t rv;
 2825 
 2826         rv = FALSE;
 2827         if (m->flags & PG_FICTITIOUS)
 2828                 return (rv);
 2829 
 2830         sched_pin();
 2831         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2832         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2833                 PMAP_LOCK(pv->pv_pmap);
 2834                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2835                 rv = (*pte & PG_M) != 0;
 2836                 PMAP_UNLOCK(pv->pv_pmap);
 2837                 if (rv)
 2838                         break;
 2839         }
 2840         sched_unpin();
 2841         return (rv);
 2842 }
 2843 
 2844 /*
 2845  *      pmap_is_prefaultable:
 2846  *
 2847  *      Return whether or not the specified virtual address is elgible
 2848  *      for prefault.
 2849  */
 2850 boolean_t
 2851 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2852 {
 2853         pt_entry_t *pte;
 2854         boolean_t rv;
 2855 
 2856         rv = FALSE;
 2857         PMAP_LOCK(pmap);
 2858         if (*pmap_pde(pmap, addr)) {
 2859                 pte = vtopte(addr);
 2860                 rv = *pte == 0;
 2861         }
 2862         PMAP_UNLOCK(pmap);
 2863         return (rv);
 2864 }
 2865 
 2866 /*
 2867  *      Clear the given bit in each of the given page's ptes.  The bit is
 2868  *      expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
 2869  *      size, only a bit within the least significant 32 can be cleared.
 2870  */
 2871 static __inline void
 2872 pmap_clear_ptes(vm_page_t m, int bit)
 2873 {
 2874         register pv_entry_t pv;
 2875         pt_entry_t pbits, *pte;
 2876 
 2877         if ((m->flags & PG_FICTITIOUS) ||
 2878             (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
 2879                 return;
 2880 
 2881         sched_pin();
 2882         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2883         /*
 2884          * Loop over all current mappings setting/clearing as appropos If
 2885          * setting RO do we need to clear the VAC?
 2886          */
 2887         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2888                 PMAP_LOCK(pv->pv_pmap);
 2889                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2890 retry:
 2891                 pbits = *pte;
 2892                 if (pbits & bit) {
 2893                         if (bit == PG_RW) {
 2894                                 /*
 2895                                  * Regardless of whether a pte is 32 or 64 bits
 2896                                  * in size, PG_RW and PG_M are among the least
 2897                                  * significant 32 bits.
 2898                                  */
 2899                                 if (!atomic_cmpset_int((u_int *)pte, pbits,
 2900                                     pbits & ~(PG_RW | PG_M)))
 2901                                         goto retry;
 2902                                 if (pbits & PG_M) {
 2903                                         vm_page_dirty(m);
 2904                                 }
 2905                         } else {
 2906                                 atomic_clear_int((u_int *)pte, bit);
 2907                         }
 2908                         pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2909                 }
 2910                 PMAP_UNLOCK(pv->pv_pmap);
 2911         }
 2912         if (bit == PG_RW)
 2913                 vm_page_flag_clear(m, PG_WRITEABLE);
 2914         sched_unpin();
 2915 }
 2916 
 2917 /*
 2918  *      pmap_page_protect:
 2919  *
 2920  *      Lower the permission for all mappings to a given page.
 2921  */
 2922 void
 2923 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 2924 {
 2925         if ((prot & VM_PROT_WRITE) == 0) {
 2926                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
 2927                         pmap_clear_ptes(m, PG_RW);
 2928                 } else {
 2929                         pmap_remove_all(m);
 2930                 }
 2931         }
 2932 }
 2933 
 2934 /*
 2935  *      pmap_ts_referenced:
 2936  *
 2937  *      Return a count of reference bits for a page, clearing those bits.
 2938  *      It is not necessary for every reference bit to be cleared, but it
 2939  *      is necessary that 0 only be returned when there are truly no
 2940  *      reference bits set.
 2941  *
 2942  *      XXX: The exact number of bits to check and clear is a matter that
 2943  *      should be tested and standardized at some point in the future for
 2944  *      optimal aging of shared pages.
 2945  */
 2946 int
 2947 pmap_ts_referenced(vm_page_t m)
 2948 {
 2949         register pv_entry_t pv, pvf, pvn;
 2950         pt_entry_t *pte;
 2951         pt_entry_t v;
 2952         int rtval = 0;
 2953 
 2954         if (m->flags & PG_FICTITIOUS)
 2955                 return (rtval);
 2956 
 2957         sched_pin();
 2958         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2959         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2960 
 2961                 pvf = pv;
 2962 
 2963                 do {
 2964                         pvn = TAILQ_NEXT(pv, pv_list);
 2965 
 2966                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2967 
 2968                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2969 
 2970                         PMAP_LOCK(pv->pv_pmap);
 2971                         pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
 2972 
 2973                         if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
 2974                                 atomic_clear_int((u_int *)pte, PG_A);
 2975                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2976 
 2977                                 rtval++;
 2978                                 if (rtval > 4) {
 2979                                         PMAP_UNLOCK(pv->pv_pmap);
 2980                                         break;
 2981                                 }
 2982                         }
 2983                         PMAP_UNLOCK(pv->pv_pmap);
 2984                 } while ((pv = pvn) != NULL && pv != pvf);
 2985         }
 2986         sched_unpin();
 2987 
 2988         return (rtval);
 2989 }
 2990 
 2991 /*
 2992  *      Clear the modify bits on the specified physical page.
 2993  */
 2994 void
 2995 pmap_clear_modify(vm_page_t m)
 2996 {
 2997         pmap_clear_ptes(m, PG_M);
 2998 }
 2999 
 3000 /*
 3001  *      pmap_clear_reference:
 3002  *
 3003  *      Clear the reference bit on the specified physical page.
 3004  */
 3005 void
 3006 pmap_clear_reference(vm_page_t m)
 3007 {
 3008         pmap_clear_ptes(m, PG_A);
 3009 }
 3010 
 3011 /*
 3012  * Miscellaneous support routines follow
 3013  */
 3014 
 3015 /*
 3016  * Map a set of physical memory pages into the kernel virtual
 3017  * address space. Return a pointer to where it is mapped. This
 3018  * routine is intended to be used for mapping device memory,
 3019  * NOT real memory.
 3020  */
 3021 void *
 3022 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 3023 {
 3024         vm_offset_t va, tmpva, offset;
 3025 
 3026         offset = pa & PAGE_MASK;
 3027         size = roundup(offset + size, PAGE_SIZE);
 3028         pa = pa & PG_FRAME;
 3029 
 3030         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 3031                 va = KERNBASE + pa;
 3032         else
 3033                 va = kmem_alloc_nofault(kernel_map, size);
 3034         if (!va)
 3035                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3036 
 3037         for (tmpva = va; size > 0; ) {
 3038                 pmap_kenter_attr(tmpva, pa, mode);
 3039                 size -= PAGE_SIZE;
 3040                 tmpva += PAGE_SIZE;
 3041                 pa += PAGE_SIZE;
 3042         }
 3043         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3044         pmap_invalidate_cache();
 3045         return ((void *)(va + offset));
 3046 }
 3047 
 3048 void *
 3049 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3050 {
 3051 
 3052         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 3053 }
 3054 
 3055 void *
 3056 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 3057 {
 3058 
 3059         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 3060 }
 3061 
 3062 void
 3063 pmap_unmapdev(va, size)
 3064         vm_offset_t va;
 3065         vm_size_t size;
 3066 {
 3067         vm_offset_t base, offset, tmpva;
 3068 
 3069         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 3070                 return;
 3071         base = va & PG_FRAME;
 3072         offset = va & PAGE_MASK;
 3073         size = roundup(offset + size, PAGE_SIZE);
 3074         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 3075                 pmap_kremove(tmpva);
 3076         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3077         kmem_free(kernel_map, base, size);
 3078 }
 3079 
 3080 int
 3081 pmap_change_attr(va, size, mode)
 3082         vm_offset_t va;
 3083         vm_size_t size;
 3084         int mode;
 3085 {
 3086         vm_offset_t base, offset, tmpva;
 3087         pt_entry_t *pte;
 3088         u_int opte, npte;
 3089         pd_entry_t *pde;
 3090 
 3091         base = va & PG_FRAME;
 3092         offset = va & PAGE_MASK;
 3093         size = roundup(offset + size, PAGE_SIZE);
 3094 
 3095         /* Only supported on kernel virtual addresses. */
 3096         if (base <= VM_MAXUSER_ADDRESS)
 3097                 return (EINVAL);
 3098 
 3099         /* 4MB pages and pages that aren't mapped aren't supported. */
 3100         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 3101                 pde = pmap_pde(kernel_pmap, tmpva);
 3102                 if (*pde & PG_PS)
 3103                         return (EINVAL);
 3104                 if (*pde == 0)
 3105                         return (EINVAL);
 3106                 pte = vtopte(va);
 3107                 if (*pte == 0)
 3108                         return (EINVAL);
 3109         }
 3110 
 3111         /*
 3112          * Ok, all the pages exist and are 4k, so run through them updating
 3113          * their cache mode.
 3114          */
 3115         for (tmpva = base; size > 0; ) {
 3116                 pte = vtopte(tmpva);
 3117 
 3118                 /*
 3119                  * The cache mode bits are all in the low 32-bits of the
 3120                  * PTE, so we can just spin on updating the low 32-bits.
 3121                  */
 3122                 do {
 3123                         opte = *(u_int *)pte;
 3124                         npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
 3125                         npte |= pmap_cache_bits(mode, 0);
 3126                 } while (npte != opte &&
 3127                     !atomic_cmpset_int((u_int *)pte, opte, npte));
 3128                 tmpva += PAGE_SIZE;
 3129                 size -= PAGE_SIZE;
 3130         }
 3131 
 3132         /*
 3133          * Flush CPU caches to make sure any data isn't cached that shouldn't
 3134          * be, etc.
 3135          */    
 3136         pmap_invalidate_range(kernel_pmap, base, tmpva);
 3137         pmap_invalidate_cache();
 3138         return (0);
 3139 }
 3140 
 3141 /*
 3142  * perform the pmap work for mincore
 3143  */
 3144 int
 3145 pmap_mincore(pmap, addr)
 3146         pmap_t pmap;
 3147         vm_offset_t addr;
 3148 {
 3149         pt_entry_t *ptep, pte;
 3150         vm_page_t m;
 3151         int val = 0;
 3152         
 3153         PMAP_LOCK(pmap);
 3154         ptep = pmap_pte(pmap, addr);
 3155         pte = (ptep != NULL) ? *ptep : 0;
 3156         pmap_pte_release(ptep);
 3157         PMAP_UNLOCK(pmap);
 3158 
 3159         if (pte != 0) {
 3160                 vm_paddr_t pa;
 3161 
 3162                 val = MINCORE_INCORE;
 3163                 if ((pte & PG_MANAGED) == 0)
 3164                         return val;
 3165 
 3166                 pa = pte & PG_FRAME;
 3167 
 3168                 m = PHYS_TO_VM_PAGE(pa);
 3169 
 3170                 /*
 3171                  * Modified by us
 3172                  */
 3173                 if (pte & PG_M)
 3174                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 3175                 else {
 3176                         /*
 3177                          * Modified by someone else
 3178                          */
 3179                         vm_page_lock_queues();
 3180                         if (m->dirty || pmap_is_modified(m))
 3181                                 val |= MINCORE_MODIFIED_OTHER;
 3182                         vm_page_unlock_queues();
 3183                 }
 3184                 /*
 3185                  * Referenced by us
 3186                  */
 3187                 if (pte & PG_A)
 3188                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 3189                 else {
 3190                         /*
 3191                          * Referenced by someone else
 3192                          */
 3193                         vm_page_lock_queues();
 3194                         if ((m->flags & PG_REFERENCED) ||
 3195                             pmap_ts_referenced(m)) {
 3196                                 val |= MINCORE_REFERENCED_OTHER;
 3197                                 vm_page_flag_set(m, PG_REFERENCED);
 3198                         }
 3199                         vm_page_unlock_queues();
 3200                 }
 3201         } 
 3202         return val;
 3203 }
 3204 
 3205 void
 3206 pmap_activate(struct thread *td)
 3207 {
 3208         pmap_t  pmap, oldpmap;
 3209         u_int32_t  cr3;
 3210 
 3211         critical_enter();
 3212         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 3213         oldpmap = PCPU_GET(curpmap);
 3214 #if defined(SMP)
 3215         atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
 3216         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 3217 #else
 3218         oldpmap->pm_active &= ~1;
 3219         pmap->pm_active |= 1;
 3220 #endif
 3221 #ifdef PAE
 3222         cr3 = vtophys(pmap->pm_pdpt);
 3223 #else
 3224         cr3 = vtophys(pmap->pm_pdir);
 3225 #endif
 3226         /*
 3227          * pmap_activate is for the current thread on the current cpu
 3228          */
 3229         td->td_pcb->pcb_cr3 = cr3;
 3230         load_cr3(cr3);
 3231         PCPU_SET(curpmap, pmap);
 3232         critical_exit();
 3233 }
 3234 
 3235 vm_offset_t
 3236 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 3237 {
 3238 
 3239         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 3240                 return addr;
 3241         }
 3242 
 3243         addr = (addr + PDRMASK) & ~PDRMASK;
 3244         return addr;
 3245 }
 3246 
 3247 
 3248 #if defined(PMAP_DEBUG)
 3249 pmap_pid_dump(int pid)
 3250 {
 3251         pmap_t pmap;
 3252         struct proc *p;
 3253         int npte = 0;
 3254         int index;
 3255 
 3256         sx_slock(&allproc_lock);
 3257         FOREACH_PROC_IN_SYSTEM(p) {
 3258                 if (p->p_pid != pid)
 3259                         continue;
 3260 
 3261                 if (p->p_vmspace) {
 3262                         int i,j;
 3263                         index = 0;
 3264                         pmap = vmspace_pmap(p->p_vmspace);
 3265                         for (i = 0; i < NPDEPTD; i++) {
 3266                                 pd_entry_t *pde;
 3267                                 pt_entry_t *pte;
 3268                                 vm_offset_t base = i << PDRSHIFT;
 3269                                 
 3270                                 pde = &pmap->pm_pdir[i];
 3271                                 if (pde && pmap_pde_v(pde)) {
 3272                                         for (j = 0; j < NPTEPG; j++) {
 3273                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 3274                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 3275                                                         if (index) {
 3276                                                                 index = 0;
 3277                                                                 printf("\n");
 3278                                                         }
 3279                                                         sx_sunlock(&allproc_lock);
 3280                                                         return npte;
 3281                                                 }
 3282                                                 pte = pmap_pte(pmap, va);
 3283                                                 if (pte && pmap_pte_v(pte)) {
 3284                                                         pt_entry_t pa;
 3285                                                         vm_page_t m;
 3286                                                         pa = *pte;
 3287                                                         m = PHYS_TO_VM_PAGE(pa);
 3288                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 3289                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 3290                                                         npte++;
 3291                                                         index++;
 3292                                                         if (index >= 2) {
 3293                                                                 index = 0;
 3294                                                                 printf("\n");
 3295                                                         } else {
 3296                                                                 printf(" ");
 3297                                                         }
 3298                                                 }
 3299                                         }
 3300                                 }
 3301                         }
 3302                 }
 3303         }
 3304         sx_sunlock(&allproc_lock);
 3305         return npte;
 3306 }
 3307 #endif
 3308 
 3309 #if defined(DEBUG)
 3310 
 3311 static void     pads(pmap_t pm);
 3312 void            pmap_pvdump(vm_offset_t pa);
 3313 
 3314 /* print address space of pmap*/
 3315 static void
 3316 pads(pm)
 3317         pmap_t pm;
 3318 {
 3319         int i, j;
 3320         vm_paddr_t va;
 3321         pt_entry_t *ptep;
 3322 
 3323         if (pm == kernel_pmap)
 3324                 return;
 3325         for (i = 0; i < NPDEPTD; i++)
 3326                 if (pm->pm_pdir[i])
 3327                         for (j = 0; j < NPTEPG; j++) {
 3328                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 3329                                 if (pm == kernel_pmap && va < KERNBASE)
 3330                                         continue;
 3331                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 3332                                         continue;
 3333                                 ptep = pmap_pte(pm, va);
 3334                                 if (pmap_pte_v(ptep))
 3335                                         printf("%x:%x ", va, *ptep);
 3336                         };
 3337 
 3338 }
 3339 
 3340 void
 3341 pmap_pvdump(pa)
 3342         vm_paddr_t pa;
 3343 {
 3344         pv_entry_t pv;
 3345         vm_page_t m;
 3346 
 3347         printf("pa %x", pa);
 3348         m = PHYS_TO_VM_PAGE(pa);
 3349         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3350                 printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
 3351                 pads(pv->pv_pmap);
 3352         }
 3353         printf(" ");
 3354 }
 3355 #endif

Cache object: cf450e24827cf2450d981f90e6e28449


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.