The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD$");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_cpu.h"
  107 #include "opt_pmap.h"
  108 #include "opt_msgbuf.h"
  109 #include "opt_smp.h"
  110 #include "opt_xbox.h"
  111 
  112 #include <sys/param.h>
  113 #include <sys/systm.h>
  114 #include <sys/kernel.h>
  115 #include <sys/lock.h>
  116 #include <sys/malloc.h>
  117 #include <sys/mman.h>
  118 #include <sys/msgbuf.h>
  119 #include <sys/mutex.h>
  120 #include <sys/proc.h>
  121 #include <sys/sx.h>
  122 #include <sys/vmmeter.h>
  123 #include <sys/sched.h>
  124 #include <sys/sysctl.h>
  125 #ifdef SMP
  126 #include <sys/smp.h>
  127 #endif
  128 
  129 #include <vm/vm.h>
  130 #include <vm/vm_param.h>
  131 #include <vm/vm_kern.h>
  132 #include <vm/vm_page.h>
  133 #include <vm/vm_map.h>
  134 #include <vm/vm_object.h>
  135 #include <vm/vm_extern.h>
  136 #include <vm/vm_pageout.h>
  137 #include <vm/vm_pager.h>
  138 #include <vm/uma.h>
  139 
  140 #include <machine/cpu.h>
  141 #include <machine/cputypes.h>
  142 #include <machine/md_var.h>
  143 #include <machine/pcb.h>
  144 #include <machine/specialreg.h>
  145 #ifdef SMP
  146 #include <machine/smp.h>
  147 #endif
  148 
  149 #ifdef XBOX
  150 #include <machine/xbox.h>
  151 #endif
  152 
  153 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  154 #define CPU_ENABLE_SSE
  155 #endif
  156 
  157 #ifndef PMAP_SHPGPERPROC
  158 #define PMAP_SHPGPERPROC 200
  159 #endif
  160 
  161 #if defined(DIAGNOSTIC)
  162 #define PMAP_DIAGNOSTIC
  163 #endif
  164 
  165 #if !defined(PMAP_DIAGNOSTIC)
  166 #define PMAP_INLINE     __gnu89_inline
  167 #else
  168 #define PMAP_INLINE
  169 #endif
  170 
  171 #define PV_STATS
  172 #ifdef PV_STATS
  173 #define PV_STAT(x)      do { x ; } while (0)
  174 #else
  175 #define PV_STAT(x)      do { } while (0)
  176 #endif
  177 
  178 /*
  179  * Get PDEs and PTEs for user/kernel address space
  180  */
  181 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  182 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  183 
  184 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  185 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  186 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  187 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  188 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  189 
  190 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  191     atomic_clear_int((u_int *)(pte), PG_W))
  192 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  193 
  194 struct pmap kernel_pmap_store;
  195 LIST_HEAD(pmaplist, pmap);
  196 static struct pmaplist allpmaps;
  197 static struct mtx allpmaps_lock;
  198 
  199 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  200 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  201 int pgeflag = 0;                /* PG_G or-in */
  202 int pseflag = 0;                /* PG_PS or-in */
  203 
  204 static int nkpt;
  205 vm_offset_t kernel_vm_end;
  206 extern u_int32_t KERNend;
  207 
  208 #ifdef PAE
  209 pt_entry_t pg_nx;
  210 static uma_zone_t pdptzone;
  211 #endif
  212 
  213 /*
  214  * Data for the pv entry allocation mechanism
  215  */
  216 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  217 static int shpgperproc = PMAP_SHPGPERPROC;
  218 
  219 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  220 int pv_maxchunks;                       /* How many chunks we have KVA for */
  221 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  222 
  223 /*
  224  * All those kernel PT submaps that BSD is so fond of
  225  */
  226 struct sysmaps {
  227         struct  mtx lock;
  228         pt_entry_t *CMAP1;
  229         pt_entry_t *CMAP2;
  230         caddr_t CADDR1;
  231         caddr_t CADDR2;
  232 };
  233 static struct sysmaps sysmaps_pcpu[MAXCPU];
  234 pt_entry_t *CMAP1 = 0;
  235 static pt_entry_t *CMAP3;
  236 caddr_t CADDR1 = 0, ptvmmap = 0;
  237 static caddr_t CADDR3;
  238 struct msgbuf *msgbufp = 0;
  239 
  240 /*
  241  * Crashdump maps.
  242  */
  243 static caddr_t crashdumpmap;
  244 
  245 static pt_entry_t *PMAP1 = 0, *PMAP2;
  246 static pt_entry_t *PADDR1 = 0, *PADDR2;
  247 #ifdef SMP
  248 static int PMAP1cpu;
  249 static int PMAP1changedcpu;
  250 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  251            &PMAP1changedcpu, 0,
  252            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  253 #endif
  254 static int PMAP1changed;
  255 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  256            &PMAP1changed, 0,
  257            "Number of times pmap_pte_quick changed PMAP1");
  258 static int PMAP1unchanged;
  259 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  260            &PMAP1unchanged, 0,
  261            "Number of times pmap_pte_quick didn't change PMAP1");
  262 static struct mtx PMAP2mutex;
  263 
  264 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  265 static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
  266 
  267 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  268     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  269 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  270     vm_page_t *free);
  271 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  272     vm_page_t *free);
  273 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  274                                         vm_offset_t va);
  275 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  276 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  277     vm_page_t m);
  278 
  279 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  280 
  281 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  282 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
  283 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  284 static void pmap_pte_release(pt_entry_t *pte);
  285 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  286 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  287 #ifdef PAE
  288 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  289 #endif
  290 
  291 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  292 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  293 
  294 /*
  295  * If you get an error here, then you set KVA_PAGES wrong! See the
  296  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  297  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  298  */
  299 CTASSERT(KERNBASE % (1 << 24) == 0);
  300 
  301 /*
  302  * Move the kernel virtual free pointer to the next
  303  * 4MB.  This is used to help improve performance
  304  * by using a large (4MB) page for much of the kernel
  305  * (.text, .data, .bss)
  306  */
  307 static vm_offset_t
  308 pmap_kmem_choose(vm_offset_t addr)
  309 {
  310         vm_offset_t newaddr = addr;
  311 
  312 #ifndef DISABLE_PSE
  313         if (cpu_feature & CPUID_PSE)
  314                 newaddr = (addr + PDRMASK) & ~PDRMASK;
  315 #endif
  316         return newaddr;
  317 }
  318 
  319 /*
  320  *      Bootstrap the system enough to run with virtual memory.
  321  *
  322  *      On the i386 this is called after mapping has already been enabled
  323  *      and just syncs the pmap module with what has already been done.
  324  *      [We can't call it easily with mapping off since the kernel is not
  325  *      mapped with PA == VA, hence we would have to relocate every address
  326  *      from the linked base (virtual) address "KERNBASE" to the actual
  327  *      (physical) address starting relative to 0]
  328  */
  329 void
  330 pmap_bootstrap(vm_paddr_t firstaddr)
  331 {
  332         vm_offset_t va;
  333         pt_entry_t *pte, *unused;
  334         struct sysmaps *sysmaps;
  335         int i;
  336 
  337         /*
  338          * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
  339          * large. It should instead be correctly calculated in locore.s and
  340          * not based on 'first' (which is a physical address, not a virtual
  341          * address, for the start of unused physical memory). The kernel
  342          * page tables are NOT double mapped and thus should not be included
  343          * in this calculation.
  344          */
  345         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  346         virtual_avail = pmap_kmem_choose(virtual_avail);
  347 
  348         virtual_end = VM_MAX_KERNEL_ADDRESS;
  349 
  350         /*
  351          * Initialize the kernel pmap (which is statically allocated).
  352          */
  353         PMAP_LOCK_INIT(kernel_pmap);
  354         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  355 #ifdef PAE
  356         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  357 #endif
  358         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  359         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  360         LIST_INIT(&allpmaps);
  361         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  362         mtx_lock_spin(&allpmaps_lock);
  363         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  364         mtx_unlock_spin(&allpmaps_lock);
  365         nkpt = NKPT;
  366 
  367         /*
  368          * Reserve some special page table entries/VA space for temporary
  369          * mapping of pages.
  370          */
  371 #define SYSMAP(c, p, v, n)      \
  372         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  373 
  374         va = virtual_avail;
  375         pte = vtopte(va);
  376 
  377         /*
  378          * CMAP1/CMAP2 are used for zeroing and copying pages.
  379          * CMAP3 is used for the idle process page zeroing.
  380          */
  381         for (i = 0; i < MAXCPU; i++) {
  382                 sysmaps = &sysmaps_pcpu[i];
  383                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  384                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  385                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  386         }
  387         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  388         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  389         *CMAP3 = 0;
  390 
  391         /*
  392          * Crashdump maps.
  393          */
  394         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  395 
  396         /*
  397          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  398          */
  399         SYSMAP(caddr_t, unused, ptvmmap, 1)
  400 
  401         /*
  402          * msgbufp is used to map the system message buffer.
  403          */
  404         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
  405 
  406         /*
  407          * ptemap is used for pmap_pte_quick
  408          */
  409         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
  410         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
  411 
  412         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  413 
  414         virtual_avail = va;
  415 
  416         *CMAP1 = 0;
  417 
  418         /*
  419          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  420          * physical memory region that is used by the ACPI wakeup code.  This
  421          * mapping must not have PG_G set. 
  422          */
  423 #ifdef XBOX
  424         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  425          * an early stadium, we cannot yet neatly map video memory ... :-(
  426          * Better fixes are very welcome! */
  427         if (!arch_i386_is_xbox)
  428 #endif
  429         for (i = 1; i < NKPT; i++)
  430                 PTD[i] = 0;
  431 
  432         /* Initialize the PAT MSR if present. */
  433         pmap_init_pat();
  434 
  435         /* Turn on PG_G on kernel page(s) */
  436         pmap_set_pg();
  437 }
  438 
  439 /*
  440  * Setup the PAT MSR.
  441  */
  442 void
  443 pmap_init_pat(void)
  444 {
  445         uint64_t pat_msr;
  446 
  447         /* Bail if this CPU doesn't implement PAT. */
  448         if (!(cpu_feature & CPUID_PAT))
  449                 return;
  450 
  451 #ifdef PAT_WORKS
  452         /*
  453          * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
  454          * Program 4 and 5 as WP and WC.
  455          * Leave 6 and 7 as UC and UC-.
  456          */
  457         pat_msr = rdmsr(MSR_PAT);
  458         pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
  459         pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
  460             PAT_VALUE(5, PAT_WRITE_COMBINING);
  461 #else
  462         /*
  463          * Due to some Intel errata, we can only safely use the lower 4
  464          * PAT entries.  Thus, just replace PAT Index 2 with WC instead
  465          * of UC-.
  466          *
  467          *   Intel Pentium III Processor Specification Update
  468          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  469          * or Mode C Paging)
  470          *
  471          *   Intel Pentium IV  Processor Specification Update
  472          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  473          */
  474         pat_msr = rdmsr(MSR_PAT);
  475         pat_msr &= ~PAT_MASK(2);
  476         pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  477 #endif
  478         wrmsr(MSR_PAT, pat_msr);
  479 }
  480 
  481 /*
  482  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  483  */
  484 void
  485 pmap_set_pg(void)
  486 {
  487         pd_entry_t pdir;
  488         pt_entry_t *pte;
  489         vm_offset_t va, endva;
  490         int i; 
  491 
  492         if (pgeflag == 0)
  493                 return;
  494 
  495         i = KERNLOAD/NBPDR;
  496         endva = KERNBASE + KERNend;
  497 
  498         if (pseflag) {
  499                 va = KERNBASE + KERNLOAD;
  500                 while (va  < endva) {
  501                         pdir = kernel_pmap->pm_pdir[KPTDI+i];
  502                         pdir |= pgeflag;
  503                         kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
  504                         invltlb();      /* Play it safe, invltlb() every time */
  505                         i++;
  506                         va += NBPDR;
  507                 }
  508         } else {
  509                 va = (vm_offset_t)btext;
  510                 while (va < endva) {
  511                         pte = vtopte(va);
  512                         if (*pte)
  513                                 *pte |= pgeflag;
  514                         invltlb();      /* Play it safe, invltlb() every time */
  515                         va += PAGE_SIZE;
  516                 }
  517         }
  518 }
  519 
  520 /*
  521  * Initialize a vm_page's machine-dependent fields.
  522  */
  523 void
  524 pmap_page_init(vm_page_t m)
  525 {
  526 
  527         TAILQ_INIT(&m->md.pv_list);
  528         m->md.pv_list_count = 0;
  529 }
  530 
  531 #ifdef PAE
  532 
  533 static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
  534 
  535 static void *
  536 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  537 {
  538 
  539         /* Inform UMA that this allocator uses kernel_map/object. */
  540         *flags = UMA_SLAB_KERNEL;
  541         return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
  542             1, 0));
  543 }
  544 #endif
  545 
  546 /*
  547  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  548  * Requirements:
  549  *  - Must deal with pages in order to ensure that none of the PG_* bits
  550  *    are ever set, PG_V in particular.
  551  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  552  *    on PAE systems.  This should be ok.
  553  *  - Assumes nothing will ever test these addresses for 0 to indicate
  554  *    no mapping instead of correctly checking PG_V.
  555  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  556  * Because PG_V is never set, there can be no mappings to invalidate.
  557  */
  558 static vm_offset_t
  559 pmap_ptelist_alloc(vm_offset_t *head)
  560 {
  561         pt_entry_t *pte;
  562         vm_offset_t va;
  563 
  564         va = *head;
  565         if (va == 0)
  566                 return (va);    /* Out of memory */
  567         pte = vtopte(va);
  568         *head = *pte;
  569         if (*head & PG_V)
  570                 panic("pmap_ptelist_alloc: va with PG_V set!");
  571         *pte = 0;
  572         return (va);
  573 }
  574 
  575 static void
  576 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  577 {
  578         pt_entry_t *pte;
  579 
  580         if (va & PG_V)
  581                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  582         pte = vtopte(va);
  583         *pte = *head;           /* virtual! PG_V is 0 though */
  584         *head = va;
  585 }
  586 
  587 static void
  588 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  589 {
  590         int i;
  591         vm_offset_t va;
  592 
  593         *head = 0;
  594         for (i = npages - 1; i >= 0; i--) {
  595                 va = (vm_offset_t)base + i * PAGE_SIZE;
  596                 pmap_ptelist_free(head, va);
  597         }
  598 }
  599 
  600 
  601 /*
  602  *      Initialize the pmap module.
  603  *      Called by vm_init, to initialize any structures that the pmap
  604  *      system needs to map virtual memory.
  605  */
  606 void
  607 pmap_init(void)
  608 {
  609 
  610         /*
  611          * Initialize the address space (zone) for the pv entries.  Set a
  612          * high water mark so that the system can recover from excessive
  613          * numbers of pv entries.
  614          */
  615         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  616         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  617         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  618         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  619         pv_entry_high_water = 9 * (pv_entry_max / 10);
  620 
  621         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  622         pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
  623             PAGE_SIZE * pv_maxchunks);
  624         if (pv_chunkbase == NULL)
  625                 panic("pmap_init: not enough kvm for pv chunks");
  626         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  627 #ifdef PAE
  628         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  629             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  630             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  631         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  632 #endif
  633 }
  634 
  635 
  636 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  637 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  638         "Max number of PV entries");
  639 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  640         "Page share factor per proc");
  641 
  642 /***************************************************
  643  * Low level helper routines.....
  644  ***************************************************/
  645 
  646 /*
  647  * Determine the appropriate bits to set in a PTE or PDE for a specified
  648  * caching mode.
  649  */
  650 static int
  651 pmap_cache_bits(int mode, boolean_t is_pde)
  652 {
  653         int pat_flag, pat_index, cache_bits;
  654 
  655         /* The PAT bit is different for PTE's and PDE's. */
  656         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  657 
  658         /* If we don't support PAT, map extended modes to older ones. */
  659         if (!(cpu_feature & CPUID_PAT)) {
  660                 switch (mode) {
  661                 case PAT_UNCACHEABLE:
  662                 case PAT_WRITE_THROUGH:
  663                 case PAT_WRITE_BACK:
  664                         break;
  665                 case PAT_UNCACHED:
  666                 case PAT_WRITE_COMBINING:
  667                 case PAT_WRITE_PROTECTED:
  668                         mode = PAT_UNCACHEABLE;
  669                         break;
  670                 }
  671         }
  672         
  673         /* Map the caching mode to a PAT index. */
  674         switch (mode) {
  675 #ifdef PAT_WORKS
  676         case PAT_UNCACHEABLE:
  677                 pat_index = 3;
  678                 break;
  679         case PAT_WRITE_THROUGH:
  680                 pat_index = 1;
  681                 break;
  682         case PAT_WRITE_BACK:
  683                 pat_index = 0;
  684                 break;
  685         case PAT_UNCACHED:
  686                 pat_index = 2;
  687                 break;
  688         case PAT_WRITE_COMBINING:
  689                 pat_index = 5;
  690                 break;
  691         case PAT_WRITE_PROTECTED:
  692                 pat_index = 4;
  693                 break;
  694 #else
  695         case PAT_UNCACHED:
  696         case PAT_UNCACHEABLE:
  697         case PAT_WRITE_PROTECTED:
  698                 pat_index = 3;
  699                 break;
  700         case PAT_WRITE_THROUGH:
  701                 pat_index = 1;
  702                 break;
  703         case PAT_WRITE_BACK:
  704                 pat_index = 0;
  705                 break;
  706         case PAT_WRITE_COMBINING:
  707                 pat_index = 2;
  708                 break;
  709 #endif
  710         default:
  711                 panic("Unknown caching mode %d\n", mode);
  712         }       
  713 
  714         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  715         cache_bits = 0;
  716         if (pat_index & 0x4)
  717                 cache_bits |= pat_flag;
  718         if (pat_index & 0x2)
  719                 cache_bits |= PG_NC_PCD;
  720         if (pat_index & 0x1)
  721                 cache_bits |= PG_NC_PWT;
  722         return (cache_bits);
  723 }
  724 #ifdef SMP
  725 /*
  726  * For SMP, these functions have to use the IPI mechanism for coherence.
  727  *
  728  * N.B.: Before calling any of the following TLB invalidation functions,
  729  * the calling processor must ensure that all stores updating a non-
  730  * kernel page table are globally performed.  Otherwise, another
  731  * processor could cache an old, pre-update entry without being
  732  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  733  * active on another processor after its pm_active field is checked by
  734  * one of the following functions but before a store updating the page
  735  * table is globally performed. (2) The pmap becomes active on another
  736  * processor before its pm_active field is checked but due to
  737  * speculative loads one of the following functions stills reads the
  738  * pmap as inactive on the other processor.
  739  * 
  740  * The kernel page table is exempt because its pm_active field is
  741  * immutable.  The kernel page table is always active on every
  742  * processor.
  743  */
  744 void
  745 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  746 {
  747         u_int cpumask;
  748         u_int other_cpus;
  749 
  750         sched_pin();
  751         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  752                 invlpg(va);
  753                 smp_invlpg(va);
  754         } else {
  755                 cpumask = PCPU_GET(cpumask);
  756                 other_cpus = PCPU_GET(other_cpus);
  757                 if (pmap->pm_active & cpumask)
  758                         invlpg(va);
  759                 if (pmap->pm_active & other_cpus)
  760                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  761         }
  762         sched_unpin();
  763 }
  764 
  765 void
  766 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  767 {
  768         u_int cpumask;
  769         u_int other_cpus;
  770         vm_offset_t addr;
  771 
  772         sched_pin();
  773         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  774                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  775                         invlpg(addr);
  776                 smp_invlpg_range(sva, eva);
  777         } else {
  778                 cpumask = PCPU_GET(cpumask);
  779                 other_cpus = PCPU_GET(other_cpus);
  780                 if (pmap->pm_active & cpumask)
  781                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  782                                 invlpg(addr);
  783                 if (pmap->pm_active & other_cpus)
  784                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  785                             sva, eva);
  786         }
  787         sched_unpin();
  788 }
  789 
  790 void
  791 pmap_invalidate_all(pmap_t pmap)
  792 {
  793         u_int cpumask;
  794         u_int other_cpus;
  795 
  796         sched_pin();
  797         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  798                 invltlb();
  799                 smp_invltlb();
  800         } else {
  801                 cpumask = PCPU_GET(cpumask);
  802                 other_cpus = PCPU_GET(other_cpus);
  803                 if (pmap->pm_active & cpumask)
  804                         invltlb();
  805                 if (pmap->pm_active & other_cpus)
  806                         smp_masked_invltlb(pmap->pm_active & other_cpus);
  807         }
  808         sched_unpin();
  809 }
  810 
  811 void
  812 pmap_invalidate_cache(void)
  813 {
  814 
  815         sched_pin();
  816         wbinvd();
  817         smp_cache_flush();
  818         sched_unpin();
  819 }
  820 #else /* !SMP */
  821 /*
  822  * Normal, non-SMP, 486+ invalidation functions.
  823  * We inline these within pmap.c for speed.
  824  */
  825 PMAP_INLINE void
  826 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  827 {
  828 
  829         if (pmap == kernel_pmap || pmap->pm_active)
  830                 invlpg(va);
  831 }
  832 
  833 PMAP_INLINE void
  834 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  835 {
  836         vm_offset_t addr;
  837 
  838         if (pmap == kernel_pmap || pmap->pm_active)
  839                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  840                         invlpg(addr);
  841 }
  842 
  843 PMAP_INLINE void
  844 pmap_invalidate_all(pmap_t pmap)
  845 {
  846 
  847         if (pmap == kernel_pmap || pmap->pm_active)
  848                 invltlb();
  849 }
  850 
  851 PMAP_INLINE void
  852 pmap_invalidate_cache(void)
  853 {
  854 
  855         wbinvd();
  856 }
  857 #endif /* !SMP */
  858 
  859 /*
  860  * Are we current address space or kernel?  N.B. We return FALSE when
  861  * a pmap's page table is in use because a kernel thread is borrowing
  862  * it.  The borrowed page table can change spontaneously, making any
  863  * dependence on its continued use subject to a race condition.
  864  */
  865 static __inline int
  866 pmap_is_current(pmap_t pmap)
  867 {
  868 
  869         return (pmap == kernel_pmap ||
  870                 (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
  871             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
  872 }
  873 
  874 /*
  875  * If the given pmap is not the current or kernel pmap, the returned pte must
  876  * be released by passing it to pmap_pte_release().
  877  */
  878 pt_entry_t *
  879 pmap_pte(pmap_t pmap, vm_offset_t va)
  880 {
  881         pd_entry_t newpf;
  882         pd_entry_t *pde;
  883 
  884         pde = pmap_pde(pmap, va);
  885         if (*pde & PG_PS)
  886                 return (pde);
  887         if (*pde != 0) {
  888                 /* are we current address space or kernel? */
  889                 if (pmap_is_current(pmap))
  890                         return (vtopte(va));
  891                 mtx_lock(&PMAP2mutex);
  892                 newpf = *pde & PG_FRAME;
  893                 if ((*PMAP2 & PG_FRAME) != newpf) {
  894                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
  895                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
  896                 }
  897                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
  898         }
  899         return (0);
  900 }
  901 
  902 /*
  903  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
  904  * being NULL.
  905  */
  906 static __inline void
  907 pmap_pte_release(pt_entry_t *pte)
  908 {
  909 
  910         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
  911                 mtx_unlock(&PMAP2mutex);
  912 }
  913 
  914 static __inline void
  915 invlcaddr(void *caddr)
  916 {
  917 
  918         invlpg((u_int)caddr);
  919 }
  920 
  921 /*
  922  * Super fast pmap_pte routine best used when scanning
  923  * the pv lists.  This eliminates many coarse-grained
  924  * invltlb calls.  Note that many of the pv list
  925  * scans are across different pmaps.  It is very wasteful
  926  * to do an entire invltlb for checking a single mapping.
  927  *
  928  * If the given pmap is not the current pmap, vm_page_queue_mtx
  929  * must be held and curthread pinned to a CPU.
  930  */
  931 static pt_entry_t *
  932 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
  933 {
  934         pd_entry_t newpf;
  935         pd_entry_t *pde;
  936 
  937         pde = pmap_pde(pmap, va);
  938         if (*pde & PG_PS)
  939                 return (pde);
  940         if (*pde != 0) {
  941                 /* are we current address space or kernel? */
  942                 if (pmap_is_current(pmap))
  943                         return (vtopte(va));
  944                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  945                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
  946                 newpf = *pde & PG_FRAME;
  947                 if ((*PMAP1 & PG_FRAME) != newpf) {
  948                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
  949 #ifdef SMP
  950                         PMAP1cpu = PCPU_GET(cpuid);
  951 #endif
  952                         invlcaddr(PADDR1);
  953                         PMAP1changed++;
  954                 } else
  955 #ifdef SMP
  956                 if (PMAP1cpu != PCPU_GET(cpuid)) {
  957                         PMAP1cpu = PCPU_GET(cpuid);
  958                         invlcaddr(PADDR1);
  959                         PMAP1changedcpu++;
  960                 } else
  961 #endif
  962                         PMAP1unchanged++;
  963                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
  964         }
  965         return (0);
  966 }
  967 
  968 /*
  969  *      Routine:        pmap_extract
  970  *      Function:
  971  *              Extract the physical page address associated
  972  *              with the given map/virtual_address pair.
  973  */
  974 vm_paddr_t 
  975 pmap_extract(pmap_t pmap, vm_offset_t va)
  976 {
  977         vm_paddr_t rtval;
  978         pt_entry_t *pte;
  979         pd_entry_t pde;
  980 
  981         rtval = 0;
  982         PMAP_LOCK(pmap);
  983         pde = pmap->pm_pdir[va >> PDRSHIFT];
  984         if (pde != 0) {
  985                 if ((pde & PG_PS) != 0) {
  986                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
  987                         PMAP_UNLOCK(pmap);
  988                         return rtval;
  989                 }
  990                 pte = pmap_pte(pmap, va);
  991                 rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
  992                 pmap_pte_release(pte);
  993         }
  994         PMAP_UNLOCK(pmap);
  995         return (rtval);
  996 }
  997 
  998 /*
  999  *      Routine:        pmap_extract_and_hold
 1000  *      Function:
 1001  *              Atomically extract and hold the physical page
 1002  *              with the given pmap and virtual address pair
 1003  *              if that mapping permits the given protection.
 1004  */
 1005 vm_page_t
 1006 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1007 {
 1008         pd_entry_t pde;
 1009         pt_entry_t pte;
 1010         vm_page_t m;
 1011 
 1012         m = NULL;
 1013         vm_page_lock_queues();
 1014         PMAP_LOCK(pmap);
 1015         pde = *pmap_pde(pmap, va);
 1016         if (pde != 0) {
 1017                 if (pde & PG_PS) {
 1018                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1019                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1020                                     (va & PDRMASK));
 1021                                 vm_page_hold(m);
 1022                         }
 1023                 } else {
 1024                         sched_pin();
 1025                         pte = *pmap_pte_quick(pmap, va);
 1026                         if (pte != 0 &&
 1027                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1028                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1029                                 vm_page_hold(m);
 1030                         }
 1031                         sched_unpin();
 1032                 }
 1033         }
 1034         vm_page_unlock_queues();
 1035         PMAP_UNLOCK(pmap);
 1036         return (m);
 1037 }
 1038 
 1039 /***************************************************
 1040  * Low level mapping routines.....
 1041  ***************************************************/
 1042 
 1043 /*
 1044  * Add a wired page to the kva.
 1045  * Note: not SMP coherent.
 1046  */
 1047 PMAP_INLINE void 
 1048 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1049 {
 1050         pt_entry_t *pte;
 1051 
 1052         pte = vtopte(va);
 1053         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1054 }
 1055 
 1056 PMAP_INLINE void 
 1057 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1058 {
 1059         pt_entry_t *pte;
 1060 
 1061         pte = vtopte(va);
 1062         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1063 }
 1064 
 1065 /*
 1066  * Remove a page from the kernel pagetables.
 1067  * Note: not SMP coherent.
 1068  */
 1069 PMAP_INLINE void
 1070 pmap_kremove(vm_offset_t va)
 1071 {
 1072         pt_entry_t *pte;
 1073 
 1074         pte = vtopte(va);
 1075         pte_clear(pte);
 1076 }
 1077 
 1078 /*
 1079  *      Used to map a range of physical addresses into kernel
 1080  *      virtual address space.
 1081  *
 1082  *      The value passed in '*virt' is a suggested virtual address for
 1083  *      the mapping. Architectures which can support a direct-mapped
 1084  *      physical to virtual region can return the appropriate address
 1085  *      within that region, leaving '*virt' unchanged. Other
 1086  *      architectures should map the pages starting at '*virt' and
 1087  *      update '*virt' with the first usable address after the mapped
 1088  *      region.
 1089  */
 1090 vm_offset_t
 1091 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1092 {
 1093         vm_offset_t va, sva;
 1094 
 1095         va = sva = *virt;
 1096         while (start < end) {
 1097                 pmap_kenter(va, start);
 1098                 va += PAGE_SIZE;
 1099                 start += PAGE_SIZE;
 1100         }
 1101         pmap_invalidate_range(kernel_pmap, sva, va);
 1102         *virt = va;
 1103         return (sva);
 1104 }
 1105 
 1106 
 1107 /*
 1108  * Add a list of wired pages to the kva
 1109  * this routine is only used for temporary
 1110  * kernel mappings that do not need to have
 1111  * page modification or references recorded.
 1112  * Note that old mappings are simply written
 1113  * over.  The page *must* be wired.
 1114  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1115  */
 1116 void
 1117 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1118 {
 1119         pt_entry_t *endpte, oldpte, *pte;
 1120 
 1121         oldpte = 0;
 1122         pte = vtopte(sva);
 1123         endpte = pte + count;
 1124         while (pte < endpte) {
 1125                 oldpte |= *pte;
 1126                 pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
 1127                 pte++;
 1128                 ma++;
 1129         }
 1130         if ((oldpte & PG_V) != 0)
 1131                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1132                     PAGE_SIZE);
 1133 }
 1134 
 1135 /*
 1136  * This routine tears out page mappings from the
 1137  * kernel -- it is meant only for temporary mappings.
 1138  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1139  */
 1140 void
 1141 pmap_qremove(vm_offset_t sva, int count)
 1142 {
 1143         vm_offset_t va;
 1144 
 1145         va = sva;
 1146         while (count-- > 0) {
 1147                 pmap_kremove(va);
 1148                 va += PAGE_SIZE;
 1149         }
 1150         pmap_invalidate_range(kernel_pmap, sva, va);
 1151 }
 1152 
 1153 /***************************************************
 1154  * Page table page management routines.....
 1155  ***************************************************/
 1156 static __inline void
 1157 pmap_free_zero_pages(vm_page_t free)
 1158 {
 1159         vm_page_t m;
 1160 
 1161         while (free != NULL) {
 1162                 m = free;
 1163                 free = m->right;
 1164                 vm_page_free_zero(m);
 1165         }
 1166 }
 1167 
 1168 /*
 1169  * This routine unholds page table pages, and if the hold count
 1170  * drops to zero, then it decrements the wire count.
 1171  */
 1172 static __inline int
 1173 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1174 {
 1175 
 1176         --m->wire_count;
 1177         if (m->wire_count == 0)
 1178                 return _pmap_unwire_pte_hold(pmap, m, free);
 1179         else
 1180                 return 0;
 1181 }
 1182 
 1183 static int 
 1184 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1185 {
 1186         vm_offset_t pteva;
 1187 
 1188         /*
 1189          * unmap the page table page
 1190          */
 1191         pmap->pm_pdir[m->pindex] = 0;
 1192         --pmap->pm_stats.resident_count;
 1193 
 1194         /*
 1195          * This is a release store so that the ordinary store unmapping
 1196          * the page table page is globally performed before TLB shoot-
 1197          * down is begun.
 1198          */
 1199         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1200 
 1201         /*
 1202          * Do an invltlb to make the invalidated mapping
 1203          * take effect immediately.
 1204          */
 1205         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1206         pmap_invalidate_page(pmap, pteva);
 1207 
 1208         /* 
 1209          * Put page on a list so that it is released after
 1210          * *ALL* TLB shootdown is done
 1211          */
 1212         m->right = *free;
 1213         *free = m;
 1214 
 1215         return 1;
 1216 }
 1217 
 1218 /*
 1219  * After removing a page table entry, this routine is used to
 1220  * conditionally free the page, and manage the hold/wire counts.
 1221  */
 1222 static int
 1223 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1224 {
 1225         pd_entry_t ptepde;
 1226         vm_page_t mpte;
 1227 
 1228         if (va >= VM_MAXUSER_ADDRESS)
 1229                 return 0;
 1230         ptepde = *pmap_pde(pmap, va);
 1231         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1232         return pmap_unwire_pte_hold(pmap, mpte, free);
 1233 }
 1234 
 1235 void
 1236 pmap_pinit0(pmap_t pmap)
 1237 {
 1238 
 1239         PMAP_LOCK_INIT(pmap);
 1240         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1241 #ifdef PAE
 1242         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1243 #endif
 1244         pmap->pm_active = 0;
 1245         PCPU_SET(curpmap, pmap);
 1246         TAILQ_INIT(&pmap->pm_pvchunk);
 1247         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1248         mtx_lock_spin(&allpmaps_lock);
 1249         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1250         mtx_unlock_spin(&allpmaps_lock);
 1251 }
 1252 
 1253 /*
 1254  * Initialize a preallocated and zeroed pmap structure,
 1255  * such as one in a vmspace structure.
 1256  */
 1257 int
 1258 pmap_pinit(pmap_t pmap)
 1259 {
 1260         vm_page_t m, ptdpg[NPGPTD];
 1261         vm_paddr_t pa;
 1262         static int color;
 1263         int i;
 1264 
 1265         PMAP_LOCK_INIT(pmap);
 1266 
 1267         /*
 1268          * No need to allocate page table space yet but we do need a valid
 1269          * page directory table.
 1270          */
 1271         if (pmap->pm_pdir == NULL) {
 1272                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1273                     NBPTD);
 1274 
 1275                 if (pmap->pm_pdir == NULL) {
 1276                         PMAP_LOCK_DESTROY(pmap);
 1277                         return (0);
 1278                 }
 1279 #ifdef PAE
 1280                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1281                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1282                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1283                     ("pmap_pinit: pdpt misaligned"));
 1284                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1285                     ("pmap_pinit: pdpt above 4g"));
 1286 #endif
 1287         }
 1288 
 1289         /*
 1290          * allocate the page directory page(s)
 1291          */
 1292         for (i = 0; i < NPGPTD;) {
 1293                 m = vm_page_alloc(NULL, color++,
 1294                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1295                     VM_ALLOC_ZERO);
 1296                 if (m == NULL)
 1297                         VM_WAIT;
 1298                 else {
 1299                         ptdpg[i++] = m;
 1300                 }
 1301         }
 1302 
 1303         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1304 
 1305         for (i = 0; i < NPGPTD; i++) {
 1306                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1307                         bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
 1308         }
 1309 
 1310         mtx_lock_spin(&allpmaps_lock);
 1311         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1312         mtx_unlock_spin(&allpmaps_lock);
 1313         /* Wire in kernel global address entries. */
 1314         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1315 
 1316         /* install self-referential address mapping entry(s) */
 1317         for (i = 0; i < NPGPTD; i++) {
 1318                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1319                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1320 #ifdef PAE
 1321                 pmap->pm_pdpt[i] = pa | PG_V;
 1322 #endif
 1323         }
 1324 
 1325         pmap->pm_active = 0;
 1326         TAILQ_INIT(&pmap->pm_pvchunk);
 1327         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1328 
 1329         return (1);
 1330 }
 1331 
 1332 /*
 1333  * this routine is called if the page table page is not
 1334  * mapped correctly.
 1335  */
 1336 static vm_page_t
 1337 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
 1338 {
 1339         vm_paddr_t ptepa;
 1340         vm_page_t m;
 1341 
 1342         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1343             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1344             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1345 
 1346         /*
 1347          * Allocate a page table page.
 1348          */
 1349         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1350             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1351                 if (flags & M_WAITOK) {
 1352                         PMAP_UNLOCK(pmap);
 1353                         vm_page_unlock_queues();
 1354                         VM_WAIT;
 1355                         vm_page_lock_queues();
 1356                         PMAP_LOCK(pmap);
 1357                 }
 1358 
 1359                 /*
 1360                  * Indicate the need to retry.  While waiting, the page table
 1361                  * page may have been allocated.
 1362                  */
 1363                 return (NULL);
 1364         }
 1365         if ((m->flags & PG_ZERO) == 0)
 1366                 pmap_zero_page(m);
 1367 
 1368         /*
 1369          * Map the pagetable page into the process address space, if
 1370          * it isn't already there.
 1371          */
 1372 
 1373         pmap->pm_stats.resident_count++;
 1374 
 1375         ptepa = VM_PAGE_TO_PHYS(m);
 1376         pmap->pm_pdir[ptepindex] =
 1377                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1378 
 1379         return m;
 1380 }
 1381 
 1382 static vm_page_t
 1383 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1384 {
 1385         unsigned ptepindex;
 1386         pd_entry_t ptepa;
 1387         vm_page_t m;
 1388 
 1389         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1390             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1391             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1392 
 1393         /*
 1394          * Calculate pagetable page index
 1395          */
 1396         ptepindex = va >> PDRSHIFT;
 1397 retry:
 1398         /*
 1399          * Get the page directory entry
 1400          */
 1401         ptepa = pmap->pm_pdir[ptepindex];
 1402 
 1403         /*
 1404          * This supports switching from a 4MB page to a
 1405          * normal 4K page.
 1406          */
 1407         if (ptepa & PG_PS) {
 1408                 pmap->pm_pdir[ptepindex] = 0;
 1409                 ptepa = 0;
 1410                 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1411                 pmap_invalidate_all(kernel_pmap);
 1412         }
 1413 
 1414         /*
 1415          * If the page table page is mapped, we just increment the
 1416          * hold count, and activate it.
 1417          */
 1418         if (ptepa) {
 1419                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 1420                 m->wire_count++;
 1421         } else {
 1422                 /*
 1423                  * Here if the pte page isn't mapped, or if it has
 1424                  * been deallocated. 
 1425                  */
 1426                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1427                 if (m == NULL && (flags & M_WAITOK))
 1428                         goto retry;
 1429         }
 1430         return (m);
 1431 }
 1432 
 1433 
 1434 /***************************************************
 1435 * Pmap allocation/deallocation routines.
 1436  ***************************************************/
 1437 
 1438 #ifdef SMP
 1439 /*
 1440  * Deal with a SMP shootdown of other users of the pmap that we are
 1441  * trying to dispose of.  This can be a bit hairy.
 1442  */
 1443 static u_int *lazymask;
 1444 static u_int lazyptd;
 1445 static volatile u_int lazywait;
 1446 
 1447 void pmap_lazyfix_action(void);
 1448 
 1449 void
 1450 pmap_lazyfix_action(void)
 1451 {
 1452         u_int mymask = PCPU_GET(cpumask);
 1453 
 1454 #ifdef COUNT_IPIS
 1455         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1456 #endif
 1457         if (rcr3() == lazyptd)
 1458                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1459         atomic_clear_int(lazymask, mymask);
 1460         atomic_store_rel_int(&lazywait, 1);
 1461 }
 1462 
 1463 static void
 1464 pmap_lazyfix_self(u_int mymask)
 1465 {
 1466 
 1467         if (rcr3() == lazyptd)
 1468                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1469         atomic_clear_int(lazymask, mymask);
 1470 }
 1471 
 1472 
 1473 static void
 1474 pmap_lazyfix(pmap_t pmap)
 1475 {
 1476         u_int mymask;
 1477         u_int mask;
 1478         u_int spins;
 1479 
 1480         while ((mask = pmap->pm_active) != 0) {
 1481                 spins = 50000000;
 1482                 mask = mask & -mask;    /* Find least significant set bit */
 1483                 mtx_lock_spin(&smp_ipi_mtx);
 1484 #ifdef PAE
 1485                 lazyptd = vtophys(pmap->pm_pdpt);
 1486 #else
 1487                 lazyptd = vtophys(pmap->pm_pdir);
 1488 #endif
 1489                 mymask = PCPU_GET(cpumask);
 1490                 if (mask == mymask) {
 1491                         lazymask = &pmap->pm_active;
 1492                         pmap_lazyfix_self(mymask);
 1493                 } else {
 1494                         atomic_store_rel_int((u_int *)&lazymask,
 1495                             (u_int)&pmap->pm_active);
 1496                         atomic_store_rel_int(&lazywait, 0);
 1497                         ipi_selected(mask, IPI_LAZYPMAP);
 1498                         while (lazywait == 0) {
 1499                                 ia32_pause();
 1500                                 if (--spins == 0)
 1501                                         break;
 1502                         }
 1503                 }
 1504                 mtx_unlock_spin(&smp_ipi_mtx);
 1505                 if (spins == 0)
 1506                         printf("pmap_lazyfix: spun for 50000000\n");
 1507         }
 1508 }
 1509 
 1510 #else   /* SMP */
 1511 
 1512 /*
 1513  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1514  * unlikely to have to even execute this code, including the fact
 1515  * that the cleanup is deferred until the parent does a wait(2), which
 1516  * means that another userland process has run.
 1517  */
 1518 static void
 1519 pmap_lazyfix(pmap_t pmap)
 1520 {
 1521         u_int cr3;
 1522 
 1523         cr3 = vtophys(pmap->pm_pdir);
 1524         if (cr3 == rcr3()) {
 1525                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1526                 pmap->pm_active &= ~(PCPU_GET(cpumask));
 1527         }
 1528 }
 1529 #endif  /* SMP */
 1530 
 1531 /*
 1532  * Release any resources held by the given physical map.
 1533  * Called when a pmap initialized by pmap_pinit is being released.
 1534  * Should only be called if the map contains no valid mappings.
 1535  */
 1536 void
 1537 pmap_release(pmap_t pmap)
 1538 {
 1539         vm_page_t m, ptdpg[NPGPTD];
 1540         int i;
 1541 
 1542         KASSERT(pmap->pm_stats.resident_count == 0,
 1543             ("pmap_release: pmap resident count %ld != 0",
 1544             pmap->pm_stats.resident_count));
 1545 
 1546         pmap_lazyfix(pmap);
 1547         mtx_lock_spin(&allpmaps_lock);
 1548         LIST_REMOVE(pmap, pm_list);
 1549         mtx_unlock_spin(&allpmaps_lock);
 1550 
 1551         for (i = 0; i < NPGPTD; i++)
 1552                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 1553                     PG_FRAME);
 1554 
 1555         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 1556             sizeof(*pmap->pm_pdir));
 1557 
 1558         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 1559 
 1560         for (i = 0; i < NPGPTD; i++) {
 1561                 m = ptdpg[i];
 1562 #ifdef PAE
 1563                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 1564                     ("pmap_release: got wrong ptd page"));
 1565 #endif
 1566                 m->wire_count--;
 1567                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1568                 vm_page_free_zero(m);
 1569         }
 1570         PMAP_LOCK_DESTROY(pmap);
 1571 }
 1572 
 1573 static int
 1574 kvm_size(SYSCTL_HANDLER_ARGS)
 1575 {
 1576         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1577 
 1578         return sysctl_handle_long(oidp, &ksize, 0, req);
 1579 }
 1580 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1581     0, 0, kvm_size, "IU", "Size of KVM");
 1582 
 1583 static int
 1584 kvm_free(SYSCTL_HANDLER_ARGS)
 1585 {
 1586         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1587 
 1588         return sysctl_handle_long(oidp, &kfree, 0, req);
 1589 }
 1590 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1591     0, 0, kvm_free, "IU", "Amount of KVM free");
 1592 
 1593 /*
 1594  * grow the number of kernel page table entries, if needed
 1595  */
 1596 void
 1597 pmap_growkernel(vm_offset_t addr)
 1598 {
 1599         struct pmap *pmap;
 1600         vm_paddr_t ptppaddr;
 1601         vm_page_t nkpg;
 1602         pd_entry_t newpdir;
 1603         pt_entry_t *pde;
 1604 
 1605         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1606         if (kernel_vm_end == 0) {
 1607                 kernel_vm_end = KERNBASE;
 1608                 nkpt = 0;
 1609                 while (pdir_pde(PTD, kernel_vm_end)) {
 1610                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1611                         nkpt++;
 1612                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1613                                 kernel_vm_end = kernel_map->max_offset;
 1614                                 break;
 1615                         }
 1616                 }
 1617         }
 1618         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1619         if (addr - 1 >= kernel_map->max_offset)
 1620                 addr = kernel_map->max_offset;
 1621         while (kernel_vm_end < addr) {
 1622                 if (pdir_pde(PTD, kernel_vm_end)) {
 1623                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1624                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1625                                 kernel_vm_end = kernel_map->max_offset;
 1626                                 break;
 1627                         }
 1628                         continue;
 1629                 }
 1630 
 1631                 /*
 1632                  * This index is bogus, but out of the way
 1633                  */
 1634                 nkpg = vm_page_alloc(NULL, nkpt,
 1635                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1636                     VM_ALLOC_ZERO);
 1637                 if (!nkpg)
 1638                         panic("pmap_growkernel: no memory to grow kernel");
 1639 
 1640                 nkpt++;
 1641 
 1642                 if ((nkpg->flags & PG_ZERO) == 0)
 1643                         pmap_zero_page(nkpg);
 1644                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1645                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1646                 pdir_pde(PTD, kernel_vm_end) = newpdir;
 1647 
 1648                 mtx_lock_spin(&allpmaps_lock);
 1649                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1650                         pde = pmap_pde(pmap, kernel_vm_end);
 1651                         pde_store(pde, newpdir);
 1652                 }
 1653                 mtx_unlock_spin(&allpmaps_lock);
 1654                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1655                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 1656                         kernel_vm_end = kernel_map->max_offset;
 1657                         break;
 1658                 }
 1659         }
 1660 }
 1661 
 1662 
 1663 /***************************************************
 1664  * page management routines.
 1665  ***************************************************/
 1666 
 1667 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 1668 CTASSERT(_NPCM == 11);
 1669 
 1670 static __inline struct pv_chunk *
 1671 pv_to_chunk(pv_entry_t pv)
 1672 {
 1673 
 1674         return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
 1675 }
 1676 
 1677 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 1678 
 1679 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 1680 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 1681 
 1682 static uint32_t pc_freemask[11] = {
 1683         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1684         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1685         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 1686         PC_FREE0_9, PC_FREE10
 1687 };
 1688 
 1689 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 1690         "Current number of pv entries");
 1691 
 1692 #ifdef PV_STATS
 1693 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 1694 
 1695 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 1696         "Current number of pv entry chunks");
 1697 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 1698         "Current number of pv entry chunks allocated");
 1699 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 1700         "Current number of pv entry chunks frees");
 1701 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 1702         "Number of times tried to get a chunk page but failed.");
 1703 
 1704 static long pv_entry_frees, pv_entry_allocs;
 1705 static int pv_entry_spare;
 1706 
 1707 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 1708         "Current number of pv entry frees");
 1709 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 1710         "Current number of pv entry allocs");
 1711 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 1712         "Current number of spare pv entries");
 1713 
 1714 static int pmap_collect_inactive, pmap_collect_active;
 1715 
 1716 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
 1717         "Current number times pmap_collect called on inactive queue");
 1718 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
 1719         "Current number times pmap_collect called on active queue");
 1720 #endif
 1721 
 1722 /*
 1723  * We are in a serious low memory condition.  Resort to
 1724  * drastic measures to free some pages so we can allocate
 1725  * another pv entry chunk.  This is normally called to
 1726  * unmap inactive pages, and if necessary, active pages.
 1727  */
 1728 static void
 1729 pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
 1730 {
 1731         pmap_t pmap;
 1732         pt_entry_t *pte, tpte;
 1733         pv_entry_t next_pv, pv;
 1734         vm_offset_t va;
 1735         vm_page_t m, free;
 1736 
 1737         sched_pin();
 1738         TAILQ_FOREACH(m, &vpq->pl, pageq) {
 1739                 if (m->hold_count || m->busy)
 1740                         continue;
 1741                 TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
 1742                         va = pv->pv_va;
 1743                         pmap = PV_PMAP(pv);
 1744                         /* Avoid deadlock and lock recursion. */
 1745                         if (pmap > locked_pmap)
 1746                                 PMAP_LOCK(pmap);
 1747                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
 1748                                 continue;
 1749                         pmap->pm_stats.resident_count--;
 1750                         pte = pmap_pte_quick(pmap, va);
 1751                         tpte = pte_load_clear(pte);
 1752                         KASSERT((tpte & PG_W) == 0,
 1753                             ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
 1754                         if (tpte & PG_A)
 1755                                 vm_page_flag_set(m, PG_REFERENCED);
 1756                         if (tpte & PG_M) {
 1757                                 KASSERT((tpte & PG_RW),
 1758         ("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
 1759                                     va, (uintmax_t)tpte));
 1760                                 vm_page_dirty(m);
 1761                         }
 1762                         free = NULL;
 1763                         pmap_unuse_pt(pmap, va, &free);
 1764                         pmap_invalidate_page(pmap, va);
 1765                         pmap_free_zero_pages(free);
 1766                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1767                         if (TAILQ_EMPTY(&m->md.pv_list))
 1768                                 vm_page_flag_clear(m, PG_WRITEABLE);
 1769                         m->md.pv_list_count--;
 1770                         free_pv_entry(pmap, pv);
 1771                         if (pmap != locked_pmap)
 1772                                 PMAP_UNLOCK(pmap);
 1773                 }
 1774         }
 1775         sched_unpin();
 1776 }
 1777 
 1778 
 1779 /*
 1780  * free the pv_entry back to the free list
 1781  */
 1782 static void
 1783 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 1784 {
 1785         vm_page_t m;
 1786         struct pv_chunk *pc;
 1787         int idx, field, bit;
 1788 
 1789         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1790         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1791         PV_STAT(pv_entry_frees++);
 1792         PV_STAT(pv_entry_spare++);
 1793         pv_entry_count--;
 1794         pc = pv_to_chunk(pv);
 1795         idx = pv - &pc->pc_pventry[0];
 1796         field = idx / 32;
 1797         bit = idx % 32;
 1798         pc->pc_map[field] |= 1ul << bit;
 1799         /* move to head of list */
 1800         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1801         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 1802         for (idx = 0; idx < _NPCM; idx++)
 1803                 if (pc->pc_map[idx] != pc_freemask[idx])
 1804                         return;
 1805         PV_STAT(pv_entry_spare -= _NPCPV);
 1806         PV_STAT(pc_chunk_count--);
 1807         PV_STAT(pc_chunk_frees++);
 1808         /* entire chunk is free, return it */
 1809         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1810         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 1811         pmap_qremove((vm_offset_t)pc, 1);
 1812         vm_page_unwire(m, 0);
 1813         vm_page_free(m);
 1814         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 1815 }
 1816 
 1817 /*
 1818  * get a new pv_entry, allocating a block from the system
 1819  * when needed.
 1820  */
 1821 static pv_entry_t
 1822 get_pv_entry(pmap_t pmap, int try)
 1823 {
 1824         static const struct timeval printinterval = { 60, 0 };
 1825         static struct timeval lastprint;
 1826         static vm_pindex_t colour;
 1827         struct vpgqueues *pq;
 1828         int bit, field;
 1829         pv_entry_t pv;
 1830         struct pv_chunk *pc;
 1831         vm_page_t m;
 1832 
 1833         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1834         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1835         PV_STAT(pv_entry_allocs++);
 1836         pv_entry_count++;
 1837         if (pv_entry_count > pv_entry_high_water)
 1838                 if (ratecheck(&lastprint, &printinterval))
 1839                         printf("Approaching the limit on PV entries, consider "
 1840                             "increasing either the vm.pmap.shpgperproc or the "
 1841                             "vm.pmap.pv_entry_max tunable.\n");
 1842         pq = NULL;
 1843 retry:
 1844         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 1845         if (pc != NULL) {
 1846                 for (field = 0; field < _NPCM; field++) {
 1847                         if (pc->pc_map[field]) {
 1848                                 bit = bsfl(pc->pc_map[field]);
 1849                                 break;
 1850                         }
 1851                 }
 1852                 if (field < _NPCM) {
 1853                         pv = &pc->pc_pventry[field * 32 + bit];
 1854                         pc->pc_map[field] &= ~(1ul << bit);
 1855                         /* If this was the last item, move it to tail */
 1856                         for (field = 0; field < _NPCM; field++)
 1857                                 if (pc->pc_map[field] != 0) {
 1858                                         PV_STAT(pv_entry_spare--);
 1859                                         return (pv);    /* not full, return */
 1860                                 }
 1861                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 1862                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 1863                         PV_STAT(pv_entry_spare--);
 1864                         return (pv);
 1865                 }
 1866         }
 1867         /*
 1868          * Access to the ptelist "pv_vafree" is synchronized by the page
 1869          * queues lock.  If "pv_vafree" is currently non-empty, it will
 1870          * remain non-empty until pmap_ptelist_alloc() completes.
 1871          */
 1872         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
 1873             &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
 1874             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 1875                 if (try) {
 1876                         pv_entry_count--;
 1877                         PV_STAT(pc_chunk_tryfail++);
 1878                         return (NULL);
 1879                 }
 1880                 /*
 1881                  * Reclaim pv entries: At first, destroy mappings to
 1882                  * inactive pages.  After that, if a pv chunk entry
 1883                  * is still needed, destroy mappings to active pages.
 1884                  */
 1885                 if (pq == NULL) {
 1886                         PV_STAT(pmap_collect_inactive++);
 1887                         pq = &vm_page_queues[PQ_INACTIVE];
 1888                 } else if (pq == &vm_page_queues[PQ_INACTIVE]) {
 1889                         PV_STAT(pmap_collect_active++);
 1890                         pq = &vm_page_queues[PQ_ACTIVE];
 1891                 } else
 1892                         panic("get_pv_entry: increase vm.pmap.shpgperproc");
 1893                 pmap_collect(pmap, pq);
 1894                 goto retry;
 1895         }
 1896         PV_STAT(pc_chunk_count++);
 1897         PV_STAT(pc_chunk_allocs++);
 1898         colour++;
 1899         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 1900         pmap_qenter((vm_offset_t)pc, &m, 1);
 1901         pc->pc_pmap = pmap;
 1902         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 1903         for (field = 1; field < _NPCM; field++)
 1904                 pc->pc_map[field] = pc_freemask[field];
 1905         pv = &pc->pc_pventry[0];
 1906         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 1907         PV_STAT(pv_entry_spare += _NPCPV - 1);
 1908         return (pv);
 1909 }
 1910 
 1911 static void
 1912 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1913 {
 1914         pv_entry_t pv;
 1915 
 1916         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1917         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1918         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 1919                 if (pmap == PV_PMAP(pv) && va == pv->pv_va)
 1920                         break;
 1921         }
 1922         KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
 1923         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1924         m->md.pv_list_count--;
 1925         if (TAILQ_EMPTY(&m->md.pv_list))
 1926                 vm_page_flag_clear(m, PG_WRITEABLE);
 1927         free_pv_entry(pmap, pv);
 1928 }
 1929 
 1930 /*
 1931  * Create a pv entry for page at pa for
 1932  * (pmap, va).
 1933  */
 1934 static void
 1935 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1936 {
 1937         pv_entry_t pv;
 1938 
 1939         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1940         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1941         pv = get_pv_entry(pmap, FALSE);
 1942         pv->pv_va = va;
 1943         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1944         m->md.pv_list_count++;
 1945 }
 1946 
 1947 /*
 1948  * Conditionally create a pv entry.
 1949  */
 1950 static boolean_t
 1951 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1952 {
 1953         pv_entry_t pv;
 1954 
 1955         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1956         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1957         if (pv_entry_count < pv_entry_high_water && 
 1958             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 1959                 pv->pv_va = va;
 1960                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1961                 m->md.pv_list_count++;
 1962                 return (TRUE);
 1963         } else
 1964                 return (FALSE);
 1965 }
 1966 
 1967 /*
 1968  * pmap_remove_pte: do the things to unmap a page in a process
 1969  */
 1970 static int
 1971 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 1972 {
 1973         pt_entry_t oldpte;
 1974         vm_page_t m;
 1975 
 1976         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1977         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1978         oldpte = pte_load_clear(ptq);
 1979         if (oldpte & PG_W)
 1980                 pmap->pm_stats.wired_count -= 1;
 1981         /*
 1982          * Machines that don't support invlpg, also don't support
 1983          * PG_G.
 1984          */
 1985         if (oldpte & PG_G)
 1986                 pmap_invalidate_page(kernel_pmap, va);
 1987         pmap->pm_stats.resident_count -= 1;
 1988         if (oldpte & PG_MANAGED) {
 1989                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 1990                 if (oldpte & PG_M) {
 1991                         KASSERT((oldpte & PG_RW),
 1992         ("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
 1993                             va, (uintmax_t)oldpte));
 1994                         vm_page_dirty(m);
 1995                 }
 1996                 if (oldpte & PG_A)
 1997                         vm_page_flag_set(m, PG_REFERENCED);
 1998                 pmap_remove_entry(pmap, m, va);
 1999         }
 2000         return (pmap_unuse_pt(pmap, va, free));
 2001 }
 2002 
 2003 /*
 2004  * Remove a single page from a process address space
 2005  */
 2006 static void
 2007 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 2008 {
 2009         pt_entry_t *pte;
 2010 
 2011         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2012         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2013         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2014         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2015                 return;
 2016         pmap_remove_pte(pmap, pte, va, free);
 2017         pmap_invalidate_page(pmap, va);
 2018 }
 2019 
 2020 /*
 2021  *      Remove the given range of addresses from the specified map.
 2022  *
 2023  *      It is assumed that the start and end are properly
 2024  *      rounded to the page size.
 2025  */
 2026 void
 2027 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2028 {
 2029         vm_offset_t pdnxt;
 2030         pd_entry_t ptpaddr;
 2031         pt_entry_t *pte;
 2032         vm_page_t free = NULL;
 2033         int anyvalid;
 2034 
 2035         /*
 2036          * Perform an unsynchronized read.  This is, however, safe.
 2037          */
 2038         if (pmap->pm_stats.resident_count == 0)
 2039                 return;
 2040 
 2041         anyvalid = 0;
 2042 
 2043         vm_page_lock_queues();
 2044         sched_pin();
 2045         PMAP_LOCK(pmap);
 2046 
 2047         /*
 2048          * special handling of removing one page.  a very
 2049          * common operation and easy to short circuit some
 2050          * code.
 2051          */
 2052         if ((sva + PAGE_SIZE == eva) && 
 2053             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2054                 pmap_remove_page(pmap, sva, &free);
 2055                 goto out;
 2056         }
 2057 
 2058         for (; sva < eva; sva = pdnxt) {
 2059                 unsigned pdirindex;
 2060 
 2061                 /*
 2062                  * Calculate index for next page table.
 2063                  */
 2064                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2065                 if (pdnxt < sva)
 2066                         pdnxt = eva;
 2067                 if (pmap->pm_stats.resident_count == 0)
 2068                         break;
 2069 
 2070                 pdirindex = sva >> PDRSHIFT;
 2071                 ptpaddr = pmap->pm_pdir[pdirindex];
 2072 
 2073                 /*
 2074                  * Weed out invalid mappings. Note: we assume that the page
 2075                  * directory table is always allocated, and in kernel virtual.
 2076                  */
 2077                 if (ptpaddr == 0)
 2078                         continue;
 2079 
 2080                 /*
 2081                  * Check for large page.
 2082                  */
 2083                 if ((ptpaddr & PG_PS) != 0) {
 2084                         pmap->pm_pdir[pdirindex] = 0;
 2085                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2086                         anyvalid = 1;
 2087                         continue;
 2088                 }
 2089 
 2090                 /*
 2091                  * Limit our scan to either the end of the va represented
 2092                  * by the current page table page, or to the end of the
 2093                  * range being removed.
 2094                  */
 2095                 if (pdnxt > eva)
 2096                         pdnxt = eva;
 2097 
 2098                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2099                     sva += PAGE_SIZE) {
 2100                         if (*pte == 0)
 2101                                 continue;
 2102 
 2103                         /*
 2104                          * The TLB entry for a PG_G mapping is invalidated
 2105                          * by pmap_remove_pte().
 2106                          */
 2107                         if ((*pte & PG_G) == 0)
 2108                                 anyvalid = 1;
 2109                         if (pmap_remove_pte(pmap, pte, sva, &free))
 2110                                 break;
 2111                 }
 2112         }
 2113 out:
 2114         sched_unpin();
 2115         if (anyvalid)
 2116                 pmap_invalidate_all(pmap);
 2117         vm_page_unlock_queues();
 2118         PMAP_UNLOCK(pmap);
 2119         pmap_free_zero_pages(free);
 2120 }
 2121 
 2122 /*
 2123  *      Routine:        pmap_remove_all
 2124  *      Function:
 2125  *              Removes this physical page from
 2126  *              all physical maps in which it resides.
 2127  *              Reflects back modify bits to the pager.
 2128  *
 2129  *      Notes:
 2130  *              Original versions of this routine were very
 2131  *              inefficient because they iteratively called
 2132  *              pmap_remove (slow...)
 2133  */
 2134 
 2135 void
 2136 pmap_remove_all(vm_page_t m)
 2137 {
 2138         pv_entry_t pv;
 2139         pmap_t pmap;
 2140         pt_entry_t *pte, tpte;
 2141         vm_page_t free;
 2142 
 2143 #if defined(PMAP_DIAGNOSTIC)
 2144         /*
 2145          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 2146          */
 2147         if (m->flags & PG_FICTITIOUS) {
 2148                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
 2149                     VM_PAGE_TO_PHYS(m));
 2150         }
 2151 #endif
 2152         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2153         sched_pin();
 2154         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2155                 pmap = PV_PMAP(pv);
 2156                 PMAP_LOCK(pmap);
 2157                 pmap->pm_stats.resident_count--;
 2158                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2159                 tpte = pte_load_clear(pte);
 2160                 if (tpte & PG_W)
 2161                         pmap->pm_stats.wired_count--;
 2162                 if (tpte & PG_A)
 2163                         vm_page_flag_set(m, PG_REFERENCED);
 2164 
 2165                 /*
 2166                  * Update the vm_page_t clean and reference bits.
 2167                  */
 2168                 if (tpte & PG_M) {
 2169                         KASSERT((tpte & PG_RW),
 2170         ("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
 2171                             pv->pv_va, (uintmax_t)tpte));
 2172                         vm_page_dirty(m);
 2173                 }
 2174                 free = NULL;
 2175                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2176                 pmap_invalidate_page(pmap, pv->pv_va);
 2177                 pmap_free_zero_pages(free);
 2178                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2179                 m->md.pv_list_count--;
 2180                 free_pv_entry(pmap, pv);
 2181                 PMAP_UNLOCK(pmap);
 2182         }
 2183         vm_page_flag_clear(m, PG_WRITEABLE);
 2184         sched_unpin();
 2185 }
 2186 
 2187 /*
 2188  *      Set the physical protection on the
 2189  *      specified range of this map as requested.
 2190  */
 2191 void
 2192 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 2193 {
 2194         vm_offset_t pdnxt;
 2195         pd_entry_t ptpaddr;
 2196         pt_entry_t *pte;
 2197         int anychanged;
 2198 
 2199         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 2200                 pmap_remove(pmap, sva, eva);
 2201                 return;
 2202         }
 2203 
 2204 #ifdef PAE
 2205         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 2206             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 2207                 return;
 2208 #else
 2209         if (prot & VM_PROT_WRITE)
 2210                 return;
 2211 #endif
 2212 
 2213         anychanged = 0;
 2214 
 2215         vm_page_lock_queues();
 2216         sched_pin();
 2217         PMAP_LOCK(pmap);
 2218         for (; sva < eva; sva = pdnxt) {
 2219                 pt_entry_t obits, pbits;
 2220                 unsigned pdirindex;
 2221 
 2222                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2223                 if (pdnxt < sva)
 2224                         pdnxt = eva;
 2225 
 2226                 pdirindex = sva >> PDRSHIFT;
 2227                 ptpaddr = pmap->pm_pdir[pdirindex];
 2228 
 2229                 /*
 2230                  * Weed out invalid mappings. Note: we assume that the page
 2231                  * directory table is always allocated, and in kernel virtual.
 2232                  */
 2233                 if (ptpaddr == 0)
 2234                         continue;
 2235 
 2236                 /*
 2237                  * Check for large page.
 2238                  */
 2239                 if ((ptpaddr & PG_PS) != 0) {
 2240                         if ((prot & VM_PROT_WRITE) == 0)
 2241                                 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
 2242 #ifdef PAE
 2243                         if ((prot & VM_PROT_EXECUTE) == 0)
 2244                                 pmap->pm_pdir[pdirindex] |= pg_nx;
 2245 #endif
 2246                         anychanged = 1;
 2247                         continue;
 2248                 }
 2249 
 2250                 if (pdnxt > eva)
 2251                         pdnxt = eva;
 2252 
 2253                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2254                     sva += PAGE_SIZE) {
 2255                         vm_page_t m;
 2256 
 2257 retry:
 2258                         /*
 2259                          * Regardless of whether a pte is 32 or 64 bits in
 2260                          * size, PG_RW, PG_A, and PG_M are among the least
 2261                          * significant 32 bits.
 2262                          */
 2263                         obits = pbits = *pte;
 2264                         if ((pbits & PG_V) == 0)
 2265                                 continue;
 2266                         if (pbits & PG_MANAGED) {
 2267                                 m = NULL;
 2268                                 if (pbits & PG_A) {
 2269                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 2270                                         vm_page_flag_set(m, PG_REFERENCED);
 2271                                         pbits &= ~PG_A;
 2272                                 }
 2273                                 if ((pbits & PG_M) != 0) {
 2274                                         if (m == NULL)
 2275                                                 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 2276                                         vm_page_dirty(m);
 2277                                 }
 2278                         }
 2279 
 2280                         if ((prot & VM_PROT_WRITE) == 0)
 2281                                 pbits &= ~(PG_RW | PG_M);
 2282 #ifdef PAE
 2283                         if ((prot & VM_PROT_EXECUTE) == 0)
 2284                                 pbits |= pg_nx;
 2285 #endif
 2286 
 2287                         if (pbits != obits) {
 2288 #ifdef PAE
 2289                                 if (!atomic_cmpset_64(pte, obits, pbits))
 2290                                         goto retry;
 2291 #else
 2292                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 2293                                     pbits))
 2294                                         goto retry;
 2295 #endif
 2296                                 if (obits & PG_G)
 2297                                         pmap_invalidate_page(pmap, sva);
 2298                                 else
 2299                                         anychanged = 1;
 2300                         }
 2301                 }
 2302         }
 2303         sched_unpin();
 2304         if (anychanged)
 2305                 pmap_invalidate_all(pmap);
 2306         vm_page_unlock_queues();
 2307         PMAP_UNLOCK(pmap);
 2308 }
 2309 
 2310 /*
 2311  *      Insert the given physical page (p) at
 2312  *      the specified virtual address (v) in the
 2313  *      target physical map with the protection requested.
 2314  *
 2315  *      If specified, the page will be wired down, meaning
 2316  *      that the related pte can not be reclaimed.
 2317  *
 2318  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 2319  *      or lose information.  That is, this routine must actually
 2320  *      insert this page into the given map NOW.
 2321  */
 2322 void
 2323 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 2324            boolean_t wired)
 2325 {
 2326         vm_paddr_t pa;
 2327         pd_entry_t *pde;
 2328         pt_entry_t *pte;
 2329         vm_paddr_t opa;
 2330         pt_entry_t origpte, newpte;
 2331         vm_page_t mpte, om;
 2332         boolean_t invlva;
 2333 
 2334         va = trunc_page(va);
 2335 #ifdef PMAP_DIAGNOSTIC
 2336         if (va > VM_MAX_KERNEL_ADDRESS)
 2337                 panic("pmap_enter: toobig");
 2338         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 2339                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 2340 #endif
 2341 
 2342         mpte = NULL;
 2343 
 2344         vm_page_lock_queues();
 2345         PMAP_LOCK(pmap);
 2346         sched_pin();
 2347 
 2348         /*
 2349          * In the case that a page table page is not
 2350          * resident, we are creating it here.
 2351          */
 2352         if (va < VM_MAXUSER_ADDRESS) {
 2353                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 2354         }
 2355 #if 0 && defined(PMAP_DIAGNOSTIC)
 2356         else {
 2357                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 2358                 origpte = *pdeaddr;
 2359                 if ((origpte & PG_V) == 0) { 
 2360                         panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
 2361                                 pmap->pm_pdir[PTDPTDI], origpte, va);
 2362                 }
 2363         }
 2364 #endif
 2365 
 2366         pde = pmap_pde(pmap, va);
 2367         if ((*pde & PG_PS) != 0)
 2368                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 2369         pte = pmap_pte_quick(pmap, va);
 2370 
 2371         /*
 2372          * Page Directory table entry not valid, we need a new PT page
 2373          */
 2374         if (pte == NULL) {
 2375                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
 2376                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 2377         }
 2378 
 2379         pa = VM_PAGE_TO_PHYS(m);
 2380         om = NULL;
 2381         origpte = *pte;
 2382         opa = origpte & PG_FRAME;
 2383 
 2384         /*
 2385          * Mapping has not changed, must be protection or wiring change.
 2386          */
 2387         if (origpte && (opa == pa)) {
 2388                 /*
 2389                  * Wiring change, just update stats. We don't worry about
 2390                  * wiring PT pages as they remain resident as long as there
 2391                  * are valid mappings in them. Hence, if a user page is wired,
 2392                  * the PT page will be also.
 2393                  */
 2394                 if (wired && ((origpte & PG_W) == 0))
 2395                         pmap->pm_stats.wired_count++;
 2396                 else if (!wired && (origpte & PG_W))
 2397                         pmap->pm_stats.wired_count--;
 2398 
 2399                 /*
 2400                  * Remove extra pte reference
 2401                  */
 2402                 if (mpte)
 2403                         mpte->wire_count--;
 2404 
 2405                 /*
 2406                  * We might be turning off write access to the page,
 2407                  * so we go ahead and sense modify status.
 2408                  */
 2409                 if (origpte & PG_MANAGED) {
 2410                         om = m;
 2411                         pa |= PG_MANAGED;
 2412                 }
 2413                 goto validate;
 2414         } 
 2415         /*
 2416          * Mapping has changed, invalidate old range and fall through to
 2417          * handle validating new mapping.
 2418          */
 2419         if (opa) {
 2420                 if (origpte & PG_W)
 2421                         pmap->pm_stats.wired_count--;
 2422                 if (origpte & PG_MANAGED) {
 2423                         om = PHYS_TO_VM_PAGE(opa);
 2424                         pmap_remove_entry(pmap, om, va);
 2425                 }
 2426                 if (mpte != NULL) {
 2427                         mpte->wire_count--;
 2428                         KASSERT(mpte->wire_count > 0,
 2429                             ("pmap_enter: missing reference to page table page,"
 2430                              " va: 0x%x", va));
 2431                 }
 2432         } else
 2433                 pmap->pm_stats.resident_count++;
 2434 
 2435         /*
 2436          * Enter on the PV list if part of our managed memory.
 2437          */
 2438         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 2439                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 2440                     ("pmap_enter: managed mapping within the clean submap"));
 2441                 pmap_insert_entry(pmap, va, m);
 2442                 pa |= PG_MANAGED;
 2443         }
 2444 
 2445         /*
 2446          * Increment counters
 2447          */
 2448         if (wired)
 2449                 pmap->pm_stats.wired_count++;
 2450 
 2451 validate:
 2452         /*
 2453          * Now validate mapping with desired protection/wiring.
 2454          */
 2455         newpte = (pt_entry_t)(pa | PG_V);
 2456         if ((prot & VM_PROT_WRITE) != 0) {
 2457                 newpte |= PG_RW;
 2458                 vm_page_flag_set(m, PG_WRITEABLE);
 2459         }
 2460 #ifdef PAE
 2461         if ((prot & VM_PROT_EXECUTE) == 0)
 2462                 newpte |= pg_nx;
 2463 #endif
 2464         if (wired)
 2465                 newpte |= PG_W;
 2466         if (va < VM_MAXUSER_ADDRESS)
 2467                 newpte |= PG_U;
 2468         if (pmap == kernel_pmap)
 2469                 newpte |= pgeflag;
 2470 
 2471         /*
 2472          * if the mapping or permission bits are different, we need
 2473          * to update the pte.
 2474          */
 2475         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2476                 if (origpte & PG_V) {
 2477                         invlva = FALSE;
 2478                         origpte = pte_load_store(pte, newpte | PG_A);
 2479                         if (origpte & PG_A) {
 2480                                 if (origpte & PG_MANAGED)
 2481                                         vm_page_flag_set(om, PG_REFERENCED);
 2482                                 if (opa != VM_PAGE_TO_PHYS(m))
 2483                                         invlva = TRUE;
 2484 #ifdef PAE
 2485                                 if ((origpte & PG_NX) == 0 &&
 2486                                     (newpte & PG_NX) != 0)
 2487                                         invlva = TRUE;
 2488 #endif
 2489                         }
 2490                         if (origpte & PG_M) {
 2491                                 KASSERT((origpte & PG_RW),
 2492         ("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
 2493                                     va, (uintmax_t)origpte));
 2494                                 if ((origpte & PG_MANAGED) != 0)
 2495                                         vm_page_dirty(om);
 2496                                 if ((prot & VM_PROT_WRITE) == 0)
 2497                                         invlva = TRUE;
 2498                         }
 2499                         if (invlva)
 2500                                 pmap_invalidate_page(pmap, va);
 2501                 } else
 2502                         pte_store(pte, newpte | PG_A);
 2503         }
 2504         sched_unpin();
 2505         vm_page_unlock_queues();
 2506         PMAP_UNLOCK(pmap);
 2507 }
 2508 
 2509 /*
 2510  * Maps a sequence of resident pages belonging to the same object.
 2511  * The sequence begins with the given page m_start.  This page is
 2512  * mapped at the given virtual address start.  Each subsequent page is
 2513  * mapped at a virtual address that is offset from start by the same
 2514  * amount as the page is offset from m_start within the object.  The
 2515  * last page in the sequence is the page with the largest offset from
 2516  * m_start that can be mapped at a virtual address less than the given
 2517  * virtual address end.  Not every virtual page between start and end
 2518  * is mapped; only those for which a resident page exists with the
 2519  * corresponding offset from m_start are mapped.
 2520  */
 2521 void
 2522 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 2523     vm_page_t m_start, vm_prot_t prot)
 2524 {
 2525         vm_page_t m, mpte;
 2526         vm_pindex_t diff, psize;
 2527 
 2528         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 2529         psize = atop(end - start);
 2530         mpte = NULL;
 2531         m = m_start;
 2532         PMAP_LOCK(pmap);
 2533         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 2534                 mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
 2535                     prot, mpte);
 2536                 m = TAILQ_NEXT(m, listq);
 2537         }
 2538         PMAP_UNLOCK(pmap);
 2539 }
 2540 
 2541 /*
 2542  * this code makes some *MAJOR* assumptions:
 2543  * 1. Current pmap & pmap exists.
 2544  * 2. Not wired.
 2545  * 3. Read access.
 2546  * 4. No page table pages.
 2547  * but is *MUCH* faster than pmap_enter...
 2548  */
 2549 
 2550 void
 2551 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 2552 {
 2553 
 2554         PMAP_LOCK(pmap);
 2555         (void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 2556         PMAP_UNLOCK(pmap);
 2557 }
 2558 
 2559 static vm_page_t
 2560 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 2561     vm_prot_t prot, vm_page_t mpte)
 2562 {
 2563         pt_entry_t *pte;
 2564         vm_paddr_t pa;
 2565         vm_page_t free;
 2566 
 2567         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 2568             (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
 2569             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 2570         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2571         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2572 
 2573         /*
 2574          * In the case that a page table page is not
 2575          * resident, we are creating it here.
 2576          */
 2577         if (va < VM_MAXUSER_ADDRESS) {
 2578                 unsigned ptepindex;
 2579                 pd_entry_t ptepa;
 2580 
 2581                 /*
 2582                  * Calculate pagetable page index
 2583                  */
 2584                 ptepindex = va >> PDRSHIFT;
 2585                 if (mpte && (mpte->pindex == ptepindex)) {
 2586                         mpte->wire_count++;
 2587                 } else {
 2588                         /*
 2589                          * Get the page directory entry
 2590                          */
 2591                         ptepa = pmap->pm_pdir[ptepindex];
 2592 
 2593                         /*
 2594                          * If the page table page is mapped, we just increment
 2595                          * the hold count, and activate it.
 2596                          */
 2597                         if (ptepa) {
 2598                                 if (ptepa & PG_PS)
 2599                                         panic("pmap_enter_quick: unexpected mapping into 4MB page");
 2600                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 2601                                 mpte->wire_count++;
 2602                         } else {
 2603                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2604                                     M_NOWAIT);
 2605                                 if (mpte == NULL)
 2606                                         return (mpte);
 2607                         }
 2608                 }
 2609         } else {
 2610                 mpte = NULL;
 2611         }
 2612 
 2613         /*
 2614          * This call to vtopte makes the assumption that we are
 2615          * entering the page into the current pmap.  In order to support
 2616          * quick entry into any pmap, one would likely use pmap_pte_quick.
 2617          * But that isn't as quick as vtopte.
 2618          */
 2619         pte = vtopte(va);
 2620         if (*pte) {
 2621                 if (mpte != NULL) {
 2622                         mpte->wire_count--;
 2623                         mpte = NULL;
 2624                 }
 2625                 return (mpte);
 2626         }
 2627 
 2628         /*
 2629          * Enter on the PV list if part of our managed memory.
 2630          */
 2631         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
 2632             !pmap_try_insert_pv_entry(pmap, va, m)) {
 2633                 if (mpte != NULL) {
 2634                         free = NULL;
 2635                         if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
 2636                                 pmap_invalidate_page(pmap, va);
 2637                                 pmap_free_zero_pages(free);
 2638                         }
 2639                         
 2640                         mpte = NULL;
 2641                 }
 2642                 return (mpte);
 2643         }
 2644 
 2645         /*
 2646          * Increment counters
 2647          */
 2648         pmap->pm_stats.resident_count++;
 2649 
 2650         pa = VM_PAGE_TO_PHYS(m);
 2651 #ifdef PAE
 2652         if ((prot & VM_PROT_EXECUTE) == 0)
 2653                 pa |= pg_nx;
 2654 #endif
 2655 
 2656         /*
 2657          * Now validate mapping with RO protection
 2658          */
 2659         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 2660                 pte_store(pte, pa | PG_V | PG_U);
 2661         else
 2662                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 2663         return mpte;
 2664 }
 2665 
 2666 /*
 2667  * Make a temporary mapping for a physical address.  This is only intended
 2668  * to be used for panic dumps.
 2669  */
 2670 void *
 2671 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2672 {
 2673         vm_offset_t va;
 2674 
 2675         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 2676         pmap_kenter(va, pa);
 2677         invlpg(va);
 2678         return ((void *)crashdumpmap);
 2679 }
 2680 
 2681 /*
 2682  * This code maps large physical mmap regions into the
 2683  * processor address space.  Note that some shortcuts
 2684  * are taken, but the code works.
 2685  */
 2686 void
 2687 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2688                     vm_object_t object, vm_pindex_t pindex,
 2689                     vm_size_t size)
 2690 {
 2691         vm_page_t p;
 2692 
 2693         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2694         KASSERT(object->type == OBJT_DEVICE,
 2695             ("pmap_object_init_pt: non-device object"));
 2696         if (pseflag && 
 2697             ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 2698                 int i;
 2699                 vm_page_t m[1];
 2700                 unsigned int ptepindex;
 2701                 int npdes;
 2702                 pd_entry_t ptepa;
 2703 
 2704                 PMAP_LOCK(pmap);
 2705                 if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
 2706                         goto out;
 2707                 PMAP_UNLOCK(pmap);
 2708 retry:
 2709                 p = vm_page_lookup(object, pindex);
 2710                 if (p != NULL) {
 2711                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 2712                                 goto retry;
 2713                 } else {
 2714                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2715                         if (p == NULL)
 2716                                 return;
 2717                         m[0] = p;
 2718 
 2719                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2720                                 vm_page_lock_queues();
 2721                                 vm_page_free(p);
 2722                                 vm_page_unlock_queues();
 2723                                 return;
 2724                         }
 2725 
 2726                         p = vm_page_lookup(object, pindex);
 2727                         vm_page_lock_queues();
 2728                         vm_page_wakeup(p);
 2729                         vm_page_unlock_queues();
 2730                 }
 2731 
 2732                 ptepa = VM_PAGE_TO_PHYS(p);
 2733                 if (ptepa & (NBPDR - 1))
 2734                         return;
 2735 
 2736                 p->valid = VM_PAGE_BITS_ALL;
 2737 
 2738                 PMAP_LOCK(pmap);
 2739                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2740                 npdes = size >> PDRSHIFT;
 2741                 for(i = 0; i < npdes; i++) {
 2742                         pde_store(&pmap->pm_pdir[ptepindex],
 2743                             ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2744                         ptepa += NBPDR;
 2745                         ptepindex += 1;
 2746                 }
 2747                 pmap_invalidate_all(pmap);
 2748 out:
 2749                 PMAP_UNLOCK(pmap);
 2750         }
 2751 }
 2752 
 2753 /*
 2754  *      Routine:        pmap_change_wiring
 2755  *      Function:       Change the wiring attribute for a map/virtual-address
 2756  *                      pair.
 2757  *      In/out conditions:
 2758  *                      The mapping must already exist in the pmap.
 2759  */
 2760 void
 2761 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 2762 {
 2763         pt_entry_t *pte;
 2764 
 2765         PMAP_LOCK(pmap);
 2766         pte = pmap_pte(pmap, va);
 2767 
 2768         if (wired && !pmap_pte_w(pte))
 2769                 pmap->pm_stats.wired_count++;
 2770         else if (!wired && pmap_pte_w(pte))
 2771                 pmap->pm_stats.wired_count--;
 2772 
 2773         /*
 2774          * Wiring is not a hardware characteristic so there is no need to
 2775          * invalidate TLB.
 2776          */
 2777         pmap_pte_set_w(pte, wired);
 2778         pmap_pte_release(pte);
 2779         PMAP_UNLOCK(pmap);
 2780 }
 2781 
 2782 
 2783 
 2784 /*
 2785  *      Copy the range specified by src_addr/len
 2786  *      from the source map to the range dst_addr/len
 2787  *      in the destination map.
 2788  *
 2789  *      This routine is only advisory and need not do anything.
 2790  */
 2791 
 2792 void
 2793 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 2794           vm_offset_t src_addr)
 2795 {
 2796         vm_page_t   free;
 2797         vm_offset_t addr;
 2798         vm_offset_t end_addr = src_addr + len;
 2799         vm_offset_t pdnxt;
 2800 
 2801         if (dst_addr != src_addr)
 2802                 return;
 2803 
 2804         if (!pmap_is_current(src_pmap))
 2805                 return;
 2806 
 2807         vm_page_lock_queues();
 2808         if (dst_pmap < src_pmap) {
 2809                 PMAP_LOCK(dst_pmap);
 2810                 PMAP_LOCK(src_pmap);
 2811         } else {
 2812                 PMAP_LOCK(src_pmap);
 2813                 PMAP_LOCK(dst_pmap);
 2814         }
 2815         sched_pin();
 2816         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 2817                 pt_entry_t *src_pte, *dst_pte;
 2818                 vm_page_t dstmpte, srcmpte;
 2819                 pd_entry_t srcptepaddr;
 2820                 unsigned ptepindex;
 2821 
 2822                 if (addr >= UPT_MIN_ADDRESS)
 2823                         panic("pmap_copy: invalid to pmap_copy page tables");
 2824 
 2825                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 2826                 if (pdnxt < addr)
 2827                         pdnxt = end_addr;
 2828                 ptepindex = addr >> PDRSHIFT;
 2829 
 2830                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 2831                 if (srcptepaddr == 0)
 2832                         continue;
 2833                         
 2834                 if (srcptepaddr & PG_PS) {
 2835                         if (dst_pmap->pm_pdir[ptepindex] == 0) {
 2836                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 2837                                     ~PG_W;
 2838                                 dst_pmap->pm_stats.resident_count +=
 2839                                     NBPDR / PAGE_SIZE;
 2840                         }
 2841                         continue;
 2842                 }
 2843 
 2844                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 2845                 if (srcmpte->wire_count == 0)
 2846                         panic("pmap_copy: source page table page is unused");
 2847 
 2848                 if (pdnxt > end_addr)
 2849                         pdnxt = end_addr;
 2850 
 2851                 src_pte = vtopte(addr);
 2852                 while (addr < pdnxt) {
 2853                         pt_entry_t ptetemp;
 2854                         ptetemp = *src_pte;
 2855                         /*
 2856                          * we only virtual copy managed pages
 2857                          */
 2858                         if ((ptetemp & PG_MANAGED) != 0) {
 2859                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 2860                                     M_NOWAIT);
 2861                                 if (dstmpte == NULL)
 2862                                         break;
 2863                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 2864                                 if (*dst_pte == 0 &&
 2865                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 2866                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 2867                                         /*
 2868                                          * Clear the wired, modified, and
 2869                                          * accessed (referenced) bits
 2870                                          * during the copy.
 2871                                          */
 2872                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 2873                                             PG_A);
 2874                                         dst_pmap->pm_stats.resident_count++;
 2875                                 } else {
 2876                                         free = NULL;
 2877                                         if (pmap_unwire_pte_hold( dst_pmap,
 2878                                             dstmpte, &free)) {
 2879                                                 pmap_invalidate_page(dst_pmap,
 2880                                                     addr);
 2881                                                 pmap_free_zero_pages(free);
 2882                                         }
 2883                                 }
 2884                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 2885                                         break;
 2886                         }
 2887                         addr += PAGE_SIZE;
 2888                         src_pte++;
 2889                 }
 2890         }
 2891         sched_unpin();
 2892         vm_page_unlock_queues();
 2893         PMAP_UNLOCK(src_pmap);
 2894         PMAP_UNLOCK(dst_pmap);
 2895 }       
 2896 
 2897 static __inline void
 2898 pagezero(void *page)
 2899 {
 2900 #if defined(I686_CPU)
 2901         if (cpu_class == CPUCLASS_686) {
 2902 #if defined(CPU_ENABLE_SSE)
 2903                 if (cpu_feature & CPUID_SSE2)
 2904                         sse2_pagezero(page);
 2905                 else
 2906 #endif
 2907                         i686_pagezero(page);
 2908         } else
 2909 #endif
 2910                 bzero(page, PAGE_SIZE);
 2911 }
 2912 
 2913 /*
 2914  *      pmap_zero_page zeros the specified hardware page by mapping 
 2915  *      the page into KVM and using bzero to clear its contents.
 2916  */
 2917 void
 2918 pmap_zero_page(vm_page_t m)
 2919 {
 2920         struct sysmaps *sysmaps;
 2921 
 2922         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2923         mtx_lock(&sysmaps->lock);
 2924         if (*sysmaps->CMAP2)
 2925                 panic("pmap_zero_page: CMAP2 busy");
 2926         sched_pin();
 2927         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2928         invlcaddr(sysmaps->CADDR2);
 2929         pagezero(sysmaps->CADDR2);
 2930         *sysmaps->CMAP2 = 0;
 2931         sched_unpin();
 2932         mtx_unlock(&sysmaps->lock);
 2933 }
 2934 
 2935 /*
 2936  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 2937  *      the page into KVM and using bzero to clear its contents.
 2938  *
 2939  *      off and size may not cover an area beyond a single hardware page.
 2940  */
 2941 void
 2942 pmap_zero_page_area(vm_page_t m, int off, int size)
 2943 {
 2944         struct sysmaps *sysmaps;
 2945 
 2946         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2947         mtx_lock(&sysmaps->lock);
 2948         if (*sysmaps->CMAP2)
 2949                 panic("pmap_zero_page: CMAP2 busy");
 2950         sched_pin();
 2951         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2952         invlcaddr(sysmaps->CADDR2);
 2953         if (off == 0 && size == PAGE_SIZE) 
 2954                 pagezero(sysmaps->CADDR2);
 2955         else
 2956                 bzero((char *)sysmaps->CADDR2 + off, size);
 2957         *sysmaps->CMAP2 = 0;
 2958         sched_unpin();
 2959         mtx_unlock(&sysmaps->lock);
 2960 }
 2961 
 2962 /*
 2963  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 2964  *      the page into KVM and using bzero to clear its contents.  This
 2965  *      is intended to be called from the vm_pagezero process only and
 2966  *      outside of Giant.
 2967  */
 2968 void
 2969 pmap_zero_page_idle(vm_page_t m)
 2970 {
 2971 
 2972         if (*CMAP3)
 2973                 panic("pmap_zero_page: CMAP3 busy");
 2974         sched_pin();
 2975         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
 2976         invlcaddr(CADDR3);
 2977         pagezero(CADDR3);
 2978         *CMAP3 = 0;
 2979         sched_unpin();
 2980 }
 2981 
 2982 /*
 2983  *      pmap_copy_page copies the specified (machine independent)
 2984  *      page by mapping the page into virtual memory and using
 2985  *      bcopy to copy the page, one machine dependent page at a
 2986  *      time.
 2987  */
 2988 void
 2989 pmap_copy_page(vm_page_t src, vm_page_t dst)
 2990 {
 2991         struct sysmaps *sysmaps;
 2992 
 2993         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 2994         mtx_lock(&sysmaps->lock);
 2995         if (*sysmaps->CMAP1)
 2996                 panic("pmap_copy_page: CMAP1 busy");
 2997         if (*sysmaps->CMAP2)
 2998                 panic("pmap_copy_page: CMAP2 busy");
 2999         sched_pin();
 3000         invlpg((u_int)sysmaps->CADDR1);
 3001         invlpg((u_int)sysmaps->CADDR2);
 3002         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
 3003         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
 3004         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 3005         *sysmaps->CMAP1 = 0;
 3006         *sysmaps->CMAP2 = 0;
 3007         sched_unpin();
 3008         mtx_unlock(&sysmaps->lock);
 3009 }
 3010 
 3011 /*
 3012  * Returns true if the pmap's pv is one of the first
 3013  * 16 pvs linked to from this page.  This count may
 3014  * be changed upwards or downwards in the future; it
 3015  * is only necessary that true be returned for a small
 3016  * subset of pmaps for proper page aging.
 3017  */
 3018 boolean_t
 3019 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 3020 {
 3021         pv_entry_t pv;
 3022         int loops = 0;
 3023 
 3024         if (m->flags & PG_FICTITIOUS)
 3025                 return FALSE;
 3026 
 3027         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3028         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3029                 if (PV_PMAP(pv) == pmap) {
 3030                         return TRUE;
 3031                 }
 3032                 loops++;
 3033                 if (loops >= 16)
 3034                         break;
 3035         }
 3036         return (FALSE);
 3037 }
 3038 
 3039 /*
 3040  * Remove all pages from specified address space
 3041  * this aids process exit speeds.  Also, this code
 3042  * is special cased for current process only, but
 3043  * can have the more generic (and slightly slower)
 3044  * mode enabled.  This is much faster than pmap_remove
 3045  * in the case of running down an entire address space.
 3046  */
 3047 void
 3048 pmap_remove_pages(pmap_t pmap)
 3049 {
 3050         pt_entry_t *pte, tpte;
 3051         vm_page_t m, free = NULL;
 3052         pv_entry_t pv;
 3053         struct pv_chunk *pc, *npc;
 3054         int field, idx;
 3055         int32_t bit;
 3056         uint32_t inuse, bitmask;
 3057         int allfree;
 3058 
 3059         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 3060                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 3061                 return;
 3062         }
 3063         vm_page_lock_queues();
 3064         PMAP_LOCK(pmap);
 3065         sched_pin();
 3066         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 3067                 allfree = 1;
 3068                 for (field = 0; field < _NPCM; field++) {
 3069                         inuse = (~(pc->pc_map[field])) & pc_freemask[field];
 3070                         while (inuse != 0) {
 3071                                 bit = bsfl(inuse);
 3072                                 bitmask = 1UL << bit;
 3073                                 idx = field * 32 + bit;
 3074                                 pv = &pc->pc_pventry[idx];
 3075                                 inuse &= ~bitmask;
 3076 
 3077                                 pte = vtopte(pv->pv_va);
 3078                                 tpte = *pte;
 3079 
 3080                                 if (tpte == 0) {
 3081                                         printf(
 3082                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 3083                                             pte, pv->pv_va);
 3084                                         panic("bad pte");
 3085                                 }
 3086 
 3087 /*
 3088  * We cannot remove wired pages from a process' mapping at this time
 3089  */
 3090                                 if (tpte & PG_W) {
 3091                                         allfree = 0;
 3092                                         continue;
 3093                                 }
 3094 
 3095                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 3096                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 3097                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 3098                                     m, (uintmax_t)m->phys_addr,
 3099                                     (uintmax_t)tpte));
 3100 
 3101                                 KASSERT(m < &vm_page_array[vm_page_array_size],
 3102                                         ("pmap_remove_pages: bad tpte %#jx",
 3103                                         (uintmax_t)tpte));
 3104 
 3105                                 pmap->pm_stats.resident_count--;
 3106 
 3107                                 pte_clear(pte);
 3108 
 3109                                 /*
 3110                                  * Update the vm_page_t clean/reference bits.
 3111                                  */
 3112                                 if (tpte & PG_M)
 3113                                         vm_page_dirty(m);
 3114 
 3115                                 /* Mark free */
 3116                                 PV_STAT(pv_entry_frees++);
 3117                                 PV_STAT(pv_entry_spare++);
 3118                                 pv_entry_count--;
 3119                                 pc->pc_map[field] |= bitmask;
 3120                                 m->md.pv_list_count--;
 3121                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3122                                 if (TAILQ_EMPTY(&m->md.pv_list))
 3123                                         vm_page_flag_clear(m, PG_WRITEABLE);
 3124 
 3125                                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3126                         }
 3127                 }
 3128                 if (allfree) {
 3129                         PV_STAT(pv_entry_spare -= _NPCPV);
 3130                         PV_STAT(pc_chunk_count--);
 3131                         PV_STAT(pc_chunk_frees++);
 3132                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 3133                         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 3134                         pmap_qremove((vm_offset_t)pc, 1);
 3135                         vm_page_unwire(m, 0);
 3136                         vm_page_free(m);
 3137                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 3138                 }
 3139         }
 3140         sched_unpin();
 3141         pmap_invalidate_all(pmap);
 3142         vm_page_unlock_queues();
 3143         PMAP_UNLOCK(pmap);
 3144         pmap_free_zero_pages(free);
 3145 }
 3146 
 3147 /*
 3148  *      pmap_is_modified:
 3149  *
 3150  *      Return whether or not the specified physical page was modified
 3151  *      in any physical maps.
 3152  */
 3153 boolean_t
 3154 pmap_is_modified(vm_page_t m)
 3155 {
 3156         pv_entry_t pv;
 3157         pt_entry_t *pte;
 3158         pmap_t pmap;
 3159         boolean_t rv;
 3160 
 3161         rv = FALSE;
 3162         if (m->flags & PG_FICTITIOUS)
 3163                 return (rv);
 3164 
 3165         sched_pin();
 3166         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3167         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3168                 pmap = PV_PMAP(pv);
 3169                 PMAP_LOCK(pmap);
 3170                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3171                 rv = (*pte & PG_M) != 0;
 3172                 PMAP_UNLOCK(pmap);
 3173                 if (rv)
 3174                         break;
 3175         }
 3176         sched_unpin();
 3177         return (rv);
 3178 }
 3179 
 3180 /*
 3181  *      pmap_is_prefaultable:
 3182  *
 3183  *      Return whether or not the specified virtual address is elgible
 3184  *      for prefault.
 3185  */
 3186 boolean_t
 3187 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 3188 {
 3189         pt_entry_t *pte;
 3190         boolean_t rv;
 3191 
 3192         rv = FALSE;
 3193         PMAP_LOCK(pmap);
 3194         if (*pmap_pde(pmap, addr)) {
 3195                 pte = vtopte(addr);
 3196                 rv = *pte == 0;
 3197         }
 3198         PMAP_UNLOCK(pmap);
 3199         return (rv);
 3200 }
 3201 
 3202 /*
 3203  * Clear the write and modified bits in each of the given page's mappings.
 3204  */
 3205 void
 3206 pmap_remove_write(vm_page_t m)
 3207 {
 3208         pv_entry_t pv;
 3209         pmap_t pmap;
 3210         pt_entry_t oldpte, *pte;
 3211 
 3212         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3213         if ((m->flags & PG_FICTITIOUS) != 0 ||
 3214             (m->flags & PG_WRITEABLE) == 0)
 3215                 return;
 3216         sched_pin();
 3217         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3218                 pmap = PV_PMAP(pv);
 3219                 PMAP_LOCK(pmap);
 3220                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3221 retry:
 3222                 oldpte = *pte;
 3223                 if ((oldpte & PG_RW) != 0) {
 3224                         /*
 3225                          * Regardless of whether a pte is 32 or 64 bits
 3226                          * in size, PG_RW and PG_M are among the least
 3227                          * significant 32 bits.
 3228                          */
 3229                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3230                             oldpte & ~(PG_RW | PG_M)))
 3231                                 goto retry;
 3232                         if ((oldpte & PG_M) != 0)
 3233                                 vm_page_dirty(m);
 3234                         pmap_invalidate_page(pmap, pv->pv_va);
 3235                 }
 3236                 PMAP_UNLOCK(pmap);
 3237         }
 3238         vm_page_flag_clear(m, PG_WRITEABLE);
 3239         sched_unpin();
 3240 }
 3241 
 3242 /*
 3243  *      pmap_ts_referenced:
 3244  *
 3245  *      Return a count of reference bits for a page, clearing those bits.
 3246  *      It is not necessary for every reference bit to be cleared, but it
 3247  *      is necessary that 0 only be returned when there are truly no
 3248  *      reference bits set.
 3249  *
 3250  *      XXX: The exact number of bits to check and clear is a matter that
 3251  *      should be tested and standardized at some point in the future for
 3252  *      optimal aging of shared pages.
 3253  */
 3254 int
 3255 pmap_ts_referenced(vm_page_t m)
 3256 {
 3257         pv_entry_t pv, pvf, pvn;
 3258         pmap_t pmap;
 3259         pt_entry_t *pte;
 3260         int rtval = 0;
 3261 
 3262         if (m->flags & PG_FICTITIOUS)
 3263                 return (rtval);
 3264         sched_pin();
 3265         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3266         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3267                 pvf = pv;
 3268                 do {
 3269                         pvn = TAILQ_NEXT(pv, pv_list);
 3270                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3271                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 3272                         pmap = PV_PMAP(pv);
 3273                         PMAP_LOCK(pmap);
 3274                         pte = pmap_pte_quick(pmap, pv->pv_va);
 3275                         if ((*pte & PG_A) != 0) {
 3276                                 atomic_clear_int((u_int *)pte, PG_A);
 3277                                 pmap_invalidate_page(pmap, pv->pv_va);
 3278                                 rtval++;
 3279                                 if (rtval > 4)
 3280                                         pvn = NULL;
 3281                         }
 3282                         PMAP_UNLOCK(pmap);
 3283                 } while ((pv = pvn) != NULL && pv != pvf);
 3284         }
 3285         sched_unpin();
 3286         return (rtval);
 3287 }
 3288 
 3289 /*
 3290  *      Clear the modify bits on the specified physical page.
 3291  */
 3292 void
 3293 pmap_clear_modify(vm_page_t m)
 3294 {
 3295         pv_entry_t pv;
 3296         pmap_t pmap;
 3297         pt_entry_t *pte;
 3298 
 3299         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3300         if ((m->flags & PG_FICTITIOUS) != 0)
 3301                 return;
 3302         sched_pin();
 3303         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3304                 pmap = PV_PMAP(pv);
 3305                 PMAP_LOCK(pmap);
 3306                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3307                 if ((*pte & PG_M) != 0) {
 3308                         /*
 3309                          * Regardless of whether a pte is 32 or 64 bits
 3310                          * in size, PG_M is among the least significant
 3311                          * 32 bits. 
 3312                          */
 3313                         atomic_clear_int((u_int *)pte, PG_M);
 3314                         pmap_invalidate_page(pmap, pv->pv_va);
 3315                 }
 3316                 PMAP_UNLOCK(pmap);
 3317         }
 3318         sched_unpin();
 3319 }
 3320 
 3321 /*
 3322  *      pmap_clear_reference:
 3323  *
 3324  *      Clear the reference bit on the specified physical page.
 3325  */
 3326 void
 3327 pmap_clear_reference(vm_page_t m)
 3328 {
 3329         pv_entry_t pv;
 3330         pmap_t pmap;
 3331         pt_entry_t *pte;
 3332 
 3333         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3334         if ((m->flags & PG_FICTITIOUS) != 0)
 3335                 return;
 3336         sched_pin();
 3337         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3338                 pmap = PV_PMAP(pv);
 3339                 PMAP_LOCK(pmap);
 3340                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3341                 if ((*pte & PG_A) != 0) {
 3342                         /*
 3343                          * Regardless of whether a pte is 32 or 64 bits
 3344                          * in size, PG_A is among the least significant
 3345                          * 32 bits. 
 3346                          */
 3347                         atomic_clear_int((u_int *)pte, PG_A);
 3348                         pmap_invalidate_page(pmap, pv->pv_va);
 3349                 }
 3350                 PMAP_UNLOCK(pmap);
 3351         }
 3352         sched_unpin();
 3353 }
 3354 
 3355 /*
 3356  * Miscellaneous support routines follow
 3357  */
 3358 
 3359 /*
 3360  * Map a set of physical memory pages into the kernel virtual
 3361  * address space. Return a pointer to where it is mapped. This
 3362  * routine is intended to be used for mapping device memory,
 3363  * NOT real memory.
 3364  */
 3365 void *
 3366 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 3367 {
 3368         vm_offset_t va, tmpva, offset;
 3369 
 3370         offset = pa & PAGE_MASK;
 3371         size = roundup(offset + size, PAGE_SIZE);
 3372         pa = pa & PG_FRAME;
 3373 
 3374         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 3375                 va = KERNBASE + pa;
 3376         else
 3377                 va = kmem_alloc_nofault(kernel_map, size);
 3378         if (!va)
 3379                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3380 
 3381         for (tmpva = va; size > 0; ) {
 3382                 pmap_kenter_attr(tmpva, pa, mode);
 3383                 size -= PAGE_SIZE;
 3384                 tmpva += PAGE_SIZE;
 3385                 pa += PAGE_SIZE;
 3386         }
 3387         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3388         pmap_invalidate_cache();
 3389         return ((void *)(va + offset));
 3390 }
 3391 
 3392 void *
 3393 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 3394 {
 3395 
 3396         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 3397 }
 3398 
 3399 void *
 3400 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 3401 {
 3402 
 3403         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 3404 }
 3405 
 3406 void
 3407 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 3408 {
 3409         vm_offset_t base, offset, tmpva;
 3410 
 3411         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 3412                 return;
 3413         base = trunc_page(va);
 3414         offset = va & PAGE_MASK;
 3415         size = roundup(offset + size, PAGE_SIZE);
 3416         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 3417                 pmap_kremove(tmpva);
 3418         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3419         kmem_free(kernel_map, base, size);
 3420 }
 3421 
 3422 int
 3423 pmap_change_attr(va, size, mode)
 3424         vm_offset_t va;
 3425         vm_size_t size;
 3426         int mode;
 3427 {
 3428         vm_offset_t base, offset, tmpva;
 3429         pt_entry_t *pte;
 3430         u_int opte, npte;
 3431         pd_entry_t *pde;
 3432 
 3433         base = trunc_page(va);
 3434         offset = va & PAGE_MASK;
 3435         size = roundup(offset + size, PAGE_SIZE);
 3436 
 3437         /* Only supported on kernel virtual addresses. */
 3438         if (base <= VM_MAXUSER_ADDRESS)
 3439                 return (EINVAL);
 3440 
 3441         /* 4MB pages and pages that aren't mapped aren't supported. */
 3442         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 3443                 pde = pmap_pde(kernel_pmap, tmpva);
 3444                 if (*pde & PG_PS)
 3445                         return (EINVAL);
 3446                 if (*pde == 0)
 3447                         return (EINVAL);
 3448                 pte = vtopte(va);
 3449                 if (*pte == 0)
 3450                         return (EINVAL);
 3451         }
 3452 
 3453         /*
 3454          * Ok, all the pages exist and are 4k, so run through them updating
 3455          * their cache mode.
 3456          */
 3457         for (tmpva = base; size > 0; ) {
 3458                 pte = vtopte(tmpva);
 3459 
 3460                 /*
 3461                  * The cache mode bits are all in the low 32-bits of the
 3462                  * PTE, so we can just spin on updating the low 32-bits.
 3463                  */
 3464                 do {
 3465                         opte = *(u_int *)pte;
 3466                         npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
 3467                         npte |= pmap_cache_bits(mode, 0);
 3468                 } while (npte != opte &&
 3469                     !atomic_cmpset_int((u_int *)pte, opte, npte));
 3470                 tmpva += PAGE_SIZE;
 3471                 size -= PAGE_SIZE;
 3472         }
 3473 
 3474         /*
 3475          * Flush CPU caches to make sure any data isn't cached that shouldn't
 3476          * be, etc.
 3477          */    
 3478         pmap_invalidate_range(kernel_pmap, base, tmpva);
 3479         pmap_invalidate_cache();
 3480         return (0);
 3481 }
 3482 
 3483 /*
 3484  * perform the pmap work for mincore
 3485  */
 3486 int
 3487 pmap_mincore(pmap_t pmap, vm_offset_t addr)
 3488 {
 3489         pt_entry_t *ptep, pte;
 3490         vm_page_t m;
 3491         int val = 0;
 3492         
 3493         PMAP_LOCK(pmap);
 3494         ptep = pmap_pte(pmap, addr);
 3495         pte = (ptep != NULL) ? *ptep : 0;
 3496         pmap_pte_release(ptep);
 3497         PMAP_UNLOCK(pmap);
 3498 
 3499         if (pte != 0) {
 3500                 vm_paddr_t pa;
 3501 
 3502                 val = MINCORE_INCORE;
 3503                 if ((pte & PG_MANAGED) == 0)
 3504                         return val;
 3505 
 3506                 pa = pte & PG_FRAME;
 3507 
 3508                 m = PHYS_TO_VM_PAGE(pa);
 3509 
 3510                 /*
 3511                  * Modified by us
 3512                  */
 3513                 if (pte & PG_M)
 3514                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 3515                 else {
 3516                         /*
 3517                          * Modified by someone else
 3518                          */
 3519                         vm_page_lock_queues();
 3520                         if (m->dirty || pmap_is_modified(m))
 3521                                 val |= MINCORE_MODIFIED_OTHER;
 3522                         vm_page_unlock_queues();
 3523                 }
 3524                 /*
 3525                  * Referenced by us
 3526                  */
 3527                 if (pte & PG_A)
 3528                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 3529                 else {
 3530                         /*
 3531                          * Referenced by someone else
 3532                          */
 3533                         vm_page_lock_queues();
 3534                         if ((m->flags & PG_REFERENCED) ||
 3535                             pmap_ts_referenced(m)) {
 3536                                 val |= MINCORE_REFERENCED_OTHER;
 3537                                 vm_page_flag_set(m, PG_REFERENCED);
 3538                         }
 3539                         vm_page_unlock_queues();
 3540                 }
 3541         } 
 3542         return val;
 3543 }
 3544 
 3545 void
 3546 pmap_activate(struct thread *td)
 3547 {
 3548         pmap_t  pmap, oldpmap;
 3549         u_int32_t  cr3;
 3550 
 3551         critical_enter();
 3552         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 3553         oldpmap = PCPU_GET(curpmap);
 3554 #if defined(SMP)
 3555         atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
 3556         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 3557 #else
 3558         oldpmap->pm_active &= ~1;
 3559         pmap->pm_active |= 1;
 3560 #endif
 3561 #ifdef PAE
 3562         cr3 = vtophys(pmap->pm_pdpt);
 3563 #else
 3564         cr3 = vtophys(pmap->pm_pdir);
 3565 #endif
 3566         /*
 3567          * pmap_activate is for the current thread on the current cpu
 3568          */
 3569         td->td_pcb->pcb_cr3 = cr3;
 3570         load_cr3(cr3);
 3571         PCPU_SET(curpmap, pmap);
 3572         critical_exit();
 3573 }
 3574 
 3575 vm_offset_t
 3576 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 3577 {
 3578 
 3579         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 3580                 return addr;
 3581         }
 3582 
 3583         addr = (addr + PDRMASK) & ~PDRMASK;
 3584         return addr;
 3585 }
 3586 
 3587 
 3588 #if defined(PMAP_DEBUG)
 3589 pmap_pid_dump(int pid)
 3590 {
 3591         pmap_t pmap;
 3592         struct proc *p;
 3593         int npte = 0;
 3594         int index;
 3595 
 3596         sx_slock(&allproc_lock);
 3597         FOREACH_PROC_IN_SYSTEM(p) {
 3598                 if (p->p_pid != pid)
 3599                         continue;
 3600 
 3601                 if (p->p_vmspace) {
 3602                         int i,j;
 3603                         index = 0;
 3604                         pmap = vmspace_pmap(p->p_vmspace);
 3605                         for (i = 0; i < NPDEPTD; i++) {
 3606                                 pd_entry_t *pde;
 3607                                 pt_entry_t *pte;
 3608                                 vm_offset_t base = i << PDRSHIFT;
 3609                                 
 3610                                 pde = &pmap->pm_pdir[i];
 3611                                 if (pde && pmap_pde_v(pde)) {
 3612                                         for (j = 0; j < NPTEPG; j++) {
 3613                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 3614                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 3615                                                         if (index) {
 3616                                                                 index = 0;
 3617                                                                 printf("\n");
 3618                                                         }
 3619                                                         sx_sunlock(&allproc_lock);
 3620                                                         return npte;
 3621                                                 }
 3622                                                 pte = pmap_pte(pmap, va);
 3623                                                 if (pte && pmap_pte_v(pte)) {
 3624                                                         pt_entry_t pa;
 3625                                                         vm_page_t m;
 3626                                                         pa = *pte;
 3627                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 3628                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 3629                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 3630                                                         npte++;
 3631                                                         index++;
 3632                                                         if (index >= 2) {
 3633                                                                 index = 0;
 3634                                                                 printf("\n");
 3635                                                         } else {
 3636                                                                 printf(" ");
 3637                                                         }
 3638                                                 }
 3639                                         }
 3640                                 }
 3641                         }
 3642                 }
 3643         }
 3644         sx_sunlock(&allproc_lock);
 3645         return npte;
 3646 }
 3647 #endif
 3648 
 3649 #if defined(DEBUG)
 3650 
 3651 static void     pads(pmap_t pm);
 3652 void            pmap_pvdump(vm_offset_t pa);
 3653 
 3654 /* print address space of pmap*/
 3655 static void
 3656 pads(pmap_t pm)
 3657 {
 3658         int i, j;
 3659         vm_paddr_t va;
 3660         pt_entry_t *ptep;
 3661 
 3662         if (pm == kernel_pmap)
 3663                 return;
 3664         for (i = 0; i < NPDEPTD; i++)
 3665                 if (pm->pm_pdir[i])
 3666                         for (j = 0; j < NPTEPG; j++) {
 3667                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 3668                                 if (pm == kernel_pmap && va < KERNBASE)
 3669                                         continue;
 3670                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 3671                                         continue;
 3672                                 ptep = pmap_pte(pm, va);
 3673                                 if (pmap_pte_v(ptep))
 3674                                         printf("%x:%x ", va, *ptep);
 3675                         };
 3676 
 3677 }
 3678 
 3679 void
 3680 pmap_pvdump(vm_paddr_t pa)
 3681 {
 3682         pv_entry_t pv;
 3683         pmap_t pmap;
 3684         vm_page_t m;
 3685 
 3686         printf("pa %x", pa);
 3687         m = PHYS_TO_VM_PAGE(pa);
 3688         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 3689                 pmap = PV_PMAP(pv);
 3690                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 3691                 pads(pmap);
 3692         }
 3693         printf(" ");
 3694 }
 3695 #endif

Cache object: e50c793995c31e0b537f4a75968fa2ff


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.