The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/8.4/sys/i386/i386/pmap.c 247548 2013-03-01 14:54:37Z jhb $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_apic.h"
  107 #include "opt_cpu.h"
  108 #include "opt_pmap.h"
  109 #include "opt_smp.h"
  110 #include "opt_xbox.h"
  111 
  112 #include <sys/param.h>
  113 #include <sys/systm.h>
  114 #include <sys/kernel.h>
  115 #include <sys/ktr.h>
  116 #include <sys/lock.h>
  117 #include <sys/malloc.h>
  118 #include <sys/mman.h>
  119 #include <sys/msgbuf.h>
  120 #include <sys/mutex.h>
  121 #include <sys/proc.h>
  122 #include <sys/sf_buf.h>
  123 #include <sys/sx.h>
  124 #include <sys/vmmeter.h>
  125 #include <sys/sched.h>
  126 #include <sys/sysctl.h>
  127 #ifdef SMP
  128 #include <sys/smp.h>
  129 #endif
  130 
  131 #include <vm/vm.h>
  132 #include <vm/vm_param.h>
  133 #include <vm/vm_kern.h>
  134 #include <vm/vm_page.h>
  135 #include <vm/vm_map.h>
  136 #include <vm/vm_object.h>
  137 #include <vm/vm_extern.h>
  138 #include <vm/vm_pageout.h>
  139 #include <vm/vm_pager.h>
  140 #include <vm/vm_reserv.h>
  141 #include <vm/uma.h>
  142 
  143 #ifdef DEV_APIC
  144 #include <sys/bus.h>
  145 #include <machine/intr_machdep.h>
  146 #include <machine/apicvar.h>
  147 #endif
  148 #include <machine/cpu.h>
  149 #include <machine/cputypes.h>
  150 #include <machine/md_var.h>
  151 #include <machine/pcb.h>
  152 #include <machine/specialreg.h>
  153 #ifdef SMP
  154 #include <machine/smp.h>
  155 #endif
  156 
  157 #ifdef XBOX
  158 #include <machine/xbox.h>
  159 #endif
  160 
  161 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  162 #define CPU_ENABLE_SSE
  163 #endif
  164 
  165 #ifndef PMAP_SHPGPERPROC
  166 #define PMAP_SHPGPERPROC 200
  167 #endif
  168 
  169 #if !defined(DIAGNOSTIC)
  170 #define PMAP_INLINE     __gnu89_inline
  171 #else
  172 #define PMAP_INLINE
  173 #endif
  174 
  175 #ifdef PV_STATS
  176 #define PV_STAT(x)      do { x ; } while (0)
  177 #else
  178 #define PV_STAT(x)      do { } while (0)
  179 #endif
  180 
  181 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  182 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  183 
  184 /*
  185  * Get PDEs and PTEs for user/kernel address space
  186  */
  187 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  188 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  189 
  190 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  191 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  192 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  193 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  194 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  195 
  196 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  197     atomic_clear_int((u_int *)(pte), PG_W))
  198 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  199 
  200 struct pmap kernel_pmap_store;
  201 LIST_HEAD(pmaplist, pmap);
  202 static struct pmaplist allpmaps;
  203 static struct mtx allpmaps_lock;
  204 
  205 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  206 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  207 int pgeflag = 0;                /* PG_G or-in */
  208 int pseflag = 0;                /* PG_PS or-in */
  209 
  210 static int nkpt;
  211 vm_offset_t kernel_vm_end;
  212 extern u_int32_t KERNend;
  213 extern u_int32_t KPTphys;
  214 
  215 #ifdef PAE
  216 pt_entry_t pg_nx;
  217 static uma_zone_t pdptzone;
  218 #endif
  219 
  220 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  221 
  222 static int pat_works = 1;
  223 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
  224     "Is page attribute table fully functional?");
  225 
  226 static int pg_ps_enabled;
  227 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
  228     "Are large page mappings enabled?");
  229 
  230 #define PAT_INDEX_SIZE  8
  231 static int pat_index[PAT_INDEX_SIZE];   /* cache mode to PAT index conversion */
  232 
  233 /*
  234  * Data for the pv entry allocation mechanism
  235  */
  236 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  237 static struct md_page *pv_table;
  238 static int shpgperproc = PMAP_SHPGPERPROC;
  239 
  240 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  241 int pv_maxchunks;                       /* How many chunks we have KVA for */
  242 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  243 
  244 /*
  245  * All those kernel PT submaps that BSD is so fond of
  246  */
  247 struct sysmaps {
  248         struct  mtx lock;
  249         pt_entry_t *CMAP1;
  250         pt_entry_t *CMAP2;
  251         caddr_t CADDR1;
  252         caddr_t CADDR2;
  253 };
  254 static struct sysmaps sysmaps_pcpu[MAXCPU];
  255 pt_entry_t *CMAP1 = 0;
  256 static pt_entry_t *CMAP3;
  257 static pd_entry_t *KPTD;
  258 caddr_t CADDR1 = 0, ptvmmap = 0;
  259 static caddr_t CADDR3;
  260 struct msgbuf *msgbufp = 0;
  261 
  262 /*
  263  * Crashdump maps.
  264  */
  265 static caddr_t crashdumpmap;
  266 
  267 static pt_entry_t *PMAP1 = 0, *PMAP2;
  268 static pt_entry_t *PADDR1 = 0, *PADDR2;
  269 #ifdef SMP
  270 static int PMAP1cpu;
  271 static int PMAP1changedcpu;
  272 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  273            &PMAP1changedcpu, 0,
  274            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  275 #endif
  276 static int PMAP1changed;
  277 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  278            &PMAP1changed, 0,
  279            "Number of times pmap_pte_quick changed PMAP1");
  280 static int PMAP1unchanged;
  281 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  282            &PMAP1unchanged, 0,
  283            "Number of times pmap_pte_quick didn't change PMAP1");
  284 static struct mtx PMAP2mutex;
  285 
  286 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  287 static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
  288 static void     pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  289 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  290 static void     pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  291 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  292 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  293                     vm_offset_t va);
  294 static int      pmap_pvh_wired_mappings(struct md_page *pvh, int count);
  295 
  296 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  297 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
  298     vm_prot_t prot);
  299 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  300     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  301 static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
  302 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
  303 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
  304 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  305 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
  306 static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
  307 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
  308 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  309 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
  310     vm_prot_t prot);
  311 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
  312 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
  313     vm_page_t *free);
  314 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  315     vm_page_t *free);
  316 static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
  317 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  318     vm_page_t *free);
  319 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  320                                         vm_offset_t va);
  321 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  322 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  323     vm_page_t m);
  324 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
  325     pd_entry_t newpde);
  326 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
  327 
  328 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  329 
  330 static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
  331 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
  332 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  333 static void pmap_pte_release(pt_entry_t *pte);
  334 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  335 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  336 #ifdef PAE
  337 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  338 #endif
  339 
  340 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  341 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  342 
  343 /*
  344  * If you get an error here, then you set KVA_PAGES wrong! See the
  345  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  346  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  347  */
  348 CTASSERT(KERNBASE % (1 << 24) == 0);
  349 
  350 /*
  351  * Move the kernel virtual free pointer to the next
  352  * 4MB.  This is used to help improve performance
  353  * by using a large (4MB) page for much of the kernel
  354  * (.text, .data, .bss)
  355  */
  356 static vm_offset_t
  357 pmap_kmem_choose(vm_offset_t addr)
  358 {
  359         vm_offset_t newaddr = addr;
  360 
  361 #ifndef DISABLE_PSE
  362         if (cpu_feature & CPUID_PSE)
  363                 newaddr = (addr + PDRMASK) & ~PDRMASK;
  364 #endif
  365         return newaddr;
  366 }
  367 
  368 /*
  369  *      Bootstrap the system enough to run with virtual memory.
  370  *
  371  *      On the i386 this is called after mapping has already been enabled
  372  *      and just syncs the pmap module with what has already been done.
  373  *      [We can't call it easily with mapping off since the kernel is not
  374  *      mapped with PA == VA, hence we would have to relocate every address
  375  *      from the linked base (virtual) address "KERNBASE" to the actual
  376  *      (physical) address starting relative to 0]
  377  */
  378 void
  379 pmap_bootstrap(vm_paddr_t firstaddr)
  380 {
  381         vm_offset_t va;
  382         pt_entry_t *pte, *unused;
  383         struct sysmaps *sysmaps;
  384         int i;
  385 
  386         /*
  387          * Initialize the first available kernel virtual address.  However,
  388          * using "firstaddr" may waste a few pages of the kernel virtual
  389          * address space, because locore may not have mapped every physical
  390          * page that it allocated.  Preferably, locore would provide a first
  391          * unused virtual address in addition to "firstaddr".
  392          */
  393         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  394         virtual_avail = pmap_kmem_choose(virtual_avail);
  395 
  396         virtual_end = VM_MAX_KERNEL_ADDRESS;
  397 
  398         /*
  399          * Initialize the kernel pmap (which is statically allocated).
  400          */
  401         PMAP_LOCK_INIT(kernel_pmap);
  402         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  403 #ifdef PAE
  404         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  405 #endif
  406         kernel_pmap->pm_root = NULL;
  407         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  408         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  409         LIST_INIT(&allpmaps);
  410 
  411         /*
  412          * Request a spin mutex so that changes to allpmaps cannot be
  413          * preempted by smp_rendezvous_cpus().  Otherwise,
  414          * pmap_update_pde_kernel() could access allpmaps while it is
  415          * being changed.
  416          */
  417         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  418         mtx_lock_spin(&allpmaps_lock);
  419         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  420         mtx_unlock_spin(&allpmaps_lock);
  421         nkpt = NKPT;
  422 
  423         /*
  424          * Reserve some special page table entries/VA space for temporary
  425          * mapping of pages.
  426          */
  427 #define SYSMAP(c, p, v, n)      \
  428         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  429 
  430         va = virtual_avail;
  431         pte = vtopte(va);
  432 
  433         /*
  434          * CMAP1/CMAP2 are used for zeroing and copying pages.
  435          * CMAP3 is used for the idle process page zeroing.
  436          */
  437         for (i = 0; i < MAXCPU; i++) {
  438                 sysmaps = &sysmaps_pcpu[i];
  439                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  440                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  441                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  442         }
  443         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  444         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  445 
  446         /*
  447          * Crashdump maps.
  448          */
  449         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  450 
  451         /*
  452          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  453          */
  454         SYSMAP(caddr_t, unused, ptvmmap, 1)
  455 
  456         /*
  457          * msgbufp is used to map the system message buffer.
  458          */
  459         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  460 
  461         /*
  462          * KPTmap is used by pmap_kextract().
  463          *
  464          * KPTmap is first initialized by locore.  However, that initial
  465          * KPTmap can only support NKPT page table pages.  Here, a larger
  466          * KPTmap is created that can support KVA_PAGES page table pages.
  467          */
  468         SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
  469 
  470         for (i = 0; i < NKPT; i++)
  471                 KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
  472 
  473         /*
  474          * Adjust the start of the KPTD and KPTmap so that the implementation
  475          * of pmap_kextract() and pmap_growkernel() can be made simpler.
  476          */
  477         KPTD -= KPTDI;
  478         KPTmap -= i386_btop(KPTDI << PDRSHIFT);
  479 
  480         /*
  481          * ptemap is used for pmap_pte_quick
  482          */
  483         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  484         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  485 
  486         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  487 
  488         virtual_avail = va;
  489 
  490         /*
  491          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  492          * physical memory region that is used by the ACPI wakeup code.  This
  493          * mapping must not have PG_G set. 
  494          */
  495 #ifdef XBOX
  496         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  497          * an early stadium, we cannot yet neatly map video memory ... :-(
  498          * Better fixes are very welcome! */
  499         if (!arch_i386_is_xbox)
  500 #endif
  501         for (i = 1; i < NKPT; i++)
  502                 PTD[i] = 0;
  503 
  504         /* Initialize the PAT MSR if present. */
  505         pmap_init_pat();
  506 
  507         /* Turn on PG_G on kernel page(s) */
  508         pmap_set_pg();
  509 }
  510 
  511 /*
  512  * Setup the PAT MSR.
  513  */
  514 void
  515 pmap_init_pat(void)
  516 {
  517         int pat_table[PAT_INDEX_SIZE];
  518         uint64_t pat_msr;
  519         u_long cr0, cr4;
  520         int i;
  521 
  522         /* Set default PAT index table. */
  523         for (i = 0; i < PAT_INDEX_SIZE; i++)
  524                 pat_table[i] = -1;
  525         pat_table[PAT_WRITE_BACK] = 0;
  526         pat_table[PAT_WRITE_THROUGH] = 1;
  527         pat_table[PAT_UNCACHEABLE] = 3;
  528         pat_table[PAT_WRITE_COMBINING] = 3;
  529         pat_table[PAT_WRITE_PROTECTED] = 3;
  530         pat_table[PAT_UNCACHED] = 3;
  531 
  532         /* Bail if this CPU doesn't implement PAT. */
  533         if ((cpu_feature & CPUID_PAT) == 0) {
  534                 for (i = 0; i < PAT_INDEX_SIZE; i++)
  535                         pat_index[i] = pat_table[i];
  536                 pat_works = 0;
  537                 return;
  538         }
  539 
  540         /*
  541          * Due to some Intel errata, we can only safely use the lower 4
  542          * PAT entries.
  543          *
  544          *   Intel Pentium III Processor Specification Update
  545          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  546          * or Mode C Paging)
  547          *
  548          *   Intel Pentium IV  Processor Specification Update
  549          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  550          */
  551         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  552             !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
  553                 pat_works = 0;
  554 
  555         /* Initialize default PAT entries. */
  556         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
  557             PAT_VALUE(1, PAT_WRITE_THROUGH) |
  558             PAT_VALUE(2, PAT_UNCACHED) |
  559             PAT_VALUE(3, PAT_UNCACHEABLE) |
  560             PAT_VALUE(4, PAT_WRITE_BACK) |
  561             PAT_VALUE(5, PAT_WRITE_THROUGH) |
  562             PAT_VALUE(6, PAT_UNCACHED) |
  563             PAT_VALUE(7, PAT_UNCACHEABLE);
  564 
  565         if (pat_works) {
  566                 /*
  567                  * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
  568                  * Program 5 and 6 as WP and WC.
  569                  * Leave 4 and 7 as WB and UC.
  570                  */
  571                 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
  572                 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
  573                     PAT_VALUE(6, PAT_WRITE_COMBINING);
  574                 pat_table[PAT_UNCACHED] = 2;
  575                 pat_table[PAT_WRITE_PROTECTED] = 5;
  576                 pat_table[PAT_WRITE_COMBINING] = 6;
  577         } else {
  578                 /*
  579                  * Just replace PAT Index 2 with WC instead of UC-.
  580                  */
  581                 pat_msr &= ~PAT_MASK(2);
  582                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  583                 pat_table[PAT_WRITE_COMBINING] = 2;
  584         }
  585 
  586         /* Disable PGE. */
  587         cr4 = rcr4();
  588         load_cr4(cr4 & ~CR4_PGE);
  589 
  590         /* Disable caches (CD = 1, NW = 0). */
  591         cr0 = rcr0();
  592         load_cr0((cr0 & ~CR0_NW) | CR0_CD);
  593 
  594         /* Flushes caches and TLBs. */
  595         wbinvd();
  596         invltlb();
  597 
  598         /* Update PAT and index table. */
  599         wrmsr(MSR_PAT, pat_msr);
  600         for (i = 0; i < PAT_INDEX_SIZE; i++)
  601                 pat_index[i] = pat_table[i];
  602 
  603         /* Flush caches and TLBs again. */
  604         wbinvd();
  605         invltlb();
  606 
  607         /* Restore caches and PGE. */
  608         load_cr0(cr0);
  609         load_cr4(cr4);
  610 }
  611 
  612 /*
  613  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  614  */
  615 void
  616 pmap_set_pg(void)
  617 {
  618         pt_entry_t *pte;
  619         vm_offset_t va, endva;
  620 
  621         if (pgeflag == 0)
  622                 return;
  623 
  624         endva = KERNBASE + KERNend;
  625 
  626         if (pseflag) {
  627                 va = KERNBASE + KERNLOAD;
  628                 while (va  < endva) {
  629                         pdir_pde(PTD, va) |= pgeflag;
  630                         invltlb();      /* Play it safe, invltlb() every time */
  631                         va += NBPDR;
  632                 }
  633         } else {
  634                 va = (vm_offset_t)btext;
  635                 while (va < endva) {
  636                         pte = vtopte(va);
  637                         if (*pte)
  638                                 *pte |= pgeflag;
  639                         invltlb();      /* Play it safe, invltlb() every time */
  640                         va += PAGE_SIZE;
  641                 }
  642         }
  643 }
  644 
  645 /*
  646  * Initialize a vm_page's machine-dependent fields.
  647  */
  648 void
  649 pmap_page_init(vm_page_t m)
  650 {
  651 
  652         TAILQ_INIT(&m->md.pv_list);
  653         m->md.pat_mode = PAT_WRITE_BACK;
  654 }
  655 
  656 #ifdef PAE
  657 static void *
  658 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  659 {
  660 
  661         /* Inform UMA that this allocator uses kernel_map/object. */
  662         *flags = UMA_SLAB_KERNEL;
  663         return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
  664             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  665 }
  666 #endif
  667 
  668 /*
  669  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  670  * Requirements:
  671  *  - Must deal with pages in order to ensure that none of the PG_* bits
  672  *    are ever set, PG_V in particular.
  673  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  674  *    on PAE systems.  This should be ok.
  675  *  - Assumes nothing will ever test these addresses for 0 to indicate
  676  *    no mapping instead of correctly checking PG_V.
  677  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  678  * Because PG_V is never set, there can be no mappings to invalidate.
  679  */
  680 static vm_offset_t
  681 pmap_ptelist_alloc(vm_offset_t *head)
  682 {
  683         pt_entry_t *pte;
  684         vm_offset_t va;
  685 
  686         va = *head;
  687         if (va == 0)
  688                 return (va);    /* Out of memory */
  689         pte = vtopte(va);
  690         *head = *pte;
  691         if (*head & PG_V)
  692                 panic("pmap_ptelist_alloc: va with PG_V set!");
  693         *pte = 0;
  694         return (va);
  695 }
  696 
  697 static void
  698 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  699 {
  700         pt_entry_t *pte;
  701 
  702         if (va & PG_V)
  703                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  704         pte = vtopte(va);
  705         *pte = *head;           /* virtual! PG_V is 0 though */
  706         *head = va;
  707 }
  708 
  709 static void
  710 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  711 {
  712         int i;
  713         vm_offset_t va;
  714 
  715         *head = 0;
  716         for (i = npages - 1; i >= 0; i--) {
  717                 va = (vm_offset_t)base + i * PAGE_SIZE;
  718                 pmap_ptelist_free(head, va);
  719         }
  720 }
  721 
  722 
  723 /*
  724  *      Initialize the pmap module.
  725  *      Called by vm_init, to initialize any structures that the pmap
  726  *      system needs to map virtual memory.
  727  */
  728 void
  729 pmap_init(void)
  730 {
  731         vm_page_t mpte;
  732         vm_size_t s;
  733         int i, pv_npg;
  734 
  735         /*
  736          * Initialize the vm page array entries for the kernel pmap's
  737          * page table pages.
  738          */ 
  739         for (i = 0; i < NKPT; i++) {
  740                 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
  741                 KASSERT(mpte >= vm_page_array &&
  742                     mpte < &vm_page_array[vm_page_array_size],
  743                     ("pmap_init: page table page is out of range"));
  744                 mpte->pindex = i + KPTDI;
  745                 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
  746         }
  747 
  748         /*
  749          * Initialize the address space (zone) for the pv entries.  Set a
  750          * high water mark so that the system can recover from excessive
  751          * numbers of pv entries.
  752          */
  753         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  754         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  755         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  756         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  757         pv_entry_high_water = 9 * (pv_entry_max / 10);
  758 
  759         /*
  760          * If the kernel is running in a virtual machine on an AMD Family 10h
  761          * processor, then it must assume that MCA is enabled by the virtual
  762          * machine monitor.
  763          */
  764         if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
  765             CPUID_TO_FAMILY(cpu_id) == 0x10)
  766                 workaround_erratum383 = 1;
  767 
  768         /*
  769          * Are large page mappings supported and enabled?
  770          */
  771         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  772         if (pseflag == 0)
  773                 pg_ps_enabled = 0;
  774         else if (pg_ps_enabled) {
  775                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
  776                     ("pmap_init: can't assign to pagesizes[1]"));
  777                 pagesizes[1] = NBPDR;
  778         }
  779 
  780         /*
  781          * Calculate the size of the pv head table for superpages.
  782          */
  783         for (i = 0; phys_avail[i + 1]; i += 2);
  784         pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
  785 
  786         /*
  787          * Allocate memory for the pv head table for superpages.
  788          */
  789         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  790         s = round_page(s);
  791         pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
  792         for (i = 0; i < pv_npg; i++)
  793                 TAILQ_INIT(&pv_table[i].pv_list);
  794 
  795         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  796         pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
  797             PAGE_SIZE * pv_maxchunks);
  798         if (pv_chunkbase == NULL)
  799                 panic("pmap_init: not enough kvm for pv chunks");
  800         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  801 #ifdef PAE
  802         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  803             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  804             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  805         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  806 #endif
  807 }
  808 
  809 
  810 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  811         "Max number of PV entries");
  812 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  813         "Page share factor per proc");
  814 
  815 SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  816     "2/4MB page mapping counters");
  817 
  818 static u_long pmap_pde_demotions;
  819 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
  820     &pmap_pde_demotions, 0, "2/4MB page demotions");
  821 
  822 static u_long pmap_pde_mappings;
  823 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  824     &pmap_pde_mappings, 0, "2/4MB page mappings");
  825 
  826 static u_long pmap_pde_p_failures;
  827 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
  828     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
  829 
  830 static u_long pmap_pde_promotions;
  831 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
  832     &pmap_pde_promotions, 0, "2/4MB page promotions");
  833 
  834 /***************************************************
  835  * Low level helper routines.....
  836  ***************************************************/
  837 
  838 /*
  839  * Determine the appropriate bits to set in a PTE or PDE for a specified
  840  * caching mode.
  841  */
  842 int
  843 pmap_cache_bits(int mode, boolean_t is_pde)
  844 {
  845         int cache_bits, pat_flag, pat_idx;
  846 
  847         if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
  848                 panic("Unknown caching mode %d\n", mode);
  849 
  850         /* The PAT bit is different for PTE's and PDE's. */
  851         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  852 
  853         /* Map the caching mode to a PAT index. */
  854         pat_idx = pat_index[mode];
  855 
  856         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  857         cache_bits = 0;
  858         if (pat_idx & 0x4)
  859                 cache_bits |= pat_flag;
  860         if (pat_idx & 0x2)
  861                 cache_bits |= PG_NC_PCD;
  862         if (pat_idx & 0x1)
  863                 cache_bits |= PG_NC_PWT;
  864         return (cache_bits);
  865 }
  866 
  867 /*
  868  * The caller is responsible for maintaining TLB consistency.
  869  */
  870 static void
  871 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
  872 {
  873         pd_entry_t *pde;
  874         pmap_t pmap;
  875         boolean_t PTD_updated;
  876 
  877         PTD_updated = FALSE;
  878         mtx_lock_spin(&allpmaps_lock);
  879         LIST_FOREACH(pmap, &allpmaps, pm_list) {
  880                 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
  881                     PG_FRAME))
  882                         PTD_updated = TRUE;
  883                 pde = pmap_pde(pmap, va);
  884                 pde_store(pde, newpde);
  885         }
  886         mtx_unlock_spin(&allpmaps_lock);
  887         KASSERT(PTD_updated,
  888             ("pmap_kenter_pde: current page table is not in allpmaps"));
  889 }
  890 
  891 /*
  892  * After changing the page size for the specified virtual address in the page
  893  * table, flush the corresponding entries from the processor's TLB.  Only the
  894  * calling processor's TLB is affected.
  895  *
  896  * The calling thread must be pinned to a processor.
  897  */
  898 static void
  899 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
  900 {
  901         u_long cr4;
  902 
  903         if ((newpde & PG_PS) == 0)
  904                 /* Demotion: flush a specific 2MB page mapping. */
  905                 invlpg(va);
  906         else if ((newpde & PG_G) == 0)
  907                 /*
  908                  * Promotion: flush every 4KB page mapping from the TLB
  909                  * because there are too many to flush individually.
  910                  */
  911                 invltlb();
  912         else {
  913                 /*
  914                  * Promotion: flush every 4KB page mapping from the TLB,
  915                  * including any global (PG_G) mappings.
  916                  */
  917                 cr4 = rcr4();
  918                 load_cr4(cr4 & ~CR4_PGE);
  919                 /*
  920                  * Although preemption at this point could be detrimental to
  921                  * performance, it would not lead to an error.  PG_G is simply
  922                  * ignored if CR4.PGE is clear.  Moreover, in case this block
  923                  * is re-entered, the load_cr4() either above or below will
  924                  * modify CR4.PGE flushing the TLB.
  925                  */
  926                 load_cr4(cr4 | CR4_PGE);
  927         }
  928 }
  929 #ifdef SMP
  930 /*
  931  * For SMP, these functions have to use the IPI mechanism for coherence.
  932  *
  933  * N.B.: Before calling any of the following TLB invalidation functions,
  934  * the calling processor must ensure that all stores updating a non-
  935  * kernel page table are globally performed.  Otherwise, another
  936  * processor could cache an old, pre-update entry without being
  937  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  938  * active on another processor after its pm_active field is checked by
  939  * one of the following functions but before a store updating the page
  940  * table is globally performed. (2) The pmap becomes active on another
  941  * processor before its pm_active field is checked but due to
  942  * speculative loads one of the following functions stills reads the
  943  * pmap as inactive on the other processor.
  944  * 
  945  * The kernel page table is exempt because its pm_active field is
  946  * immutable.  The kernel page table is always active on every
  947  * processor.
  948  */
  949 void
  950 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  951 {
  952         cpumask_t cpumask, other_cpus;
  953 
  954         sched_pin();
  955         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  956                 invlpg(va);
  957                 smp_invlpg(va);
  958         } else {
  959                 cpumask = PCPU_GET(cpumask);
  960                 other_cpus = PCPU_GET(other_cpus);
  961                 if (pmap->pm_active & cpumask)
  962                         invlpg(va);
  963                 if (pmap->pm_active & other_cpus)
  964                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  965         }
  966         sched_unpin();
  967 }
  968 
  969 void
  970 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  971 {
  972         cpumask_t cpumask, other_cpus;
  973         vm_offset_t addr;
  974 
  975         sched_pin();
  976         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  977                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  978                         invlpg(addr);
  979                 smp_invlpg_range(sva, eva);
  980         } else {
  981                 cpumask = PCPU_GET(cpumask);
  982                 other_cpus = PCPU_GET(other_cpus);
  983                 if (pmap->pm_active & cpumask)
  984                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  985                                 invlpg(addr);
  986                 if (pmap->pm_active & other_cpus)
  987                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  988                             sva, eva);
  989         }
  990         sched_unpin();
  991 }
  992 
  993 void
  994 pmap_invalidate_all(pmap_t pmap)
  995 {
  996         cpumask_t cpumask, other_cpus;
  997 
  998         sched_pin();
  999         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
 1000                 invltlb();
 1001                 smp_invltlb();
 1002         } else {
 1003                 cpumask = PCPU_GET(cpumask);
 1004                 other_cpus = PCPU_GET(other_cpus);
 1005                 if (pmap->pm_active & cpumask)
 1006                         invltlb();
 1007                 if (pmap->pm_active & other_cpus)
 1008                         smp_masked_invltlb(pmap->pm_active & other_cpus);
 1009         }
 1010         sched_unpin();
 1011 }
 1012 
 1013 void
 1014 pmap_invalidate_cache(void)
 1015 {
 1016 
 1017         sched_pin();
 1018         wbinvd();
 1019         smp_cache_flush();
 1020         sched_unpin();
 1021 }
 1022 
 1023 struct pde_action {
 1024         cpumask_t store;        /* processor that updates the PDE */
 1025         cpumask_t invalidate;   /* processors that invalidate their TLB */
 1026         vm_offset_t va;
 1027         pd_entry_t *pde;
 1028         pd_entry_t newpde;
 1029 };
 1030 
 1031 static void
 1032 pmap_update_pde_kernel(void *arg)
 1033 {
 1034         struct pde_action *act = arg;
 1035         pd_entry_t *pde;
 1036         pmap_t pmap;
 1037 
 1038         if (act->store == PCPU_GET(cpumask))
 1039                 /*
 1040                  * Elsewhere, this operation requires allpmaps_lock for
 1041                  * synchronization.  Here, it does not because it is being
 1042                  * performed in the context of an all_cpus rendezvous.
 1043                  */
 1044                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1045                         pde = pmap_pde(pmap, act->va);
 1046                         pde_store(pde, act->newpde);
 1047                 }
 1048 }
 1049 
 1050 static void
 1051 pmap_update_pde_user(void *arg)
 1052 {
 1053         struct pde_action *act = arg;
 1054 
 1055         if (act->store == PCPU_GET(cpumask))
 1056                 pde_store(act->pde, act->newpde);
 1057 }
 1058 
 1059 static void
 1060 pmap_update_pde_teardown(void *arg)
 1061 {
 1062         struct pde_action *act = arg;
 1063 
 1064         if ((act->invalidate & PCPU_GET(cpumask)) != 0)
 1065                 pmap_update_pde_invalidate(act->va, act->newpde);
 1066 }
 1067 
 1068 /*
 1069  * Change the page size for the specified virtual address in a way that
 1070  * prevents any possibility of the TLB ever having two entries that map the
 1071  * same virtual address using different page sizes.  This is the recommended
 1072  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
 1073  * machine check exception for a TLB state that is improperly diagnosed as a
 1074  * hardware error.
 1075  */
 1076 static void
 1077 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1078 {
 1079         struct pde_action act;
 1080         cpumask_t active, cpumask;
 1081 
 1082         sched_pin();
 1083         cpumask = PCPU_GET(cpumask);
 1084         if (pmap == kernel_pmap)
 1085                 active = all_cpus;
 1086         else
 1087                 active = pmap->pm_active;
 1088         if ((active & PCPU_GET(other_cpus)) != 0) {
 1089                 act.store = cpumask;
 1090                 act.invalidate = active;
 1091                 act.va = va;
 1092                 act.pde = pde;
 1093                 act.newpde = newpde;
 1094                 smp_rendezvous_cpus(cpumask | active,
 1095                     smp_no_rendevous_barrier, pmap == kernel_pmap ?
 1096                     pmap_update_pde_kernel : pmap_update_pde_user,
 1097                     pmap_update_pde_teardown, &act);
 1098         } else {
 1099                 if (pmap == kernel_pmap)
 1100                         pmap_kenter_pde(va, newpde);
 1101                 else
 1102                         pde_store(pde, newpde);
 1103                 if ((active & cpumask) != 0)
 1104                         pmap_update_pde_invalidate(va, newpde);
 1105         }
 1106         sched_unpin();
 1107 }
 1108 #else /* !SMP */
 1109 /*
 1110  * Normal, non-SMP, 486+ invalidation functions.
 1111  * We inline these within pmap.c for speed.
 1112  */
 1113 PMAP_INLINE void
 1114 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1115 {
 1116 
 1117         if (pmap == kernel_pmap || pmap->pm_active)
 1118                 invlpg(va);
 1119 }
 1120 
 1121 PMAP_INLINE void
 1122 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1123 {
 1124         vm_offset_t addr;
 1125 
 1126         if (pmap == kernel_pmap || pmap->pm_active)
 1127                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1128                         invlpg(addr);
 1129 }
 1130 
 1131 PMAP_INLINE void
 1132 pmap_invalidate_all(pmap_t pmap)
 1133 {
 1134 
 1135         if (pmap == kernel_pmap || pmap->pm_active)
 1136                 invltlb();
 1137 }
 1138 
 1139 PMAP_INLINE void
 1140 pmap_invalidate_cache(void)
 1141 {
 1142 
 1143         wbinvd();
 1144 }
 1145 
 1146 static void
 1147 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1148 {
 1149 
 1150         if (pmap == kernel_pmap)
 1151                 pmap_kenter_pde(va, newpde);
 1152         else
 1153                 pde_store(pde, newpde);
 1154         if (pmap == kernel_pmap || pmap->pm_active)
 1155                 pmap_update_pde_invalidate(va, newpde);
 1156 }
 1157 #endif /* !SMP */
 1158 
 1159 void
 1160 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
 1161 {
 1162 
 1163         KASSERT((sva & PAGE_MASK) == 0,
 1164             ("pmap_invalidate_cache_range: sva not page-aligned"));
 1165         KASSERT((eva & PAGE_MASK) == 0,
 1166             ("pmap_invalidate_cache_range: eva not page-aligned"));
 1167 
 1168         if (cpu_feature & CPUID_SS)
 1169                 ; /* If "Self Snoop" is supported, do nothing. */
 1170         else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 1171                  eva - sva < 2 * 1024 * 1024) {
 1172 
 1173 #ifdef DEV_APIC
 1174                 /*
 1175                  * XXX: Some CPUs fault, hang, or trash the local APIC
 1176                  * registers if we use CLFLUSH on the local APIC
 1177                  * range.  The local APIC is always uncached, so we
 1178                  * don't need to flush for that range anyway.
 1179                  */
 1180                 if (pmap_kextract(sva) == lapic_paddr)
 1181                         return;
 1182 #endif
 1183                 /*
 1184                  * Otherwise, do per-cache line flush.  Use the mfence
 1185                  * instruction to insure that previous stores are
 1186                  * included in the write-back.  The processor
 1187                  * propagates flush to other processors in the cache
 1188                  * coherence domain.
 1189                  */
 1190                 mfence();
 1191                 for (; sva < eva; sva += cpu_clflush_line_size)
 1192                         clflush(sva);
 1193                 mfence();
 1194         } else {
 1195 
 1196                 /*
 1197                  * No targeted cache flush methods are supported by CPU,
 1198                  * or the supplied range is bigger than 2MB.
 1199                  * Globally invalidate cache.
 1200                  */
 1201                 pmap_invalidate_cache();
 1202         }
 1203 }
 1204 
 1205 /*
 1206  * Are we current address space or kernel?  N.B. We return FALSE when
 1207  * a pmap's page table is in use because a kernel thread is borrowing
 1208  * it.  The borrowed page table can change spontaneously, making any
 1209  * dependence on its continued use subject to a race condition.
 1210  */
 1211 static __inline int
 1212 pmap_is_current(pmap_t pmap)
 1213 {
 1214 
 1215         return (pmap == kernel_pmap ||
 1216                 (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
 1217             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
 1218 }
 1219 
 1220 /*
 1221  * If the given pmap is not the current or kernel pmap, the returned pte must
 1222  * be released by passing it to pmap_pte_release().
 1223  */
 1224 pt_entry_t *
 1225 pmap_pte(pmap_t pmap, vm_offset_t va)
 1226 {
 1227         pd_entry_t newpf;
 1228         pd_entry_t *pde;
 1229 
 1230         pde = pmap_pde(pmap, va);
 1231         if (*pde & PG_PS)
 1232                 return (pde);
 1233         if (*pde != 0) {
 1234                 /* are we current address space or kernel? */
 1235                 if (pmap_is_current(pmap))
 1236                         return (vtopte(va));
 1237                 mtx_lock(&PMAP2mutex);
 1238                 newpf = *pde & PG_FRAME;
 1239                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1240                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1241                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 1242                 }
 1243                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1244         }
 1245         return (0);
 1246 }
 1247 
 1248 /*
 1249  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1250  * being NULL.
 1251  */
 1252 static __inline void
 1253 pmap_pte_release(pt_entry_t *pte)
 1254 {
 1255 
 1256         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
 1257                 mtx_unlock(&PMAP2mutex);
 1258 }
 1259 
 1260 static __inline void
 1261 invlcaddr(void *caddr)
 1262 {
 1263 
 1264         invlpg((u_int)caddr);
 1265 }
 1266 
 1267 /*
 1268  * Super fast pmap_pte routine best used when scanning
 1269  * the pv lists.  This eliminates many coarse-grained
 1270  * invltlb calls.  Note that many of the pv list
 1271  * scans are across different pmaps.  It is very wasteful
 1272  * to do an entire invltlb for checking a single mapping.
 1273  *
 1274  * If the given pmap is not the current pmap, vm_page_queue_mtx
 1275  * must be held and curthread pinned to a CPU.
 1276  */
 1277 static pt_entry_t *
 1278 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1279 {
 1280         pd_entry_t newpf;
 1281         pd_entry_t *pde;
 1282 
 1283         pde = pmap_pde(pmap, va);
 1284         if (*pde & PG_PS)
 1285                 return (pde);
 1286         if (*pde != 0) {
 1287                 /* are we current address space or kernel? */
 1288                 if (pmap_is_current(pmap))
 1289                         return (vtopte(va));
 1290                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1291                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1292                 newpf = *pde & PG_FRAME;
 1293                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1294                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1295 #ifdef SMP
 1296                         PMAP1cpu = PCPU_GET(cpuid);
 1297 #endif
 1298                         invlcaddr(PADDR1);
 1299                         PMAP1changed++;
 1300                 } else
 1301 #ifdef SMP
 1302                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1303                         PMAP1cpu = PCPU_GET(cpuid);
 1304                         invlcaddr(PADDR1);
 1305                         PMAP1changedcpu++;
 1306                 } else
 1307 #endif
 1308                         PMAP1unchanged++;
 1309                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1310         }
 1311         return (0);
 1312 }
 1313 
 1314 /*
 1315  *      Routine:        pmap_extract
 1316  *      Function:
 1317  *              Extract the physical page address associated
 1318  *              with the given map/virtual_address pair.
 1319  */
 1320 vm_paddr_t 
 1321 pmap_extract(pmap_t pmap, vm_offset_t va)
 1322 {
 1323         vm_paddr_t rtval;
 1324         pt_entry_t *pte;
 1325         pd_entry_t pde;
 1326 
 1327         rtval = 0;
 1328         PMAP_LOCK(pmap);
 1329         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1330         if (pde != 0) {
 1331                 if ((pde & PG_PS) != 0)
 1332                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
 1333                 else {
 1334                         pte = pmap_pte(pmap, va);
 1335                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1336                         pmap_pte_release(pte);
 1337                 }
 1338         }
 1339         PMAP_UNLOCK(pmap);
 1340         return (rtval);
 1341 }
 1342 
 1343 /*
 1344  *      Routine:        pmap_extract_and_hold
 1345  *      Function:
 1346  *              Atomically extract and hold the physical page
 1347  *              with the given pmap and virtual address pair
 1348  *              if that mapping permits the given protection.
 1349  */
 1350 vm_page_t
 1351 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1352 {
 1353         pd_entry_t pde;
 1354         pt_entry_t pte;
 1355         vm_page_t m;
 1356 
 1357         m = NULL;
 1358         vm_page_lock_queues();
 1359         PMAP_LOCK(pmap);
 1360         pde = *pmap_pde(pmap, va);
 1361         if (pde != 0) {
 1362                 if (pde & PG_PS) {
 1363                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1364                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1365                                     (va & PDRMASK));
 1366                                 vm_page_hold(m);
 1367                         }
 1368                 } else {
 1369                         sched_pin();
 1370                         pte = *pmap_pte_quick(pmap, va);
 1371                         if (pte != 0 &&
 1372                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1373                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1374                                 vm_page_hold(m);
 1375                         }
 1376                         sched_unpin();
 1377                 }
 1378         }
 1379         vm_page_unlock_queues();
 1380         PMAP_UNLOCK(pmap);
 1381         return (m);
 1382 }
 1383 
 1384 /***************************************************
 1385  * Low level mapping routines.....
 1386  ***************************************************/
 1387 
 1388 /*
 1389  * Add a wired page to the kva.
 1390  * Note: not SMP coherent.
 1391  *
 1392  * This function may be used before pmap_bootstrap() is called.
 1393  */
 1394 PMAP_INLINE void 
 1395 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1396 {
 1397         pt_entry_t *pte;
 1398 
 1399         pte = vtopte(va);
 1400         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1401 }
 1402 
 1403 static __inline void
 1404 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1405 {
 1406         pt_entry_t *pte;
 1407 
 1408         pte = vtopte(va);
 1409         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1410 }
 1411 
 1412 /*
 1413  * Remove a page from the kernel pagetables.
 1414  * Note: not SMP coherent.
 1415  *
 1416  * This function may be used before pmap_bootstrap() is called.
 1417  */
 1418 PMAP_INLINE void
 1419 pmap_kremove(vm_offset_t va)
 1420 {
 1421         pt_entry_t *pte;
 1422 
 1423         pte = vtopte(va);
 1424         pte_clear(pte);
 1425 }
 1426 
 1427 /*
 1428  *      Used to map a range of physical addresses into kernel
 1429  *      virtual address space.
 1430  *
 1431  *      The value passed in '*virt' is a suggested virtual address for
 1432  *      the mapping. Architectures which can support a direct-mapped
 1433  *      physical to virtual region can return the appropriate address
 1434  *      within that region, leaving '*virt' unchanged. Other
 1435  *      architectures should map the pages starting at '*virt' and
 1436  *      update '*virt' with the first usable address after the mapped
 1437  *      region.
 1438  */
 1439 vm_offset_t
 1440 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1441 {
 1442         vm_offset_t va, sva;
 1443         vm_paddr_t superpage_offset;
 1444         pd_entry_t newpde;
 1445 
 1446         va = *virt;
 1447         /*
 1448          * Does the physical address range's size and alignment permit at
 1449          * least one superpage mapping to be created?
 1450          */ 
 1451         superpage_offset = start & PDRMASK;
 1452         if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
 1453                 /*
 1454                  * Increase the starting virtual address so that its alignment
 1455                  * does not preclude the use of superpage mappings.
 1456                  */
 1457                 if ((va & PDRMASK) < superpage_offset)
 1458                         va = (va & ~PDRMASK) + superpage_offset;
 1459                 else if ((va & PDRMASK) > superpage_offset)
 1460                         va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
 1461         }
 1462         sva = va;
 1463         while (start < end) {
 1464                 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
 1465                     pseflag) {
 1466                         KASSERT((va & PDRMASK) == 0,
 1467                             ("pmap_map: misaligned va %#x", va));
 1468                         newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
 1469                         pmap_kenter_pde(va, newpde);
 1470                         va += NBPDR;
 1471                         start += NBPDR;
 1472                 } else {
 1473                         pmap_kenter(va, start);
 1474                         va += PAGE_SIZE;
 1475                         start += PAGE_SIZE;
 1476                 }
 1477         }
 1478         pmap_invalidate_range(kernel_pmap, sva, va);
 1479         *virt = va;
 1480         return (sva);
 1481 }
 1482 
 1483 
 1484 /*
 1485  * Add a list of wired pages to the kva
 1486  * this routine is only used for temporary
 1487  * kernel mappings that do not need to have
 1488  * page modification or references recorded.
 1489  * Note that old mappings are simply written
 1490  * over.  The page *must* be wired.
 1491  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1492  */
 1493 void
 1494 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1495 {
 1496         pt_entry_t *endpte, oldpte, pa, *pte;
 1497         vm_page_t m;
 1498 
 1499         oldpte = 0;
 1500         pte = vtopte(sva);
 1501         endpte = pte + count;
 1502         while (pte < endpte) {
 1503                 m = *ma++;
 1504                 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 1505                 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
 1506                         oldpte |= *pte;
 1507                         pte_store(pte, pa | pgeflag | PG_RW | PG_V);
 1508                 }
 1509                 pte++;
 1510         }
 1511         if (__predict_false((oldpte & PG_V) != 0))
 1512                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1513                     PAGE_SIZE);
 1514 }
 1515 
 1516 /*
 1517  * This routine tears out page mappings from the
 1518  * kernel -- it is meant only for temporary mappings.
 1519  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1520  */
 1521 void
 1522 pmap_qremove(vm_offset_t sva, int count)
 1523 {
 1524         vm_offset_t va;
 1525 
 1526         va = sva;
 1527         while (count-- > 0) {
 1528                 pmap_kremove(va);
 1529                 va += PAGE_SIZE;
 1530         }
 1531         pmap_invalidate_range(kernel_pmap, sva, va);
 1532 }
 1533 
 1534 /***************************************************
 1535  * Page table page management routines.....
 1536  ***************************************************/
 1537 static __inline void
 1538 pmap_free_zero_pages(vm_page_t free)
 1539 {
 1540         vm_page_t m;
 1541 
 1542         while (free != NULL) {
 1543                 m = free;
 1544                 free = m->right;
 1545                 /* Preserve the page's PG_ZERO setting. */
 1546                 vm_page_free_toq(m);
 1547         }
 1548 }
 1549 
 1550 /*
 1551  * Schedule the specified unused page table page to be freed.  Specifically,
 1552  * add the page to the specified list of pages that will be released to the
 1553  * physical memory manager after the TLB has been updated.
 1554  */
 1555 static __inline void
 1556 pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
 1557 {
 1558 
 1559         if (set_PG_ZERO)
 1560                 m->flags |= PG_ZERO;
 1561         else
 1562                 m->flags &= ~PG_ZERO;
 1563         m->right = *free;
 1564         *free = m;
 1565 }
 1566 
 1567 /*
 1568  * Inserts the specified page table page into the specified pmap's collection
 1569  * of idle page table pages.  Each of a pmap's page table pages is responsible
 1570  * for mapping a distinct range of virtual addresses.  The pmap's collection is
 1571  * ordered by this virtual address range.
 1572  */
 1573 static void
 1574 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 1575 {
 1576         vm_page_t root;
 1577 
 1578         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1579         root = pmap->pm_root;
 1580         if (root == NULL) {
 1581                 mpte->left = NULL;
 1582                 mpte->right = NULL;
 1583         } else {
 1584                 root = vm_page_splay(mpte->pindex, root);
 1585                 if (mpte->pindex < root->pindex) {
 1586                         mpte->left = root->left;
 1587                         mpte->right = root;
 1588                         root->left = NULL;
 1589                 } else if (mpte->pindex == root->pindex)
 1590                         panic("pmap_insert_pt_page: pindex already inserted");
 1591                 else {
 1592                         mpte->right = root->right;
 1593                         mpte->left = root;
 1594                         root->right = NULL;
 1595                 }
 1596         }
 1597         pmap->pm_root = mpte;
 1598 }
 1599 
 1600 /*
 1601  * Looks for a page table page mapping the specified virtual address in the
 1602  * specified pmap's collection of idle page table pages.  Returns NULL if there
 1603  * is no page table page corresponding to the specified virtual address.
 1604  */
 1605 static vm_page_t
 1606 pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
 1607 {
 1608         vm_page_t mpte;
 1609         vm_pindex_t pindex = va >> PDRSHIFT;
 1610 
 1611         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1612         if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
 1613                 mpte = vm_page_splay(pindex, mpte);
 1614                 if ((pmap->pm_root = mpte)->pindex != pindex)
 1615                         mpte = NULL;
 1616         }
 1617         return (mpte);
 1618 }
 1619 
 1620 /*
 1621  * Removes the specified page table page from the specified pmap's collection
 1622  * of idle page table pages.  The specified page table page must be a member of
 1623  * the pmap's collection.
 1624  */
 1625 static void
 1626 pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
 1627 {
 1628         vm_page_t root;
 1629 
 1630         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1631         if (mpte != pmap->pm_root)
 1632                 vm_page_splay(mpte->pindex, pmap->pm_root);
 1633         if (mpte->left == NULL)
 1634                 root = mpte->right;
 1635         else {
 1636                 root = vm_page_splay(mpte->pindex, mpte->left);
 1637                 root->right = mpte->right;
 1638         }
 1639         pmap->pm_root = root;
 1640 }
 1641 
 1642 /*
 1643  * This routine unholds page table pages, and if the hold count
 1644  * drops to zero, then it decrements the wire count.
 1645  */
 1646 static __inline int
 1647 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1648 {
 1649 
 1650         --m->wire_count;
 1651         if (m->wire_count == 0)
 1652                 return _pmap_unwire_pte_hold(pmap, m, free);
 1653         else
 1654                 return 0;
 1655 }
 1656 
 1657 static int 
 1658 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1659 {
 1660         vm_offset_t pteva;
 1661 
 1662         /*
 1663          * unmap the page table page
 1664          */
 1665         pmap->pm_pdir[m->pindex] = 0;
 1666         --pmap->pm_stats.resident_count;
 1667 
 1668         /*
 1669          * This is a release store so that the ordinary store unmapping
 1670          * the page table page is globally performed before TLB shoot-
 1671          * down is begun.
 1672          */
 1673         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1674 
 1675         /*
 1676          * Do an invltlb to make the invalidated mapping
 1677          * take effect immediately.
 1678          */
 1679         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1680         pmap_invalidate_page(pmap, pteva);
 1681 
 1682         /* 
 1683          * Put page on a list so that it is released after
 1684          * *ALL* TLB shootdown is done
 1685          */
 1686         pmap_add_delayed_free_list(m, free, TRUE);
 1687 
 1688         return 1;
 1689 }
 1690 
 1691 /*
 1692  * After removing a page table entry, this routine is used to
 1693  * conditionally free the page, and manage the hold/wire counts.
 1694  */
 1695 static int
 1696 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1697 {
 1698         pd_entry_t ptepde;
 1699         vm_page_t mpte;
 1700 
 1701         if (va >= VM_MAXUSER_ADDRESS)
 1702                 return 0;
 1703         ptepde = *pmap_pde(pmap, va);
 1704         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1705         return pmap_unwire_pte_hold(pmap, mpte, free);
 1706 }
 1707 
 1708 /*
 1709  * Initialize the pmap for the swapper process.
 1710  */
 1711 void
 1712 pmap_pinit0(pmap_t pmap)
 1713 {
 1714 
 1715         PMAP_LOCK_INIT(pmap);
 1716         /*
 1717          * Since the page table directory is shared with the kernel pmap,
 1718          * which is already included in the list "allpmaps", this pmap does
 1719          * not need to be inserted into that list.
 1720          */
 1721         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1722 #ifdef PAE
 1723         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1724 #endif
 1725         pmap->pm_root = NULL;
 1726         pmap->pm_active = 0;
 1727         PCPU_SET(curpmap, pmap);
 1728         TAILQ_INIT(&pmap->pm_pvchunk);
 1729         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1730 }
 1731 
 1732 /*
 1733  * Initialize a preallocated and zeroed pmap structure,
 1734  * such as one in a vmspace structure.
 1735  */
 1736 int
 1737 pmap_pinit(pmap_t pmap)
 1738 {
 1739         vm_page_t m, ptdpg[NPGPTD];
 1740         vm_paddr_t pa;
 1741         static int color;
 1742         int i;
 1743 
 1744         PMAP_LOCK_INIT(pmap);
 1745 
 1746         /*
 1747          * No need to allocate page table space yet but we do need a valid
 1748          * page directory table.
 1749          */
 1750         if (pmap->pm_pdir == NULL) {
 1751                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1752                     NBPTD);
 1753 
 1754                 if (pmap->pm_pdir == NULL) {
 1755                         PMAP_LOCK_DESTROY(pmap);
 1756                         return (0);
 1757                 }
 1758 #ifdef PAE
 1759                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1760                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1761                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1762                     ("pmap_pinit: pdpt misaligned"));
 1763                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1764                     ("pmap_pinit: pdpt above 4g"));
 1765 #endif
 1766                 pmap->pm_root = NULL;
 1767         }
 1768         KASSERT(pmap->pm_root == NULL,
 1769             ("pmap_pinit: pmap has reserved page table page(s)"));
 1770 
 1771         /*
 1772          * allocate the page directory page(s)
 1773          */
 1774         for (i = 0; i < NPGPTD;) {
 1775                 m = vm_page_alloc(NULL, color++,
 1776                     VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 1777                     VM_ALLOC_ZERO);
 1778                 if (m == NULL)
 1779                         VM_WAIT;
 1780                 else {
 1781                         ptdpg[i++] = m;
 1782                 }
 1783         }
 1784 
 1785         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1786 
 1787         for (i = 0; i < NPGPTD; i++) {
 1788                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1789                         bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
 1790         }
 1791 
 1792         mtx_lock_spin(&allpmaps_lock);
 1793         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1794         /* Copy the kernel page table directory entries. */
 1795         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1796         mtx_unlock_spin(&allpmaps_lock);
 1797 
 1798         /* install self-referential address mapping entry(s) */
 1799         for (i = 0; i < NPGPTD; i++) {
 1800                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1801                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1802 #ifdef PAE
 1803                 pmap->pm_pdpt[i] = pa | PG_V;
 1804 #endif
 1805         }
 1806 
 1807         pmap->pm_active = 0;
 1808         TAILQ_INIT(&pmap->pm_pvchunk);
 1809         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1810 
 1811         return (1);
 1812 }
 1813 
 1814 /*
 1815  * this routine is called if the page table page is not
 1816  * mapped correctly.
 1817  */
 1818 static vm_page_t
 1819 _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
 1820 {
 1821         vm_paddr_t ptepa;
 1822         vm_page_t m;
 1823 
 1824         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1825             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1826             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1827 
 1828         /*
 1829          * Allocate a page table page.
 1830          */
 1831         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1832             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1833                 if (flags & M_WAITOK) {
 1834                         PMAP_UNLOCK(pmap);
 1835                         vm_page_unlock_queues();
 1836                         VM_WAIT;
 1837                         vm_page_lock_queues();
 1838                         PMAP_LOCK(pmap);
 1839                 }
 1840 
 1841                 /*
 1842                  * Indicate the need to retry.  While waiting, the page table
 1843                  * page may have been allocated.
 1844                  */
 1845                 return (NULL);
 1846         }
 1847         if ((m->flags & PG_ZERO) == 0)
 1848                 pmap_zero_page(m);
 1849 
 1850         /*
 1851          * Map the pagetable page into the process address space, if
 1852          * it isn't already there.
 1853          */
 1854 
 1855         pmap->pm_stats.resident_count++;
 1856 
 1857         ptepa = VM_PAGE_TO_PHYS(m);
 1858         pmap->pm_pdir[ptepindex] =
 1859                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1860 
 1861         return m;
 1862 }
 1863 
 1864 static vm_page_t
 1865 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1866 {
 1867         unsigned ptepindex;
 1868         pd_entry_t ptepa;
 1869         vm_page_t m;
 1870 
 1871         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1872             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1873             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1874 
 1875         /*
 1876          * Calculate pagetable page index
 1877          */
 1878         ptepindex = va >> PDRSHIFT;
 1879 retry:
 1880         /*
 1881          * Get the page directory entry
 1882          */
 1883         ptepa = pmap->pm_pdir[ptepindex];
 1884 
 1885         /*
 1886          * This supports switching from a 4MB page to a
 1887          * normal 4K page.
 1888          */
 1889         if (ptepa & PG_PS) {
 1890                 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
 1891                 ptepa = pmap->pm_pdir[ptepindex];
 1892         }
 1893 
 1894         /*
 1895          * If the page table page is mapped, we just increment the
 1896          * hold count, and activate it.
 1897          */
 1898         if (ptepa) {
 1899                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 1900                 m->wire_count++;
 1901         } else {
 1902                 /*
 1903                  * Here if the pte page isn't mapped, or if it has
 1904                  * been deallocated. 
 1905                  */
 1906                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1907                 if (m == NULL && (flags & M_WAITOK))
 1908                         goto retry;
 1909         }
 1910         return (m);
 1911 }
 1912 
 1913 
 1914 /***************************************************
 1915 * Pmap allocation/deallocation routines.
 1916  ***************************************************/
 1917 
 1918 #ifdef SMP
 1919 /*
 1920  * Deal with a SMP shootdown of other users of the pmap that we are
 1921  * trying to dispose of.  This can be a bit hairy.
 1922  */
 1923 static cpumask_t *lazymask;
 1924 static u_int lazyptd;
 1925 static volatile u_int lazywait;
 1926 
 1927 void pmap_lazyfix_action(void);
 1928 
 1929 void
 1930 pmap_lazyfix_action(void)
 1931 {
 1932         cpumask_t mymask = PCPU_GET(cpumask);
 1933 
 1934 #ifdef COUNT_IPIS
 1935         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1936 #endif
 1937         if (rcr3() == lazyptd)
 1938                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1939         atomic_clear_int(lazymask, mymask);
 1940         atomic_store_rel_int(&lazywait, 1);
 1941 }
 1942 
 1943 static void
 1944 pmap_lazyfix_self(cpumask_t mymask)
 1945 {
 1946 
 1947         if (rcr3() == lazyptd)
 1948                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 1949         atomic_clear_int(lazymask, mymask);
 1950 }
 1951 
 1952 
 1953 static void
 1954 pmap_lazyfix(pmap_t pmap)
 1955 {
 1956         cpumask_t mymask, mask;
 1957         u_int spins;
 1958 
 1959         while ((mask = pmap->pm_active) != 0) {
 1960                 spins = 50000000;
 1961                 mask = mask & -mask;    /* Find least significant set bit */
 1962                 mtx_lock_spin(&smp_ipi_mtx);
 1963 #ifdef PAE
 1964                 lazyptd = vtophys(pmap->pm_pdpt);
 1965 #else
 1966                 lazyptd = vtophys(pmap->pm_pdir);
 1967 #endif
 1968                 mymask = PCPU_GET(cpumask);
 1969                 if (mask == mymask) {
 1970                         lazymask = &pmap->pm_active;
 1971                         pmap_lazyfix_self(mymask);
 1972                 } else {
 1973                         atomic_store_rel_int((u_int *)&lazymask,
 1974                             (u_int)&pmap->pm_active);
 1975                         atomic_store_rel_int(&lazywait, 0);
 1976                         ipi_selected(mask, IPI_LAZYPMAP);
 1977                         while (lazywait == 0) {
 1978                                 ia32_pause();
 1979                                 if (--spins == 0)
 1980                                         break;
 1981                         }
 1982                 }
 1983                 mtx_unlock_spin(&smp_ipi_mtx);
 1984                 if (spins == 0)
 1985                         printf("pmap_lazyfix: spun for 50000000\n");
 1986         }
 1987 }
 1988 
 1989 #else   /* SMP */
 1990 
 1991 /*
 1992  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 1993  * unlikely to have to even execute this code, including the fact
 1994  * that the cleanup is deferred until the parent does a wait(2), which
 1995  * means that another userland process has run.
 1996  */
 1997 static void
 1998 pmap_lazyfix(pmap_t pmap)
 1999 {
 2000         u_int cr3;
 2001 
 2002         cr3 = vtophys(pmap->pm_pdir);
 2003         if (cr3 == rcr3()) {
 2004                 load_cr3(PCPU_GET(curpcb)->pcb_cr3);
 2005                 pmap->pm_active &= ~(PCPU_GET(cpumask));
 2006         }
 2007 }
 2008 #endif  /* SMP */
 2009 
 2010 /*
 2011  * Release any resources held by the given physical map.
 2012  * Called when a pmap initialized by pmap_pinit is being released.
 2013  * Should only be called if the map contains no valid mappings.
 2014  */
 2015 void
 2016 pmap_release(pmap_t pmap)
 2017 {
 2018         vm_page_t m, ptdpg[NPGPTD];
 2019         int i;
 2020 
 2021         KASSERT(pmap->pm_stats.resident_count == 0,
 2022             ("pmap_release: pmap resident count %ld != 0",
 2023             pmap->pm_stats.resident_count));
 2024         KASSERT(pmap->pm_root == NULL,
 2025             ("pmap_release: pmap has reserved page table page(s)"));
 2026 
 2027         pmap_lazyfix(pmap);
 2028         mtx_lock_spin(&allpmaps_lock);
 2029         LIST_REMOVE(pmap, pm_list);
 2030         mtx_unlock_spin(&allpmaps_lock);
 2031 
 2032         for (i = 0; i < NPGPTD; i++)
 2033                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 2034                     PG_FRAME);
 2035 
 2036         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 2037             sizeof(*pmap->pm_pdir));
 2038 
 2039         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 2040 
 2041         for (i = 0; i < NPGPTD; i++) {
 2042                 m = ptdpg[i];
 2043 #ifdef PAE
 2044                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 2045                     ("pmap_release: got wrong ptd page"));
 2046 #endif
 2047                 m->wire_count--;
 2048                 atomic_subtract_int(&cnt.v_wire_count, 1);
 2049                 vm_page_free_zero(m);
 2050         }
 2051         PMAP_LOCK_DESTROY(pmap);
 2052 }
 2053 
 2054 static int
 2055 kvm_size(SYSCTL_HANDLER_ARGS)
 2056 {
 2057         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 2058 
 2059         return sysctl_handle_long(oidp, &ksize, 0, req);
 2060 }
 2061 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 2062     0, 0, kvm_size, "IU", "Size of KVM");
 2063 
 2064 static int
 2065 kvm_free(SYSCTL_HANDLER_ARGS)
 2066 {
 2067         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 2068 
 2069         return sysctl_handle_long(oidp, &kfree, 0, req);
 2070 }
 2071 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 2072     0, 0, kvm_free, "IU", "Amount of KVM free");
 2073 
 2074 /*
 2075  * grow the number of kernel page table entries, if needed
 2076  */
 2077 void
 2078 pmap_growkernel(vm_offset_t addr)
 2079 {
 2080         vm_paddr_t ptppaddr;
 2081         vm_page_t nkpg;
 2082         pd_entry_t newpdir;
 2083 
 2084         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 2085         if (kernel_vm_end == 0) {
 2086                 kernel_vm_end = KERNBASE;
 2087                 nkpt = 0;
 2088                 while (pdir_pde(PTD, kernel_vm_end)) {
 2089                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 2090                         nkpt++;
 2091                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2092                                 kernel_vm_end = kernel_map->max_offset;
 2093                                 break;
 2094                         }
 2095                 }
 2096         }
 2097         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 2098         if (addr - 1 >= kernel_map->max_offset)
 2099                 addr = kernel_map->max_offset;
 2100         while (kernel_vm_end < addr) {
 2101                 if (pdir_pde(PTD, kernel_vm_end)) {
 2102                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 2103                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2104                                 kernel_vm_end = kernel_map->max_offset;
 2105                                 break;
 2106                         }
 2107                         continue;
 2108                 }
 2109 
 2110                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 2111                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 2112                     VM_ALLOC_ZERO);
 2113                 if (nkpg == NULL)
 2114                         panic("pmap_growkernel: no memory to grow kernel");
 2115 
 2116                 nkpt++;
 2117 
 2118                 if ((nkpg->flags & PG_ZERO) == 0)
 2119                         pmap_zero_page(nkpg);
 2120                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 2121                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 2122                 pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
 2123 
 2124                 pmap_kenter_pde(kernel_vm_end, newpdir);
 2125                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 2126                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2127                         kernel_vm_end = kernel_map->max_offset;
 2128                         break;
 2129                 }
 2130         }
 2131 }
 2132 
 2133 
 2134 /***************************************************
 2135  * page management routines.
 2136  ***************************************************/
 2137 
 2138 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 2139 CTASSERT(_NPCM == 11);
 2140 
 2141 static __inline struct pv_chunk *
 2142 pv_to_chunk(pv_entry_t pv)
 2143 {
 2144 
 2145         return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
 2146 }
 2147 
 2148 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 2149 
 2150 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 2151 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 2152 
 2153 static uint32_t pc_freemask[11] = {
 2154         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2155         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2156         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2157         PC_FREE0_9, PC_FREE10
 2158 };
 2159 
 2160 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 2161         "Current number of pv entries");
 2162 
 2163 #ifdef PV_STATS
 2164 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 2165 
 2166 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2167         "Current number of pv entry chunks");
 2168 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2169         "Current number of pv entry chunks allocated");
 2170 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2171         "Current number of pv entry chunks frees");
 2172 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2173         "Number of times tried to get a chunk page but failed.");
 2174 
 2175 static long pv_entry_frees, pv_entry_allocs;
 2176 static int pv_entry_spare;
 2177 
 2178 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2179         "Current number of pv entry frees");
 2180 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2181         "Current number of pv entry allocs");
 2182 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2183         "Current number of spare pv entries");
 2184 
 2185 static int pmap_collect_inactive, pmap_collect_active;
 2186 
 2187 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
 2188         "Current number times pmap_collect called on inactive queue");
 2189 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
 2190         "Current number times pmap_collect called on active queue");
 2191 #endif
 2192 
 2193 /*
 2194  * We are in a serious low memory condition.  Resort to
 2195  * drastic measures to free some pages so we can allocate
 2196  * another pv entry chunk.  This is normally called to
 2197  * unmap inactive pages, and if necessary, active pages.
 2198  */
 2199 static void
 2200 pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
 2201 {
 2202         struct md_page *pvh;
 2203         pd_entry_t *pde;
 2204         pmap_t pmap;
 2205         pt_entry_t *pte, tpte;
 2206         pv_entry_t next_pv, pv;
 2207         vm_offset_t va;
 2208         vm_page_t m, free;
 2209 
 2210         sched_pin();
 2211         TAILQ_FOREACH(m, &vpq->pl, pageq) {
 2212                 if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
 2213                         continue;
 2214                 TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
 2215                         va = pv->pv_va;
 2216                         pmap = PV_PMAP(pv);
 2217                         /* Avoid deadlock and lock recursion. */
 2218                         if (pmap > locked_pmap)
 2219                                 PMAP_LOCK(pmap);
 2220                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
 2221                                 continue;
 2222                         pmap->pm_stats.resident_count--;
 2223                         pde = pmap_pde(pmap, va);
 2224                         KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
 2225                             " a 4mpage in page %p's pv list", m));
 2226                         pte = pmap_pte_quick(pmap, va);
 2227                         tpte = pte_load_clear(pte);
 2228                         KASSERT((tpte & PG_W) == 0,
 2229                             ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
 2230                         if (tpte & PG_A)
 2231                                 vm_page_flag_set(m, PG_REFERENCED);
 2232                         if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2233                                 vm_page_dirty(m);
 2234                         free = NULL;
 2235                         pmap_unuse_pt(pmap, va, &free);
 2236                         pmap_invalidate_page(pmap, va);
 2237                         pmap_free_zero_pages(free);
 2238                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2239                         if (TAILQ_EMPTY(&m->md.pv_list)) {
 2240                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2241                                 if (TAILQ_EMPTY(&pvh->pv_list))
 2242                                         vm_page_flag_clear(m, PG_WRITEABLE);
 2243                         }
 2244                         free_pv_entry(pmap, pv);
 2245                         if (pmap != locked_pmap)
 2246                                 PMAP_UNLOCK(pmap);
 2247                 }
 2248         }
 2249         sched_unpin();
 2250 }
 2251 
 2252 
 2253 /*
 2254  * free the pv_entry back to the free list
 2255  */
 2256 static void
 2257 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2258 {
 2259         vm_page_t m;
 2260         struct pv_chunk *pc;
 2261         int idx, field, bit;
 2262 
 2263         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2264         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2265         PV_STAT(pv_entry_frees++);
 2266         PV_STAT(pv_entry_spare++);
 2267         pv_entry_count--;
 2268         pc = pv_to_chunk(pv);
 2269         idx = pv - &pc->pc_pventry[0];
 2270         field = idx / 32;
 2271         bit = idx % 32;
 2272         pc->pc_map[field] |= 1ul << bit;
 2273         /* move to head of list */
 2274         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2275         for (idx = 0; idx < _NPCM; idx++)
 2276                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2277                         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2278                         return;
 2279                 }
 2280         PV_STAT(pv_entry_spare -= _NPCPV);
 2281         PV_STAT(pc_chunk_count--);
 2282         PV_STAT(pc_chunk_frees++);
 2283         /* entire chunk is free, return it */
 2284         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2285         pmap_qremove((vm_offset_t)pc, 1);
 2286         vm_page_unwire(m, 0);
 2287         vm_page_free(m);
 2288         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2289 }
 2290 
 2291 /*
 2292  * get a new pv_entry, allocating a block from the system
 2293  * when needed.
 2294  */
 2295 static pv_entry_t
 2296 get_pv_entry(pmap_t pmap, int try)
 2297 {
 2298         static const struct timeval printinterval = { 60, 0 };
 2299         static struct timeval lastprint;
 2300         static vm_pindex_t colour;
 2301         struct vpgqueues *pq;
 2302         int bit, field;
 2303         pv_entry_t pv;
 2304         struct pv_chunk *pc;
 2305         vm_page_t m;
 2306 
 2307         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2308         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2309         PV_STAT(pv_entry_allocs++);
 2310         pv_entry_count++;
 2311         if (pv_entry_count > pv_entry_high_water)
 2312                 if (ratecheck(&lastprint, &printinterval))
 2313                         printf("Approaching the limit on PV entries, consider "
 2314                             "increasing either the vm.pmap.shpgperproc or the "
 2315                             "vm.pmap.pv_entry_max tunable.\n");
 2316         pq = NULL;
 2317 retry:
 2318         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2319         if (pc != NULL) {
 2320                 for (field = 0; field < _NPCM; field++) {
 2321                         if (pc->pc_map[field]) {
 2322                                 bit = bsfl(pc->pc_map[field]);
 2323                                 break;
 2324                         }
 2325                 }
 2326                 if (field < _NPCM) {
 2327                         pv = &pc->pc_pventry[field * 32 + bit];
 2328                         pc->pc_map[field] &= ~(1ul << bit);
 2329                         /* If this was the last item, move it to tail */
 2330                         for (field = 0; field < _NPCM; field++)
 2331                                 if (pc->pc_map[field] != 0) {
 2332                                         PV_STAT(pv_entry_spare--);
 2333                                         return (pv);    /* not full, return */
 2334                                 }
 2335                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2336                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2337                         PV_STAT(pv_entry_spare--);
 2338                         return (pv);
 2339                 }
 2340         }
 2341         /*
 2342          * Access to the ptelist "pv_vafree" is synchronized by the page
 2343          * queues lock.  If "pv_vafree" is currently non-empty, it will
 2344          * remain non-empty until pmap_ptelist_alloc() completes.
 2345          */
 2346         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
 2347             &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
 2348             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2349                 if (try) {
 2350                         pv_entry_count--;
 2351                         PV_STAT(pc_chunk_tryfail++);
 2352                         return (NULL);
 2353                 }
 2354                 /*
 2355                  * Reclaim pv entries: At first, destroy mappings to
 2356                  * inactive pages.  After that, if a pv chunk entry
 2357                  * is still needed, destroy mappings to active pages.
 2358                  */
 2359                 if (pq == NULL) {
 2360                         PV_STAT(pmap_collect_inactive++);
 2361                         pq = &vm_page_queues[PQ_INACTIVE];
 2362                 } else if (pq == &vm_page_queues[PQ_INACTIVE]) {
 2363                         PV_STAT(pmap_collect_active++);
 2364                         pq = &vm_page_queues[PQ_ACTIVE];
 2365                 } else
 2366                         panic("get_pv_entry: increase vm.pmap.shpgperproc");
 2367                 pmap_collect(pmap, pq);
 2368                 goto retry;
 2369         }
 2370         PV_STAT(pc_chunk_count++);
 2371         PV_STAT(pc_chunk_allocs++);
 2372         colour++;
 2373         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2374         pmap_qenter((vm_offset_t)pc, &m, 1);
 2375         pc->pc_pmap = pmap;
 2376         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2377         for (field = 1; field < _NPCM; field++)
 2378                 pc->pc_map[field] = pc_freemask[field];
 2379         pv = &pc->pc_pventry[0];
 2380         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2381         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2382         return (pv);
 2383 }
 2384 
 2385 static __inline pv_entry_t
 2386 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2387 {
 2388         pv_entry_t pv;
 2389 
 2390         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2391         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 2392                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2393                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 2394                         break;
 2395                 }
 2396         }
 2397         return (pv);
 2398 }
 2399 
 2400 static void
 2401 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2402 {
 2403         struct md_page *pvh;
 2404         pv_entry_t pv;
 2405         vm_offset_t va_last;
 2406         vm_page_t m;
 2407 
 2408         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2409         KASSERT((pa & PDRMASK) == 0,
 2410             ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
 2411 
 2412         /*
 2413          * Transfer the 4mpage's pv entry for this mapping to the first
 2414          * page's pv list.
 2415          */
 2416         pvh = pa_to_pvh(pa);
 2417         va = trunc_4mpage(va);
 2418         pv = pmap_pvh_remove(pvh, pmap, va);
 2419         KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 2420         m = PHYS_TO_VM_PAGE(pa);
 2421         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2422         /* Instantiate the remaining NPTEPG - 1 pv entries. */
 2423         va_last = va + NBPDR - PAGE_SIZE;
 2424         do {
 2425                 m++;
 2426                 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
 2427                     ("pmap_pv_demote_pde: page %p is not managed", m));
 2428                 va += PAGE_SIZE;
 2429                 pmap_insert_entry(pmap, va, m);
 2430         } while (va < va_last);
 2431 }
 2432 
 2433 static void
 2434 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2435 {
 2436         struct md_page *pvh;
 2437         pv_entry_t pv;
 2438         vm_offset_t va_last;
 2439         vm_page_t m;
 2440 
 2441         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2442         KASSERT((pa & PDRMASK) == 0,
 2443             ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
 2444 
 2445         /*
 2446          * Transfer the first page's pv entry for this mapping to the
 2447          * 4mpage's pv list.  Aside from avoiding the cost of a call
 2448          * to get_pv_entry(), a transfer avoids the possibility that
 2449          * get_pv_entry() calls pmap_collect() and that pmap_collect()
 2450          * removes one of the mappings that is being promoted.
 2451          */
 2452         m = PHYS_TO_VM_PAGE(pa);
 2453         va = trunc_4mpage(va);
 2454         pv = pmap_pvh_remove(&m->md, pmap, va);
 2455         KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 2456         pvh = pa_to_pvh(pa);
 2457         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
 2458         /* Free the remaining NPTEPG - 1 pv entries. */
 2459         va_last = va + NBPDR - PAGE_SIZE;
 2460         do {
 2461                 m++;
 2462                 va += PAGE_SIZE;
 2463                 pmap_pvh_free(&m->md, pmap, va);
 2464         } while (va < va_last);
 2465 }
 2466 
 2467 static void
 2468 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2469 {
 2470         pv_entry_t pv;
 2471 
 2472         pv = pmap_pvh_remove(pvh, pmap, va);
 2473         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2474         free_pv_entry(pmap, pv);
 2475 }
 2476 
 2477 static void
 2478 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2479 {
 2480         struct md_page *pvh;
 2481 
 2482         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2483         pmap_pvh_free(&m->md, pmap, va);
 2484         if (TAILQ_EMPTY(&m->md.pv_list)) {
 2485                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2486                 if (TAILQ_EMPTY(&pvh->pv_list))
 2487                         vm_page_flag_clear(m, PG_WRITEABLE);
 2488         }
 2489 }
 2490 
 2491 /*
 2492  * Create a pv entry for page at pa for
 2493  * (pmap, va).
 2494  */
 2495 static void
 2496 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2497 {
 2498         pv_entry_t pv;
 2499 
 2500         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2501         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2502         pv = get_pv_entry(pmap, FALSE);
 2503         pv->pv_va = va;
 2504         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2505 }
 2506 
 2507 /*
 2508  * Conditionally create a pv entry.
 2509  */
 2510 static boolean_t
 2511 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2512 {
 2513         pv_entry_t pv;
 2514 
 2515         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2516         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2517         if (pv_entry_count < pv_entry_high_water && 
 2518             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2519                 pv->pv_va = va;
 2520                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2521                 return (TRUE);
 2522         } else
 2523                 return (FALSE);
 2524 }
 2525 
 2526 /*
 2527  * Create the pv entries for each of the pages within a superpage.
 2528  */
 2529 static boolean_t
 2530 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2531 {
 2532         struct md_page *pvh;
 2533         pv_entry_t pv;
 2534 
 2535         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2536         if (pv_entry_count < pv_entry_high_water && 
 2537             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2538                 pv->pv_va = va;
 2539                 pvh = pa_to_pvh(pa);
 2540                 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
 2541                 return (TRUE);
 2542         } else
 2543                 return (FALSE);
 2544 }
 2545 
 2546 /*
 2547  * Fills a page table page with mappings to consecutive physical pages.
 2548  */
 2549 static void
 2550 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 2551 {
 2552         pt_entry_t *pte;
 2553 
 2554         for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 2555                 *pte = newpte;  
 2556                 newpte += PAGE_SIZE;
 2557         }
 2558 }
 2559 
 2560 /*
 2561  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
 2562  * 2- or 4MB page mapping is invalidated.
 2563  */
 2564 static boolean_t
 2565 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2566 {
 2567         pd_entry_t newpde, oldpde;
 2568         pt_entry_t *firstpte, newpte;
 2569         vm_paddr_t mptepa;
 2570         vm_page_t free, mpte;
 2571 
 2572         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2573         oldpde = *pde;
 2574         KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 2575             ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 2576         mpte = pmap_lookup_pt_page(pmap, va);
 2577         if (mpte != NULL)
 2578                 pmap_remove_pt_page(pmap, mpte);
 2579         else {
 2580                 KASSERT((oldpde & PG_W) == 0,
 2581                     ("pmap_demote_pde: page table page for a wired mapping"
 2582                     " is missing"));
 2583 
 2584                 /*
 2585                  * Invalidate the 2- or 4MB page mapping and return
 2586                  * "failure" if the mapping was never accessed or the
 2587                  * allocation of the new page table page fails.
 2588                  */
 2589                 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 2590                     va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
 2591                     VM_ALLOC_WIRED)) == NULL) {
 2592                         free = NULL;
 2593                         pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
 2594                         pmap_invalidate_page(pmap, trunc_4mpage(va));
 2595                         pmap_free_zero_pages(free);
 2596                         CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
 2597                             " in pmap %p", va, pmap);
 2598                         return (FALSE);
 2599                 }
 2600                 if (va < VM_MAXUSER_ADDRESS)
 2601                         pmap->pm_stats.resident_count++;
 2602         }
 2603         mptepa = VM_PAGE_TO_PHYS(mpte);
 2604 
 2605         /*
 2606          * If the page mapping is in the kernel's address space, then the
 2607          * KPTmap can provide access to the page table page.  Otherwise,
 2608          * temporarily map the page table page (mpte) into the kernel's
 2609          * address space at either PADDR1 or PADDR2. 
 2610          */
 2611         if (va >= KERNBASE)
 2612                 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
 2613         else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
 2614                 if ((*PMAP1 & PG_FRAME) != mptepa) {
 2615                         *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2616 #ifdef SMP
 2617                         PMAP1cpu = PCPU_GET(cpuid);
 2618 #endif
 2619                         invlcaddr(PADDR1);
 2620                         PMAP1changed++;
 2621                 } else
 2622 #ifdef SMP
 2623                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 2624                         PMAP1cpu = PCPU_GET(cpuid);
 2625                         invlcaddr(PADDR1);
 2626                         PMAP1changedcpu++;
 2627                 } else
 2628 #endif
 2629                         PMAP1unchanged++;
 2630                 firstpte = PADDR1;
 2631         } else {
 2632                 mtx_lock(&PMAP2mutex);
 2633                 if ((*PMAP2 & PG_FRAME) != mptepa) {
 2634                         *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2635                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 2636                 }
 2637                 firstpte = PADDR2;
 2638         }
 2639         newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 2640         KASSERT((oldpde & PG_A) != 0,
 2641             ("pmap_demote_pde: oldpde is missing PG_A"));
 2642         KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 2643             ("pmap_demote_pde: oldpde is missing PG_M"));
 2644         newpte = oldpde & ~PG_PS;
 2645         if ((newpte & PG_PDE_PAT) != 0)
 2646                 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
 2647 
 2648         /*
 2649          * If the page table page is new, initialize it.
 2650          */
 2651         if (mpte->wire_count == 1) {
 2652                 mpte->wire_count = NPTEPG;
 2653                 pmap_fill_ptp(firstpte, newpte);
 2654         }
 2655         KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 2656             ("pmap_demote_pde: firstpte and newpte map different physical"
 2657             " addresses"));
 2658 
 2659         /*
 2660          * If the mapping has changed attributes, update the page table
 2661          * entries.
 2662          */ 
 2663         if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 2664                 pmap_fill_ptp(firstpte, newpte);
 2665         
 2666         /*
 2667          * Demote the mapping.  This pmap is locked.  The old PDE has
 2668          * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 2669          * set.  Thus, there is no danger of a race with another
 2670          * processor changing the setting of PG_A and/or PG_M between
 2671          * the read above and the store below. 
 2672          */
 2673         if (workaround_erratum383)
 2674                 pmap_update_pde(pmap, va, pde, newpde);
 2675         else if (pmap == kernel_pmap)
 2676                 pmap_kenter_pde(va, newpde);
 2677         else
 2678                 pde_store(pde, newpde); 
 2679         if (firstpte == PADDR2)
 2680                 mtx_unlock(&PMAP2mutex);
 2681 
 2682         /*
 2683          * Invalidate the recursive mapping of the page table page.
 2684          */
 2685         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2686 
 2687         /*
 2688          * Demote the pv entry.  This depends on the earlier demotion
 2689          * of the mapping.  Specifically, the (re)creation of a per-
 2690          * page pv entry might trigger the execution of pmap_collect(),
 2691          * which might reclaim a newly (re)created per-page pv entry
 2692          * and destroy the associated mapping.  In order to destroy
 2693          * the mapping, the PDE must have already changed from mapping
 2694          * the 2mpage to referencing the page table page.
 2695          */
 2696         if ((oldpde & PG_MANAGED) != 0)
 2697                 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
 2698 
 2699         pmap_pde_demotions++;
 2700         CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
 2701             " in pmap %p", va, pmap);
 2702         return (TRUE);
 2703 }
 2704 
 2705 /*
 2706  * pmap_remove_pde: do the things to unmap a superpage in a process
 2707  */
 2708 static void
 2709 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
 2710     vm_page_t *free)
 2711 {
 2712         struct md_page *pvh;
 2713         pd_entry_t oldpde;
 2714         vm_offset_t eva, va;
 2715         vm_page_t m, mpte;
 2716 
 2717         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2718         KASSERT((sva & PDRMASK) == 0,
 2719             ("pmap_remove_pde: sva is not 4mpage aligned"));
 2720         oldpde = pte_load_clear(pdq);
 2721         if (oldpde & PG_W)
 2722                 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 2723 
 2724         /*
 2725          * Machines that don't support invlpg, also don't support
 2726          * PG_G.
 2727          */
 2728         if (oldpde & PG_G)
 2729                 pmap_invalidate_page(kernel_pmap, sva);
 2730         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2731         if (oldpde & PG_MANAGED) {
 2732                 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 2733                 pmap_pvh_free(pvh, pmap, sva);
 2734                 eva = sva + NBPDR;
 2735                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 2736                     va < eva; va += PAGE_SIZE, m++) {
 2737                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2738                                 vm_page_dirty(m);
 2739                         if (oldpde & PG_A)
 2740                                 vm_page_flag_set(m, PG_REFERENCED);
 2741                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 2742                             TAILQ_EMPTY(&pvh->pv_list))
 2743                                 vm_page_flag_clear(m, PG_WRITEABLE);
 2744                 }
 2745         }
 2746         if (pmap == kernel_pmap) {
 2747                 if (!pmap_demote_pde(pmap, pdq, sva))
 2748                         panic("pmap_remove_pde: failed demotion");
 2749         } else {
 2750                 mpte = pmap_lookup_pt_page(pmap, sva);
 2751                 if (mpte != NULL) {
 2752                         pmap_remove_pt_page(pmap, mpte);
 2753                         pmap->pm_stats.resident_count--;
 2754                         KASSERT(mpte->wire_count == NPTEPG,
 2755                             ("pmap_remove_pde: pte page wire count error"));
 2756                         mpte->wire_count = 0;
 2757                         pmap_add_delayed_free_list(mpte, free, FALSE);
 2758                         atomic_subtract_int(&cnt.v_wire_count, 1);
 2759                 }
 2760         }
 2761 }
 2762 
 2763 /*
 2764  * pmap_remove_pte: do the things to unmap a page in a process
 2765  */
 2766 static int
 2767 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 2768 {
 2769         pt_entry_t oldpte;
 2770         vm_page_t m;
 2771 
 2772         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2773         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2774         oldpte = pte_load_clear(ptq);
 2775         if (oldpte & PG_W)
 2776                 pmap->pm_stats.wired_count -= 1;
 2777         /*
 2778          * Machines that don't support invlpg, also don't support
 2779          * PG_G.
 2780          */
 2781         if (oldpte & PG_G)
 2782                 pmap_invalidate_page(kernel_pmap, va);
 2783         pmap->pm_stats.resident_count -= 1;
 2784         if (oldpte & PG_MANAGED) {
 2785                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 2786                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2787                         vm_page_dirty(m);
 2788                 if (oldpte & PG_A)
 2789                         vm_page_flag_set(m, PG_REFERENCED);
 2790                 pmap_remove_entry(pmap, m, va);
 2791         }
 2792         return (pmap_unuse_pt(pmap, va, free));
 2793 }
 2794 
 2795 /*
 2796  * Remove a single page from a process address space
 2797  */
 2798 static void
 2799 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 2800 {
 2801         pt_entry_t *pte;
 2802 
 2803         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2804         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2805         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2806         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2807                 return;
 2808         pmap_remove_pte(pmap, pte, va, free);
 2809         pmap_invalidate_page(pmap, va);
 2810 }
 2811 
 2812 /*
 2813  *      Remove the given range of addresses from the specified map.
 2814  *
 2815  *      It is assumed that the start and end are properly
 2816  *      rounded to the page size.
 2817  */
 2818 void
 2819 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2820 {
 2821         vm_offset_t pdnxt;
 2822         pd_entry_t ptpaddr;
 2823         pt_entry_t *pte;
 2824         vm_page_t free = NULL;
 2825         int anyvalid;
 2826 
 2827         /*
 2828          * Perform an unsynchronized read.  This is, however, safe.
 2829          */
 2830         if (pmap->pm_stats.resident_count == 0)
 2831                 return;
 2832 
 2833         anyvalid = 0;
 2834 
 2835         vm_page_lock_queues();
 2836         sched_pin();
 2837         PMAP_LOCK(pmap);
 2838 
 2839         /*
 2840          * special handling of removing one page.  a very
 2841          * common operation and easy to short circuit some
 2842          * code.
 2843          */
 2844         if ((sva + PAGE_SIZE == eva) && 
 2845             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2846                 pmap_remove_page(pmap, sva, &free);
 2847                 goto out;
 2848         }
 2849 
 2850         for (; sva < eva; sva = pdnxt) {
 2851                 unsigned pdirindex;
 2852 
 2853                 /*
 2854                  * Calculate index for next page table.
 2855                  */
 2856                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2857                 if (pdnxt < sva)
 2858                         pdnxt = eva;
 2859                 if (pmap->pm_stats.resident_count == 0)
 2860                         break;
 2861 
 2862                 pdirindex = sva >> PDRSHIFT;
 2863                 ptpaddr = pmap->pm_pdir[pdirindex];
 2864 
 2865                 /*
 2866                  * Weed out invalid mappings. Note: we assume that the page
 2867                  * directory table is always allocated, and in kernel virtual.
 2868                  */
 2869                 if (ptpaddr == 0)
 2870                         continue;
 2871 
 2872                 /*
 2873                  * Check for large page.
 2874                  */
 2875                 if ((ptpaddr & PG_PS) != 0) {
 2876                         /*
 2877                          * Are we removing the entire large page?  If not,
 2878                          * demote the mapping and fall through.
 2879                          */
 2880                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 2881                                 /*
 2882                                  * The TLB entry for a PG_G mapping is
 2883                                  * invalidated by pmap_remove_pde().
 2884                                  */
 2885                                 if ((ptpaddr & PG_G) == 0)
 2886                                         anyvalid = 1;
 2887                                 pmap_remove_pde(pmap,
 2888                                     &pmap->pm_pdir[pdirindex], sva, &free);
 2889                                 continue;
 2890                         } else if (!pmap_demote_pde(pmap,
 2891                             &pmap->pm_pdir[pdirindex], sva)) {
 2892                                 /* The large page mapping was destroyed. */
 2893                                 continue;
 2894                         }
 2895                 }
 2896 
 2897                 /*
 2898                  * Limit our scan to either the end of the va represented
 2899                  * by the current page table page, or to the end of the
 2900                  * range being removed.
 2901                  */
 2902                 if (pdnxt > eva)
 2903                         pdnxt = eva;
 2904 
 2905                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 2906                     sva += PAGE_SIZE) {
 2907                         if (*pte == 0)
 2908                                 continue;
 2909 
 2910                         /*
 2911                          * The TLB entry for a PG_G mapping is invalidated
 2912                          * by pmap_remove_pte().
 2913                          */
 2914                         if ((*pte & PG_G) == 0)
 2915                                 anyvalid = 1;
 2916                         if (pmap_remove_pte(pmap, pte, sva, &free))
 2917                                 break;
 2918                 }
 2919         }
 2920 out:
 2921         sched_unpin();
 2922         if (anyvalid)
 2923                 pmap_invalidate_all(pmap);
 2924         vm_page_unlock_queues();
 2925         PMAP_UNLOCK(pmap);
 2926         pmap_free_zero_pages(free);
 2927 }
 2928 
 2929 /*
 2930  *      Routine:        pmap_remove_all
 2931  *      Function:
 2932  *              Removes this physical page from
 2933  *              all physical maps in which it resides.
 2934  *              Reflects back modify bits to the pager.
 2935  *
 2936  *      Notes:
 2937  *              Original versions of this routine were very
 2938  *              inefficient because they iteratively called
 2939  *              pmap_remove (slow...)
 2940  */
 2941 
 2942 void
 2943 pmap_remove_all(vm_page_t m)
 2944 {
 2945         struct md_page *pvh;
 2946         pv_entry_t pv;
 2947         pmap_t pmap;
 2948         pt_entry_t *pte, tpte;
 2949         pd_entry_t *pde;
 2950         vm_offset_t va;
 2951         vm_page_t free;
 2952 
 2953         KASSERT((m->flags & PG_FICTITIOUS) == 0,
 2954             ("pmap_remove_all: page %p is fictitious", m));
 2955         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2956         sched_pin();
 2957         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2958         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 2959                 va = pv->pv_va;
 2960                 pmap = PV_PMAP(pv);
 2961                 PMAP_LOCK(pmap);
 2962                 pde = pmap_pde(pmap, va);
 2963                 (void)pmap_demote_pde(pmap, pde, va);
 2964                 PMAP_UNLOCK(pmap);
 2965         }
 2966         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2967                 pmap = PV_PMAP(pv);
 2968                 PMAP_LOCK(pmap);
 2969                 pmap->pm_stats.resident_count--;
 2970                 pde = pmap_pde(pmap, pv->pv_va);
 2971                 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 2972                     " a 4mpage in page %p's pv list", m));
 2973                 pte = pmap_pte_quick(pmap, pv->pv_va);
 2974                 tpte = pte_load_clear(pte);
 2975                 if (tpte & PG_W)
 2976                         pmap->pm_stats.wired_count--;
 2977                 if (tpte & PG_A)
 2978                         vm_page_flag_set(m, PG_REFERENCED);
 2979 
 2980                 /*
 2981                  * Update the vm_page_t clean and reference bits.
 2982                  */
 2983                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2984                         vm_page_dirty(m);
 2985                 free = NULL;
 2986                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 2987                 pmap_invalidate_page(pmap, pv->pv_va);
 2988                 pmap_free_zero_pages(free);
 2989                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2990                 free_pv_entry(pmap, pv);
 2991                 PMAP_UNLOCK(pmap);
 2992         }
 2993         vm_page_flag_clear(m, PG_WRITEABLE);
 2994         sched_unpin();
 2995 }
 2996 
 2997 /*
 2998  * pmap_protect_pde: do the things to protect a 4mpage in a process
 2999  */
 3000 static boolean_t
 3001 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 3002 {
 3003         pd_entry_t newpde, oldpde;
 3004         vm_offset_t eva, va;
 3005         vm_page_t m;
 3006         boolean_t anychanged;
 3007 
 3008         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3009         KASSERT((sva & PDRMASK) == 0,
 3010             ("pmap_protect_pde: sva is not 4mpage aligned"));
 3011         anychanged = FALSE;
 3012 retry:
 3013         oldpde = newpde = *pde;
 3014         if (oldpde & PG_MANAGED) {
 3015                 eva = sva + NBPDR;
 3016                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 3017                     va < eva; va += PAGE_SIZE, m++) {
 3018                         /*
 3019                          * In contrast to the analogous operation on a 4KB page
 3020                          * mapping, the mapping's PG_A flag is not cleared and
 3021                          * the page's PG_REFERENCED flag is not set.  The
 3022                          * reason is that pmap_demote_pde() expects that a 2/4MB
 3023                          * page mapping with a stored page table page has PG_A
 3024                          * set.
 3025                          */
 3026                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3027                                 vm_page_dirty(m);
 3028                 }
 3029         }
 3030         if ((prot & VM_PROT_WRITE) == 0)
 3031                 newpde &= ~(PG_RW | PG_M);
 3032 #ifdef PAE
 3033         if ((prot & VM_PROT_EXECUTE) == 0)
 3034                 newpde |= pg_nx;
 3035 #endif
 3036         if (newpde != oldpde) {
 3037                 if (!pde_cmpset(pde, oldpde, newpde))
 3038                         goto retry;
 3039                 if (oldpde & PG_G)
 3040                         pmap_invalidate_page(pmap, sva);
 3041                 else
 3042                         anychanged = TRUE;
 3043         }
 3044         return (anychanged);
 3045 }
 3046 
 3047 /*
 3048  *      Set the physical protection on the
 3049  *      specified range of this map as requested.
 3050  */
 3051 void
 3052 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3053 {
 3054         vm_offset_t pdnxt;
 3055         pd_entry_t ptpaddr;
 3056         pt_entry_t *pte;
 3057         int anychanged;
 3058 
 3059         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 3060                 pmap_remove(pmap, sva, eva);
 3061                 return;
 3062         }
 3063 
 3064 #ifdef PAE
 3065         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 3066             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 3067                 return;
 3068 #else
 3069         if (prot & VM_PROT_WRITE)
 3070                 return;
 3071 #endif
 3072 
 3073         anychanged = 0;
 3074 
 3075         vm_page_lock_queues();
 3076         sched_pin();
 3077         PMAP_LOCK(pmap);
 3078         for (; sva < eva; sva = pdnxt) {
 3079                 pt_entry_t obits, pbits;
 3080                 unsigned pdirindex;
 3081 
 3082                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3083                 if (pdnxt < sva)
 3084                         pdnxt = eva;
 3085 
 3086                 pdirindex = sva >> PDRSHIFT;
 3087                 ptpaddr = pmap->pm_pdir[pdirindex];
 3088 
 3089                 /*
 3090                  * Weed out invalid mappings. Note: we assume that the page
 3091                  * directory table is always allocated, and in kernel virtual.
 3092                  */
 3093                 if (ptpaddr == 0)
 3094                         continue;
 3095 
 3096                 /*
 3097                  * Check for large page.
 3098                  */
 3099                 if ((ptpaddr & PG_PS) != 0) {
 3100                         /*
 3101                          * Are we protecting the entire large page?  If not,
 3102                          * demote the mapping and fall through.
 3103                          */
 3104                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3105                                 /*
 3106                                  * The TLB entry for a PG_G mapping is
 3107                                  * invalidated by pmap_protect_pde().
 3108                                  */
 3109                                 if (pmap_protect_pde(pmap,
 3110                                     &pmap->pm_pdir[pdirindex], sva, prot))
 3111                                         anychanged = 1;
 3112                                 continue;
 3113                         } else if (!pmap_demote_pde(pmap,
 3114                             &pmap->pm_pdir[pdirindex], sva)) {
 3115                                 /* The large page mapping was destroyed. */
 3116                                 continue;
 3117                         }
 3118                 }
 3119 
 3120                 if (pdnxt > eva)
 3121                         pdnxt = eva;
 3122 
 3123                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3124                     sva += PAGE_SIZE) {
 3125                         vm_page_t m;
 3126 
 3127 retry:
 3128                         /*
 3129                          * Regardless of whether a pte is 32 or 64 bits in
 3130                          * size, PG_RW, PG_A, and PG_M are among the least
 3131                          * significant 32 bits.
 3132                          */
 3133                         obits = pbits = *pte;
 3134                         if ((pbits & PG_V) == 0)
 3135                                 continue;
 3136                         if (pbits & PG_MANAGED) {
 3137                                 m = NULL;
 3138                                 if (pbits & PG_A) {
 3139                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3140                                         vm_page_flag_set(m, PG_REFERENCED);
 3141                                         pbits &= ~PG_A;
 3142                                 }
 3143                                 if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3144                                         if (m == NULL)
 3145                                                 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3146                                         vm_page_dirty(m);
 3147                                 }
 3148                         }
 3149 
 3150                         if ((prot & VM_PROT_WRITE) == 0)
 3151                                 pbits &= ~(PG_RW | PG_M);
 3152 #ifdef PAE
 3153                         if ((prot & VM_PROT_EXECUTE) == 0)
 3154                                 pbits |= pg_nx;
 3155 #endif
 3156 
 3157                         if (pbits != obits) {
 3158 #ifdef PAE
 3159                                 if (!atomic_cmpset_64(pte, obits, pbits))
 3160                                         goto retry;
 3161 #else
 3162                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 3163                                     pbits))
 3164                                         goto retry;
 3165 #endif
 3166                                 if (obits & PG_G)
 3167                                         pmap_invalidate_page(pmap, sva);
 3168                                 else
 3169                                         anychanged = 1;
 3170                         }
 3171                 }
 3172         }
 3173         sched_unpin();
 3174         if (anychanged)
 3175                 pmap_invalidate_all(pmap);
 3176         vm_page_unlock_queues();
 3177         PMAP_UNLOCK(pmap);
 3178 }
 3179 
 3180 /*
 3181  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
 3182  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
 3183  * For promotion to occur, two conditions must be met: (1) the 4KB page
 3184  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
 3185  * mappings must have identical characteristics.
 3186  *
 3187  * Managed (PG_MANAGED) mappings within the kernel address space are not
 3188  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
 3189  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
 3190  * pmap.
 3191  */
 3192 static void
 3193 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 3194 {
 3195         pd_entry_t newpde;
 3196         pt_entry_t *firstpte, oldpte, pa, *pte;
 3197         vm_offset_t oldpteva;
 3198         vm_page_t mpte;
 3199 
 3200         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3201 
 3202         /*
 3203          * Examine the first PTE in the specified PTP.  Abort if this PTE is
 3204          * either invalid, unused, or does not map the first 4KB physical page
 3205          * within a 2- or 4MB page.
 3206          */
 3207         firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
 3208 setpde:
 3209         newpde = *firstpte;
 3210         if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 3211                 pmap_pde_p_failures++;
 3212                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3213                     " in pmap %p", va, pmap);
 3214                 return;
 3215         }
 3216         if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
 3217                 pmap_pde_p_failures++;
 3218                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3219                     " in pmap %p", va, pmap);
 3220                 return;
 3221         }
 3222         if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 3223                 /*
 3224                  * When PG_M is already clear, PG_RW can be cleared without
 3225                  * a TLB invalidation.
 3226                  */
 3227                 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
 3228                     ~PG_RW))  
 3229                         goto setpde;
 3230                 newpde &= ~PG_RW;
 3231         }
 3232 
 3233         /* 
 3234          * Examine each of the other PTEs in the specified PTP.  Abort if this
 3235          * PTE maps an unexpected 4KB physical page or does not have identical
 3236          * characteristics to the first PTE.
 3237          */
 3238         pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 3239         for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 3240 setpte:
 3241                 oldpte = *pte;
 3242                 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 3243                         pmap_pde_p_failures++;
 3244                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3245                             " in pmap %p", va, pmap);
 3246                         return;
 3247                 }
 3248                 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 3249                         /*
 3250                          * When PG_M is already clear, PG_RW can be cleared
 3251                          * without a TLB invalidation.
 3252                          */
 3253                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3254                             oldpte & ~PG_RW))
 3255                                 goto setpte;
 3256                         oldpte &= ~PG_RW;
 3257                         oldpteva = (oldpte & PG_FRAME & PDRMASK) |
 3258                             (va & ~PDRMASK);
 3259                         CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
 3260                             " in pmap %p", oldpteva, pmap);
 3261                 }
 3262                 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 3263                         pmap_pde_p_failures++;
 3264                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3265                             " in pmap %p", va, pmap);
 3266                         return;
 3267                 }
 3268                 pa -= PAGE_SIZE;
 3269         }
 3270 
 3271         /*
 3272          * Save the page table page in its current state until the PDE
 3273          * mapping the superpage is demoted by pmap_demote_pde() or
 3274          * destroyed by pmap_remove_pde(). 
 3275          */
 3276         mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 3277         KASSERT(mpte >= vm_page_array &&
 3278             mpte < &vm_page_array[vm_page_array_size],
 3279             ("pmap_promote_pde: page table page is out of range"));
 3280         KASSERT(mpte->pindex == va >> PDRSHIFT,
 3281             ("pmap_promote_pde: page table page's pindex is wrong"));
 3282         pmap_insert_pt_page(pmap, mpte);
 3283 
 3284         /*
 3285          * Promote the pv entries.
 3286          */
 3287         if ((newpde & PG_MANAGED) != 0)
 3288                 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
 3289 
 3290         /*
 3291          * Propagate the PAT index to its proper position.
 3292          */
 3293         if ((newpde & PG_PTE_PAT) != 0)
 3294                 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
 3295 
 3296         /*
 3297          * Map the superpage.
 3298          */
 3299         if (workaround_erratum383)
 3300                 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 3301         else if (pmap == kernel_pmap)
 3302                 pmap_kenter_pde(va, PG_PS | newpde);
 3303         else
 3304                 pde_store(pde, PG_PS | newpde);
 3305 
 3306         pmap_pde_promotions++;
 3307         CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
 3308             " in pmap %p", va, pmap);
 3309 }
 3310 
 3311 /*
 3312  *      Insert the given physical page (p) at
 3313  *      the specified virtual address (v) in the
 3314  *      target physical map with the protection requested.
 3315  *
 3316  *      If specified, the page will be wired down, meaning
 3317  *      that the related pte can not be reclaimed.
 3318  *
 3319  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3320  *      or lose information.  That is, this routine must actually
 3321  *      insert this page into the given map NOW.
 3322  */
 3323 void
 3324 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 3325     vm_prot_t prot, boolean_t wired)
 3326 {
 3327         vm_paddr_t pa;
 3328         pd_entry_t *pde;
 3329         pt_entry_t *pte;
 3330         vm_paddr_t opa;
 3331         pt_entry_t origpte, newpte;
 3332         vm_page_t mpte, om;
 3333         boolean_t invlva;
 3334 
 3335         va = trunc_page(va);
 3336         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 3337         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 3338             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
 3339 
 3340         mpte = NULL;
 3341 
 3342         vm_page_lock_queues();
 3343         PMAP_LOCK(pmap);
 3344         sched_pin();
 3345 
 3346         /*
 3347          * In the case that a page table page is not
 3348          * resident, we are creating it here.
 3349          */
 3350         if (va < VM_MAXUSER_ADDRESS) {
 3351                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 3352         }
 3353 
 3354         pde = pmap_pde(pmap, va);
 3355         if ((*pde & PG_PS) != 0)
 3356                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 3357         pte = pmap_pte_quick(pmap, va);
 3358 
 3359         /*
 3360          * Page Directory table entry not valid, we need a new PT page
 3361          */
 3362         if (pte == NULL) {
 3363                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 3364                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 3365         }
 3366 
 3367         pa = VM_PAGE_TO_PHYS(m);
 3368         om = NULL;
 3369         origpte = *pte;
 3370         opa = origpte & PG_FRAME;
 3371 
 3372         /*
 3373          * Mapping has not changed, must be protection or wiring change.
 3374          */
 3375         if (origpte && (opa == pa)) {
 3376                 /*
 3377                  * Wiring change, just update stats. We don't worry about
 3378                  * wiring PT pages as they remain resident as long as there
 3379                  * are valid mappings in them. Hence, if a user page is wired,
 3380                  * the PT page will be also.
 3381                  */
 3382                 if (wired && ((origpte & PG_W) == 0))
 3383                         pmap->pm_stats.wired_count++;
 3384                 else if (!wired && (origpte & PG_W))
 3385                         pmap->pm_stats.wired_count--;
 3386 
 3387                 /*
 3388                  * Remove extra pte reference
 3389                  */
 3390                 if (mpte)
 3391                         mpte->wire_count--;
 3392 
 3393                 /*
 3394                  * We might be turning off write access to the page,
 3395                  * so we go ahead and sense modify status.
 3396                  */
 3397                 if (origpte & PG_MANAGED) {
 3398                         om = m;
 3399                         pa |= PG_MANAGED;
 3400                 }
 3401                 goto validate;
 3402         } 
 3403         /*
 3404          * Mapping has changed, invalidate old range and fall through to
 3405          * handle validating new mapping.
 3406          */
 3407         if (opa) {
 3408                 if (origpte & PG_W)
 3409                         pmap->pm_stats.wired_count--;
 3410                 if (origpte & PG_MANAGED) {
 3411                         om = PHYS_TO_VM_PAGE(opa);
 3412                         pmap_remove_entry(pmap, om, va);
 3413                 }
 3414                 if (mpte != NULL) {
 3415                         mpte->wire_count--;
 3416                         KASSERT(mpte->wire_count > 0,
 3417                             ("pmap_enter: missing reference to page table page,"
 3418                              " va: 0x%x", va));
 3419                 }
 3420         } else
 3421                 pmap->pm_stats.resident_count++;
 3422 
 3423         /*
 3424          * Enter on the PV list if part of our managed memory.
 3425          */
 3426         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 3427                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3428                     ("pmap_enter: managed mapping within the clean submap"));
 3429                 pmap_insert_entry(pmap, va, m);
 3430                 pa |= PG_MANAGED;
 3431         }
 3432 
 3433         /*
 3434          * Increment counters
 3435          */
 3436         if (wired)
 3437                 pmap->pm_stats.wired_count++;
 3438 
 3439 validate:
 3440         /*
 3441          * Now validate mapping with desired protection/wiring.
 3442          */
 3443         newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
 3444         if ((prot & VM_PROT_WRITE) != 0) {
 3445                 newpte |= PG_RW;
 3446                 vm_page_flag_set(m, PG_WRITEABLE);
 3447         }
 3448 #ifdef PAE
 3449         if ((prot & VM_PROT_EXECUTE) == 0)
 3450                 newpte |= pg_nx;
 3451 #endif
 3452         if (wired)
 3453                 newpte |= PG_W;
 3454         if (va < VM_MAXUSER_ADDRESS)
 3455                 newpte |= PG_U;
 3456         if (pmap == kernel_pmap)
 3457                 newpte |= pgeflag;
 3458 
 3459         /*
 3460          * if the mapping or permission bits are different, we need
 3461          * to update the pte.
 3462          */
 3463         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 3464                 newpte |= PG_A;
 3465                 if ((access & VM_PROT_WRITE) != 0)
 3466                         newpte |= PG_M;
 3467                 if (origpte & PG_V) {
 3468                         invlva = FALSE;
 3469                         origpte = pte_load_store(pte, newpte);
 3470                         if (origpte & PG_A) {
 3471                                 if (origpte & PG_MANAGED)
 3472                                         vm_page_flag_set(om, PG_REFERENCED);
 3473                                 if (opa != VM_PAGE_TO_PHYS(m))
 3474                                         invlva = TRUE;
 3475 #ifdef PAE
 3476                                 if ((origpte & PG_NX) == 0 &&
 3477                                     (newpte & PG_NX) != 0)
 3478                                         invlva = TRUE;
 3479 #endif
 3480                         }
 3481                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3482                                 if ((origpte & PG_MANAGED) != 0)
 3483                                         vm_page_dirty(om);
 3484                                 if ((prot & VM_PROT_WRITE) == 0)
 3485                                         invlva = TRUE;
 3486                         }
 3487                         if (invlva)
 3488                                 pmap_invalidate_page(pmap, va);
 3489                 } else
 3490                         pte_store(pte, newpte);
 3491         }
 3492 
 3493         /*
 3494          * If both the page table page and the reservation are fully
 3495          * populated, then attempt promotion.
 3496          */
 3497         if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 3498             pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
 3499                 pmap_promote_pde(pmap, pde, va);
 3500 
 3501         sched_unpin();
 3502         vm_page_unlock_queues();
 3503         PMAP_UNLOCK(pmap);
 3504 }
 3505 
 3506 /*
 3507  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
 3508  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
 3509  * blocking, (2) a mapping already exists at the specified virtual address, or
 3510  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
 3511  */
 3512 static boolean_t
 3513 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3514 {
 3515         pd_entry_t *pde, newpde;
 3516 
 3517         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3518         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3519         pde = pmap_pde(pmap, va);
 3520         if (*pde != 0) {
 3521                 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3522                     " in pmap %p", va, pmap);
 3523                 return (FALSE);
 3524         }
 3525         newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
 3526             PG_PS | PG_V;
 3527         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 3528                 newpde |= PG_MANAGED;
 3529 
 3530                 /*
 3531                  * Abort this mapping if its PV entry could not be created.
 3532                  */
 3533                 if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
 3534                         CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3535                             " in pmap %p", va, pmap);
 3536                         return (FALSE);
 3537                 }
 3538         }
 3539 #ifdef PAE
 3540         if ((prot & VM_PROT_EXECUTE) == 0)
 3541                 newpde |= pg_nx;
 3542 #endif
 3543         if (va < VM_MAXUSER_ADDRESS)
 3544                 newpde |= PG_U;
 3545 
 3546         /*
 3547          * Increment counters.
 3548          */
 3549         pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 3550 
 3551         /*
 3552          * Map the superpage.
 3553          */
 3554         pde_store(pde, newpde);
 3555 
 3556         pmap_pde_mappings++;
 3557         CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 3558             " in pmap %p", va, pmap);
 3559         return (TRUE);
 3560 }
 3561 
 3562 /*
 3563  * Maps a sequence of resident pages belonging to the same object.
 3564  * The sequence begins with the given page m_start.  This page is
 3565  * mapped at the given virtual address start.  Each subsequent page is
 3566  * mapped at a virtual address that is offset from start by the same
 3567  * amount as the page is offset from m_start within the object.  The
 3568  * last page in the sequence is the page with the largest offset from
 3569  * m_start that can be mapped at a virtual address less than the given
 3570  * virtual address end.  Not every virtual page between start and end
 3571  * is mapped; only those for which a resident page exists with the
 3572  * corresponding offset from m_start are mapped.
 3573  */
 3574 void
 3575 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3576     vm_page_t m_start, vm_prot_t prot)
 3577 {
 3578         vm_offset_t va;
 3579         vm_page_t m, mpte;
 3580         vm_pindex_t diff, psize;
 3581 
 3582         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 3583         psize = atop(end - start);
 3584         mpte = NULL;
 3585         m = m_start;
 3586         PMAP_LOCK(pmap);
 3587         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3588                 va = start + ptoa(diff);
 3589                 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 3590                     (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
 3591                     pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
 3592                     pmap_enter_pde(pmap, va, m, prot))
 3593                         m = &m[NBPDR / PAGE_SIZE - 1];
 3594                 else
 3595                         mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 3596                             mpte);
 3597                 m = TAILQ_NEXT(m, listq);
 3598         }
 3599         PMAP_UNLOCK(pmap);
 3600 }
 3601 
 3602 /*
 3603  * this code makes some *MAJOR* assumptions:
 3604  * 1. Current pmap & pmap exists.
 3605  * 2. Not wired.
 3606  * 3. Read access.
 3607  * 4. No page table pages.
 3608  * but is *MUCH* faster than pmap_enter...
 3609  */
 3610 
 3611 void
 3612 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3613 {
 3614 
 3615         PMAP_LOCK(pmap);
 3616         (void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 3617         PMAP_UNLOCK(pmap);
 3618 }
 3619 
 3620 static vm_page_t
 3621 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 3622     vm_prot_t prot, vm_page_t mpte)
 3623 {
 3624         pt_entry_t *pte;
 3625         vm_paddr_t pa;
 3626         vm_page_t free;
 3627 
 3628         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 3629             (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
 3630             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 3631         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3632         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3633 
 3634         /*
 3635          * In the case that a page table page is not
 3636          * resident, we are creating it here.
 3637          */
 3638         if (va < VM_MAXUSER_ADDRESS) {
 3639                 unsigned ptepindex;
 3640                 pd_entry_t ptepa;
 3641 
 3642                 /*
 3643                  * Calculate pagetable page index
 3644                  */
 3645                 ptepindex = va >> PDRSHIFT;
 3646                 if (mpte && (mpte->pindex == ptepindex)) {
 3647                         mpte->wire_count++;
 3648                 } else {
 3649                         /*
 3650                          * Get the page directory entry
 3651                          */
 3652                         ptepa = pmap->pm_pdir[ptepindex];
 3653 
 3654                         /*
 3655                          * If the page table page is mapped, we just increment
 3656                          * the hold count, and activate it.
 3657                          */
 3658                         if (ptepa) {
 3659                                 if (ptepa & PG_PS)
 3660                                         return (NULL);
 3661                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 3662                                 mpte->wire_count++;
 3663                         } else {
 3664                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3665                                     M_NOWAIT);
 3666                                 if (mpte == NULL)
 3667                                         return (mpte);
 3668                         }
 3669                 }
 3670         } else {
 3671                 mpte = NULL;
 3672         }
 3673 
 3674         /*
 3675          * This call to vtopte makes the assumption that we are
 3676          * entering the page into the current pmap.  In order to support
 3677          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3678          * But that isn't as quick as vtopte.
 3679          */
 3680         pte = vtopte(va);
 3681         if (*pte) {
 3682                 if (mpte != NULL) {
 3683                         mpte->wire_count--;
 3684                         mpte = NULL;
 3685                 }
 3686                 return (mpte);
 3687         }
 3688 
 3689         /*
 3690          * Enter on the PV list if part of our managed memory.
 3691          */
 3692         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
 3693             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3694                 if (mpte != NULL) {
 3695                         free = NULL;
 3696                         if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
 3697                                 pmap_invalidate_page(pmap, va);
 3698                                 pmap_free_zero_pages(free);
 3699                         }
 3700                         
 3701                         mpte = NULL;
 3702                 }
 3703                 return (mpte);
 3704         }
 3705 
 3706         /*
 3707          * Increment counters
 3708          */
 3709         pmap->pm_stats.resident_count++;
 3710 
 3711         pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 3712 #ifdef PAE
 3713         if ((prot & VM_PROT_EXECUTE) == 0)
 3714                 pa |= pg_nx;
 3715 #endif
 3716 
 3717         /*
 3718          * Now validate mapping with RO protection
 3719          */
 3720         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 3721                 pte_store(pte, pa | PG_V | PG_U);
 3722         else
 3723                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3724         return mpte;
 3725 }
 3726 
 3727 /*
 3728  * Make a temporary mapping for a physical address.  This is only intended
 3729  * to be used for panic dumps.
 3730  */
 3731 void *
 3732 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3733 {
 3734         vm_offset_t va;
 3735 
 3736         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3737         pmap_kenter(va, pa);
 3738         invlpg(va);
 3739         return ((void *)crashdumpmap);
 3740 }
 3741 
 3742 /*
 3743  * This code maps large physical mmap regions into the
 3744  * processor address space.  Note that some shortcuts
 3745  * are taken, but the code works.
 3746  */
 3747 void
 3748 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3749     vm_pindex_t pindex, vm_size_t size)
 3750 {
 3751         pd_entry_t *pde;
 3752         vm_paddr_t pa, ptepa;
 3753         vm_page_t p;
 3754         int pat_mode;
 3755 
 3756         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 3757         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3758             ("pmap_object_init_pt: non-device object"));
 3759         if (pseflag && 
 3760             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3761                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3762                         return;
 3763                 p = vm_page_lookup(object, pindex);
 3764                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3765                     ("pmap_object_init_pt: invalid page %p", p));
 3766                 pat_mode = p->md.pat_mode;
 3767 
 3768                 /*
 3769                  * Abort the mapping if the first page is not physically
 3770                  * aligned to a 2/4MB page boundary.
 3771                  */
 3772                 ptepa = VM_PAGE_TO_PHYS(p);
 3773                 if (ptepa & (NBPDR - 1))
 3774                         return;
 3775 
 3776                 /*
 3777                  * Skip the first page.  Abort the mapping if the rest of
 3778                  * the pages are not physically contiguous or have differing
 3779                  * memory attributes.
 3780                  */
 3781                 p = TAILQ_NEXT(p, listq);
 3782                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3783                     pa += PAGE_SIZE) {
 3784                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3785                             ("pmap_object_init_pt: invalid page %p", p));
 3786                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3787                             pat_mode != p->md.pat_mode)
 3788                                 return;
 3789                         p = TAILQ_NEXT(p, listq);
 3790                 }
 3791 
 3792                 /*
 3793                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3794                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3795                  * "pa" will not affect the termination of this loop.
 3796                  */
 3797                 PMAP_LOCK(pmap);
 3798                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3799                     size; pa += NBPDR) {
 3800                         pde = pmap_pde(pmap, addr);
 3801                         if (*pde == 0) {
 3802                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3803                                     PG_U | PG_RW | PG_V);
 3804                                 pmap->pm_stats.resident_count += NBPDR /
 3805                                     PAGE_SIZE;
 3806                                 pmap_pde_mappings++;
 3807                         }
 3808                         /* Else continue on if the PDE is already valid. */
 3809                         addr += NBPDR;
 3810                 }
 3811                 PMAP_UNLOCK(pmap);
 3812         }
 3813 }
 3814 
 3815 /*
 3816  *      Routine:        pmap_change_wiring
 3817  *      Function:       Change the wiring attribute for a map/virtual-address
 3818  *                      pair.
 3819  *      In/out conditions:
 3820  *                      The mapping must already exist in the pmap.
 3821  */
 3822 void
 3823 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 3824 {
 3825         pd_entry_t *pde;
 3826         pt_entry_t *pte;
 3827         boolean_t are_queues_locked;
 3828 
 3829         are_queues_locked = FALSE;
 3830 retry:
 3831         PMAP_LOCK(pmap);
 3832         pde = pmap_pde(pmap, va);
 3833         if ((*pde & PG_PS) != 0) {
 3834                 if (!wired != ((*pde & PG_W) == 0)) {
 3835                         if (!are_queues_locked) {
 3836                                 are_queues_locked = TRUE;
 3837                                 if (!mtx_trylock(&vm_page_queue_mtx)) {
 3838                                         PMAP_UNLOCK(pmap);
 3839                                         vm_page_lock_queues();
 3840                                         goto retry;
 3841                                 }
 3842                         }
 3843                         if (!pmap_demote_pde(pmap, pde, va))
 3844                                 panic("pmap_change_wiring: demotion failed");
 3845                 } else
 3846                         goto out;
 3847         }
 3848         pte = pmap_pte(pmap, va);
 3849 
 3850         if (wired && !pmap_pte_w(pte))
 3851                 pmap->pm_stats.wired_count++;
 3852         else if (!wired && pmap_pte_w(pte))
 3853                 pmap->pm_stats.wired_count--;
 3854 
 3855         /*
 3856          * Wiring is not a hardware characteristic so there is no need to
 3857          * invalidate TLB.
 3858          */
 3859         pmap_pte_set_w(pte, wired);
 3860         pmap_pte_release(pte);
 3861 out:
 3862         if (are_queues_locked)
 3863                 vm_page_unlock_queues();
 3864         PMAP_UNLOCK(pmap);
 3865 }
 3866 
 3867 
 3868 
 3869 /*
 3870  *      Copy the range specified by src_addr/len
 3871  *      from the source map to the range dst_addr/len
 3872  *      in the destination map.
 3873  *
 3874  *      This routine is only advisory and need not do anything.
 3875  */
 3876 
 3877 void
 3878 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 3879     vm_offset_t src_addr)
 3880 {
 3881         vm_page_t   free;
 3882         vm_offset_t addr;
 3883         vm_offset_t end_addr = src_addr + len;
 3884         vm_offset_t pdnxt;
 3885 
 3886         if (dst_addr != src_addr)
 3887                 return;
 3888 
 3889         if (!pmap_is_current(src_pmap))
 3890                 return;
 3891 
 3892         vm_page_lock_queues();
 3893         if (dst_pmap < src_pmap) {
 3894                 PMAP_LOCK(dst_pmap);
 3895                 PMAP_LOCK(src_pmap);
 3896         } else {
 3897                 PMAP_LOCK(src_pmap);
 3898                 PMAP_LOCK(dst_pmap);
 3899         }
 3900         sched_pin();
 3901         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 3902                 pt_entry_t *src_pte, *dst_pte;
 3903                 vm_page_t dstmpte, srcmpte;
 3904                 pd_entry_t srcptepaddr;
 3905                 unsigned ptepindex;
 3906 
 3907                 KASSERT(addr < UPT_MIN_ADDRESS,
 3908                     ("pmap_copy: invalid to pmap_copy page tables"));
 3909 
 3910                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 3911                 if (pdnxt < addr)
 3912                         pdnxt = end_addr;
 3913                 ptepindex = addr >> PDRSHIFT;
 3914 
 3915                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 3916                 if (srcptepaddr == 0)
 3917                         continue;
 3918                         
 3919                 if (srcptepaddr & PG_PS) {
 3920                         if (dst_pmap->pm_pdir[ptepindex] == 0 &&
 3921                             ((srcptepaddr & PG_MANAGED) == 0 ||
 3922                             pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 3923                             PG_PS_FRAME))) {
 3924                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 3925                                     ~PG_W;
 3926                                 dst_pmap->pm_stats.resident_count +=
 3927                                     NBPDR / PAGE_SIZE;
 3928                         }
 3929                         continue;
 3930                 }
 3931 
 3932                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 3933                 KASSERT(srcmpte->wire_count > 0,
 3934                     ("pmap_copy: source page table page is unused"));
 3935 
 3936                 if (pdnxt > end_addr)
 3937                         pdnxt = end_addr;
 3938 
 3939                 src_pte = vtopte(addr);
 3940                 while (addr < pdnxt) {
 3941                         pt_entry_t ptetemp;
 3942                         ptetemp = *src_pte;
 3943                         /*
 3944                          * we only virtual copy managed pages
 3945                          */
 3946                         if ((ptetemp & PG_MANAGED) != 0) {
 3947                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 3948                                     M_NOWAIT);
 3949                                 if (dstmpte == NULL)
 3950                                         goto out;
 3951                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 3952                                 if (*dst_pte == 0 &&
 3953                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 3954                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 3955                                         /*
 3956                                          * Clear the wired, modified, and
 3957                                          * accessed (referenced) bits
 3958                                          * during the copy.
 3959                                          */
 3960                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 3961                                             PG_A);
 3962                                         dst_pmap->pm_stats.resident_count++;
 3963                                 } else {
 3964                                         free = NULL;
 3965                                         if (pmap_unwire_pte_hold(dst_pmap,
 3966                                             dstmpte, &free)) {
 3967                                                 pmap_invalidate_page(dst_pmap,
 3968                                                     addr);
 3969                                                 pmap_free_zero_pages(free);
 3970                                         }
 3971                                         goto out;
 3972                                 }
 3973                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 3974                                         break;
 3975                         }
 3976                         addr += PAGE_SIZE;
 3977                         src_pte++;
 3978                 }
 3979         }
 3980 out:
 3981         sched_unpin();
 3982         vm_page_unlock_queues();
 3983         PMAP_UNLOCK(src_pmap);
 3984         PMAP_UNLOCK(dst_pmap);
 3985 }       
 3986 
 3987 static __inline void
 3988 pagezero(void *page)
 3989 {
 3990 #if defined(I686_CPU)
 3991         if (cpu_class == CPUCLASS_686) {
 3992 #if defined(CPU_ENABLE_SSE)
 3993                 if (cpu_feature & CPUID_SSE2)
 3994                         sse2_pagezero(page);
 3995                 else
 3996 #endif
 3997                         i686_pagezero(page);
 3998         } else
 3999 #endif
 4000                 bzero(page, PAGE_SIZE);
 4001 }
 4002 
 4003 /*
 4004  *      pmap_zero_page zeros the specified hardware page by mapping 
 4005  *      the page into KVM and using bzero to clear its contents.
 4006  */
 4007 void
 4008 pmap_zero_page(vm_page_t m)
 4009 {
 4010         struct sysmaps *sysmaps;
 4011 
 4012         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4013         mtx_lock(&sysmaps->lock);
 4014         if (*sysmaps->CMAP2)
 4015                 panic("pmap_zero_page: CMAP2 busy");
 4016         sched_pin();
 4017         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4018             pmap_cache_bits(m->md.pat_mode, 0);
 4019         invlcaddr(sysmaps->CADDR2);
 4020         pagezero(sysmaps->CADDR2);
 4021         *sysmaps->CMAP2 = 0;
 4022         sched_unpin();
 4023         mtx_unlock(&sysmaps->lock);
 4024 }
 4025 
 4026 /*
 4027  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4028  *      the page into KVM and using bzero to clear its contents.
 4029  *
 4030  *      off and size may not cover an area beyond a single hardware page.
 4031  */
 4032 void
 4033 pmap_zero_page_area(vm_page_t m, int off, int size)
 4034 {
 4035         struct sysmaps *sysmaps;
 4036 
 4037         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4038         mtx_lock(&sysmaps->lock);
 4039         if (*sysmaps->CMAP2)
 4040                 panic("pmap_zero_page_area: CMAP2 busy");
 4041         sched_pin();
 4042         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4043             pmap_cache_bits(m->md.pat_mode, 0);
 4044         invlcaddr(sysmaps->CADDR2);
 4045         if (off == 0 && size == PAGE_SIZE) 
 4046                 pagezero(sysmaps->CADDR2);
 4047         else
 4048                 bzero((char *)sysmaps->CADDR2 + off, size);
 4049         *sysmaps->CMAP2 = 0;
 4050         sched_unpin();
 4051         mtx_unlock(&sysmaps->lock);
 4052 }
 4053 
 4054 /*
 4055  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4056  *      the page into KVM and using bzero to clear its contents.  This
 4057  *      is intended to be called from the vm_pagezero process only and
 4058  *      outside of Giant.
 4059  */
 4060 void
 4061 pmap_zero_page_idle(vm_page_t m)
 4062 {
 4063 
 4064         if (*CMAP3)
 4065                 panic("pmap_zero_page_idle: CMAP3 busy");
 4066         sched_pin();
 4067         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4068             pmap_cache_bits(m->md.pat_mode, 0);
 4069         invlcaddr(CADDR3);
 4070         pagezero(CADDR3);
 4071         *CMAP3 = 0;
 4072         sched_unpin();
 4073 }
 4074 
 4075 /*
 4076  *      pmap_copy_page copies the specified (machine independent)
 4077  *      page by mapping the page into virtual memory and using
 4078  *      bcopy to copy the page, one machine dependent page at a
 4079  *      time.
 4080  */
 4081 void
 4082 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4083 {
 4084         struct sysmaps *sysmaps;
 4085 
 4086         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4087         mtx_lock(&sysmaps->lock);
 4088         if (*sysmaps->CMAP1)
 4089                 panic("pmap_copy_page: CMAP1 busy");
 4090         if (*sysmaps->CMAP2)
 4091                 panic("pmap_copy_page: CMAP2 busy");
 4092         sched_pin();
 4093         invlpg((u_int)sysmaps->CADDR1);
 4094         invlpg((u_int)sysmaps->CADDR2);
 4095         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
 4096             pmap_cache_bits(src->md.pat_mode, 0);
 4097         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
 4098             pmap_cache_bits(dst->md.pat_mode, 0);
 4099         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 4100         *sysmaps->CMAP1 = 0;
 4101         *sysmaps->CMAP2 = 0;
 4102         sched_unpin();
 4103         mtx_unlock(&sysmaps->lock);
 4104 }
 4105 
 4106 /*
 4107  * Returns true if the pmap's pv is one of the first
 4108  * 16 pvs linked to from this page.  This count may
 4109  * be changed upwards or downwards in the future; it
 4110  * is only necessary that true be returned for a small
 4111  * subset of pmaps for proper page aging.
 4112  */
 4113 boolean_t
 4114 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4115 {
 4116         struct md_page *pvh;
 4117         pv_entry_t pv;
 4118         int loops = 0;
 4119 
 4120         if (m->flags & PG_FICTITIOUS)
 4121                 return FALSE;
 4122 
 4123         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4124         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4125                 if (PV_PMAP(pv) == pmap) {
 4126                         return TRUE;
 4127                 }
 4128                 loops++;
 4129                 if (loops >= 16)
 4130                         break;
 4131         }
 4132         if (loops < 16) {
 4133                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4134                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4135                         if (PV_PMAP(pv) == pmap)
 4136                                 return (TRUE);
 4137                         loops++;
 4138                         if (loops >= 16)
 4139                                 break;
 4140                 }
 4141         }
 4142         return (FALSE);
 4143 }
 4144 
 4145 /*
 4146  *      pmap_page_wired_mappings:
 4147  *
 4148  *      Return the number of managed mappings to the given physical page
 4149  *      that are wired.
 4150  */
 4151 int
 4152 pmap_page_wired_mappings(vm_page_t m)
 4153 {
 4154         int count;
 4155 
 4156         count = 0;
 4157         if ((m->flags & PG_FICTITIOUS) != 0)
 4158                 return (count);
 4159         count = pmap_pvh_wired_mappings(&m->md, count);
 4160         return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
 4161 }
 4162 
 4163 /*
 4164  *      pmap_pvh_wired_mappings:
 4165  *
 4166  *      Return the updated number "count" of managed mappings that are wired.
 4167  */
 4168 static int
 4169 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
 4170 {
 4171         pmap_t pmap;
 4172         pt_entry_t *pte;
 4173         pv_entry_t pv;
 4174 
 4175         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4176         sched_pin();
 4177         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4178                 pmap = PV_PMAP(pv);
 4179                 PMAP_LOCK(pmap);
 4180                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4181                 if ((*pte & PG_W) != 0)
 4182                         count++;
 4183                 PMAP_UNLOCK(pmap);
 4184         }
 4185         sched_unpin();
 4186         return (count);
 4187 }
 4188 
 4189 /*
 4190  * Returns TRUE if the given page is mapped individually or as part of
 4191  * a 4mpage.  Otherwise, returns FALSE.
 4192  */
 4193 boolean_t
 4194 pmap_page_is_mapped(vm_page_t m)
 4195 {
 4196         struct md_page *pvh;
 4197 
 4198         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 4199                 return (FALSE);
 4200         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4201         if (TAILQ_EMPTY(&m->md.pv_list)) {
 4202                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4203                 return (!TAILQ_EMPTY(&pvh->pv_list));
 4204         } else
 4205                 return (TRUE);
 4206 }
 4207 
 4208 /*
 4209  * Remove all pages from specified address space
 4210  * this aids process exit speeds.  Also, this code
 4211  * is special cased for current process only, but
 4212  * can have the more generic (and slightly slower)
 4213  * mode enabled.  This is much faster than pmap_remove
 4214  * in the case of running down an entire address space.
 4215  */
 4216 void
 4217 pmap_remove_pages(pmap_t pmap)
 4218 {
 4219         pt_entry_t *pte, tpte;
 4220         vm_page_t free = NULL;
 4221         vm_page_t m, mpte, mt;
 4222         pv_entry_t pv;
 4223         struct md_page *pvh;
 4224         struct pv_chunk *pc, *npc;
 4225         int field, idx;
 4226         int32_t bit;
 4227         uint32_t inuse, bitmask;
 4228         int allfree;
 4229 
 4230         if (pmap != PCPU_GET(curpmap)) {
 4231                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 4232                 return;
 4233         }
 4234         vm_page_lock_queues();
 4235         PMAP_LOCK(pmap);
 4236         sched_pin();
 4237         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 4238                 allfree = 1;
 4239                 for (field = 0; field < _NPCM; field++) {
 4240                         inuse = (~(pc->pc_map[field])) & pc_freemask[field];
 4241                         while (inuse != 0) {
 4242                                 bit = bsfl(inuse);
 4243                                 bitmask = 1UL << bit;
 4244                                 idx = field * 32 + bit;
 4245                                 pv = &pc->pc_pventry[idx];
 4246                                 inuse &= ~bitmask;
 4247 
 4248                                 pte = pmap_pde(pmap, pv->pv_va);
 4249                                 tpte = *pte;
 4250                                 if ((tpte & PG_PS) == 0) {
 4251                                         pte = vtopte(pv->pv_va);
 4252                                         tpte = *pte & ~PG_PTE_PAT;
 4253                                 }
 4254 
 4255                                 if (tpte == 0) {
 4256                                         printf(
 4257                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 4258                                             pte, pv->pv_va);
 4259                                         panic("bad pte");
 4260                                 }
 4261 
 4262 /*
 4263  * We cannot remove wired pages from a process' mapping at this time
 4264  */
 4265                                 if (tpte & PG_W) {
 4266                                         allfree = 0;
 4267                                         continue;
 4268                                 }
 4269 
 4270                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 4271                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 4272                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 4273                                     m, (uintmax_t)m->phys_addr,
 4274                                     (uintmax_t)tpte));
 4275 
 4276                                 KASSERT(m < &vm_page_array[vm_page_array_size],
 4277                                         ("pmap_remove_pages: bad tpte %#jx",
 4278                                         (uintmax_t)tpte));
 4279 
 4280                                 pte_clear(pte);
 4281 
 4282                                 /*
 4283                                  * Update the vm_page_t clean/reference bits.
 4284                                  */
 4285                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4286                                         if ((tpte & PG_PS) != 0) {
 4287                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4288                                                         vm_page_dirty(mt);
 4289                                         } else
 4290                                                 vm_page_dirty(m);
 4291                                 }
 4292 
 4293                                 /* Mark free */
 4294                                 PV_STAT(pv_entry_frees++);
 4295                                 PV_STAT(pv_entry_spare++);
 4296                                 pv_entry_count--;
 4297                                 pc->pc_map[field] |= bitmask;
 4298                                 if ((tpte & PG_PS) != 0) {
 4299                                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 4300                                         pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 4301                                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 4302                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 4303                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4304                                                         if (TAILQ_EMPTY(&mt->md.pv_list))
 4305                                                                 vm_page_flag_clear(mt, PG_WRITEABLE);
 4306                                         }
 4307                                         mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
 4308                                         if (mpte != NULL) {
 4309                                                 pmap_remove_pt_page(pmap, mpte);
 4310                                                 pmap->pm_stats.resident_count--;
 4311                                                 KASSERT(mpte->wire_count == NPTEPG,
 4312                                                     ("pmap_remove_pages: pte page wire count error"));
 4313                                                 mpte->wire_count = 0;
 4314                                                 pmap_add_delayed_free_list(mpte, &free, FALSE);
 4315                                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 4316                                         }
 4317                                 } else {
 4318                                         pmap->pm_stats.resident_count--;
 4319                                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 4320                                         if (TAILQ_EMPTY(&m->md.pv_list)) {
 4321                                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4322                                                 if (TAILQ_EMPTY(&pvh->pv_list))
 4323                                                         vm_page_flag_clear(m, PG_WRITEABLE);
 4324                                         }
 4325                                         pmap_unuse_pt(pmap, pv->pv_va, &free);
 4326                                 }
 4327                         }
 4328                 }
 4329                 if (allfree) {
 4330                         PV_STAT(pv_entry_spare -= _NPCPV);
 4331                         PV_STAT(pc_chunk_count--);
 4332                         PV_STAT(pc_chunk_frees++);
 4333                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 4334                         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 4335                         pmap_qremove((vm_offset_t)pc, 1);
 4336                         vm_page_unwire(m, 0);
 4337                         vm_page_free(m);
 4338                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 4339                 }
 4340         }
 4341         sched_unpin();
 4342         pmap_invalidate_all(pmap);
 4343         vm_page_unlock_queues();
 4344         PMAP_UNLOCK(pmap);
 4345         pmap_free_zero_pages(free);
 4346 }
 4347 
 4348 /*
 4349  *      pmap_is_modified:
 4350  *
 4351  *      Return whether or not the specified physical page was modified
 4352  *      in any physical maps.
 4353  */
 4354 boolean_t
 4355 pmap_is_modified(vm_page_t m)
 4356 {
 4357 
 4358         if (m->flags & PG_FICTITIOUS)
 4359                 return (FALSE);
 4360         if (pmap_is_modified_pvh(&m->md))
 4361                 return (TRUE);
 4362         return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4363 }
 4364 
 4365 /*
 4366  * Returns TRUE if any of the given mappings were used to modify
 4367  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
 4368  * mappings are supported.
 4369  */
 4370 static boolean_t
 4371 pmap_is_modified_pvh(struct md_page *pvh)
 4372 {
 4373         pv_entry_t pv;
 4374         pt_entry_t *pte;
 4375         pmap_t pmap;
 4376         boolean_t rv;
 4377 
 4378         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4379         rv = FALSE;
 4380         sched_pin();
 4381         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4382                 pmap = PV_PMAP(pv);
 4383                 PMAP_LOCK(pmap);
 4384                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4385                 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
 4386                 PMAP_UNLOCK(pmap);
 4387                 if (rv)
 4388                         break;
 4389         }
 4390         sched_unpin();
 4391         return (rv);
 4392 }
 4393 
 4394 /*
 4395  *      pmap_is_prefaultable:
 4396  *
 4397  *      Return whether or not the specified virtual address is elgible
 4398  *      for prefault.
 4399  */
 4400 boolean_t
 4401 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 4402 {
 4403         pd_entry_t *pde;
 4404         pt_entry_t *pte;
 4405         boolean_t rv;
 4406 
 4407         rv = FALSE;
 4408         PMAP_LOCK(pmap);
 4409         pde = pmap_pde(pmap, addr);
 4410         if (*pde != 0 && (*pde & PG_PS) == 0) {
 4411                 pte = vtopte(addr);
 4412                 rv = *pte == 0;
 4413         }
 4414         PMAP_UNLOCK(pmap);
 4415         return (rv);
 4416 }
 4417 
 4418 /*
 4419  * Clear the write and modified bits in each of the given page's mappings.
 4420  */
 4421 void
 4422 pmap_remove_write(vm_page_t m)
 4423 {
 4424         struct md_page *pvh;
 4425         pv_entry_t next_pv, pv;
 4426         pmap_t pmap;
 4427         pd_entry_t *pde;
 4428         pt_entry_t oldpte, *pte;
 4429         vm_offset_t va;
 4430 
 4431         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4432         if ((m->flags & PG_FICTITIOUS) != 0 ||
 4433             (m->flags & PG_WRITEABLE) == 0)
 4434                 return;
 4435         sched_pin();
 4436         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4437         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
 4438                 va = pv->pv_va;
 4439                 pmap = PV_PMAP(pv);
 4440                 PMAP_LOCK(pmap);
 4441                 pde = pmap_pde(pmap, va);
 4442                 if ((*pde & PG_RW) != 0)
 4443                         (void)pmap_demote_pde(pmap, pde, va);
 4444                 PMAP_UNLOCK(pmap);
 4445         }
 4446         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4447                 pmap = PV_PMAP(pv);
 4448                 PMAP_LOCK(pmap);
 4449                 pde = pmap_pde(pmap, pv->pv_va);
 4450                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
 4451                     " a 4mpage in page %p's pv list", m));
 4452                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4453 retry:
 4454                 oldpte = *pte;
 4455                 if ((oldpte & PG_RW) != 0) {
 4456                         /*
 4457                          * Regardless of whether a pte is 32 or 64 bits
 4458                          * in size, PG_RW and PG_M are among the least
 4459                          * significant 32 bits.
 4460                          */
 4461                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 4462                             oldpte & ~(PG_RW | PG_M)))
 4463                                 goto retry;
 4464                         if ((oldpte & PG_M) != 0)
 4465                                 vm_page_dirty(m);
 4466                         pmap_invalidate_page(pmap, pv->pv_va);
 4467                 }
 4468                 PMAP_UNLOCK(pmap);
 4469         }
 4470         vm_page_flag_clear(m, PG_WRITEABLE);
 4471         sched_unpin();
 4472 }
 4473 
 4474 /*
 4475  *      pmap_ts_referenced:
 4476  *
 4477  *      Return a count of reference bits for a page, clearing those bits.
 4478  *      It is not necessary for every reference bit to be cleared, but it
 4479  *      is necessary that 0 only be returned when there are truly no
 4480  *      reference bits set.
 4481  *
 4482  *      XXX: The exact number of bits to check and clear is a matter that
 4483  *      should be tested and standardized at some point in the future for
 4484  *      optimal aging of shared pages.
 4485  */
 4486 int
 4487 pmap_ts_referenced(vm_page_t m)
 4488 {
 4489         struct md_page *pvh;
 4490         pv_entry_t pv, pvf, pvn;
 4491         pmap_t pmap;
 4492         pd_entry_t oldpde, *pde;
 4493         pt_entry_t *pte;
 4494         vm_offset_t va;
 4495         int rtval = 0;
 4496 
 4497         if (m->flags & PG_FICTITIOUS)
 4498                 return (rtval);
 4499         sched_pin();
 4500         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4501         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4502         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
 4503                 va = pv->pv_va;
 4504                 pmap = PV_PMAP(pv);
 4505                 PMAP_LOCK(pmap);
 4506                 pde = pmap_pde(pmap, va);
 4507                 oldpde = *pde;
 4508                 if ((oldpde & PG_A) != 0) {
 4509                         if (pmap_demote_pde(pmap, pde, va)) {
 4510                                 if ((oldpde & PG_W) == 0) {
 4511                                         /*
 4512                                          * Remove the mapping to a single page
 4513                                          * so that a subsequent access may
 4514                                          * repromote.  Since the underlying
 4515                                          * page table page is fully populated,
 4516                                          * this removal never frees a page
 4517                                          * table page.
 4518                                          */
 4519                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 4520                                             PG_PS_FRAME);
 4521                                         pmap_remove_page(pmap, va, NULL);
 4522                                         rtval++;
 4523                                         if (rtval > 4) {
 4524                                                 PMAP_UNLOCK(pmap);
 4525                                                 goto out;
 4526                                         }
 4527                                 }
 4528                         }
 4529                 }
 4530                 PMAP_UNLOCK(pmap);
 4531         }
 4532         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 4533                 pvf = pv;
 4534                 do {
 4535                         pvn = TAILQ_NEXT(pv, pv_list);
 4536                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 4537                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 4538                         pmap = PV_PMAP(pv);
 4539                         PMAP_LOCK(pmap);
 4540                         pde = pmap_pde(pmap, pv->pv_va);
 4541                         KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
 4542                             " found a 4mpage in page %p's pv list", m));
 4543                         pte = pmap_pte_quick(pmap, pv->pv_va);
 4544                         if ((*pte & PG_A) != 0) {
 4545                                 atomic_clear_int((u_int *)pte, PG_A);
 4546                                 pmap_invalidate_page(pmap, pv->pv_va);
 4547                                 rtval++;
 4548                                 if (rtval > 4)
 4549                                         pvn = NULL;
 4550                         }
 4551                         PMAP_UNLOCK(pmap);
 4552                 } while ((pv = pvn) != NULL && pv != pvf);
 4553         }
 4554 out:
 4555         sched_unpin();
 4556         return (rtval);
 4557 }
 4558 
 4559 /*
 4560  *      Clear the modify bits on the specified physical page.
 4561  */
 4562 void
 4563 pmap_clear_modify(vm_page_t m)
 4564 {
 4565         struct md_page *pvh;
 4566         pv_entry_t next_pv, pv;
 4567         pmap_t pmap;
 4568         pd_entry_t oldpde, *pde;
 4569         pt_entry_t oldpte, *pte;
 4570         vm_offset_t va;
 4571 
 4572         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4573         if ((m->flags & PG_FICTITIOUS) != 0)
 4574                 return;
 4575         sched_pin();
 4576         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4577         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
 4578                 va = pv->pv_va;
 4579                 pmap = PV_PMAP(pv);
 4580                 PMAP_LOCK(pmap);
 4581                 pde = pmap_pde(pmap, va);
 4582                 oldpde = *pde;
 4583                 if ((oldpde & PG_RW) != 0) {
 4584                         if (pmap_demote_pde(pmap, pde, va)) {
 4585                                 if ((oldpde & PG_W) == 0) {
 4586                                         /*
 4587                                          * Write protect the mapping to a
 4588                                          * single page so that a subsequent
 4589                                          * write access may repromote.
 4590                                          */
 4591                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 4592                                             PG_PS_FRAME);
 4593                                         pte = pmap_pte_quick(pmap, va);
 4594                                         oldpte = *pte;
 4595                                         if ((oldpte & PG_V) != 0) {
 4596                                                 /*
 4597                                                  * Regardless of whether a pte is 32 or 64 bits
 4598                                                  * in size, PG_RW and PG_M are among the least
 4599                                                  * significant 32 bits.
 4600                                                  */
 4601                                                 while (!atomic_cmpset_int((u_int *)pte,
 4602                                                     oldpte,
 4603                                                     oldpte & ~(PG_M | PG_RW)))
 4604                                                         oldpte = *pte;
 4605                                                 vm_page_dirty(m);
 4606                                                 pmap_invalidate_page(pmap, va);
 4607                                         }
 4608                                 }
 4609                         }
 4610                 }
 4611                 PMAP_UNLOCK(pmap);
 4612         }
 4613         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4614                 pmap = PV_PMAP(pv);
 4615                 PMAP_LOCK(pmap);
 4616                 pde = pmap_pde(pmap, pv->pv_va);
 4617                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 4618                     " a 4mpage in page %p's pv list", m));
 4619                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4620                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4621                         /*
 4622                          * Regardless of whether a pte is 32 or 64 bits
 4623                          * in size, PG_M is among the least significant
 4624                          * 32 bits. 
 4625                          */
 4626                         atomic_clear_int((u_int *)pte, PG_M);
 4627                         pmap_invalidate_page(pmap, pv->pv_va);
 4628                 }
 4629                 PMAP_UNLOCK(pmap);
 4630         }
 4631         sched_unpin();
 4632 }
 4633 
 4634 /*
 4635  *      pmap_clear_reference:
 4636  *
 4637  *      Clear the reference bit on the specified physical page.
 4638  */
 4639 void
 4640 pmap_clear_reference(vm_page_t m)
 4641 {
 4642         struct md_page *pvh;
 4643         pv_entry_t next_pv, pv;
 4644         pmap_t pmap;
 4645         pd_entry_t oldpde, *pde;
 4646         pt_entry_t *pte;
 4647         vm_offset_t va;
 4648 
 4649         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 4650         if ((m->flags & PG_FICTITIOUS) != 0)
 4651                 return;
 4652         sched_pin();
 4653         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4654         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
 4655                 va = pv->pv_va;
 4656                 pmap = PV_PMAP(pv);
 4657                 PMAP_LOCK(pmap);
 4658                 pde = pmap_pde(pmap, va);
 4659                 oldpde = *pde;
 4660                 if ((oldpde & PG_A) != 0) {
 4661                         if (pmap_demote_pde(pmap, pde, va)) {
 4662                                 /*
 4663                                  * Remove the mapping to a single page so
 4664                                  * that a subsequent access may repromote.
 4665                                  * Since the underlying page table page is
 4666                                  * fully populated, this removal never frees
 4667                                  * a page table page.
 4668                                  */
 4669                                 va += VM_PAGE_TO_PHYS(m) - (oldpde &
 4670                                     PG_PS_FRAME);
 4671                                 pmap_remove_page(pmap, va, NULL);
 4672                         }
 4673                 }
 4674                 PMAP_UNLOCK(pmap);
 4675         }
 4676         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4677                 pmap = PV_PMAP(pv);
 4678                 PMAP_LOCK(pmap);
 4679                 pde = pmap_pde(pmap, pv->pv_va);
 4680                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
 4681                     " a 4mpage in page %p's pv list", m));
 4682                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4683                 if ((*pte & PG_A) != 0) {
 4684                         /*
 4685                          * Regardless of whether a pte is 32 or 64 bits
 4686                          * in size, PG_A is among the least significant
 4687                          * 32 bits. 
 4688                          */
 4689                         atomic_clear_int((u_int *)pte, PG_A);
 4690                         pmap_invalidate_page(pmap, pv->pv_va);
 4691                 }
 4692                 PMAP_UNLOCK(pmap);
 4693         }
 4694         sched_unpin();
 4695 }
 4696 
 4697 /*
 4698  * Miscellaneous support routines follow
 4699  */
 4700 
 4701 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 4702 static __inline void
 4703 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
 4704 {
 4705         u_int opte, npte;
 4706 
 4707         /*
 4708          * The cache mode bits are all in the low 32-bits of the
 4709          * PTE, so we can just spin on updating the low 32-bits.
 4710          */
 4711         do {
 4712                 opte = *(u_int *)pte;
 4713                 npte = opte & ~PG_PTE_CACHE;
 4714                 npte |= cache_bits;
 4715         } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 4716 }
 4717 
 4718 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
 4719 static __inline void
 4720 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
 4721 {
 4722         u_int opde, npde;
 4723 
 4724         /*
 4725          * The cache mode bits are all in the low 32-bits of the
 4726          * PDE, so we can just spin on updating the low 32-bits.
 4727          */
 4728         do {
 4729                 opde = *(u_int *)pde;
 4730                 npde = opde & ~PG_PDE_CACHE;
 4731                 npde |= cache_bits;
 4732         } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 4733 }
 4734 
 4735 /*
 4736  * Map a set of physical memory pages into the kernel virtual
 4737  * address space. Return a pointer to where it is mapped. This
 4738  * routine is intended to be used for mapping device memory,
 4739  * NOT real memory.
 4740  */
 4741 void *
 4742 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 4743 {
 4744         vm_offset_t va, offset;
 4745         vm_size_t tmpsize;
 4746 
 4747         offset = pa & PAGE_MASK;
 4748         size = roundup(offset + size, PAGE_SIZE);
 4749         pa = pa & PG_FRAME;
 4750 
 4751         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 4752                 va = KERNBASE + pa;
 4753         else
 4754                 va = kmem_alloc_nofault(kernel_map, size);
 4755         if (!va)
 4756                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 4757 
 4758         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 4759                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 4760         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 4761         pmap_invalidate_cache_range(va, va + size);
 4762         return ((void *)(va + offset));
 4763 }
 4764 
 4765 void *
 4766 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 4767 {
 4768 
 4769         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 4770 }
 4771 
 4772 void *
 4773 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 4774 {
 4775 
 4776         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 4777 }
 4778 
 4779 void
 4780 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 4781 {
 4782         vm_offset_t base, offset, tmpva;
 4783 
 4784         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 4785                 return;
 4786         base = trunc_page(va);
 4787         offset = va & PAGE_MASK;
 4788         size = roundup(offset + size, PAGE_SIZE);
 4789         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 4790                 pmap_kremove(tmpva);
 4791         pmap_invalidate_range(kernel_pmap, va, tmpva);
 4792         kmem_free(kernel_map, base, size);
 4793 }
 4794 
 4795 /*
 4796  * Sets the memory attribute for the specified page.
 4797  */
 4798 void
 4799 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 4800 {
 4801         struct sysmaps *sysmaps;
 4802         vm_offset_t sva, eva;
 4803 
 4804         m->md.pat_mode = ma;
 4805         if ((m->flags & PG_FICTITIOUS) != 0)
 4806                 return;
 4807 
 4808         /*
 4809          * If "m" is a normal page, flush it from the cache.
 4810          * See pmap_invalidate_cache_range().
 4811          *
 4812          * First, try to find an existing mapping of the page by sf
 4813          * buffer. sf_buf_invalidate_cache() modifies mapping and
 4814          * flushes the cache.
 4815          */    
 4816         if (sf_buf_invalidate_cache(m))
 4817                 return;
 4818 
 4819         /*
 4820          * If page is not mapped by sf buffer, but CPU does not
 4821          * support self snoop, map the page transient and do
 4822          * invalidation. In the worst case, whole cache is flushed by
 4823          * pmap_invalidate_cache_range().
 4824          */
 4825         if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
 4826                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4827                 mtx_lock(&sysmaps->lock);
 4828                 if (*sysmaps->CMAP2)
 4829                         panic("pmap_page_set_memattr: CMAP2 busy");
 4830                 sched_pin();
 4831                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
 4832                     PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
 4833                 invlcaddr(sysmaps->CADDR2);
 4834                 sva = (vm_offset_t)sysmaps->CADDR2;
 4835                 eva = sva + PAGE_SIZE;
 4836         } else
 4837                 sva = eva = 0; /* gcc */
 4838         pmap_invalidate_cache_range(sva, eva);
 4839         if (sva != 0) {
 4840                 *sysmaps->CMAP2 = 0;
 4841                 sched_unpin();
 4842                 mtx_unlock(&sysmaps->lock);
 4843         }
 4844 }
 4845 
 4846 /*
 4847  * Changes the specified virtual address range's memory type to that given by
 4848  * the parameter "mode".  The specified virtual address range must be
 4849  * completely contained within either the kernel map.
 4850  *
 4851  * Returns zero if the change completed successfully, and either EINVAL or
 4852  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 4853  * of the virtual address range was not mapped, and ENOMEM is returned if
 4854  * there was insufficient memory available to complete the change.
 4855  */
 4856 int
 4857 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 4858 {
 4859         vm_offset_t base, offset, tmpva;
 4860         pd_entry_t *pde;
 4861         pt_entry_t *pte;
 4862         int cache_bits_pte, cache_bits_pde;
 4863         boolean_t changed;
 4864 
 4865         base = trunc_page(va);
 4866         offset = va & PAGE_MASK;
 4867         size = roundup(offset + size, PAGE_SIZE);
 4868 
 4869         /*
 4870          * Only supported on kernel virtual addresses above the recursive map.
 4871          */
 4872         if (base < VM_MIN_KERNEL_ADDRESS)
 4873                 return (EINVAL);
 4874 
 4875         cache_bits_pde = pmap_cache_bits(mode, 1);
 4876         cache_bits_pte = pmap_cache_bits(mode, 0);
 4877         changed = FALSE;
 4878 
 4879         /*
 4880          * Pages that aren't mapped aren't supported.  Also break down
 4881          * 2/4MB pages into 4KB pages if required.
 4882          */
 4883         PMAP_LOCK(kernel_pmap);
 4884         for (tmpva = base; tmpva < base + size; ) {
 4885                 pde = pmap_pde(kernel_pmap, tmpva);
 4886                 if (*pde == 0) {
 4887                         PMAP_UNLOCK(kernel_pmap);
 4888                         return (EINVAL);
 4889                 }
 4890                 if (*pde & PG_PS) {
 4891                         /*
 4892                          * If the current 2/4MB page already has
 4893                          * the required memory type, then we need not
 4894                          * demote this page.  Just increment tmpva to
 4895                          * the next 2/4MB page frame.
 4896                          */
 4897                         if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
 4898                                 tmpva = trunc_4mpage(tmpva) + NBPDR;
 4899                                 continue;
 4900                         }
 4901 
 4902                         /*
 4903                          * If the current offset aligns with a 2/4MB
 4904                          * page frame and there is at least 2/4MB left
 4905                          * within the range, then we need not break
 4906                          * down this page into 4KB pages.
 4907                          */
 4908                         if ((tmpva & PDRMASK) == 0 &&
 4909                             tmpva + PDRMASK < base + size) {
 4910                                 tmpva += NBPDR;
 4911                                 continue;
 4912                         }
 4913                         if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
 4914                                 PMAP_UNLOCK(kernel_pmap);
 4915                                 return (ENOMEM);
 4916                         }
 4917                 }
 4918                 pte = vtopte(tmpva);
 4919                 if (*pte == 0) {
 4920                         PMAP_UNLOCK(kernel_pmap);
 4921                         return (EINVAL);
 4922                 }
 4923                 tmpva += PAGE_SIZE;
 4924         }
 4925         PMAP_UNLOCK(kernel_pmap);
 4926 
 4927         /*
 4928          * Ok, all the pages exist, so run through them updating their
 4929          * cache mode if required.
 4930          */
 4931         for (tmpva = base; tmpva < base + size; ) {
 4932                 pde = pmap_pde(kernel_pmap, tmpva);
 4933                 if (*pde & PG_PS) {
 4934                         if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
 4935                                 pmap_pde_attr(pde, cache_bits_pde);
 4936                                 changed = TRUE;
 4937                         }
 4938                         tmpva = trunc_4mpage(tmpva) + NBPDR;
 4939                 } else {
 4940                         pte = vtopte(tmpva);
 4941                         if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
 4942                                 pmap_pte_attr(pte, cache_bits_pte);
 4943                                 changed = TRUE;
 4944                         }
 4945                         tmpva += PAGE_SIZE;
 4946                 }
 4947         }
 4948 
 4949         /*
 4950          * Flush CPU caches to make sure any data isn't cached that
 4951          * shouldn't be, etc.
 4952          */
 4953         if (changed) {
 4954                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 4955                 pmap_invalidate_cache_range(base, tmpva);
 4956         }
 4957         return (0);
 4958 }
 4959 
 4960 /*
 4961  * perform the pmap work for mincore
 4962  */
 4963 int
 4964 pmap_mincore(pmap_t pmap, vm_offset_t addr)
 4965 {
 4966         pd_entry_t *pdep;
 4967         pt_entry_t *ptep, pte;
 4968         vm_paddr_t pa;
 4969         vm_page_t m;
 4970         int val = 0;
 4971         
 4972         PMAP_LOCK(pmap);
 4973         pdep = pmap_pde(pmap, addr);
 4974         if (*pdep != 0) {
 4975                 if (*pdep & PG_PS) {
 4976                         pte = *pdep;
 4977                         val = MINCORE_SUPER;
 4978                         /* Compute the physical address of the 4KB page. */
 4979                         pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 4980                             PG_FRAME;
 4981                 } else {
 4982                         ptep = pmap_pte(pmap, addr);
 4983                         pte = *ptep;
 4984                         pmap_pte_release(ptep);
 4985                         pa = pte & PG_FRAME;
 4986                 }
 4987         } else {
 4988                 pte = 0;
 4989                 pa = 0;
 4990         }
 4991         PMAP_UNLOCK(pmap);
 4992 
 4993         if (pte != 0) {
 4994                 val |= MINCORE_INCORE;
 4995                 if ((pte & PG_MANAGED) == 0)
 4996                         return val;
 4997 
 4998                 m = PHYS_TO_VM_PAGE(pa);
 4999 
 5000                 /*
 5001                  * Modified by us
 5002                  */
 5003                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 5004                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 5005                 else {
 5006                         /*
 5007                          * Modified by someone else
 5008                          */
 5009                         vm_page_lock_queues();
 5010                         if (m->dirty || pmap_is_modified(m))
 5011                                 val |= MINCORE_MODIFIED_OTHER;
 5012                         vm_page_unlock_queues();
 5013                 }
 5014                 /*
 5015                  * Referenced by us
 5016                  */
 5017                 if (pte & PG_A)
 5018                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 5019                 else {
 5020                         /*
 5021                          * Referenced by someone else
 5022                          */
 5023                         vm_page_lock_queues();
 5024                         if ((m->flags & PG_REFERENCED) ||
 5025                             pmap_ts_referenced(m)) {
 5026                                 val |= MINCORE_REFERENCED_OTHER;
 5027                                 vm_page_flag_set(m, PG_REFERENCED);
 5028                         }
 5029                         vm_page_unlock_queues();
 5030                 }
 5031         } 
 5032         return val;
 5033 }
 5034 
 5035 void
 5036 pmap_activate(struct thread *td)
 5037 {
 5038         pmap_t  pmap, oldpmap;
 5039         u_int32_t  cr3;
 5040 
 5041         critical_enter();
 5042         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 5043         oldpmap = PCPU_GET(curpmap);
 5044 #if defined(SMP)
 5045         atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
 5046         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 5047 #else
 5048         oldpmap->pm_active &= ~1;
 5049         pmap->pm_active |= 1;
 5050 #endif
 5051 #ifdef PAE
 5052         cr3 = vtophys(pmap->pm_pdpt);
 5053 #else
 5054         cr3 = vtophys(pmap->pm_pdir);
 5055 #endif
 5056         /*
 5057          * pmap_activate is for the current thread on the current cpu
 5058          */
 5059         td->td_pcb->pcb_cr3 = cr3;
 5060         load_cr3(cr3);
 5061         PCPU_SET(curpmap, pmap);
 5062         critical_exit();
 5063 }
 5064 
 5065 void
 5066 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 5067 {
 5068 }
 5069 
 5070 /*
 5071  *      Increase the starting virtual address of the given mapping if a
 5072  *      different alignment might result in more superpage mappings.
 5073  */
 5074 void
 5075 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 5076     vm_offset_t *addr, vm_size_t size)
 5077 {
 5078         vm_offset_t superpage_offset;
 5079 
 5080         if (size < NBPDR)
 5081                 return;
 5082         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 5083                 offset += ptoa(object->pg_color);
 5084         superpage_offset = offset & PDRMASK;
 5085         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 5086             (*addr & PDRMASK) == superpage_offset)
 5087                 return;
 5088         if ((*addr & PDRMASK) < superpage_offset)
 5089                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 5090         else
 5091                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 5092 }
 5093 
 5094 
 5095 #if defined(PMAP_DEBUG)
 5096 pmap_pid_dump(int pid)
 5097 {
 5098         pmap_t pmap;
 5099         struct proc *p;
 5100         int npte = 0;
 5101         int index;
 5102 
 5103         sx_slock(&allproc_lock);
 5104         FOREACH_PROC_IN_SYSTEM(p) {
 5105                 if (p->p_pid != pid)
 5106                         continue;
 5107 
 5108                 if (p->p_vmspace) {
 5109                         int i,j;
 5110                         index = 0;
 5111                         pmap = vmspace_pmap(p->p_vmspace);
 5112                         for (i = 0; i < NPDEPTD; i++) {
 5113                                 pd_entry_t *pde;
 5114                                 pt_entry_t *pte;
 5115                                 vm_offset_t base = i << PDRSHIFT;
 5116                                 
 5117                                 pde = &pmap->pm_pdir[i];
 5118                                 if (pde && pmap_pde_v(pde)) {
 5119                                         for (j = 0; j < NPTEPG; j++) {
 5120                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 5121                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 5122                                                         if (index) {
 5123                                                                 index = 0;
 5124                                                                 printf("\n");
 5125                                                         }
 5126                                                         sx_sunlock(&allproc_lock);
 5127                                                         return npte;
 5128                                                 }
 5129                                                 pte = pmap_pte(pmap, va);
 5130                                                 if (pte && pmap_pte_v(pte)) {
 5131                                                         pt_entry_t pa;
 5132                                                         vm_page_t m;
 5133                                                         pa = *pte;
 5134                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 5135                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 5136                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 5137                                                         npte++;
 5138                                                         index++;
 5139                                                         if (index >= 2) {
 5140                                                                 index = 0;
 5141                                                                 printf("\n");
 5142                                                         } else {
 5143                                                                 printf(" ");
 5144                                                         }
 5145                                                 }
 5146                                         }
 5147                                 }
 5148                         }
 5149                 }
 5150         }
 5151         sx_sunlock(&allproc_lock);
 5152         return npte;
 5153 }
 5154 #endif
 5155 
 5156 #if defined(DEBUG)
 5157 
 5158 static void     pads(pmap_t pm);
 5159 void            pmap_pvdump(vm_offset_t pa);
 5160 
 5161 /* print address space of pmap*/
 5162 static void
 5163 pads(pmap_t pm)
 5164 {
 5165         int i, j;
 5166         vm_paddr_t va;
 5167         pt_entry_t *ptep;
 5168 
 5169         if (pm == kernel_pmap)
 5170                 return;
 5171         for (i = 0; i < NPDEPTD; i++)
 5172                 if (pm->pm_pdir[i])
 5173                         for (j = 0; j < NPTEPG; j++) {
 5174                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 5175                                 if (pm == kernel_pmap && va < KERNBASE)
 5176                                         continue;
 5177                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 5178                                         continue;
 5179                                 ptep = pmap_pte(pm, va);
 5180                                 if (pmap_pte_v(ptep))
 5181                                         printf("%x:%x ", va, *ptep);
 5182                         };
 5183 
 5184 }
 5185 
 5186 void
 5187 pmap_pvdump(vm_paddr_t pa)
 5188 {
 5189         pv_entry_t pv;
 5190         pmap_t pmap;
 5191         vm_page_t m;
 5192 
 5193         printf("pa %x", pa);
 5194         m = PHYS_TO_VM_PAGE(pa);
 5195         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 5196                 pmap = PV_PMAP(pv);
 5197                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 5198                 pads(pmap);
 5199         }
 5200         printf(" ");
 5201 }
 5202 #endif

Cache object: 7c95f76f1c7c4ddfccff3574f165c779


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.