The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/9.2/sys/i386/i386/pmap.c 251897 2013-06-18 05:21:40Z scottl $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_apic.h"
  107 #include "opt_cpu.h"
  108 #include "opt_pmap.h"
  109 #include "opt_smp.h"
  110 #include "opt_xbox.h"
  111 
  112 #include <sys/param.h>
  113 #include <sys/systm.h>
  114 #include <sys/kernel.h>
  115 #include <sys/ktr.h>
  116 #include <sys/lock.h>
  117 #include <sys/malloc.h>
  118 #include <sys/mman.h>
  119 #include <sys/msgbuf.h>
  120 #include <sys/mutex.h>
  121 #include <sys/proc.h>
  122 #include <sys/rwlock.h>
  123 #include <sys/sf_buf.h>
  124 #include <sys/sx.h>
  125 #include <sys/vmmeter.h>
  126 #include <sys/sched.h>
  127 #include <sys/sysctl.h>
  128 #ifdef SMP
  129 #include <sys/smp.h>
  130 #else
  131 #include <sys/cpuset.h>
  132 #endif
  133 
  134 #include <vm/vm.h>
  135 #include <vm/vm_param.h>
  136 #include <vm/vm_kern.h>
  137 #include <vm/vm_page.h>
  138 #include <vm/vm_map.h>
  139 #include <vm/vm_object.h>
  140 #include <vm/vm_extern.h>
  141 #include <vm/vm_pageout.h>
  142 #include <vm/vm_pager.h>
  143 #include <vm/vm_reserv.h>
  144 #include <vm/uma.h>
  145 
  146 #ifdef DEV_APIC
  147 #include <sys/bus.h>
  148 #include <machine/intr_machdep.h>
  149 #include <machine/apicvar.h>
  150 #endif
  151 #include <machine/cpu.h>
  152 #include <machine/cputypes.h>
  153 #include <machine/md_var.h>
  154 #include <machine/pcb.h>
  155 #include <machine/specialreg.h>
  156 #ifdef SMP
  157 #include <machine/smp.h>
  158 #endif
  159 
  160 #ifdef XBOX
  161 #include <machine/xbox.h>
  162 #endif
  163 
  164 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  165 #define CPU_ENABLE_SSE
  166 #endif
  167 
  168 #ifndef PMAP_SHPGPERPROC
  169 #define PMAP_SHPGPERPROC 200
  170 #endif
  171 
  172 #if !defined(DIAGNOSTIC)
  173 #ifdef __GNUC_GNU_INLINE__
  174 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
  175 #else
  176 #define PMAP_INLINE     extern inline
  177 #endif
  178 #else
  179 #define PMAP_INLINE
  180 #endif
  181 
  182 #ifdef PV_STATS
  183 #define PV_STAT(x)      do { x ; } while (0)
  184 #else
  185 #define PV_STAT(x)      do { } while (0)
  186 #endif
  187 
  188 #define pa_index(pa)    ((pa) >> PDRSHIFT)
  189 #define pa_to_pvh(pa)   (&pv_table[pa_index(pa)])
  190 
  191 /*
  192  * Get PDEs and PTEs for user/kernel address space
  193  */
  194 #define pmap_pde(m, v)  (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
  195 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
  196 
  197 #define pmap_pde_v(pte)         ((*(int *)pte & PG_V) != 0)
  198 #define pmap_pte_w(pte)         ((*(int *)pte & PG_W) != 0)
  199 #define pmap_pte_m(pte)         ((*(int *)pte & PG_M) != 0)
  200 #define pmap_pte_u(pte)         ((*(int *)pte & PG_A) != 0)
  201 #define pmap_pte_v(pte)         ((*(int *)pte & PG_V) != 0)
  202 
  203 #define pmap_pte_set_w(pte, v)  ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
  204     atomic_clear_int((u_int *)(pte), PG_W))
  205 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
  206 
  207 struct pmap kernel_pmap_store;
  208 LIST_HEAD(pmaplist, pmap);
  209 static struct pmaplist allpmaps;
  210 static struct mtx allpmaps_lock;
  211 
  212 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  213 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  214 int pgeflag = 0;                /* PG_G or-in */
  215 int pseflag = 0;                /* PG_PS or-in */
  216 
  217 static int nkpt = NKPT;
  218 vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
  219 extern u_int32_t KERNend;
  220 extern u_int32_t KPTphys;
  221 
  222 #ifdef PAE
  223 pt_entry_t pg_nx;
  224 static uma_zone_t pdptzone;
  225 #endif
  226 
  227 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
  228 
  229 static int pat_works = 1;
  230 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
  231     "Is page attribute table fully functional?");
  232 
  233 static int pg_ps_enabled = 1;
  234 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
  235     "Are large page mappings enabled?");
  236 
  237 #define PAT_INDEX_SIZE  8
  238 static int pat_index[PAT_INDEX_SIZE];   /* cache mode to PAT index conversion */
  239 
  240 /*
  241  * Isolate the global pv list lock from data and other locks to prevent false
  242  * sharing within the cache.
  243  */
  244 static struct {
  245         struct rwlock   lock;
  246         char            padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
  247 } pvh_global __aligned(CACHE_LINE_SIZE);
  248 
  249 #define pvh_global_lock pvh_global.lock
  250 
  251 /*
  252  * Data for the pv entry allocation mechanism
  253  */
  254 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
  255 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  256 static struct md_page *pv_table;
  257 static int shpgperproc = PMAP_SHPGPERPROC;
  258 
  259 struct pv_chunk *pv_chunkbase;          /* KVA block for pv_chunks */
  260 int pv_maxchunks;                       /* How many chunks we have KVA for */
  261 vm_offset_t pv_vafree;                  /* freelist stored in the PTE */
  262 
  263 /*
  264  * All those kernel PT submaps that BSD is so fond of
  265  */
  266 struct sysmaps {
  267         struct  mtx lock;
  268         pt_entry_t *CMAP1;
  269         pt_entry_t *CMAP2;
  270         caddr_t CADDR1;
  271         caddr_t CADDR2;
  272 };
  273 static struct sysmaps sysmaps_pcpu[MAXCPU];
  274 pt_entry_t *CMAP1 = 0;
  275 static pt_entry_t *CMAP3;
  276 static pd_entry_t *KPTD;
  277 caddr_t CADDR1 = 0, ptvmmap = 0;
  278 static caddr_t CADDR3;
  279 struct msgbuf *msgbufp = 0;
  280 
  281 /*
  282  * Crashdump maps.
  283  */
  284 static caddr_t crashdumpmap;
  285 
  286 static pt_entry_t *PMAP1 = 0, *PMAP2;
  287 static pt_entry_t *PADDR1 = 0, *PADDR2;
  288 #ifdef SMP
  289 static int PMAP1cpu;
  290 static int PMAP1changedcpu;
  291 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, 
  292            &PMAP1changedcpu, 0,
  293            "Number of times pmap_pte_quick changed CPU with same PMAP1");
  294 #endif
  295 static int PMAP1changed;
  296 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, 
  297            &PMAP1changed, 0,
  298            "Number of times pmap_pte_quick changed PMAP1");
  299 static int PMAP1unchanged;
  300 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, 
  301            &PMAP1unchanged, 0,
  302            "Number of times pmap_pte_quick didn't change PMAP1");
  303 static struct mtx PMAP2mutex;
  304 
  305 static void     free_pv_chunk(struct pv_chunk *pc);
  306 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
  307 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
  308 static void     pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  309 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  310 static void     pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
  311 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
  312 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
  313                     vm_offset_t va);
  314 static int      pmap_pvh_wired_mappings(struct md_page *pvh, int count);
  315 
  316 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  317 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
  318     vm_prot_t prot);
  319 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
  320     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
  321 static void pmap_flush_page(vm_page_t m);
  322 static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
  323 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
  324 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
  325 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
  326 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
  327 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
  328 static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
  329 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
  330 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
  331 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
  332     vm_prot_t prot);
  333 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
  334 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
  335     vm_page_t *free);
  336 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
  337     vm_page_t *free);
  338 static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
  339 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
  340     vm_page_t *free);
  341 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  342                                         vm_offset_t va);
  343 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  344 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
  345     vm_page_t m);
  346 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
  347     pd_entry_t newpde);
  348 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
  349 
  350 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  351 
  352 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
  353 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
  354 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
  355 static void pmap_pte_release(pt_entry_t *pte);
  356 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
  357 #ifdef PAE
  358 static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  359 #endif
  360 static void pmap_set_pg(void);
  361 
  362 static __inline void pagezero(void *page);
  363 
  364 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  365 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  366 
  367 /*
  368  * If you get an error here, then you set KVA_PAGES wrong! See the
  369  * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
  370  * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
  371  */
  372 CTASSERT(KERNBASE % (1 << 24) == 0);
  373 
  374 /*
  375  *      Bootstrap the system enough to run with virtual memory.
  376  *
  377  *      On the i386 this is called after mapping has already been enabled
  378  *      and just syncs the pmap module with what has already been done.
  379  *      [We can't call it easily with mapping off since the kernel is not
  380  *      mapped with PA == VA, hence we would have to relocate every address
  381  *      from the linked base (virtual) address "KERNBASE" to the actual
  382  *      (physical) address starting relative to 0]
  383  */
  384 void
  385 pmap_bootstrap(vm_paddr_t firstaddr)
  386 {
  387         vm_offset_t va;
  388         pt_entry_t *pte, *unused;
  389         struct sysmaps *sysmaps;
  390         int i;
  391 
  392         /*
  393          * Initialize the first available kernel virtual address.  However,
  394          * using "firstaddr" may waste a few pages of the kernel virtual
  395          * address space, because locore may not have mapped every physical
  396          * page that it allocated.  Preferably, locore would provide a first
  397          * unused virtual address in addition to "firstaddr".
  398          */
  399         virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
  400 
  401         virtual_end = VM_MAX_KERNEL_ADDRESS;
  402 
  403         /*
  404          * Initialize the kernel pmap (which is statically allocated).
  405          */
  406         PMAP_LOCK_INIT(kernel_pmap);
  407         kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
  408 #ifdef PAE
  409         kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
  410 #endif
  411         kernel_pmap->pm_root = NULL;
  412         CPU_FILL(&kernel_pmap->pm_active);      /* don't allow deactivation */
  413         TAILQ_INIT(&kernel_pmap->pm_pvchunk);
  414 
  415         /*
  416          * Initialize the global pv list lock.
  417          */
  418         rw_init(&pvh_global_lock, "pmap pv global");
  419 
  420         LIST_INIT(&allpmaps);
  421 
  422         /*
  423          * Request a spin mutex so that changes to allpmaps cannot be
  424          * preempted by smp_rendezvous_cpus().  Otherwise,
  425          * pmap_update_pde_kernel() could access allpmaps while it is
  426          * being changed.
  427          */
  428         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  429         mtx_lock_spin(&allpmaps_lock);
  430         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  431         mtx_unlock_spin(&allpmaps_lock);
  432 
  433         /*
  434          * Reserve some special page table entries/VA space for temporary
  435          * mapping of pages.
  436          */
  437 #define SYSMAP(c, p, v, n)      \
  438         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  439 
  440         va = virtual_avail;
  441         pte = vtopte(va);
  442 
  443         /*
  444          * CMAP1/CMAP2 are used for zeroing and copying pages.
  445          * CMAP3 is used for the idle process page zeroing.
  446          */
  447         for (i = 0; i < MAXCPU; i++) {
  448                 sysmaps = &sysmaps_pcpu[i];
  449                 mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
  450                 SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
  451                 SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
  452         }
  453         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  454         SYSMAP(caddr_t, CMAP3, CADDR3, 1)
  455 
  456         /*
  457          * Crashdump maps.
  458          */
  459         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  460 
  461         /*
  462          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  463          */
  464         SYSMAP(caddr_t, unused, ptvmmap, 1)
  465 
  466         /*
  467          * msgbufp is used to map the system message buffer.
  468          */
  469         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
  470 
  471         /*
  472          * KPTmap is used by pmap_kextract().
  473          *
  474          * KPTmap is first initialized by locore.  However, that initial
  475          * KPTmap can only support NKPT page table pages.  Here, a larger
  476          * KPTmap is created that can support KVA_PAGES page table pages.
  477          */
  478         SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
  479 
  480         for (i = 0; i < NKPT; i++)
  481                 KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
  482 
  483         /*
  484          * Adjust the start of the KPTD and KPTmap so that the implementation
  485          * of pmap_kextract() and pmap_growkernel() can be made simpler.
  486          */
  487         KPTD -= KPTDI;
  488         KPTmap -= i386_btop(KPTDI << PDRSHIFT);
  489 
  490         /*
  491          * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
  492          * respectively.
  493          */
  494         SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
  495         SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
  496 
  497         mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
  498 
  499         virtual_avail = va;
  500 
  501         /*
  502          * Leave in place an identity mapping (virt == phys) for the low 1 MB
  503          * physical memory region that is used by the ACPI wakeup code.  This
  504          * mapping must not have PG_G set. 
  505          */
  506 #ifdef XBOX
  507         /* FIXME: This is gross, but needed for the XBOX. Since we are in such
  508          * an early stadium, we cannot yet neatly map video memory ... :-(
  509          * Better fixes are very welcome! */
  510         if (!arch_i386_is_xbox)
  511 #endif
  512         for (i = 1; i < NKPT; i++)
  513                 PTD[i] = 0;
  514 
  515         /* Initialize the PAT MSR if present. */
  516         pmap_init_pat();
  517 
  518         /* Turn on PG_G on kernel page(s) */
  519         pmap_set_pg();
  520 }
  521 
  522 /*
  523  * Setup the PAT MSR.
  524  */
  525 void
  526 pmap_init_pat(void)
  527 {
  528         int pat_table[PAT_INDEX_SIZE];
  529         uint64_t pat_msr;
  530         u_long cr0, cr4;
  531         int i;
  532 
  533         /* Set default PAT index table. */
  534         for (i = 0; i < PAT_INDEX_SIZE; i++)
  535                 pat_table[i] = -1;
  536         pat_table[PAT_WRITE_BACK] = 0;
  537         pat_table[PAT_WRITE_THROUGH] = 1;
  538         pat_table[PAT_UNCACHEABLE] = 3;
  539         pat_table[PAT_WRITE_COMBINING] = 3;
  540         pat_table[PAT_WRITE_PROTECTED] = 3;
  541         pat_table[PAT_UNCACHED] = 3;
  542 
  543         /* Bail if this CPU doesn't implement PAT. */
  544         if ((cpu_feature & CPUID_PAT) == 0) {
  545                 for (i = 0; i < PAT_INDEX_SIZE; i++)
  546                         pat_index[i] = pat_table[i];
  547                 pat_works = 0;
  548                 return;
  549         }
  550 
  551         /*
  552          * Due to some Intel errata, we can only safely use the lower 4
  553          * PAT entries.
  554          *
  555          *   Intel Pentium III Processor Specification Update
  556          * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
  557          * or Mode C Paging)
  558          *
  559          *   Intel Pentium IV  Processor Specification Update
  560          * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
  561          */
  562         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
  563             !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
  564                 pat_works = 0;
  565 
  566         /* Initialize default PAT entries. */
  567         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
  568             PAT_VALUE(1, PAT_WRITE_THROUGH) |
  569             PAT_VALUE(2, PAT_UNCACHED) |
  570             PAT_VALUE(3, PAT_UNCACHEABLE) |
  571             PAT_VALUE(4, PAT_WRITE_BACK) |
  572             PAT_VALUE(5, PAT_WRITE_THROUGH) |
  573             PAT_VALUE(6, PAT_UNCACHED) |
  574             PAT_VALUE(7, PAT_UNCACHEABLE);
  575 
  576         if (pat_works) {
  577                 /*
  578                  * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
  579                  * Program 5 and 6 as WP and WC.
  580                  * Leave 4 and 7 as WB and UC.
  581                  */
  582                 pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
  583                 pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
  584                     PAT_VALUE(6, PAT_WRITE_COMBINING);
  585                 pat_table[PAT_UNCACHED] = 2;
  586                 pat_table[PAT_WRITE_PROTECTED] = 5;
  587                 pat_table[PAT_WRITE_COMBINING] = 6;
  588         } else {
  589                 /*
  590                  * Just replace PAT Index 2 with WC instead of UC-.
  591                  */
  592                 pat_msr &= ~PAT_MASK(2);
  593                 pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
  594                 pat_table[PAT_WRITE_COMBINING] = 2;
  595         }
  596 
  597         /* Disable PGE. */
  598         cr4 = rcr4();
  599         load_cr4(cr4 & ~CR4_PGE);
  600 
  601         /* Disable caches (CD = 1, NW = 0). */
  602         cr0 = rcr0();
  603         load_cr0((cr0 & ~CR0_NW) | CR0_CD);
  604 
  605         /* Flushes caches and TLBs. */
  606         wbinvd();
  607         invltlb();
  608 
  609         /* Update PAT and index table. */
  610         wrmsr(MSR_PAT, pat_msr);
  611         for (i = 0; i < PAT_INDEX_SIZE; i++)
  612                 pat_index[i] = pat_table[i];
  613 
  614         /* Flush caches and TLBs again. */
  615         wbinvd();
  616         invltlb();
  617 
  618         /* Restore caches and PGE. */
  619         load_cr0(cr0);
  620         load_cr4(cr4);
  621 }
  622 
  623 /*
  624  * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
  625  */
  626 static void
  627 pmap_set_pg(void)
  628 {
  629         pt_entry_t *pte;
  630         vm_offset_t va, endva;
  631 
  632         if (pgeflag == 0)
  633                 return;
  634 
  635         endva = KERNBASE + KERNend;
  636 
  637         if (pseflag) {
  638                 va = KERNBASE + KERNLOAD;
  639                 while (va  < endva) {
  640                         pdir_pde(PTD, va) |= pgeflag;
  641                         invltlb();      /* Play it safe, invltlb() every time */
  642                         va += NBPDR;
  643                 }
  644         } else {
  645                 va = (vm_offset_t)btext;
  646                 while (va < endva) {
  647                         pte = vtopte(va);
  648                         if (*pte)
  649                                 *pte |= pgeflag;
  650                         invltlb();      /* Play it safe, invltlb() every time */
  651                         va += PAGE_SIZE;
  652                 }
  653         }
  654 }
  655 
  656 /*
  657  * Initialize a vm_page's machine-dependent fields.
  658  */
  659 void
  660 pmap_page_init(vm_page_t m)
  661 {
  662 
  663         TAILQ_INIT(&m->md.pv_list);
  664         m->md.pat_mode = PAT_WRITE_BACK;
  665 }
  666 
  667 #ifdef PAE
  668 static void *
  669 pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  670 {
  671 
  672         /* Inform UMA that this allocator uses kernel_map/object. */
  673         *flags = UMA_SLAB_KERNEL;
  674         return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
  675             0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
  676 }
  677 #endif
  678 
  679 /*
  680  * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
  681  * Requirements:
  682  *  - Must deal with pages in order to ensure that none of the PG_* bits
  683  *    are ever set, PG_V in particular.
  684  *  - Assumes we can write to ptes without pte_store() atomic ops, even
  685  *    on PAE systems.  This should be ok.
  686  *  - Assumes nothing will ever test these addresses for 0 to indicate
  687  *    no mapping instead of correctly checking PG_V.
  688  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
  689  * Because PG_V is never set, there can be no mappings to invalidate.
  690  */
  691 static vm_offset_t
  692 pmap_ptelist_alloc(vm_offset_t *head)
  693 {
  694         pt_entry_t *pte;
  695         vm_offset_t va;
  696 
  697         va = *head;
  698         if (va == 0)
  699                 return (va);    /* Out of memory */
  700         pte = vtopte(va);
  701         *head = *pte;
  702         if (*head & PG_V)
  703                 panic("pmap_ptelist_alloc: va with PG_V set!");
  704         *pte = 0;
  705         return (va);
  706 }
  707 
  708 static void
  709 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
  710 {
  711         pt_entry_t *pte;
  712 
  713         if (va & PG_V)
  714                 panic("pmap_ptelist_free: freeing va with PG_V set!");
  715         pte = vtopte(va);
  716         *pte = *head;           /* virtual! PG_V is 0 though */
  717         *head = va;
  718 }
  719 
  720 static void
  721 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
  722 {
  723         int i;
  724         vm_offset_t va;
  725 
  726         *head = 0;
  727         for (i = npages - 1; i >= 0; i--) {
  728                 va = (vm_offset_t)base + i * PAGE_SIZE;
  729                 pmap_ptelist_free(head, va);
  730         }
  731 }
  732 
  733 
  734 /*
  735  *      Initialize the pmap module.
  736  *      Called by vm_init, to initialize any structures that the pmap
  737  *      system needs to map virtual memory.
  738  */
  739 void
  740 pmap_init(void)
  741 {
  742         vm_page_t mpte;
  743         vm_size_t s;
  744         int i, pv_npg;
  745 
  746         /*
  747          * Initialize the vm page array entries for the kernel pmap's
  748          * page table pages.
  749          */ 
  750         for (i = 0; i < NKPT; i++) {
  751                 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
  752                 KASSERT(mpte >= vm_page_array &&
  753                     mpte < &vm_page_array[vm_page_array_size],
  754                     ("pmap_init: page table page is out of range"));
  755                 mpte->pindex = i + KPTDI;
  756                 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
  757         }
  758 
  759         /*
  760          * Initialize the address space (zone) for the pv entries.  Set a
  761          * high water mark so that the system can recover from excessive
  762          * numbers of pv entries.
  763          */
  764         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  765         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
  766         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  767         pv_entry_max = roundup(pv_entry_max, _NPCPV);
  768         pv_entry_high_water = 9 * (pv_entry_max / 10);
  769 
  770         /*
  771          * If the kernel is running in a virtual machine on an AMD Family 10h
  772          * processor, then it must assume that MCA is enabled by the virtual
  773          * machine monitor.
  774          */
  775         if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
  776             CPUID_TO_FAMILY(cpu_id) == 0x10)
  777                 workaround_erratum383 = 1;
  778 
  779         /*
  780          * Are large page mappings supported and enabled?
  781          */
  782         TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
  783         if (pseflag == 0)
  784                 pg_ps_enabled = 0;
  785         else if (pg_ps_enabled) {
  786                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
  787                     ("pmap_init: can't assign to pagesizes[1]"));
  788                 pagesizes[1] = NBPDR;
  789         }
  790 
  791         /*
  792          * Calculate the size of the pv head table for superpages.
  793          */
  794         for (i = 0; phys_avail[i + 1]; i += 2);
  795         pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
  796 
  797         /*
  798          * Allocate memory for the pv head table for superpages.
  799          */
  800         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
  801         s = round_page(s);
  802         pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
  803         for (i = 0; i < pv_npg; i++)
  804                 TAILQ_INIT(&pv_table[i].pv_list);
  805 
  806         pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
  807         pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
  808             PAGE_SIZE * pv_maxchunks);
  809         if (pv_chunkbase == NULL)
  810                 panic("pmap_init: not enough kvm for pv chunks");
  811         pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
  812 #ifdef PAE
  813         pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
  814             NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
  815             UMA_ZONE_VM | UMA_ZONE_NOFREE);
  816         uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
  817 #endif
  818 }
  819 
  820 
  821 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
  822         "Max number of PV entries");
  823 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
  824         "Page share factor per proc");
  825 
  826 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
  827     "2/4MB page mapping counters");
  828 
  829 static u_long pmap_pde_demotions;
  830 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
  831     &pmap_pde_demotions, 0, "2/4MB page demotions");
  832 
  833 static u_long pmap_pde_mappings;
  834 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
  835     &pmap_pde_mappings, 0, "2/4MB page mappings");
  836 
  837 static u_long pmap_pde_p_failures;
  838 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
  839     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
  840 
  841 static u_long pmap_pde_promotions;
  842 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
  843     &pmap_pde_promotions, 0, "2/4MB page promotions");
  844 
  845 /***************************************************
  846  * Low level helper routines.....
  847  ***************************************************/
  848 
  849 /*
  850  * Determine the appropriate bits to set in a PTE or PDE for a specified
  851  * caching mode.
  852  */
  853 int
  854 pmap_cache_bits(int mode, boolean_t is_pde)
  855 {
  856         int cache_bits, pat_flag, pat_idx;
  857 
  858         if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
  859                 panic("Unknown caching mode %d\n", mode);
  860 
  861         /* The PAT bit is different for PTE's and PDE's. */
  862         pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
  863 
  864         /* Map the caching mode to a PAT index. */
  865         pat_idx = pat_index[mode];
  866 
  867         /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
  868         cache_bits = 0;
  869         if (pat_idx & 0x4)
  870                 cache_bits |= pat_flag;
  871         if (pat_idx & 0x2)
  872                 cache_bits |= PG_NC_PCD;
  873         if (pat_idx & 0x1)
  874                 cache_bits |= PG_NC_PWT;
  875         return (cache_bits);
  876 }
  877 
  878 /*
  879  * The caller is responsible for maintaining TLB consistency.
  880  */
  881 static void
  882 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
  883 {
  884         pd_entry_t *pde;
  885         pmap_t pmap;
  886         boolean_t PTD_updated;
  887 
  888         PTD_updated = FALSE;
  889         mtx_lock_spin(&allpmaps_lock);
  890         LIST_FOREACH(pmap, &allpmaps, pm_list) {
  891                 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
  892                     PG_FRAME))
  893                         PTD_updated = TRUE;
  894                 pde = pmap_pde(pmap, va);
  895                 pde_store(pde, newpde);
  896         }
  897         mtx_unlock_spin(&allpmaps_lock);
  898         KASSERT(PTD_updated,
  899             ("pmap_kenter_pde: current page table is not in allpmaps"));
  900 }
  901 
  902 /*
  903  * After changing the page size for the specified virtual address in the page
  904  * table, flush the corresponding entries from the processor's TLB.  Only the
  905  * calling processor's TLB is affected.
  906  *
  907  * The calling thread must be pinned to a processor.
  908  */
  909 static void
  910 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
  911 {
  912         u_long cr4;
  913 
  914         if ((newpde & PG_PS) == 0)
  915                 /* Demotion: flush a specific 2MB page mapping. */
  916                 invlpg(va);
  917         else if ((newpde & PG_G) == 0)
  918                 /*
  919                  * Promotion: flush every 4KB page mapping from the TLB
  920                  * because there are too many to flush individually.
  921                  */
  922                 invltlb();
  923         else {
  924                 /*
  925                  * Promotion: flush every 4KB page mapping from the TLB,
  926                  * including any global (PG_G) mappings.
  927                  */
  928                 cr4 = rcr4();
  929                 load_cr4(cr4 & ~CR4_PGE);
  930                 /*
  931                  * Although preemption at this point could be detrimental to
  932                  * performance, it would not lead to an error.  PG_G is simply
  933                  * ignored if CR4.PGE is clear.  Moreover, in case this block
  934                  * is re-entered, the load_cr4() either above or below will
  935                  * modify CR4.PGE flushing the TLB.
  936                  */
  937                 load_cr4(cr4 | CR4_PGE);
  938         }
  939 }
  940 #ifdef SMP
  941 /*
  942  * For SMP, these functions have to use the IPI mechanism for coherence.
  943  *
  944  * N.B.: Before calling any of the following TLB invalidation functions,
  945  * the calling processor must ensure that all stores updating a non-
  946  * kernel page table are globally performed.  Otherwise, another
  947  * processor could cache an old, pre-update entry without being
  948  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  949  * active on another processor after its pm_active field is checked by
  950  * one of the following functions but before a store updating the page
  951  * table is globally performed. (2) The pmap becomes active on another
  952  * processor before its pm_active field is checked but due to
  953  * speculative loads one of the following functions stills reads the
  954  * pmap as inactive on the other processor.
  955  * 
  956  * The kernel page table is exempt because its pm_active field is
  957  * immutable.  The kernel page table is always active on every
  958  * processor.
  959  */
  960 void
  961 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  962 {
  963         cpuset_t other_cpus;
  964         u_int cpuid;
  965 
  966         sched_pin();
  967         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  968                 invlpg(va);
  969                 smp_invlpg(va);
  970         } else {
  971                 cpuid = PCPU_GET(cpuid);
  972                 other_cpus = all_cpus;
  973                 CPU_CLR(cpuid, &other_cpus);
  974                 if (CPU_ISSET(cpuid, &pmap->pm_active))
  975                         invlpg(va);
  976                 CPU_AND(&other_cpus, &pmap->pm_active);
  977                 if (!CPU_EMPTY(&other_cpus))
  978                         smp_masked_invlpg(other_cpus, va);
  979         }
  980         sched_unpin();
  981 }
  982 
  983 void
  984 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  985 {
  986         cpuset_t other_cpus;
  987         vm_offset_t addr;
  988         u_int cpuid;
  989 
  990         sched_pin();
  991         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
  992                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  993                         invlpg(addr);
  994                 smp_invlpg_range(sva, eva);
  995         } else {
  996                 cpuid = PCPU_GET(cpuid);
  997                 other_cpus = all_cpus;
  998                 CPU_CLR(cpuid, &other_cpus);
  999                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1000                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1001                                 invlpg(addr);
 1002                 CPU_AND(&other_cpus, &pmap->pm_active);
 1003                 if (!CPU_EMPTY(&other_cpus))
 1004                         smp_masked_invlpg_range(other_cpus, sva, eva);
 1005         }
 1006         sched_unpin();
 1007 }
 1008 
 1009 void
 1010 pmap_invalidate_all(pmap_t pmap)
 1011 {
 1012         cpuset_t other_cpus;
 1013         u_int cpuid;
 1014 
 1015         sched_pin();
 1016         if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
 1017                 invltlb();
 1018                 smp_invltlb();
 1019         } else {
 1020                 cpuid = PCPU_GET(cpuid);
 1021                 other_cpus = all_cpus;
 1022                 CPU_CLR(cpuid, &other_cpus);
 1023                 if (CPU_ISSET(cpuid, &pmap->pm_active))
 1024                         invltlb();
 1025                 CPU_AND(&other_cpus, &pmap->pm_active);
 1026                 if (!CPU_EMPTY(&other_cpus))
 1027                         smp_masked_invltlb(other_cpus);
 1028         }
 1029         sched_unpin();
 1030 }
 1031 
 1032 void
 1033 pmap_invalidate_cache(void)
 1034 {
 1035 
 1036         sched_pin();
 1037         wbinvd();
 1038         smp_cache_flush();
 1039         sched_unpin();
 1040 }
 1041 
 1042 struct pde_action {
 1043         cpuset_t invalidate;    /* processors that invalidate their TLB */
 1044         vm_offset_t va;
 1045         pd_entry_t *pde;
 1046         pd_entry_t newpde;
 1047         u_int store;            /* processor that updates the PDE */
 1048 };
 1049 
 1050 static void
 1051 pmap_update_pde_kernel(void *arg)
 1052 {
 1053         struct pde_action *act = arg;
 1054         pd_entry_t *pde;
 1055         pmap_t pmap;
 1056 
 1057         if (act->store == PCPU_GET(cpuid)) {
 1058 
 1059                 /*
 1060                  * Elsewhere, this operation requires allpmaps_lock for
 1061                  * synchronization.  Here, it does not because it is being
 1062                  * performed in the context of an all_cpus rendezvous.
 1063                  */
 1064                 LIST_FOREACH(pmap, &allpmaps, pm_list) {
 1065                         pde = pmap_pde(pmap, act->va);
 1066                         pde_store(pde, act->newpde);
 1067                 }
 1068         }
 1069 }
 1070 
 1071 static void
 1072 pmap_update_pde_user(void *arg)
 1073 {
 1074         struct pde_action *act = arg;
 1075 
 1076         if (act->store == PCPU_GET(cpuid))
 1077                 pde_store(act->pde, act->newpde);
 1078 }
 1079 
 1080 static void
 1081 pmap_update_pde_teardown(void *arg)
 1082 {
 1083         struct pde_action *act = arg;
 1084 
 1085         if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 1086                 pmap_update_pde_invalidate(act->va, act->newpde);
 1087 }
 1088 
 1089 /*
 1090  * Change the page size for the specified virtual address in a way that
 1091  * prevents any possibility of the TLB ever having two entries that map the
 1092  * same virtual address using different page sizes.  This is the recommended
 1093  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
 1094  * machine check exception for a TLB state that is improperly diagnosed as a
 1095  * hardware error.
 1096  */
 1097 static void
 1098 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1099 {
 1100         struct pde_action act;
 1101         cpuset_t active, other_cpus;
 1102         u_int cpuid;
 1103 
 1104         sched_pin();
 1105         cpuid = PCPU_GET(cpuid);
 1106         other_cpus = all_cpus;
 1107         CPU_CLR(cpuid, &other_cpus);
 1108         if (pmap == kernel_pmap)
 1109                 active = all_cpus;
 1110         else
 1111                 active = pmap->pm_active;
 1112         if (CPU_OVERLAP(&active, &other_cpus)) {
 1113                 act.store = cpuid;
 1114                 act.invalidate = active;
 1115                 act.va = va;
 1116                 act.pde = pde;
 1117                 act.newpde = newpde;
 1118                 CPU_SET(cpuid, &active);
 1119                 smp_rendezvous_cpus(active,
 1120                     smp_no_rendevous_barrier, pmap == kernel_pmap ?
 1121                     pmap_update_pde_kernel : pmap_update_pde_user,
 1122                     pmap_update_pde_teardown, &act);
 1123         } else {
 1124                 if (pmap == kernel_pmap)
 1125                         pmap_kenter_pde(va, newpde);
 1126                 else
 1127                         pde_store(pde, newpde);
 1128                 if (CPU_ISSET(cpuid, &active))
 1129                         pmap_update_pde_invalidate(va, newpde);
 1130         }
 1131         sched_unpin();
 1132 }
 1133 #else /* !SMP */
 1134 /*
 1135  * Normal, non-SMP, 486+ invalidation functions.
 1136  * We inline these within pmap.c for speed.
 1137  */
 1138 PMAP_INLINE void
 1139 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 1140 {
 1141 
 1142         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1143                 invlpg(va);
 1144 }
 1145 
 1146 PMAP_INLINE void
 1147 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1148 {
 1149         vm_offset_t addr;
 1150 
 1151         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1152                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
 1153                         invlpg(addr);
 1154 }
 1155 
 1156 PMAP_INLINE void
 1157 pmap_invalidate_all(pmap_t pmap)
 1158 {
 1159 
 1160         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1161                 invltlb();
 1162 }
 1163 
 1164 PMAP_INLINE void
 1165 pmap_invalidate_cache(void)
 1166 {
 1167 
 1168         wbinvd();
 1169 }
 1170 
 1171 static void
 1172 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 1173 {
 1174 
 1175         if (pmap == kernel_pmap)
 1176                 pmap_kenter_pde(va, newpde);
 1177         else
 1178                 pde_store(pde, newpde);
 1179         if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
 1180                 pmap_update_pde_invalidate(va, newpde);
 1181 }
 1182 #endif /* !SMP */
 1183 
 1184 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
 1185 
 1186 void
 1187 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
 1188 {
 1189 
 1190         KASSERT((sva & PAGE_MASK) == 0,
 1191             ("pmap_invalidate_cache_range: sva not page-aligned"));
 1192         KASSERT((eva & PAGE_MASK) == 0,
 1193             ("pmap_invalidate_cache_range: eva not page-aligned"));
 1194 
 1195         if (cpu_feature & CPUID_SS)
 1196                 ; /* If "Self Snoop" is supported, do nothing. */
 1197         else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 1198             eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 1199 
 1200 #ifdef DEV_APIC
 1201                 /*
 1202                  * XXX: Some CPUs fault, hang, or trash the local APIC
 1203                  * registers if we use CLFLUSH on the local APIC
 1204                  * range.  The local APIC is always uncached, so we
 1205                  * don't need to flush for that range anyway.
 1206                  */
 1207                 if (pmap_kextract(sva) == lapic_paddr)
 1208                         return;
 1209 #endif
 1210                 /*
 1211                  * Otherwise, do per-cache line flush.  Use the mfence
 1212                  * instruction to insure that previous stores are
 1213                  * included in the write-back.  The processor
 1214                  * propagates flush to other processors in the cache
 1215                  * coherence domain.
 1216                  */
 1217                 mfence();
 1218                 for (; sva < eva; sva += cpu_clflush_line_size)
 1219                         clflush(sva);
 1220                 mfence();
 1221         } else {
 1222 
 1223                 /*
 1224                  * No targeted cache flush methods are supported by CPU,
 1225                  * or the supplied range is bigger than 2MB.
 1226                  * Globally invalidate cache.
 1227                  */
 1228                 pmap_invalidate_cache();
 1229         }
 1230 }
 1231 
 1232 void
 1233 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 1234 {
 1235         int i;
 1236 
 1237         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 1238             (cpu_feature & CPUID_CLFSH) == 0) {
 1239                 pmap_invalidate_cache();
 1240         } else {
 1241                 for (i = 0; i < count; i++)
 1242                         pmap_flush_page(pages[i]);
 1243         }
 1244 }
 1245 
 1246 /*
 1247  * Are we current address space or kernel?  N.B. We return FALSE when
 1248  * a pmap's page table is in use because a kernel thread is borrowing
 1249  * it.  The borrowed page table can change spontaneously, making any
 1250  * dependence on its continued use subject to a race condition.
 1251  */
 1252 static __inline int
 1253 pmap_is_current(pmap_t pmap)
 1254 {
 1255 
 1256         return (pmap == kernel_pmap ||
 1257             (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
 1258             (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
 1259 }
 1260 
 1261 /*
 1262  * If the given pmap is not the current or kernel pmap, the returned pte must
 1263  * be released by passing it to pmap_pte_release().
 1264  */
 1265 pt_entry_t *
 1266 pmap_pte(pmap_t pmap, vm_offset_t va)
 1267 {
 1268         pd_entry_t newpf;
 1269         pd_entry_t *pde;
 1270 
 1271         pde = pmap_pde(pmap, va);
 1272         if (*pde & PG_PS)
 1273                 return (pde);
 1274         if (*pde != 0) {
 1275                 /* are we current address space or kernel? */
 1276                 if (pmap_is_current(pmap))
 1277                         return (vtopte(va));
 1278                 mtx_lock(&PMAP2mutex);
 1279                 newpf = *pde & PG_FRAME;
 1280                 if ((*PMAP2 & PG_FRAME) != newpf) {
 1281                         *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1282                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 1283                 }
 1284                 return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
 1285         }
 1286         return (NULL);
 1287 }
 1288 
 1289 /*
 1290  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
 1291  * being NULL.
 1292  */
 1293 static __inline void
 1294 pmap_pte_release(pt_entry_t *pte)
 1295 {
 1296 
 1297         if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
 1298                 mtx_unlock(&PMAP2mutex);
 1299 }
 1300 
 1301 static __inline void
 1302 invlcaddr(void *caddr)
 1303 {
 1304 
 1305         invlpg((u_int)caddr);
 1306 }
 1307 
 1308 /*
 1309  * Super fast pmap_pte routine best used when scanning
 1310  * the pv lists.  This eliminates many coarse-grained
 1311  * invltlb calls.  Note that many of the pv list
 1312  * scans are across different pmaps.  It is very wasteful
 1313  * to do an entire invltlb for checking a single mapping.
 1314  *
 1315  * If the given pmap is not the current pmap, pvh_global_lock
 1316  * must be held and curthread pinned to a CPU.
 1317  */
 1318 static pt_entry_t *
 1319 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
 1320 {
 1321         pd_entry_t newpf;
 1322         pd_entry_t *pde;
 1323 
 1324         pde = pmap_pde(pmap, va);
 1325         if (*pde & PG_PS)
 1326                 return (pde);
 1327         if (*pde != 0) {
 1328                 /* are we current address space or kernel? */
 1329                 if (pmap_is_current(pmap))
 1330                         return (vtopte(va));
 1331                 rw_assert(&pvh_global_lock, RA_WLOCKED);
 1332                 KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 1333                 newpf = *pde & PG_FRAME;
 1334                 if ((*PMAP1 & PG_FRAME) != newpf) {
 1335                         *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
 1336 #ifdef SMP
 1337                         PMAP1cpu = PCPU_GET(cpuid);
 1338 #endif
 1339                         invlcaddr(PADDR1);
 1340                         PMAP1changed++;
 1341                 } else
 1342 #ifdef SMP
 1343                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 1344                         PMAP1cpu = PCPU_GET(cpuid);
 1345                         invlcaddr(PADDR1);
 1346                         PMAP1changedcpu++;
 1347                 } else
 1348 #endif
 1349                         PMAP1unchanged++;
 1350                 return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
 1351         }
 1352         return (0);
 1353 }
 1354 
 1355 /*
 1356  *      Routine:        pmap_extract
 1357  *      Function:
 1358  *              Extract the physical page address associated
 1359  *              with the given map/virtual_address pair.
 1360  */
 1361 vm_paddr_t 
 1362 pmap_extract(pmap_t pmap, vm_offset_t va)
 1363 {
 1364         vm_paddr_t rtval;
 1365         pt_entry_t *pte;
 1366         pd_entry_t pde;
 1367 
 1368         rtval = 0;
 1369         PMAP_LOCK(pmap);
 1370         pde = pmap->pm_pdir[va >> PDRSHIFT];
 1371         if (pde != 0) {
 1372                 if ((pde & PG_PS) != 0)
 1373                         rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
 1374                 else {
 1375                         pte = pmap_pte(pmap, va);
 1376                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
 1377                         pmap_pte_release(pte);
 1378                 }
 1379         }
 1380         PMAP_UNLOCK(pmap);
 1381         return (rtval);
 1382 }
 1383 
 1384 /*
 1385  *      Routine:        pmap_extract_and_hold
 1386  *      Function:
 1387  *              Atomically extract and hold the physical page
 1388  *              with the given pmap and virtual address pair
 1389  *              if that mapping permits the given protection.
 1390  */
 1391 vm_page_t
 1392 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1393 {
 1394         pd_entry_t pde;
 1395         pt_entry_t pte, *ptep;
 1396         vm_page_t m;
 1397         vm_paddr_t pa;
 1398 
 1399         pa = 0;
 1400         m = NULL;
 1401         PMAP_LOCK(pmap);
 1402 retry:
 1403         pde = *pmap_pde(pmap, va);
 1404         if (pde != 0) {
 1405                 if (pde & PG_PS) {
 1406                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 1407                                 if (vm_page_pa_tryrelock(pmap, (pde &
 1408                                     PG_PS_FRAME) | (va & PDRMASK), &pa))
 1409                                         goto retry;
 1410                                 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 1411                                     (va & PDRMASK));
 1412                                 vm_page_hold(m);
 1413                         }
 1414                 } else {
 1415                         ptep = pmap_pte(pmap, va);
 1416                         pte = *ptep;
 1417                         pmap_pte_release(ptep);
 1418                         if (pte != 0 &&
 1419                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 1420                                 if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 1421                                     &pa))
 1422                                         goto retry;
 1423                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 1424                                 vm_page_hold(m);
 1425                         }
 1426                 }
 1427         }
 1428         PA_UNLOCK_COND(pa);
 1429         PMAP_UNLOCK(pmap);
 1430         return (m);
 1431 }
 1432 
 1433 /***************************************************
 1434  * Low level mapping routines.....
 1435  ***************************************************/
 1436 
 1437 /*
 1438  * Add a wired page to the kva.
 1439  * Note: not SMP coherent.
 1440  *
 1441  * This function may be used before pmap_bootstrap() is called.
 1442  */
 1443 PMAP_INLINE void 
 1444 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 1445 {
 1446         pt_entry_t *pte;
 1447 
 1448         pte = vtopte(va);
 1449         pte_store(pte, pa | PG_RW | PG_V | pgeflag);
 1450 }
 1451 
 1452 static __inline void
 1453 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 1454 {
 1455         pt_entry_t *pte;
 1456 
 1457         pte = vtopte(va);
 1458         pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
 1459 }
 1460 
 1461 /*
 1462  * Remove a page from the kernel pagetables.
 1463  * Note: not SMP coherent.
 1464  *
 1465  * This function may be used before pmap_bootstrap() is called.
 1466  */
 1467 PMAP_INLINE void
 1468 pmap_kremove(vm_offset_t va)
 1469 {
 1470         pt_entry_t *pte;
 1471 
 1472         pte = vtopte(va);
 1473         pte_clear(pte);
 1474 }
 1475 
 1476 /*
 1477  *      Used to map a range of physical addresses into kernel
 1478  *      virtual address space.
 1479  *
 1480  *      The value passed in '*virt' is a suggested virtual address for
 1481  *      the mapping. Architectures which can support a direct-mapped
 1482  *      physical to virtual region can return the appropriate address
 1483  *      within that region, leaving '*virt' unchanged. Other
 1484  *      architectures should map the pages starting at '*virt' and
 1485  *      update '*virt' with the first usable address after the mapped
 1486  *      region.
 1487  */
 1488 vm_offset_t
 1489 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 1490 {
 1491         vm_offset_t va, sva;
 1492         vm_paddr_t superpage_offset;
 1493         pd_entry_t newpde;
 1494 
 1495         va = *virt;
 1496         /*
 1497          * Does the physical address range's size and alignment permit at
 1498          * least one superpage mapping to be created?
 1499          */ 
 1500         superpage_offset = start & PDRMASK;
 1501         if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
 1502                 /*
 1503                  * Increase the starting virtual address so that its alignment
 1504                  * does not preclude the use of superpage mappings.
 1505                  */
 1506                 if ((va & PDRMASK) < superpage_offset)
 1507                         va = (va & ~PDRMASK) + superpage_offset;
 1508                 else if ((va & PDRMASK) > superpage_offset)
 1509                         va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
 1510         }
 1511         sva = va;
 1512         while (start < end) {
 1513                 if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
 1514                     pseflag) {
 1515                         KASSERT((va & PDRMASK) == 0,
 1516                             ("pmap_map: misaligned va %#x", va));
 1517                         newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
 1518                         pmap_kenter_pde(va, newpde);
 1519                         va += NBPDR;
 1520                         start += NBPDR;
 1521                 } else {
 1522                         pmap_kenter(va, start);
 1523                         va += PAGE_SIZE;
 1524                         start += PAGE_SIZE;
 1525                 }
 1526         }
 1527         pmap_invalidate_range(kernel_pmap, sva, va);
 1528         *virt = va;
 1529         return (sva);
 1530 }
 1531 
 1532 
 1533 /*
 1534  * Add a list of wired pages to the kva
 1535  * this routine is only used for temporary
 1536  * kernel mappings that do not need to have
 1537  * page modification or references recorded.
 1538  * Note that old mappings are simply written
 1539  * over.  The page *must* be wired.
 1540  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1541  */
 1542 void
 1543 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 1544 {
 1545         pt_entry_t *endpte, oldpte, pa, *pte;
 1546         vm_page_t m;
 1547 
 1548         oldpte = 0;
 1549         pte = vtopte(sva);
 1550         endpte = pte + count;
 1551         while (pte < endpte) {
 1552                 m = *ma++;
 1553                 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 1554                 if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
 1555                         oldpte |= *pte;
 1556                         pte_store(pte, pa | pgeflag | PG_RW | PG_V);
 1557                 }
 1558                 pte++;
 1559         }
 1560         if (__predict_false((oldpte & PG_V) != 0))
 1561                 pmap_invalidate_range(kernel_pmap, sva, sva + count *
 1562                     PAGE_SIZE);
 1563 }
 1564 
 1565 /*
 1566  * This routine tears out page mappings from the
 1567  * kernel -- it is meant only for temporary mappings.
 1568  * Note: SMP coherent.  Uses a ranged shootdown IPI.
 1569  */
 1570 void
 1571 pmap_qremove(vm_offset_t sva, int count)
 1572 {
 1573         vm_offset_t va;
 1574 
 1575         va = sva;
 1576         while (count-- > 0) {
 1577                 pmap_kremove(va);
 1578                 va += PAGE_SIZE;
 1579         }
 1580         pmap_invalidate_range(kernel_pmap, sva, va);
 1581 }
 1582 
 1583 /***************************************************
 1584  * Page table page management routines.....
 1585  ***************************************************/
 1586 static __inline void
 1587 pmap_free_zero_pages(vm_page_t free)
 1588 {
 1589         vm_page_t m;
 1590 
 1591         while (free != NULL) {
 1592                 m = free;
 1593                 free = m->right;
 1594                 /* Preserve the page's PG_ZERO setting. */
 1595                 vm_page_free_toq(m);
 1596         }
 1597 }
 1598 
 1599 /*
 1600  * Schedule the specified unused page table page to be freed.  Specifically,
 1601  * add the page to the specified list of pages that will be released to the
 1602  * physical memory manager after the TLB has been updated.
 1603  */
 1604 static __inline void
 1605 pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
 1606 {
 1607 
 1608         if (set_PG_ZERO)
 1609                 m->flags |= PG_ZERO;
 1610         else
 1611                 m->flags &= ~PG_ZERO;
 1612         m->right = *free;
 1613         *free = m;
 1614 }
 1615 
 1616 /*
 1617  * Inserts the specified page table page into the specified pmap's collection
 1618  * of idle page table pages.  Each of a pmap's page table pages is responsible
 1619  * for mapping a distinct range of virtual addresses.  The pmap's collection is
 1620  * ordered by this virtual address range.
 1621  */
 1622 static void
 1623 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 1624 {
 1625         vm_page_t root;
 1626 
 1627         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1628         root = pmap->pm_root;
 1629         if (root == NULL) {
 1630                 mpte->left = NULL;
 1631                 mpte->right = NULL;
 1632         } else {
 1633                 root = vm_page_splay(mpte->pindex, root);
 1634                 if (mpte->pindex < root->pindex) {
 1635                         mpte->left = root->left;
 1636                         mpte->right = root;
 1637                         root->left = NULL;
 1638                 } else if (mpte->pindex == root->pindex)
 1639                         panic("pmap_insert_pt_page: pindex already inserted");
 1640                 else {
 1641                         mpte->right = root->right;
 1642                         mpte->left = root;
 1643                         root->right = NULL;
 1644                 }
 1645         }
 1646         pmap->pm_root = mpte;
 1647 }
 1648 
 1649 /*
 1650  * Looks for a page table page mapping the specified virtual address in the
 1651  * specified pmap's collection of idle page table pages.  Returns NULL if there
 1652  * is no page table page corresponding to the specified virtual address.
 1653  */
 1654 static vm_page_t
 1655 pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
 1656 {
 1657         vm_page_t mpte;
 1658         vm_pindex_t pindex = va >> PDRSHIFT;
 1659 
 1660         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1661         if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
 1662                 mpte = vm_page_splay(pindex, mpte);
 1663                 if ((pmap->pm_root = mpte)->pindex != pindex)
 1664                         mpte = NULL;
 1665         }
 1666         return (mpte);
 1667 }
 1668 
 1669 /*
 1670  * Removes the specified page table page from the specified pmap's collection
 1671  * of idle page table pages.  The specified page table page must be a member of
 1672  * the pmap's collection.
 1673  */
 1674 static void
 1675 pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
 1676 {
 1677         vm_page_t root;
 1678 
 1679         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1680         if (mpte != pmap->pm_root)
 1681                 vm_page_splay(mpte->pindex, pmap->pm_root);
 1682         if (mpte->left == NULL)
 1683                 root = mpte->right;
 1684         else {
 1685                 root = vm_page_splay(mpte->pindex, mpte->left);
 1686                 root->right = mpte->right;
 1687         }
 1688         pmap->pm_root = root;
 1689 }
 1690 
 1691 /*
 1692  * Decrements a page table page's wire count, which is used to record the
 1693  * number of valid page table entries within the page.  If the wire count
 1694  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
 1695  * page table page was unmapped and FALSE otherwise.
 1696  */
 1697 static inline boolean_t
 1698 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1699 {
 1700 
 1701         --m->wire_count;
 1702         if (m->wire_count == 0) {
 1703                 _pmap_unwire_ptp(pmap, m, free);
 1704                 return (TRUE);
 1705         } else
 1706                 return (FALSE);
 1707 }
 1708 
 1709 static void
 1710 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
 1711 {
 1712         vm_offset_t pteva;
 1713 
 1714         /*
 1715          * unmap the page table page
 1716          */
 1717         pmap->pm_pdir[m->pindex] = 0;
 1718         --pmap->pm_stats.resident_count;
 1719 
 1720         /*
 1721          * This is a release store so that the ordinary store unmapping
 1722          * the page table page is globally performed before TLB shoot-
 1723          * down is begun.
 1724          */
 1725         atomic_subtract_rel_int(&cnt.v_wire_count, 1);
 1726 
 1727         /*
 1728          * Do an invltlb to make the invalidated mapping
 1729          * take effect immediately.
 1730          */
 1731         pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
 1732         pmap_invalidate_page(pmap, pteva);
 1733 
 1734         /* 
 1735          * Put page on a list so that it is released after
 1736          * *ALL* TLB shootdown is done
 1737          */
 1738         pmap_add_delayed_free_list(m, free, TRUE);
 1739 }
 1740 
 1741 /*
 1742  * After removing a page table entry, this routine is used to
 1743  * conditionally free the page, and manage the hold/wire counts.
 1744  */
 1745 static int
 1746 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 1747 {
 1748         pd_entry_t ptepde;
 1749         vm_page_t mpte;
 1750 
 1751         if (va >= VM_MAXUSER_ADDRESS)
 1752                 return (0);
 1753         ptepde = *pmap_pde(pmap, va);
 1754         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1755         return (pmap_unwire_ptp(pmap, mpte, free));
 1756 }
 1757 
 1758 /*
 1759  * Initialize the pmap for the swapper process.
 1760  */
 1761 void
 1762 pmap_pinit0(pmap_t pmap)
 1763 {
 1764 
 1765         PMAP_LOCK_INIT(pmap);
 1766         /*
 1767          * Since the page table directory is shared with the kernel pmap,
 1768          * which is already included in the list "allpmaps", this pmap does
 1769          * not need to be inserted into that list.
 1770          */
 1771         pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
 1772 #ifdef PAE
 1773         pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
 1774 #endif
 1775         pmap->pm_root = NULL;
 1776         CPU_ZERO(&pmap->pm_active);
 1777         PCPU_SET(curpmap, pmap);
 1778         TAILQ_INIT(&pmap->pm_pvchunk);
 1779         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1780 }
 1781 
 1782 /*
 1783  * Initialize a preallocated and zeroed pmap structure,
 1784  * such as one in a vmspace structure.
 1785  */
 1786 int
 1787 pmap_pinit(pmap_t pmap)
 1788 {
 1789         vm_page_t m, ptdpg[NPGPTD];
 1790         vm_paddr_t pa;
 1791         int i;
 1792 
 1793         PMAP_LOCK_INIT(pmap);
 1794 
 1795         /*
 1796          * No need to allocate page table space yet but we do need a valid
 1797          * page directory table.
 1798          */
 1799         if (pmap->pm_pdir == NULL) {
 1800                 pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
 1801                     NBPTD);
 1802                 if (pmap->pm_pdir == NULL) {
 1803                         PMAP_LOCK_DESTROY(pmap);
 1804                         return (0);
 1805                 }
 1806 #ifdef PAE
 1807                 pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
 1808                 KASSERT(((vm_offset_t)pmap->pm_pdpt &
 1809                     ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
 1810                     ("pmap_pinit: pdpt misaligned"));
 1811                 KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
 1812                     ("pmap_pinit: pdpt above 4g"));
 1813 #endif
 1814                 pmap->pm_root = NULL;
 1815         }
 1816         KASSERT(pmap->pm_root == NULL,
 1817             ("pmap_pinit: pmap has reserved page table page(s)"));
 1818 
 1819         /*
 1820          * allocate the page directory page(s)
 1821          */
 1822         for (i = 0; i < NPGPTD;) {
 1823                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 1824                     VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1825                 if (m == NULL)
 1826                         VM_WAIT;
 1827                 else {
 1828                         ptdpg[i++] = m;
 1829                 }
 1830         }
 1831 
 1832         pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
 1833 
 1834         for (i = 0; i < NPGPTD; i++)
 1835                 if ((ptdpg[i]->flags & PG_ZERO) == 0)
 1836                         pagezero(pmap->pm_pdir + (i * NPDEPG));
 1837 
 1838         mtx_lock_spin(&allpmaps_lock);
 1839         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1840         /* Copy the kernel page table directory entries. */
 1841         bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
 1842         mtx_unlock_spin(&allpmaps_lock);
 1843 
 1844         /* install self-referential address mapping entry(s) */
 1845         for (i = 0; i < NPGPTD; i++) {
 1846                 pa = VM_PAGE_TO_PHYS(ptdpg[i]);
 1847                 pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
 1848 #ifdef PAE
 1849                 pmap->pm_pdpt[i] = pa | PG_V;
 1850 #endif
 1851         }
 1852 
 1853         CPU_ZERO(&pmap->pm_active);
 1854         TAILQ_INIT(&pmap->pm_pvchunk);
 1855         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1856 
 1857         return (1);
 1858 }
 1859 
 1860 /*
 1861  * this routine is called if the page table page is not
 1862  * mapped correctly.
 1863  */
 1864 static vm_page_t
 1865 _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
 1866 {
 1867         vm_paddr_t ptepa;
 1868         vm_page_t m;
 1869 
 1870         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1871             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1872             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1873 
 1874         /*
 1875          * Allocate a page table page.
 1876          */
 1877         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1878             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1879                 if (flags & M_WAITOK) {
 1880                         PMAP_UNLOCK(pmap);
 1881                         rw_wunlock(&pvh_global_lock);
 1882                         VM_WAIT;
 1883                         rw_wlock(&pvh_global_lock);
 1884                         PMAP_LOCK(pmap);
 1885                 }
 1886 
 1887                 /*
 1888                  * Indicate the need to retry.  While waiting, the page table
 1889                  * page may have been allocated.
 1890                  */
 1891                 return (NULL);
 1892         }
 1893         if ((m->flags & PG_ZERO) == 0)
 1894                 pmap_zero_page(m);
 1895 
 1896         /*
 1897          * Map the pagetable page into the process address space, if
 1898          * it isn't already there.
 1899          */
 1900 
 1901         pmap->pm_stats.resident_count++;
 1902 
 1903         ptepa = VM_PAGE_TO_PHYS(m);
 1904         pmap->pm_pdir[ptepindex] =
 1905                 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
 1906 
 1907         return (m);
 1908 }
 1909 
 1910 static vm_page_t
 1911 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1912 {
 1913         u_int ptepindex;
 1914         pd_entry_t ptepa;
 1915         vm_page_t m;
 1916 
 1917         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1918             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1919             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1920 
 1921         /*
 1922          * Calculate pagetable page index
 1923          */
 1924         ptepindex = va >> PDRSHIFT;
 1925 retry:
 1926         /*
 1927          * Get the page directory entry
 1928          */
 1929         ptepa = pmap->pm_pdir[ptepindex];
 1930 
 1931         /*
 1932          * This supports switching from a 4MB page to a
 1933          * normal 4K page.
 1934          */
 1935         if (ptepa & PG_PS) {
 1936                 (void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
 1937                 ptepa = pmap->pm_pdir[ptepindex];
 1938         }
 1939 
 1940         /*
 1941          * If the page table page is mapped, we just increment the
 1942          * hold count, and activate it.
 1943          */
 1944         if (ptepa) {
 1945                 m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 1946                 m->wire_count++;
 1947         } else {
 1948                 /*
 1949                  * Here if the pte page isn't mapped, or if it has
 1950                  * been deallocated. 
 1951                  */
 1952                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1953                 if (m == NULL && (flags & M_WAITOK))
 1954                         goto retry;
 1955         }
 1956         return (m);
 1957 }
 1958 
 1959 
 1960 /***************************************************
 1961 * Pmap allocation/deallocation routines.
 1962  ***************************************************/
 1963 
 1964 #ifdef SMP
 1965 /*
 1966  * Deal with a SMP shootdown of other users of the pmap that we are
 1967  * trying to dispose of.  This can be a bit hairy.
 1968  */
 1969 static cpuset_t *lazymask;
 1970 static u_int lazyptd;
 1971 static volatile u_int lazywait;
 1972 
 1973 void pmap_lazyfix_action(void);
 1974 
 1975 void
 1976 pmap_lazyfix_action(void)
 1977 {
 1978 
 1979 #ifdef COUNT_IPIS
 1980         (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
 1981 #endif
 1982         if (rcr3() == lazyptd)
 1983                 load_cr3(curpcb->pcb_cr3);
 1984         CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
 1985         atomic_store_rel_int(&lazywait, 1);
 1986 }
 1987 
 1988 static void
 1989 pmap_lazyfix_self(u_int cpuid)
 1990 {
 1991 
 1992         if (rcr3() == lazyptd)
 1993                 load_cr3(curpcb->pcb_cr3);
 1994         CPU_CLR_ATOMIC(cpuid, lazymask);
 1995 }
 1996 
 1997 
 1998 static void
 1999 pmap_lazyfix(pmap_t pmap)
 2000 {
 2001         cpuset_t mymask, mask;
 2002         u_int cpuid, spins;
 2003         int lsb;
 2004 
 2005         mask = pmap->pm_active;
 2006         while (!CPU_EMPTY(&mask)) {
 2007                 spins = 50000000;
 2008 
 2009                 /* Find least significant set bit. */
 2010                 lsb = cpusetobj_ffs(&mask);
 2011                 MPASS(lsb != 0);
 2012                 lsb--;
 2013                 CPU_SETOF(lsb, &mask);
 2014                 mtx_lock_spin(&smp_ipi_mtx);
 2015 #ifdef PAE
 2016                 lazyptd = vtophys(pmap->pm_pdpt);
 2017 #else
 2018                 lazyptd = vtophys(pmap->pm_pdir);
 2019 #endif
 2020                 cpuid = PCPU_GET(cpuid);
 2021 
 2022                 /* Use a cpuset just for having an easy check. */
 2023                 CPU_SETOF(cpuid, &mymask);
 2024                 if (!CPU_CMP(&mask, &mymask)) {
 2025                         lazymask = &pmap->pm_active;
 2026                         pmap_lazyfix_self(cpuid);
 2027                 } else {
 2028                         atomic_store_rel_int((u_int *)&lazymask,
 2029                             (u_int)&pmap->pm_active);
 2030                         atomic_store_rel_int(&lazywait, 0);
 2031                         ipi_selected(mask, IPI_LAZYPMAP);
 2032                         while (lazywait == 0) {
 2033                                 ia32_pause();
 2034                                 if (--spins == 0)
 2035                                         break;
 2036                         }
 2037                 }
 2038                 mtx_unlock_spin(&smp_ipi_mtx);
 2039                 if (spins == 0)
 2040                         printf("pmap_lazyfix: spun for 50000000\n");
 2041                 mask = pmap->pm_active;
 2042         }
 2043 }
 2044 
 2045 #else   /* SMP */
 2046 
 2047 /*
 2048  * Cleaning up on uniprocessor is easy.  For various reasons, we're
 2049  * unlikely to have to even execute this code, including the fact
 2050  * that the cleanup is deferred until the parent does a wait(2), which
 2051  * means that another userland process has run.
 2052  */
 2053 static void
 2054 pmap_lazyfix(pmap_t pmap)
 2055 {
 2056         u_int cr3;
 2057 
 2058         cr3 = vtophys(pmap->pm_pdir);
 2059         if (cr3 == rcr3()) {
 2060                 load_cr3(curpcb->pcb_cr3);
 2061                 CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
 2062         }
 2063 }
 2064 #endif  /* SMP */
 2065 
 2066 /*
 2067  * Release any resources held by the given physical map.
 2068  * Called when a pmap initialized by pmap_pinit is being released.
 2069  * Should only be called if the map contains no valid mappings.
 2070  */
 2071 void
 2072 pmap_release(pmap_t pmap)
 2073 {
 2074         vm_page_t m, ptdpg[NPGPTD];
 2075         int i;
 2076 
 2077         KASSERT(pmap->pm_stats.resident_count == 0,
 2078             ("pmap_release: pmap resident count %ld != 0",
 2079             pmap->pm_stats.resident_count));
 2080         KASSERT(pmap->pm_root == NULL,
 2081             ("pmap_release: pmap has reserved page table page(s)"));
 2082 
 2083         pmap_lazyfix(pmap);
 2084         mtx_lock_spin(&allpmaps_lock);
 2085         LIST_REMOVE(pmap, pm_list);
 2086         mtx_unlock_spin(&allpmaps_lock);
 2087 
 2088         for (i = 0; i < NPGPTD; i++)
 2089                 ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
 2090                     PG_FRAME);
 2091 
 2092         bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
 2093             sizeof(*pmap->pm_pdir));
 2094 
 2095         pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
 2096 
 2097         for (i = 0; i < NPGPTD; i++) {
 2098                 m = ptdpg[i];
 2099 #ifdef PAE
 2100                 KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
 2101                     ("pmap_release: got wrong ptd page"));
 2102 #endif
 2103                 m->wire_count--;
 2104                 atomic_subtract_int(&cnt.v_wire_count, 1);
 2105                 vm_page_free_zero(m);
 2106         }
 2107         PMAP_LOCK_DESTROY(pmap);
 2108 }
 2109 
 2110 static int
 2111 kvm_size(SYSCTL_HANDLER_ARGS)
 2112 {
 2113         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 2114 
 2115         return (sysctl_handle_long(oidp, &ksize, 0, req));
 2116 }
 2117 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 2118     0, 0, kvm_size, "IU", "Size of KVM");
 2119 
 2120 static int
 2121 kvm_free(SYSCTL_HANDLER_ARGS)
 2122 {
 2123         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 2124 
 2125         return (sysctl_handle_long(oidp, &kfree, 0, req));
 2126 }
 2127 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 2128     0, 0, kvm_free, "IU", "Amount of KVM free");
 2129 
 2130 /*
 2131  * grow the number of kernel page table entries, if needed
 2132  */
 2133 void
 2134 pmap_growkernel(vm_offset_t addr)
 2135 {
 2136         vm_paddr_t ptppaddr;
 2137         vm_page_t nkpg;
 2138         pd_entry_t newpdir;
 2139 
 2140         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 2141         addr = roundup2(addr, NBPDR);
 2142         if (addr - 1 >= kernel_map->max_offset)
 2143                 addr = kernel_map->max_offset;
 2144         while (kernel_vm_end < addr) {
 2145                 if (pdir_pde(PTD, kernel_vm_end)) {
 2146                         kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2147                         if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2148                                 kernel_vm_end = kernel_map->max_offset;
 2149                                 break;
 2150                         }
 2151                         continue;
 2152                 }
 2153 
 2154                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
 2155                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 2156                     VM_ALLOC_ZERO);
 2157                 if (nkpg == NULL)
 2158                         panic("pmap_growkernel: no memory to grow kernel");
 2159 
 2160                 nkpt++;
 2161 
 2162                 if ((nkpg->flags & PG_ZERO) == 0)
 2163                         pmap_zero_page(nkpg);
 2164                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 2165                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 2166                 pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
 2167 
 2168                 pmap_kenter_pde(kernel_vm_end, newpdir);
 2169                 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 2170                 if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 2171                         kernel_vm_end = kernel_map->max_offset;
 2172                         break;
 2173                 }
 2174         }
 2175 }
 2176 
 2177 
 2178 /***************************************************
 2179  * page management routines.
 2180  ***************************************************/
 2181 
 2182 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 2183 CTASSERT(_NPCM == 11);
 2184 CTASSERT(_NPCPV == 336);
 2185 
 2186 static __inline struct pv_chunk *
 2187 pv_to_chunk(pv_entry_t pv)
 2188 {
 2189 
 2190         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 2191 }
 2192 
 2193 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 2194 
 2195 #define PC_FREE0_9      0xfffffffful    /* Free values for index 0 through 9 */
 2196 #define PC_FREE10       0x0000fffful    /* Free values for index 10 */
 2197 
 2198 static const uint32_t pc_freemask[_NPCM] = {
 2199         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2200         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2201         PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
 2202         PC_FREE0_9, PC_FREE10
 2203 };
 2204 
 2205 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 2206         "Current number of pv entries");
 2207 
 2208 #ifdef PV_STATS
 2209 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 2210 
 2211 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 2212         "Current number of pv entry chunks");
 2213 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 2214         "Current number of pv entry chunks allocated");
 2215 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 2216         "Current number of pv entry chunks frees");
 2217 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 2218         "Number of times tried to get a chunk page but failed.");
 2219 
 2220 static long pv_entry_frees, pv_entry_allocs;
 2221 static int pv_entry_spare;
 2222 
 2223 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 2224         "Current number of pv entry frees");
 2225 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 2226         "Current number of pv entry allocs");
 2227 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 2228         "Current number of spare pv entries");
 2229 #endif
 2230 
 2231 /*
 2232  * We are in a serious low memory condition.  Resort to
 2233  * drastic measures to free some pages so we can allocate
 2234  * another pv entry chunk.
 2235  */
 2236 static vm_page_t
 2237 pmap_pv_reclaim(pmap_t locked_pmap)
 2238 {
 2239         struct pch newtail;
 2240         struct pv_chunk *pc;
 2241         struct md_page *pvh;
 2242         pd_entry_t *pde;
 2243         pmap_t pmap;
 2244         pt_entry_t *pte, tpte;
 2245         pv_entry_t pv;
 2246         vm_offset_t va;
 2247         vm_page_t free, m, m_pc;
 2248         uint32_t inuse;
 2249         int bit, field, freed;
 2250 
 2251         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 2252         pmap = NULL;
 2253         free = m_pc = NULL;
 2254         TAILQ_INIT(&newtail);
 2255         while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
 2256             free == NULL)) {
 2257                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2258                 if (pmap != pc->pc_pmap) {
 2259                         if (pmap != NULL) {
 2260                                 pmap_invalidate_all(pmap);
 2261                                 if (pmap != locked_pmap)
 2262                                         PMAP_UNLOCK(pmap);
 2263                         }
 2264                         pmap = pc->pc_pmap;
 2265                         /* Avoid deadlock and lock recursion. */
 2266                         if (pmap > locked_pmap)
 2267                                 PMAP_LOCK(pmap);
 2268                         else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
 2269                                 pmap = NULL;
 2270                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2271                                 continue;
 2272                         }
 2273                 }
 2274 
 2275                 /*
 2276                  * Destroy every non-wired, 4 KB page mapping in the chunk.
 2277                  */
 2278                 freed = 0;
 2279                 for (field = 0; field < _NPCM; field++) {
 2280                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 2281                             inuse != 0; inuse &= ~(1UL << bit)) {
 2282                                 bit = bsfl(inuse);
 2283                                 pv = &pc->pc_pventry[field * 32 + bit];
 2284                                 va = pv->pv_va;
 2285                                 pde = pmap_pde(pmap, va);
 2286                                 if ((*pde & PG_PS) != 0)
 2287                                         continue;
 2288                                 pte = pmap_pte(pmap, va);
 2289                                 tpte = *pte;
 2290                                 if ((tpte & PG_W) == 0)
 2291                                         tpte = pte_load_clear(pte);
 2292                                 pmap_pte_release(pte);
 2293                                 if ((tpte & PG_W) != 0)
 2294                                         continue;
 2295                                 KASSERT(tpte != 0,
 2296                                     ("pmap_pv_reclaim: pmap %p va %x zero pte",
 2297                                     pmap, va));
 2298                                 if ((tpte & PG_G) != 0)
 2299                                         pmap_invalidate_page(pmap, va);
 2300                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2301                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2302                                         vm_page_dirty(m);
 2303                                 if ((tpte & PG_A) != 0)
 2304                                         vm_page_aflag_set(m, PGA_REFERENCED);
 2305                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2306                                 if (TAILQ_EMPTY(&m->md.pv_list) &&
 2307                                     (m->flags & PG_FICTITIOUS) == 0) {
 2308                                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2309                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 2310                                                 vm_page_aflag_clear(m,
 2311                                                     PGA_WRITEABLE);
 2312                                         }
 2313                                 }
 2314                                 pc->pc_map[field] |= 1UL << bit;
 2315                                 pmap_unuse_pt(pmap, va, &free);
 2316                                 freed++;
 2317                         }
 2318                 }
 2319                 if (freed == 0) {
 2320                         TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2321                         continue;
 2322                 }
 2323                 /* Every freed mapping is for a 4 KB page. */
 2324                 pmap->pm_stats.resident_count -= freed;
 2325                 PV_STAT(pv_entry_frees += freed);
 2326                 PV_STAT(pv_entry_spare += freed);
 2327                 pv_entry_count -= freed;
 2328                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2329                 for (field = 0; field < _NPCM; field++)
 2330                         if (pc->pc_map[field] != pc_freemask[field]) {
 2331                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2332                                     pc_list);
 2333                                 TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
 2334 
 2335                                 /*
 2336                                  * One freed pv entry in locked_pmap is
 2337                                  * sufficient.
 2338                                  */
 2339                                 if (pmap == locked_pmap)
 2340                                         goto out;
 2341                                 break;
 2342                         }
 2343                 if (field == _NPCM) {
 2344                         PV_STAT(pv_entry_spare -= _NPCPV);
 2345                         PV_STAT(pc_chunk_count--);
 2346                         PV_STAT(pc_chunk_frees++);
 2347                         /* Entire chunk is free; return it. */
 2348                         m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2349                         pmap_qremove((vm_offset_t)pc, 1);
 2350                         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2351                         break;
 2352                 }
 2353         }
 2354 out:
 2355         TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
 2356         if (pmap != NULL) {
 2357                 pmap_invalidate_all(pmap);
 2358                 if (pmap != locked_pmap)
 2359                         PMAP_UNLOCK(pmap);
 2360         }
 2361         if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
 2362                 m_pc = free;
 2363                 free = m_pc->right;
 2364                 /* Recycle a freed page table page. */
 2365                 m_pc->wire_count = 1;
 2366                 atomic_add_int(&cnt.v_wire_count, 1);
 2367         }
 2368         pmap_free_zero_pages(free);
 2369         return (m_pc);
 2370 }
 2371 
 2372 /*
 2373  * free the pv_entry back to the free list
 2374  */
 2375 static void
 2376 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 2377 {
 2378         struct pv_chunk *pc;
 2379         int idx, field, bit;
 2380 
 2381         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2382         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2383         PV_STAT(pv_entry_frees++);
 2384         PV_STAT(pv_entry_spare++);
 2385         pv_entry_count--;
 2386         pc = pv_to_chunk(pv);
 2387         idx = pv - &pc->pc_pventry[0];
 2388         field = idx / 32;
 2389         bit = idx % 32;
 2390         pc->pc_map[field] |= 1ul << bit;
 2391         for (idx = 0; idx < _NPCM; idx++)
 2392                 if (pc->pc_map[idx] != pc_freemask[idx]) {
 2393                         /*
 2394                          * 98% of the time, pc is already at the head of the
 2395                          * list.  If it isn't already, move it to the head.
 2396                          */
 2397                         if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
 2398                             pc)) {
 2399                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2400                                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
 2401                                     pc_list);
 2402                         }
 2403                         return;
 2404                 }
 2405         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2406         free_pv_chunk(pc);
 2407 }
 2408 
 2409 static void
 2410 free_pv_chunk(struct pv_chunk *pc)
 2411 {
 2412         vm_page_t m;
 2413 
 2414         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 2415         PV_STAT(pv_entry_spare -= _NPCPV);
 2416         PV_STAT(pc_chunk_count--);
 2417         PV_STAT(pc_chunk_frees++);
 2418         /* entire chunk is free, return it */
 2419         m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
 2420         pmap_qremove((vm_offset_t)pc, 1);
 2421         vm_page_unwire(m, 0);
 2422         vm_page_free(m);
 2423         pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
 2424 }
 2425 
 2426 /*
 2427  * get a new pv_entry, allocating a block from the system
 2428  * when needed.
 2429  */
 2430 static pv_entry_t
 2431 get_pv_entry(pmap_t pmap, boolean_t try)
 2432 {
 2433         static const struct timeval printinterval = { 60, 0 };
 2434         static struct timeval lastprint;
 2435         int bit, field;
 2436         pv_entry_t pv;
 2437         struct pv_chunk *pc;
 2438         vm_page_t m;
 2439 
 2440         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2441         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2442         PV_STAT(pv_entry_allocs++);
 2443         pv_entry_count++;
 2444         if (pv_entry_count > pv_entry_high_water)
 2445                 if (ratecheck(&lastprint, &printinterval))
 2446                         printf("Approaching the limit on PV entries, consider "
 2447                             "increasing either the vm.pmap.shpgperproc or the "
 2448                             "vm.pmap.pv_entry_max tunable.\n");
 2449 retry:
 2450         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 2451         if (pc != NULL) {
 2452                 for (field = 0; field < _NPCM; field++) {
 2453                         if (pc->pc_map[field]) {
 2454                                 bit = bsfl(pc->pc_map[field]);
 2455                                 break;
 2456                         }
 2457                 }
 2458                 if (field < _NPCM) {
 2459                         pv = &pc->pc_pventry[field * 32 + bit];
 2460                         pc->pc_map[field] &= ~(1ul << bit);
 2461                         /* If this was the last item, move it to tail */
 2462                         for (field = 0; field < _NPCM; field++)
 2463                                 if (pc->pc_map[field] != 0) {
 2464                                         PV_STAT(pv_entry_spare--);
 2465                                         return (pv);    /* not full, return */
 2466                                 }
 2467                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 2468                         TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 2469                         PV_STAT(pv_entry_spare--);
 2470                         return (pv);
 2471                 }
 2472         }
 2473         /*
 2474          * Access to the ptelist "pv_vafree" is synchronized by the pvh
 2475          * global lock.  If "pv_vafree" is currently non-empty, it will
 2476          * remain non-empty until pmap_ptelist_alloc() completes.
 2477          */
 2478         if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 2479             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 2480                 if (try) {
 2481                         pv_entry_count--;
 2482                         PV_STAT(pc_chunk_tryfail++);
 2483                         return (NULL);
 2484                 }
 2485                 m = pmap_pv_reclaim(pmap);
 2486                 if (m == NULL)
 2487                         goto retry;
 2488         }
 2489         PV_STAT(pc_chunk_count++);
 2490         PV_STAT(pc_chunk_allocs++);
 2491         pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
 2492         pmap_qenter((vm_offset_t)pc, &m, 1);
 2493         pc->pc_pmap = pmap;
 2494         pc->pc_map[0] = pc_freemask[0] & ~1ul;  /* preallocated bit 0 */
 2495         for (field = 1; field < _NPCM; field++)
 2496                 pc->pc_map[field] = pc_freemask[field];
 2497         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 2498         pv = &pc->pc_pventry[0];
 2499         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 2500         PV_STAT(pv_entry_spare += _NPCPV - 1);
 2501         return (pv);
 2502 }
 2503 
 2504 static __inline pv_entry_t
 2505 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2506 {
 2507         pv_entry_t pv;
 2508 
 2509         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2510         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 2511                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 2512                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 2513                         break;
 2514                 }
 2515         }
 2516         return (pv);
 2517 }
 2518 
 2519 static void
 2520 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2521 {
 2522         struct md_page *pvh;
 2523         pv_entry_t pv;
 2524         vm_offset_t va_last;
 2525         vm_page_t m;
 2526 
 2527         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2528         KASSERT((pa & PDRMASK) == 0,
 2529             ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
 2530 
 2531         /*
 2532          * Transfer the 4mpage's pv entry for this mapping to the first
 2533          * page's pv list.
 2534          */
 2535         pvh = pa_to_pvh(pa);
 2536         va = trunc_4mpage(va);
 2537         pv = pmap_pvh_remove(pvh, pmap, va);
 2538         KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 2539         m = PHYS_TO_VM_PAGE(pa);
 2540         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2541         /* Instantiate the remaining NPTEPG - 1 pv entries. */
 2542         va_last = va + NBPDR - PAGE_SIZE;
 2543         do {
 2544                 m++;
 2545                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 2546                     ("pmap_pv_demote_pde: page %p is not managed", m));
 2547                 va += PAGE_SIZE;
 2548                 pmap_insert_entry(pmap, va, m);
 2549         } while (va < va_last);
 2550 }
 2551 
 2552 static void
 2553 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2554 {
 2555         struct md_page *pvh;
 2556         pv_entry_t pv;
 2557         vm_offset_t va_last;
 2558         vm_page_t m;
 2559 
 2560         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2561         KASSERT((pa & PDRMASK) == 0,
 2562             ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
 2563 
 2564         /*
 2565          * Transfer the first page's pv entry for this mapping to the
 2566          * 4mpage's pv list.  Aside from avoiding the cost of a call
 2567          * to get_pv_entry(), a transfer avoids the possibility that
 2568          * get_pv_entry() calls pmap_collect() and that pmap_collect()
 2569          * removes one of the mappings that is being promoted.
 2570          */
 2571         m = PHYS_TO_VM_PAGE(pa);
 2572         va = trunc_4mpage(va);
 2573         pv = pmap_pvh_remove(&m->md, pmap, va);
 2574         KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 2575         pvh = pa_to_pvh(pa);
 2576         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
 2577         /* Free the remaining NPTEPG - 1 pv entries. */
 2578         va_last = va + NBPDR - PAGE_SIZE;
 2579         do {
 2580                 m++;
 2581                 va += PAGE_SIZE;
 2582                 pmap_pvh_free(&m->md, pmap, va);
 2583         } while (va < va_last);
 2584 }
 2585 
 2586 static void
 2587 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 2588 {
 2589         pv_entry_t pv;
 2590 
 2591         pv = pmap_pvh_remove(pvh, pmap, va);
 2592         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 2593         free_pv_entry(pmap, pv);
 2594 }
 2595 
 2596 static void
 2597 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 2598 {
 2599         struct md_page *pvh;
 2600 
 2601         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2602         pmap_pvh_free(&m->md, pmap, va);
 2603         if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
 2604                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 2605                 if (TAILQ_EMPTY(&pvh->pv_list))
 2606                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 2607         }
 2608 }
 2609 
 2610 /*
 2611  * Create a pv entry for page at pa for
 2612  * (pmap, va).
 2613  */
 2614 static void
 2615 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2616 {
 2617         pv_entry_t pv;
 2618 
 2619         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2620         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2621         pv = get_pv_entry(pmap, FALSE);
 2622         pv->pv_va = va;
 2623         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2624 }
 2625 
 2626 /*
 2627  * Conditionally create a pv entry.
 2628  */
 2629 static boolean_t
 2630 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 2631 {
 2632         pv_entry_t pv;
 2633 
 2634         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2635         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2636         if (pv_entry_count < pv_entry_high_water && 
 2637             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2638                 pv->pv_va = va;
 2639                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2640                 return (TRUE);
 2641         } else
 2642                 return (FALSE);
 2643 }
 2644 
 2645 /*
 2646  * Create the pv entries for each of the pages within a superpage.
 2647  */
 2648 static boolean_t
 2649 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
 2650 {
 2651         struct md_page *pvh;
 2652         pv_entry_t pv;
 2653 
 2654         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2655         if (pv_entry_count < pv_entry_high_water && 
 2656             (pv = get_pv_entry(pmap, TRUE)) != NULL) {
 2657                 pv->pv_va = va;
 2658                 pvh = pa_to_pvh(pa);
 2659                 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
 2660                 return (TRUE);
 2661         } else
 2662                 return (FALSE);
 2663 }
 2664 
 2665 /*
 2666  * Fills a page table page with mappings to consecutive physical pages.
 2667  */
 2668 static void
 2669 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 2670 {
 2671         pt_entry_t *pte;
 2672 
 2673         for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 2674                 *pte = newpte;  
 2675                 newpte += PAGE_SIZE;
 2676         }
 2677 }
 2678 
 2679 /*
 2680  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
 2681  * 2- or 4MB page mapping is invalidated.
 2682  */
 2683 static boolean_t
 2684 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 2685 {
 2686         pd_entry_t newpde, oldpde;
 2687         pt_entry_t *firstpte, newpte;
 2688         vm_paddr_t mptepa;
 2689         vm_page_t free, mpte;
 2690 
 2691         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2692         oldpde = *pde;
 2693         KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 2694             ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 2695         mpte = pmap_lookup_pt_page(pmap, va);
 2696         if (mpte != NULL)
 2697                 pmap_remove_pt_page(pmap, mpte);
 2698         else {
 2699                 KASSERT((oldpde & PG_W) == 0,
 2700                     ("pmap_demote_pde: page table page for a wired mapping"
 2701                     " is missing"));
 2702 
 2703                 /*
 2704                  * Invalidate the 2- or 4MB page mapping and return
 2705                  * "failure" if the mapping was never accessed or the
 2706                  * allocation of the new page table page fails.
 2707                  */
 2708                 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 2709                     va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
 2710                     VM_ALLOC_WIRED)) == NULL) {
 2711                         free = NULL;
 2712                         pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
 2713                         pmap_invalidate_page(pmap, trunc_4mpage(va));
 2714                         pmap_free_zero_pages(free);
 2715                         CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
 2716                             " in pmap %p", va, pmap);
 2717                         return (FALSE);
 2718                 }
 2719                 if (va < VM_MAXUSER_ADDRESS)
 2720                         pmap->pm_stats.resident_count++;
 2721         }
 2722         mptepa = VM_PAGE_TO_PHYS(mpte);
 2723 
 2724         /*
 2725          * If the page mapping is in the kernel's address space, then the
 2726          * KPTmap can provide access to the page table page.  Otherwise,
 2727          * temporarily map the page table page (mpte) into the kernel's
 2728          * address space at either PADDR1 or PADDR2. 
 2729          */
 2730         if (va >= KERNBASE)
 2731                 firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
 2732         else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
 2733                 if ((*PMAP1 & PG_FRAME) != mptepa) {
 2734                         *PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2735 #ifdef SMP
 2736                         PMAP1cpu = PCPU_GET(cpuid);
 2737 #endif
 2738                         invlcaddr(PADDR1);
 2739                         PMAP1changed++;
 2740                 } else
 2741 #ifdef SMP
 2742                 if (PMAP1cpu != PCPU_GET(cpuid)) {
 2743                         PMAP1cpu = PCPU_GET(cpuid);
 2744                         invlcaddr(PADDR1);
 2745                         PMAP1changedcpu++;
 2746                 } else
 2747 #endif
 2748                         PMAP1unchanged++;
 2749                 firstpte = PADDR1;
 2750         } else {
 2751                 mtx_lock(&PMAP2mutex);
 2752                 if ((*PMAP2 & PG_FRAME) != mptepa) {
 2753                         *PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
 2754                         pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
 2755                 }
 2756                 firstpte = PADDR2;
 2757         }
 2758         newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 2759         KASSERT((oldpde & PG_A) != 0,
 2760             ("pmap_demote_pde: oldpde is missing PG_A"));
 2761         KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 2762             ("pmap_demote_pde: oldpde is missing PG_M"));
 2763         newpte = oldpde & ~PG_PS;
 2764         if ((newpte & PG_PDE_PAT) != 0)
 2765                 newpte ^= PG_PDE_PAT | PG_PTE_PAT;
 2766 
 2767         /*
 2768          * If the page table page is new, initialize it.
 2769          */
 2770         if (mpte->wire_count == 1) {
 2771                 mpte->wire_count = NPTEPG;
 2772                 pmap_fill_ptp(firstpte, newpte);
 2773         }
 2774         KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 2775             ("pmap_demote_pde: firstpte and newpte map different physical"
 2776             " addresses"));
 2777 
 2778         /*
 2779          * If the mapping has changed attributes, update the page table
 2780          * entries.
 2781          */ 
 2782         if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 2783                 pmap_fill_ptp(firstpte, newpte);
 2784         
 2785         /*
 2786          * Demote the mapping.  This pmap is locked.  The old PDE has
 2787          * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 2788          * set.  Thus, there is no danger of a race with another
 2789          * processor changing the setting of PG_A and/or PG_M between
 2790          * the read above and the store below. 
 2791          */
 2792         if (workaround_erratum383)
 2793                 pmap_update_pde(pmap, va, pde, newpde);
 2794         else if (pmap == kernel_pmap)
 2795                 pmap_kenter_pde(va, newpde);
 2796         else
 2797                 pde_store(pde, newpde); 
 2798         if (firstpte == PADDR2)
 2799                 mtx_unlock(&PMAP2mutex);
 2800 
 2801         /*
 2802          * Invalidate the recursive mapping of the page table page.
 2803          */
 2804         pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 2805 
 2806         /*
 2807          * Demote the pv entry.  This depends on the earlier demotion
 2808          * of the mapping.  Specifically, the (re)creation of a per-
 2809          * page pv entry might trigger the execution of pmap_collect(),
 2810          * which might reclaim a newly (re)created per-page pv entry
 2811          * and destroy the associated mapping.  In order to destroy
 2812          * the mapping, the PDE must have already changed from mapping
 2813          * the 2mpage to referencing the page table page.
 2814          */
 2815         if ((oldpde & PG_MANAGED) != 0)
 2816                 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
 2817 
 2818         pmap_pde_demotions++;
 2819         CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
 2820             " in pmap %p", va, pmap);
 2821         return (TRUE);
 2822 }
 2823 
 2824 /*
 2825  * pmap_remove_pde: do the things to unmap a superpage in a process
 2826  */
 2827 static void
 2828 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
 2829     vm_page_t *free)
 2830 {
 2831         struct md_page *pvh;
 2832         pd_entry_t oldpde;
 2833         vm_offset_t eva, va;
 2834         vm_page_t m, mpte;
 2835 
 2836         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2837         KASSERT((sva & PDRMASK) == 0,
 2838             ("pmap_remove_pde: sva is not 4mpage aligned"));
 2839         oldpde = pte_load_clear(pdq);
 2840         if (oldpde & PG_W)
 2841                 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 2842 
 2843         /*
 2844          * Machines that don't support invlpg, also don't support
 2845          * PG_G.
 2846          */
 2847         if (oldpde & PG_G)
 2848                 pmap_invalidate_page(kernel_pmap, sva);
 2849         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 2850         if (oldpde & PG_MANAGED) {
 2851                 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 2852                 pmap_pvh_free(pvh, pmap, sva);
 2853                 eva = sva + NBPDR;
 2854                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 2855                     va < eva; va += PAGE_SIZE, m++) {
 2856                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2857                                 vm_page_dirty(m);
 2858                         if (oldpde & PG_A)
 2859                                 vm_page_aflag_set(m, PGA_REFERENCED);
 2860                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 2861                             TAILQ_EMPTY(&pvh->pv_list))
 2862                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
 2863                 }
 2864         }
 2865         if (pmap == kernel_pmap) {
 2866                 if (!pmap_demote_pde(pmap, pdq, sva))
 2867                         panic("pmap_remove_pde: failed demotion");
 2868         } else {
 2869                 mpte = pmap_lookup_pt_page(pmap, sva);
 2870                 if (mpte != NULL) {
 2871                         pmap_remove_pt_page(pmap, mpte);
 2872                         pmap->pm_stats.resident_count--;
 2873                         KASSERT(mpte->wire_count == NPTEPG,
 2874                             ("pmap_remove_pde: pte page wire count error"));
 2875                         mpte->wire_count = 0;
 2876                         pmap_add_delayed_free_list(mpte, free, FALSE);
 2877                         atomic_subtract_int(&cnt.v_wire_count, 1);
 2878                 }
 2879         }
 2880 }
 2881 
 2882 /*
 2883  * pmap_remove_pte: do the things to unmap a page in a process
 2884  */
 2885 static int
 2886 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
 2887 {
 2888         pt_entry_t oldpte;
 2889         vm_page_t m;
 2890 
 2891         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2892         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2893         oldpte = pte_load_clear(ptq);
 2894         KASSERT(oldpte != 0,
 2895             ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
 2896         if (oldpte & PG_W)
 2897                 pmap->pm_stats.wired_count -= 1;
 2898         /*
 2899          * Machines that don't support invlpg, also don't support
 2900          * PG_G.
 2901          */
 2902         if (oldpte & PG_G)
 2903                 pmap_invalidate_page(kernel_pmap, va);
 2904         pmap->pm_stats.resident_count -= 1;
 2905         if (oldpte & PG_MANAGED) {
 2906                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 2907                 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 2908                         vm_page_dirty(m);
 2909                 if (oldpte & PG_A)
 2910                         vm_page_aflag_set(m, PGA_REFERENCED);
 2911                 pmap_remove_entry(pmap, m, va);
 2912         }
 2913         return (pmap_unuse_pt(pmap, va, free));
 2914 }
 2915 
 2916 /*
 2917  * Remove a single page from a process address space
 2918  */
 2919 static void
 2920 pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
 2921 {
 2922         pt_entry_t *pte;
 2923 
 2924         rw_assert(&pvh_global_lock, RA_WLOCKED);
 2925         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
 2926         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 2927         if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
 2928                 return;
 2929         pmap_remove_pte(pmap, pte, va, free);
 2930         pmap_invalidate_page(pmap, va);
 2931 }
 2932 
 2933 /*
 2934  *      Remove the given range of addresses from the specified map.
 2935  *
 2936  *      It is assumed that the start and end are properly
 2937  *      rounded to the page size.
 2938  */
 2939 void
 2940 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 2941 {
 2942         vm_offset_t pdnxt;
 2943         pd_entry_t ptpaddr;
 2944         pt_entry_t *pte;
 2945         vm_page_t free = NULL;
 2946         int anyvalid;
 2947 
 2948         /*
 2949          * Perform an unsynchronized read.  This is, however, safe.
 2950          */
 2951         if (pmap->pm_stats.resident_count == 0)
 2952                 return;
 2953 
 2954         anyvalid = 0;
 2955 
 2956         rw_wlock(&pvh_global_lock);
 2957         sched_pin();
 2958         PMAP_LOCK(pmap);
 2959 
 2960         /*
 2961          * special handling of removing one page.  a very
 2962          * common operation and easy to short circuit some
 2963          * code.
 2964          */
 2965         if ((sva + PAGE_SIZE == eva) && 
 2966             ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
 2967                 pmap_remove_page(pmap, sva, &free);
 2968                 goto out;
 2969         }
 2970 
 2971         for (; sva < eva; sva = pdnxt) {
 2972                 u_int pdirindex;
 2973 
 2974                 /*
 2975                  * Calculate index for next page table.
 2976                  */
 2977                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 2978                 if (pdnxt < sva)
 2979                         pdnxt = eva;
 2980                 if (pmap->pm_stats.resident_count == 0)
 2981                         break;
 2982 
 2983                 pdirindex = sva >> PDRSHIFT;
 2984                 ptpaddr = pmap->pm_pdir[pdirindex];
 2985 
 2986                 /*
 2987                  * Weed out invalid mappings. Note: we assume that the page
 2988                  * directory table is always allocated, and in kernel virtual.
 2989                  */
 2990                 if (ptpaddr == 0)
 2991                         continue;
 2992 
 2993                 /*
 2994                  * Check for large page.
 2995                  */
 2996                 if ((ptpaddr & PG_PS) != 0) {
 2997                         /*
 2998                          * Are we removing the entire large page?  If not,
 2999                          * demote the mapping and fall through.
 3000                          */
 3001                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3002                                 /*
 3003                                  * The TLB entry for a PG_G mapping is
 3004                                  * invalidated by pmap_remove_pde().
 3005                                  */
 3006                                 if ((ptpaddr & PG_G) == 0)
 3007                                         anyvalid = 1;
 3008                                 pmap_remove_pde(pmap,
 3009                                     &pmap->pm_pdir[pdirindex], sva, &free);
 3010                                 continue;
 3011                         } else if (!pmap_demote_pde(pmap,
 3012                             &pmap->pm_pdir[pdirindex], sva)) {
 3013                                 /* The large page mapping was destroyed. */
 3014                                 continue;
 3015                         }
 3016                 }
 3017 
 3018                 /*
 3019                  * Limit our scan to either the end of the va represented
 3020                  * by the current page table page, or to the end of the
 3021                  * range being removed.
 3022                  */
 3023                 if (pdnxt > eva)
 3024                         pdnxt = eva;
 3025 
 3026                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3027                     sva += PAGE_SIZE) {
 3028                         if (*pte == 0)
 3029                                 continue;
 3030 
 3031                         /*
 3032                          * The TLB entry for a PG_G mapping is invalidated
 3033                          * by pmap_remove_pte().
 3034                          */
 3035                         if ((*pte & PG_G) == 0)
 3036                                 anyvalid = 1;
 3037                         if (pmap_remove_pte(pmap, pte, sva, &free))
 3038                                 break;
 3039                 }
 3040         }
 3041 out:
 3042         sched_unpin();
 3043         if (anyvalid)
 3044                 pmap_invalidate_all(pmap);
 3045         rw_wunlock(&pvh_global_lock);
 3046         PMAP_UNLOCK(pmap);
 3047         pmap_free_zero_pages(free);
 3048 }
 3049 
 3050 /*
 3051  *      Routine:        pmap_remove_all
 3052  *      Function:
 3053  *              Removes this physical page from
 3054  *              all physical maps in which it resides.
 3055  *              Reflects back modify bits to the pager.
 3056  *
 3057  *      Notes:
 3058  *              Original versions of this routine were very
 3059  *              inefficient because they iteratively called
 3060  *              pmap_remove (slow...)
 3061  */
 3062 
 3063 void
 3064 pmap_remove_all(vm_page_t m)
 3065 {
 3066         struct md_page *pvh;
 3067         pv_entry_t pv;
 3068         pmap_t pmap;
 3069         pt_entry_t *pte, tpte;
 3070         pd_entry_t *pde;
 3071         vm_offset_t va;
 3072         vm_page_t free;
 3073 
 3074         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 3075             ("pmap_remove_all: page %p is not managed", m));
 3076         free = NULL;
 3077         rw_wlock(&pvh_global_lock);
 3078         sched_pin();
 3079         if ((m->flags & PG_FICTITIOUS) != 0)
 3080                 goto small_mappings;
 3081         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 3082         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 3083                 va = pv->pv_va;
 3084                 pmap = PV_PMAP(pv);
 3085                 PMAP_LOCK(pmap);
 3086                 pde = pmap_pde(pmap, va);
 3087                 (void)pmap_demote_pde(pmap, pde, va);
 3088                 PMAP_UNLOCK(pmap);
 3089         }
 3090 small_mappings:
 3091         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3092                 pmap = PV_PMAP(pv);
 3093                 PMAP_LOCK(pmap);
 3094                 pmap->pm_stats.resident_count--;
 3095                 pde = pmap_pde(pmap, pv->pv_va);
 3096                 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 3097                     " a 4mpage in page %p's pv list", m));
 3098                 pte = pmap_pte_quick(pmap, pv->pv_va);
 3099                 tpte = pte_load_clear(pte);
 3100                 KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
 3101                     pmap, pv->pv_va));
 3102                 if (tpte & PG_W)
 3103                         pmap->pm_stats.wired_count--;
 3104                 if (tpte & PG_A)
 3105                         vm_page_aflag_set(m, PGA_REFERENCED);
 3106 
 3107                 /*
 3108                  * Update the vm_page_t clean and reference bits.
 3109                  */
 3110                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3111                         vm_page_dirty(m);
 3112                 pmap_unuse_pt(pmap, pv->pv_va, &free);
 3113                 pmap_invalidate_page(pmap, pv->pv_va);
 3114                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 3115                 free_pv_entry(pmap, pv);
 3116                 PMAP_UNLOCK(pmap);
 3117         }
 3118         vm_page_aflag_clear(m, PGA_WRITEABLE);
 3119         sched_unpin();
 3120         rw_wunlock(&pvh_global_lock);
 3121         pmap_free_zero_pages(free);
 3122 }
 3123 
 3124 /*
 3125  * pmap_protect_pde: do the things to protect a 4mpage in a process
 3126  */
 3127 static boolean_t
 3128 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 3129 {
 3130         pd_entry_t newpde, oldpde;
 3131         vm_offset_t eva, va;
 3132         vm_page_t m;
 3133         boolean_t anychanged;
 3134 
 3135         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3136         KASSERT((sva & PDRMASK) == 0,
 3137             ("pmap_protect_pde: sva is not 4mpage aligned"));
 3138         anychanged = FALSE;
 3139 retry:
 3140         oldpde = newpde = *pde;
 3141         if (oldpde & PG_MANAGED) {
 3142                 eva = sva + NBPDR;
 3143                 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 3144                     va < eva; va += PAGE_SIZE, m++)
 3145                         if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 3146                                 vm_page_dirty(m);
 3147         }
 3148         if ((prot & VM_PROT_WRITE) == 0)
 3149                 newpde &= ~(PG_RW | PG_M);
 3150 #ifdef PAE
 3151         if ((prot & VM_PROT_EXECUTE) == 0)
 3152                 newpde |= pg_nx;
 3153 #endif
 3154         if (newpde != oldpde) {
 3155                 if (!pde_cmpset(pde, oldpde, newpde))
 3156                         goto retry;
 3157                 if (oldpde & PG_G)
 3158                         pmap_invalidate_page(pmap, sva);
 3159                 else
 3160                         anychanged = TRUE;
 3161         }
 3162         return (anychanged);
 3163 }
 3164 
 3165 /*
 3166  *      Set the physical protection on the
 3167  *      specified range of this map as requested.
 3168  */
 3169 void
 3170 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3171 {
 3172         vm_offset_t pdnxt;
 3173         pd_entry_t ptpaddr;
 3174         pt_entry_t *pte;
 3175         boolean_t anychanged, pv_lists_locked;
 3176 
 3177         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 3178                 pmap_remove(pmap, sva, eva);
 3179                 return;
 3180         }
 3181 
 3182 #ifdef PAE
 3183         if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 3184             (VM_PROT_WRITE|VM_PROT_EXECUTE))
 3185                 return;
 3186 #else
 3187         if (prot & VM_PROT_WRITE)
 3188                 return;
 3189 #endif
 3190 
 3191         if (pmap_is_current(pmap))
 3192                 pv_lists_locked = FALSE;
 3193         else {
 3194                 pv_lists_locked = TRUE;
 3195 resume:
 3196                 rw_wlock(&pvh_global_lock);
 3197                 sched_pin();
 3198         }
 3199         anychanged = FALSE;
 3200 
 3201         PMAP_LOCK(pmap);
 3202         for (; sva < eva; sva = pdnxt) {
 3203                 pt_entry_t obits, pbits;
 3204                 u_int pdirindex;
 3205 
 3206                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 3207                 if (pdnxt < sva)
 3208                         pdnxt = eva;
 3209 
 3210                 pdirindex = sva >> PDRSHIFT;
 3211                 ptpaddr = pmap->pm_pdir[pdirindex];
 3212 
 3213                 /*
 3214                  * Weed out invalid mappings. Note: we assume that the page
 3215                  * directory table is always allocated, and in kernel virtual.
 3216                  */
 3217                 if (ptpaddr == 0)
 3218                         continue;
 3219 
 3220                 /*
 3221                  * Check for large page.
 3222                  */
 3223                 if ((ptpaddr & PG_PS) != 0) {
 3224                         /*
 3225                          * Are we protecting the entire large page?  If not,
 3226                          * demote the mapping and fall through.
 3227                          */
 3228                         if (sva + NBPDR == pdnxt && eva >= pdnxt) {
 3229                                 /*
 3230                                  * The TLB entry for a PG_G mapping is
 3231                                  * invalidated by pmap_protect_pde().
 3232                                  */
 3233                                 if (pmap_protect_pde(pmap,
 3234                                     &pmap->pm_pdir[pdirindex], sva, prot))
 3235                                         anychanged = TRUE;
 3236                                 continue;
 3237                         } else {
 3238                                 if (!pv_lists_locked) {
 3239                                         pv_lists_locked = TRUE;
 3240                                         if (!rw_try_wlock(&pvh_global_lock)) {
 3241                                                 if (anychanged)
 3242                                                         pmap_invalidate_all(
 3243                                                             pmap);
 3244                                                 PMAP_UNLOCK(pmap);
 3245                                                 goto resume;
 3246                                         }
 3247                                         sched_pin();
 3248                                 }
 3249                                 if (!pmap_demote_pde(pmap,
 3250                                     &pmap->pm_pdir[pdirindex], sva)) {
 3251                                         /*
 3252                                          * The large page mapping was
 3253                                          * destroyed.
 3254                                          */
 3255                                         continue;
 3256                                 }
 3257                         }
 3258                 }
 3259 
 3260                 if (pdnxt > eva)
 3261                         pdnxt = eva;
 3262 
 3263                 for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
 3264                     sva += PAGE_SIZE) {
 3265                         vm_page_t m;
 3266 
 3267 retry:
 3268                         /*
 3269                          * Regardless of whether a pte is 32 or 64 bits in
 3270                          * size, PG_RW, PG_A, and PG_M are among the least
 3271                          * significant 32 bits.
 3272                          */
 3273                         obits = pbits = *pte;
 3274                         if ((pbits & PG_V) == 0)
 3275                                 continue;
 3276 
 3277                         if ((prot & VM_PROT_WRITE) == 0) {
 3278                                 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 3279                                     (PG_MANAGED | PG_M | PG_RW)) {
 3280                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 3281                                         vm_page_dirty(m);
 3282                                 }
 3283                                 pbits &= ~(PG_RW | PG_M);
 3284                         }
 3285 #ifdef PAE
 3286                         if ((prot & VM_PROT_EXECUTE) == 0)
 3287                                 pbits |= pg_nx;
 3288 #endif
 3289 
 3290                         if (pbits != obits) {
 3291 #ifdef PAE
 3292                                 if (!atomic_cmpset_64(pte, obits, pbits))
 3293                                         goto retry;
 3294 #else
 3295                                 if (!atomic_cmpset_int((u_int *)pte, obits,
 3296                                     pbits))
 3297                                         goto retry;
 3298 #endif
 3299                                 if (obits & PG_G)
 3300                                         pmap_invalidate_page(pmap, sva);
 3301                                 else
 3302                                         anychanged = TRUE;
 3303                         }
 3304                 }
 3305         }
 3306         if (anychanged)
 3307                 pmap_invalidate_all(pmap);
 3308         if (pv_lists_locked) {
 3309                 sched_unpin();
 3310                 rw_wunlock(&pvh_global_lock);
 3311         }
 3312         PMAP_UNLOCK(pmap);
 3313 }
 3314 
 3315 /*
 3316  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
 3317  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
 3318  * For promotion to occur, two conditions must be met: (1) the 4KB page
 3319  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
 3320  * mappings must have identical characteristics.
 3321  *
 3322  * Managed (PG_MANAGED) mappings within the kernel address space are not
 3323  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
 3324  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
 3325  * pmap.
 3326  */
 3327 static void
 3328 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 3329 {
 3330         pd_entry_t newpde;
 3331         pt_entry_t *firstpte, oldpte, pa, *pte;
 3332         vm_offset_t oldpteva;
 3333         vm_page_t mpte;
 3334 
 3335         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3336 
 3337         /*
 3338          * Examine the first PTE in the specified PTP.  Abort if this PTE is
 3339          * either invalid, unused, or does not map the first 4KB physical page
 3340          * within a 2- or 4MB page.
 3341          */
 3342         firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
 3343 setpde:
 3344         newpde = *firstpte;
 3345         if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 3346                 pmap_pde_p_failures++;
 3347                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3348                     " in pmap %p", va, pmap);
 3349                 return;
 3350         }
 3351         if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
 3352                 pmap_pde_p_failures++;
 3353                 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3354                     " in pmap %p", va, pmap);
 3355                 return;
 3356         }
 3357         if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 3358                 /*
 3359                  * When PG_M is already clear, PG_RW can be cleared without
 3360                  * a TLB invalidation.
 3361                  */
 3362                 if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
 3363                     ~PG_RW))  
 3364                         goto setpde;
 3365                 newpde &= ~PG_RW;
 3366         }
 3367 
 3368         /* 
 3369          * Examine each of the other PTEs in the specified PTP.  Abort if this
 3370          * PTE maps an unexpected 4KB physical page or does not have identical
 3371          * characteristics to the first PTE.
 3372          */
 3373         pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 3374         for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 3375 setpte:
 3376                 oldpte = *pte;
 3377                 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 3378                         pmap_pde_p_failures++;
 3379                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3380                             " in pmap %p", va, pmap);
 3381                         return;
 3382                 }
 3383                 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 3384                         /*
 3385                          * When PG_M is already clear, PG_RW can be cleared
 3386                          * without a TLB invalidation.
 3387                          */
 3388                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 3389                             oldpte & ~PG_RW))
 3390                                 goto setpte;
 3391                         oldpte &= ~PG_RW;
 3392                         oldpteva = (oldpte & PG_FRAME & PDRMASK) |
 3393                             (va & ~PDRMASK);
 3394                         CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
 3395                             " in pmap %p", oldpteva, pmap);
 3396                 }
 3397                 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 3398                         pmap_pde_p_failures++;
 3399                         CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
 3400                             " in pmap %p", va, pmap);
 3401                         return;
 3402                 }
 3403                 pa -= PAGE_SIZE;
 3404         }
 3405 
 3406         /*
 3407          * Save the page table page in its current state until the PDE
 3408          * mapping the superpage is demoted by pmap_demote_pde() or
 3409          * destroyed by pmap_remove_pde(). 
 3410          */
 3411         mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 3412         KASSERT(mpte >= vm_page_array &&
 3413             mpte < &vm_page_array[vm_page_array_size],
 3414             ("pmap_promote_pde: page table page is out of range"));
 3415         KASSERT(mpte->pindex == va >> PDRSHIFT,
 3416             ("pmap_promote_pde: page table page's pindex is wrong"));
 3417         pmap_insert_pt_page(pmap, mpte);
 3418 
 3419         /*
 3420          * Promote the pv entries.
 3421          */
 3422         if ((newpde & PG_MANAGED) != 0)
 3423                 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
 3424 
 3425         /*
 3426          * Propagate the PAT index to its proper position.
 3427          */
 3428         if ((newpde & PG_PTE_PAT) != 0)
 3429                 newpde ^= PG_PDE_PAT | PG_PTE_PAT;
 3430 
 3431         /*
 3432          * Map the superpage.
 3433          */
 3434         if (workaround_erratum383)
 3435                 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 3436         else if (pmap == kernel_pmap)
 3437                 pmap_kenter_pde(va, PG_PS | newpde);
 3438         else
 3439                 pde_store(pde, PG_PS | newpde);
 3440 
 3441         pmap_pde_promotions++;
 3442         CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
 3443             " in pmap %p", va, pmap);
 3444 }
 3445 
 3446 /*
 3447  *      Insert the given physical page (p) at
 3448  *      the specified virtual address (v) in the
 3449  *      target physical map with the protection requested.
 3450  *
 3451  *      If specified, the page will be wired down, meaning
 3452  *      that the related pte can not be reclaimed.
 3453  *
 3454  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3455  *      or lose information.  That is, this routine must actually
 3456  *      insert this page into the given map NOW.
 3457  */
 3458 void
 3459 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 3460     vm_prot_t prot, boolean_t wired)
 3461 {
 3462         pd_entry_t *pde;
 3463         pt_entry_t *pte;
 3464         pt_entry_t newpte, origpte;
 3465         pv_entry_t pv;
 3466         vm_paddr_t opa, pa;
 3467         vm_page_t mpte, om;
 3468         boolean_t invlva;
 3469 
 3470         va = trunc_page(va);
 3471         KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 3472         KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 3473             ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
 3474             va));
 3475         KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
 3476             VM_OBJECT_LOCKED(m->object),
 3477             ("pmap_enter: page %p is not busy", m));
 3478 
 3479         mpte = NULL;
 3480 
 3481         rw_wlock(&pvh_global_lock);
 3482         PMAP_LOCK(pmap);
 3483         sched_pin();
 3484 
 3485         /*
 3486          * In the case that a page table page is not
 3487          * resident, we are creating it here.
 3488          */
 3489         if (va < VM_MAXUSER_ADDRESS) {
 3490                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 3491         }
 3492 
 3493         pde = pmap_pde(pmap, va);
 3494         if ((*pde & PG_PS) != 0)
 3495                 panic("pmap_enter: attempted pmap_enter on 4MB page");
 3496         pte = pmap_pte_quick(pmap, va);
 3497 
 3498         /*
 3499          * Page Directory table entry not valid, we need a new PT page
 3500          */
 3501         if (pte == NULL) {
 3502                 panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
 3503                         (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
 3504         }
 3505 
 3506         pa = VM_PAGE_TO_PHYS(m);
 3507         om = NULL;
 3508         origpte = *pte;
 3509         opa = origpte & PG_FRAME;
 3510 
 3511         /*
 3512          * Mapping has not changed, must be protection or wiring change.
 3513          */
 3514         if (origpte && (opa == pa)) {
 3515                 /*
 3516                  * Wiring change, just update stats. We don't worry about
 3517                  * wiring PT pages as they remain resident as long as there
 3518                  * are valid mappings in them. Hence, if a user page is wired,
 3519                  * the PT page will be also.
 3520                  */
 3521                 if (wired && ((origpte & PG_W) == 0))
 3522                         pmap->pm_stats.wired_count++;
 3523                 else if (!wired && (origpte & PG_W))
 3524                         pmap->pm_stats.wired_count--;
 3525 
 3526                 /*
 3527                  * Remove extra pte reference
 3528                  */
 3529                 if (mpte)
 3530                         mpte->wire_count--;
 3531 
 3532                 if (origpte & PG_MANAGED) {
 3533                         om = m;
 3534                         pa |= PG_MANAGED;
 3535                 }
 3536                 goto validate;
 3537         } 
 3538 
 3539         pv = NULL;
 3540 
 3541         /*
 3542          * Mapping has changed, invalidate old range and fall through to
 3543          * handle validating new mapping.
 3544          */
 3545         if (opa) {
 3546                 if (origpte & PG_W)
 3547                         pmap->pm_stats.wired_count--;
 3548                 if (origpte & PG_MANAGED) {
 3549                         om = PHYS_TO_VM_PAGE(opa);
 3550                         pv = pmap_pvh_remove(&om->md, pmap, va);
 3551                 }
 3552                 if (mpte != NULL) {
 3553                         mpte->wire_count--;
 3554                         KASSERT(mpte->wire_count > 0,
 3555                             ("pmap_enter: missing reference to page table page,"
 3556                              " va: 0x%x", va));
 3557                 }
 3558         } else
 3559                 pmap->pm_stats.resident_count++;
 3560 
 3561         /*
 3562          * Enter on the PV list if part of our managed memory.
 3563          */
 3564         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3565                 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3566                     ("pmap_enter: managed mapping within the clean submap"));
 3567                 if (pv == NULL)
 3568                         pv = get_pv_entry(pmap, FALSE);
 3569                 pv->pv_va = va;
 3570                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 3571                 pa |= PG_MANAGED;
 3572         } else if (pv != NULL)
 3573                 free_pv_entry(pmap, pv);
 3574 
 3575         /*
 3576          * Increment counters
 3577          */
 3578         if (wired)
 3579                 pmap->pm_stats.wired_count++;
 3580 
 3581 validate:
 3582         /*
 3583          * Now validate mapping with desired protection/wiring.
 3584          */
 3585         newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
 3586         if ((prot & VM_PROT_WRITE) != 0) {
 3587                 newpte |= PG_RW;
 3588                 if ((newpte & PG_MANAGED) != 0)
 3589                         vm_page_aflag_set(m, PGA_WRITEABLE);
 3590         }
 3591 #ifdef PAE
 3592         if ((prot & VM_PROT_EXECUTE) == 0)
 3593                 newpte |= pg_nx;
 3594 #endif
 3595         if (wired)
 3596                 newpte |= PG_W;
 3597         if (va < VM_MAXUSER_ADDRESS)
 3598                 newpte |= PG_U;
 3599         if (pmap == kernel_pmap)
 3600                 newpte |= pgeflag;
 3601 
 3602         /*
 3603          * if the mapping or permission bits are different, we need
 3604          * to update the pte.
 3605          */
 3606         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 3607                 newpte |= PG_A;
 3608                 if ((access & VM_PROT_WRITE) != 0)
 3609                         newpte |= PG_M;
 3610                 if (origpte & PG_V) {
 3611                         invlva = FALSE;
 3612                         origpte = pte_load_store(pte, newpte);
 3613                         if (origpte & PG_A) {
 3614                                 if (origpte & PG_MANAGED)
 3615                                         vm_page_aflag_set(om, PGA_REFERENCED);
 3616                                 if (opa != VM_PAGE_TO_PHYS(m))
 3617                                         invlva = TRUE;
 3618 #ifdef PAE
 3619                                 if ((origpte & PG_NX) == 0 &&
 3620                                     (newpte & PG_NX) != 0)
 3621                                         invlva = TRUE;
 3622 #endif
 3623                         }
 3624                         if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 3625                                 if ((origpte & PG_MANAGED) != 0)
 3626                                         vm_page_dirty(om);
 3627                                 if ((prot & VM_PROT_WRITE) == 0)
 3628                                         invlva = TRUE;
 3629                         }
 3630                         if ((origpte & PG_MANAGED) != 0 &&
 3631                             TAILQ_EMPTY(&om->md.pv_list) &&
 3632                             ((om->flags & PG_FICTITIOUS) != 0 ||
 3633                             TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 3634                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
 3635                         if (invlva)
 3636                                 pmap_invalidate_page(pmap, va);
 3637                 } else
 3638                         pte_store(pte, newpte);
 3639         }
 3640 
 3641         /*
 3642          * If both the page table page and the reservation are fully
 3643          * populated, then attempt promotion.
 3644          */
 3645         if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 3646             pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
 3647             vm_reserv_level_iffullpop(m) == 0)
 3648                 pmap_promote_pde(pmap, pde, va);
 3649 
 3650         sched_unpin();
 3651         rw_wunlock(&pvh_global_lock);
 3652         PMAP_UNLOCK(pmap);
 3653 }
 3654 
 3655 /*
 3656  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
 3657  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
 3658  * blocking, (2) a mapping already exists at the specified virtual address, or
 3659  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
 3660  */
 3661 static boolean_t
 3662 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3663 {
 3664         pd_entry_t *pde, newpde;
 3665 
 3666         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3667         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3668         pde = pmap_pde(pmap, va);
 3669         if (*pde != 0) {
 3670                 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3671                     " in pmap %p", va, pmap);
 3672                 return (FALSE);
 3673         }
 3674         newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
 3675             PG_PS | PG_V;
 3676         if ((m->oflags & VPO_UNMANAGED) == 0) {
 3677                 newpde |= PG_MANAGED;
 3678 
 3679                 /*
 3680                  * Abort this mapping if its PV entry could not be created.
 3681                  */
 3682                 if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
 3683                         CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 3684                             " in pmap %p", va, pmap);
 3685                         return (FALSE);
 3686                 }
 3687         }
 3688 #ifdef PAE
 3689         if ((prot & VM_PROT_EXECUTE) == 0)
 3690                 newpde |= pg_nx;
 3691 #endif
 3692         if (va < VM_MAXUSER_ADDRESS)
 3693                 newpde |= PG_U;
 3694 
 3695         /*
 3696          * Increment counters.
 3697          */
 3698         pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
 3699 
 3700         /*
 3701          * Map the superpage.
 3702          */
 3703         pde_store(pde, newpde);
 3704 
 3705         pmap_pde_mappings++;
 3706         CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 3707             " in pmap %p", va, pmap);
 3708         return (TRUE);
 3709 }
 3710 
 3711 /*
 3712  * Maps a sequence of resident pages belonging to the same object.
 3713  * The sequence begins with the given page m_start.  This page is
 3714  * mapped at the given virtual address start.  Each subsequent page is
 3715  * mapped at a virtual address that is offset from start by the same
 3716  * amount as the page is offset from m_start within the object.  The
 3717  * last page in the sequence is the page with the largest offset from
 3718  * m_start that can be mapped at a virtual address less than the given
 3719  * virtual address end.  Not every virtual page between start and end
 3720  * is mapped; only those for which a resident page exists with the
 3721  * corresponding offset from m_start are mapped.
 3722  */
 3723 void
 3724 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3725     vm_page_t m_start, vm_prot_t prot)
 3726 {
 3727         vm_offset_t va;
 3728         vm_page_t m, mpte;
 3729         vm_pindex_t diff, psize;
 3730 
 3731         VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
 3732         psize = atop(end - start);
 3733         mpte = NULL;
 3734         m = m_start;
 3735         rw_wlock(&pvh_global_lock);
 3736         PMAP_LOCK(pmap);
 3737         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3738                 va = start + ptoa(diff);
 3739                 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 3740                     (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
 3741                     pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
 3742                     pmap_enter_pde(pmap, va, m, prot))
 3743                         m = &m[NBPDR / PAGE_SIZE - 1];
 3744                 else
 3745                         mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 3746                             mpte);
 3747                 m = TAILQ_NEXT(m, listq);
 3748         }
 3749         rw_wunlock(&pvh_global_lock);
 3750         PMAP_UNLOCK(pmap);
 3751 }
 3752 
 3753 /*
 3754  * this code makes some *MAJOR* assumptions:
 3755  * 1. Current pmap & pmap exists.
 3756  * 2. Not wired.
 3757  * 3. Read access.
 3758  * 4. No page table pages.
 3759  * but is *MUCH* faster than pmap_enter...
 3760  */
 3761 
 3762 void
 3763 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3764 {
 3765 
 3766         rw_wlock(&pvh_global_lock);
 3767         PMAP_LOCK(pmap);
 3768         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
 3769         rw_wunlock(&pvh_global_lock);
 3770         PMAP_UNLOCK(pmap);
 3771 }
 3772 
 3773 static vm_page_t
 3774 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 3775     vm_prot_t prot, vm_page_t mpte)
 3776 {
 3777         pt_entry_t *pte;
 3778         vm_paddr_t pa;
 3779         vm_page_t free;
 3780 
 3781         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 3782             (m->oflags & VPO_UNMANAGED) != 0,
 3783             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 3784         rw_assert(&pvh_global_lock, RA_WLOCKED);
 3785         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 3786 
 3787         /*
 3788          * In the case that a page table page is not
 3789          * resident, we are creating it here.
 3790          */
 3791         if (va < VM_MAXUSER_ADDRESS) {
 3792                 u_int ptepindex;
 3793                 pd_entry_t ptepa;
 3794 
 3795                 /*
 3796                  * Calculate pagetable page index
 3797                  */
 3798                 ptepindex = va >> PDRSHIFT;
 3799                 if (mpte && (mpte->pindex == ptepindex)) {
 3800                         mpte->wire_count++;
 3801                 } else {
 3802                         /*
 3803                          * Get the page directory entry
 3804                          */
 3805                         ptepa = pmap->pm_pdir[ptepindex];
 3806 
 3807                         /*
 3808                          * If the page table page is mapped, we just increment
 3809                          * the hold count, and activate it.
 3810                          */
 3811                         if (ptepa) {
 3812                                 if (ptepa & PG_PS)
 3813                                         return (NULL);
 3814                                 mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
 3815                                 mpte->wire_count++;
 3816                         } else {
 3817                                 mpte = _pmap_allocpte(pmap, ptepindex,
 3818                                     M_NOWAIT);
 3819                                 if (mpte == NULL)
 3820                                         return (mpte);
 3821                         }
 3822                 }
 3823         } else {
 3824                 mpte = NULL;
 3825         }
 3826 
 3827         /*
 3828          * This call to vtopte makes the assumption that we are
 3829          * entering the page into the current pmap.  In order to support
 3830          * quick entry into any pmap, one would likely use pmap_pte_quick.
 3831          * But that isn't as quick as vtopte.
 3832          */
 3833         pte = vtopte(va);
 3834         if (*pte) {
 3835                 if (mpte != NULL) {
 3836                         mpte->wire_count--;
 3837                         mpte = NULL;
 3838                 }
 3839                 return (mpte);
 3840         }
 3841 
 3842         /*
 3843          * Enter on the PV list if part of our managed memory.
 3844          */
 3845         if ((m->oflags & VPO_UNMANAGED) == 0 &&
 3846             !pmap_try_insert_pv_entry(pmap, va, m)) {
 3847                 if (mpte != NULL) {
 3848                         free = NULL;
 3849                         if (pmap_unwire_ptp(pmap, mpte, &free)) {
 3850                                 pmap_invalidate_page(pmap, va);
 3851                                 pmap_free_zero_pages(free);
 3852                         }
 3853                         
 3854                         mpte = NULL;
 3855                 }
 3856                 return (mpte);
 3857         }
 3858 
 3859         /*
 3860          * Increment counters
 3861          */
 3862         pmap->pm_stats.resident_count++;
 3863 
 3864         pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
 3865 #ifdef PAE
 3866         if ((prot & VM_PROT_EXECUTE) == 0)
 3867                 pa |= pg_nx;
 3868 #endif
 3869 
 3870         /*
 3871          * Now validate mapping with RO protection
 3872          */
 3873         if ((m->oflags & VPO_UNMANAGED) != 0)
 3874                 pte_store(pte, pa | PG_V | PG_U);
 3875         else
 3876                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 3877         return (mpte);
 3878 }
 3879 
 3880 /*
 3881  * Make a temporary mapping for a physical address.  This is only intended
 3882  * to be used for panic dumps.
 3883  */
 3884 void *
 3885 pmap_kenter_temporary(vm_paddr_t pa, int i)
 3886 {
 3887         vm_offset_t va;
 3888 
 3889         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 3890         pmap_kenter(va, pa);
 3891         invlpg(va);
 3892         return ((void *)crashdumpmap);
 3893 }
 3894 
 3895 /*
 3896  * This code maps large physical mmap regions into the
 3897  * processor address space.  Note that some shortcuts
 3898  * are taken, but the code works.
 3899  */
 3900 void
 3901 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3902     vm_pindex_t pindex, vm_size_t size)
 3903 {
 3904         pd_entry_t *pde;
 3905         vm_paddr_t pa, ptepa;
 3906         vm_page_t p;
 3907         int pat_mode;
 3908 
 3909         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 3910         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3911             ("pmap_object_init_pt: non-device object"));
 3912         if (pseflag && 
 3913             (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 3914                 if (!vm_object_populate(object, pindex, pindex + atop(size)))
 3915                         return;
 3916                 p = vm_page_lookup(object, pindex);
 3917                 KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3918                     ("pmap_object_init_pt: invalid page %p", p));
 3919                 pat_mode = p->md.pat_mode;
 3920 
 3921                 /*
 3922                  * Abort the mapping if the first page is not physically
 3923                  * aligned to a 2/4MB page boundary.
 3924                  */
 3925                 ptepa = VM_PAGE_TO_PHYS(p);
 3926                 if (ptepa & (NBPDR - 1))
 3927                         return;
 3928 
 3929                 /*
 3930                  * Skip the first page.  Abort the mapping if the rest of
 3931                  * the pages are not physically contiguous or have differing
 3932                  * memory attributes.
 3933                  */
 3934                 p = TAILQ_NEXT(p, listq);
 3935                 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 3936                     pa += PAGE_SIZE) {
 3937                         KASSERT(p->valid == VM_PAGE_BITS_ALL,
 3938                             ("pmap_object_init_pt: invalid page %p", p));
 3939                         if (pa != VM_PAGE_TO_PHYS(p) ||
 3940                             pat_mode != p->md.pat_mode)
 3941                                 return;
 3942                         p = TAILQ_NEXT(p, listq);
 3943                 }
 3944 
 3945                 /*
 3946                  * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
 3947                  * "size" is a multiple of 2/4M, adding the PAT setting to
 3948                  * "pa" will not affect the termination of this loop.
 3949                  */
 3950                 PMAP_LOCK(pmap);
 3951                 for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
 3952                     size; pa += NBPDR) {
 3953                         pde = pmap_pde(pmap, addr);
 3954                         if (*pde == 0) {
 3955                                 pde_store(pde, pa | PG_PS | PG_M | PG_A |
 3956                                     PG_U | PG_RW | PG_V);
 3957                                 pmap->pm_stats.resident_count += NBPDR /
 3958                                     PAGE_SIZE;
 3959                                 pmap_pde_mappings++;
 3960                         }
 3961                         /* Else continue on if the PDE is already valid. */
 3962                         addr += NBPDR;
 3963                 }
 3964                 PMAP_UNLOCK(pmap);
 3965         }
 3966 }
 3967 
 3968 /*
 3969  *      Routine:        pmap_change_wiring
 3970  *      Function:       Change the wiring attribute for a map/virtual-address
 3971  *                      pair.
 3972  *      In/out conditions:
 3973  *                      The mapping must already exist in the pmap.
 3974  */
 3975 void
 3976 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 3977 {
 3978         pd_entry_t *pde;
 3979         pt_entry_t *pte;
 3980         boolean_t are_queues_locked;
 3981 
 3982         are_queues_locked = FALSE;
 3983 retry:
 3984         PMAP_LOCK(pmap);
 3985         pde = pmap_pde(pmap, va);
 3986         if ((*pde & PG_PS) != 0) {
 3987                 if (!wired != ((*pde & PG_W) == 0)) {
 3988                         if (!are_queues_locked) {
 3989                                 are_queues_locked = TRUE;
 3990                                 if (!rw_try_wlock(&pvh_global_lock)) {
 3991                                         PMAP_UNLOCK(pmap);
 3992                                         rw_wlock(&pvh_global_lock);
 3993                                         goto retry;
 3994                                 }
 3995                         }
 3996                         if (!pmap_demote_pde(pmap, pde, va))
 3997                                 panic("pmap_change_wiring: demotion failed");
 3998                 } else
 3999                         goto out;
 4000         }
 4001         pte = pmap_pte(pmap, va);
 4002 
 4003         if (wired && !pmap_pte_w(pte))
 4004                 pmap->pm_stats.wired_count++;
 4005         else if (!wired && pmap_pte_w(pte))
 4006                 pmap->pm_stats.wired_count--;
 4007 
 4008         /*
 4009          * Wiring is not a hardware characteristic so there is no need to
 4010          * invalidate TLB.
 4011          */
 4012         pmap_pte_set_w(pte, wired);
 4013         pmap_pte_release(pte);
 4014 out:
 4015         if (are_queues_locked)
 4016                 rw_wunlock(&pvh_global_lock);
 4017         PMAP_UNLOCK(pmap);
 4018 }
 4019 
 4020 
 4021 
 4022 /*
 4023  *      Copy the range specified by src_addr/len
 4024  *      from the source map to the range dst_addr/len
 4025  *      in the destination map.
 4026  *
 4027  *      This routine is only advisory and need not do anything.
 4028  */
 4029 
 4030 void
 4031 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 4032     vm_offset_t src_addr)
 4033 {
 4034         vm_page_t   free;
 4035         vm_offset_t addr;
 4036         vm_offset_t end_addr = src_addr + len;
 4037         vm_offset_t pdnxt;
 4038 
 4039         if (dst_addr != src_addr)
 4040                 return;
 4041 
 4042         if (!pmap_is_current(src_pmap))
 4043                 return;
 4044 
 4045         rw_wlock(&pvh_global_lock);
 4046         if (dst_pmap < src_pmap) {
 4047                 PMAP_LOCK(dst_pmap);
 4048                 PMAP_LOCK(src_pmap);
 4049         } else {
 4050                 PMAP_LOCK(src_pmap);
 4051                 PMAP_LOCK(dst_pmap);
 4052         }
 4053         sched_pin();
 4054         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 4055                 pt_entry_t *src_pte, *dst_pte;
 4056                 vm_page_t dstmpte, srcmpte;
 4057                 pd_entry_t srcptepaddr;
 4058                 u_int ptepindex;
 4059 
 4060                 KASSERT(addr < UPT_MIN_ADDRESS,
 4061                     ("pmap_copy: invalid to pmap_copy page tables"));
 4062 
 4063                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 4064                 if (pdnxt < addr)
 4065                         pdnxt = end_addr;
 4066                 ptepindex = addr >> PDRSHIFT;
 4067 
 4068                 srcptepaddr = src_pmap->pm_pdir[ptepindex];
 4069                 if (srcptepaddr == 0)
 4070                         continue;
 4071                         
 4072                 if (srcptepaddr & PG_PS) {
 4073                         if (dst_pmap->pm_pdir[ptepindex] == 0 &&
 4074                             ((srcptepaddr & PG_MANAGED) == 0 ||
 4075                             pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 4076                             PG_PS_FRAME))) {
 4077                                 dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
 4078                                     ~PG_W;
 4079                                 dst_pmap->pm_stats.resident_count +=
 4080                                     NBPDR / PAGE_SIZE;
 4081                         }
 4082                         continue;
 4083                 }
 4084 
 4085                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 4086                 KASSERT(srcmpte->wire_count > 0,
 4087                     ("pmap_copy: source page table page is unused"));
 4088 
 4089                 if (pdnxt > end_addr)
 4090                         pdnxt = end_addr;
 4091 
 4092                 src_pte = vtopte(addr);
 4093                 while (addr < pdnxt) {
 4094                         pt_entry_t ptetemp;
 4095                         ptetemp = *src_pte;
 4096                         /*
 4097                          * we only virtual copy managed pages
 4098                          */
 4099                         if ((ptetemp & PG_MANAGED) != 0) {
 4100                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 4101                                     M_NOWAIT);
 4102                                 if (dstmpte == NULL)
 4103                                         goto out;
 4104                                 dst_pte = pmap_pte_quick(dst_pmap, addr);
 4105                                 if (*dst_pte == 0 &&
 4106                                     pmap_try_insert_pv_entry(dst_pmap, addr,
 4107                                     PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
 4108                                         /*
 4109                                          * Clear the wired, modified, and
 4110                                          * accessed (referenced) bits
 4111                                          * during the copy.
 4112                                          */
 4113                                         *dst_pte = ptetemp & ~(PG_W | PG_M |
 4114                                             PG_A);
 4115                                         dst_pmap->pm_stats.resident_count++;
 4116                                 } else {
 4117                                         free = NULL;
 4118                                         if (pmap_unwire_ptp(dst_pmap, dstmpte,
 4119                                             &free)) {
 4120                                                 pmap_invalidate_page(dst_pmap,
 4121                                                     addr);
 4122                                                 pmap_free_zero_pages(free);
 4123                                         }
 4124                                         goto out;
 4125                                 }
 4126                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 4127                                         break;
 4128                         }
 4129                         addr += PAGE_SIZE;
 4130                         src_pte++;
 4131                 }
 4132         }
 4133 out:
 4134         sched_unpin();
 4135         rw_wunlock(&pvh_global_lock);
 4136         PMAP_UNLOCK(src_pmap);
 4137         PMAP_UNLOCK(dst_pmap);
 4138 }       
 4139 
 4140 static __inline void
 4141 pagezero(void *page)
 4142 {
 4143 #if defined(I686_CPU)
 4144         if (cpu_class == CPUCLASS_686) {
 4145 #if defined(CPU_ENABLE_SSE)
 4146                 if (cpu_feature & CPUID_SSE2)
 4147                         sse2_pagezero(page);
 4148                 else
 4149 #endif
 4150                         i686_pagezero(page);
 4151         } else
 4152 #endif
 4153                 bzero(page, PAGE_SIZE);
 4154 }
 4155 
 4156 /*
 4157  *      pmap_zero_page zeros the specified hardware page by mapping 
 4158  *      the page into KVM and using bzero to clear its contents.
 4159  */
 4160 void
 4161 pmap_zero_page(vm_page_t m)
 4162 {
 4163         struct sysmaps *sysmaps;
 4164 
 4165         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4166         mtx_lock(&sysmaps->lock);
 4167         if (*sysmaps->CMAP2)
 4168                 panic("pmap_zero_page: CMAP2 busy");
 4169         sched_pin();
 4170         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4171             pmap_cache_bits(m->md.pat_mode, 0);
 4172         invlcaddr(sysmaps->CADDR2);
 4173         pagezero(sysmaps->CADDR2);
 4174         *sysmaps->CMAP2 = 0;
 4175         sched_unpin();
 4176         mtx_unlock(&sysmaps->lock);
 4177 }
 4178 
 4179 /*
 4180  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4181  *      the page into KVM and using bzero to clear its contents.
 4182  *
 4183  *      off and size may not cover an area beyond a single hardware page.
 4184  */
 4185 void
 4186 pmap_zero_page_area(vm_page_t m, int off, int size)
 4187 {
 4188         struct sysmaps *sysmaps;
 4189 
 4190         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4191         mtx_lock(&sysmaps->lock);
 4192         if (*sysmaps->CMAP2)
 4193                 panic("pmap_zero_page_area: CMAP2 busy");
 4194         sched_pin();
 4195         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4196             pmap_cache_bits(m->md.pat_mode, 0);
 4197         invlcaddr(sysmaps->CADDR2);
 4198         if (off == 0 && size == PAGE_SIZE) 
 4199                 pagezero(sysmaps->CADDR2);
 4200         else
 4201                 bzero((char *)sysmaps->CADDR2 + off, size);
 4202         *sysmaps->CMAP2 = 0;
 4203         sched_unpin();
 4204         mtx_unlock(&sysmaps->lock);
 4205 }
 4206 
 4207 /*
 4208  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4209  *      the page into KVM and using bzero to clear its contents.  This
 4210  *      is intended to be called from the vm_pagezero process only and
 4211  *      outside of Giant.
 4212  */
 4213 void
 4214 pmap_zero_page_idle(vm_page_t m)
 4215 {
 4216 
 4217         if (*CMAP3)
 4218                 panic("pmap_zero_page_idle: CMAP3 busy");
 4219         sched_pin();
 4220         *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
 4221             pmap_cache_bits(m->md.pat_mode, 0);
 4222         invlcaddr(CADDR3);
 4223         pagezero(CADDR3);
 4224         *CMAP3 = 0;
 4225         sched_unpin();
 4226 }
 4227 
 4228 /*
 4229  *      pmap_copy_page copies the specified (machine independent)
 4230  *      page by mapping the page into virtual memory and using
 4231  *      bcopy to copy the page, one machine dependent page at a
 4232  *      time.
 4233  */
 4234 void
 4235 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4236 {
 4237         struct sysmaps *sysmaps;
 4238 
 4239         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4240         mtx_lock(&sysmaps->lock);
 4241         if (*sysmaps->CMAP1)
 4242                 panic("pmap_copy_page: CMAP1 busy");
 4243         if (*sysmaps->CMAP2)
 4244                 panic("pmap_copy_page: CMAP2 busy");
 4245         sched_pin();
 4246         invlpg((u_int)sysmaps->CADDR1);
 4247         invlpg((u_int)sysmaps->CADDR2);
 4248         *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
 4249             pmap_cache_bits(src->md.pat_mode, 0);
 4250         *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
 4251             pmap_cache_bits(dst->md.pat_mode, 0);
 4252         bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
 4253         *sysmaps->CMAP1 = 0;
 4254         *sysmaps->CMAP2 = 0;
 4255         sched_unpin();
 4256         mtx_unlock(&sysmaps->lock);
 4257 }
 4258 
 4259 int unmapped_buf_allowed = 1;
 4260 
 4261 void
 4262 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
 4263     vm_offset_t b_offset, int xfersize)
 4264 {
 4265         struct sysmaps *sysmaps;
 4266         vm_page_t a_pg, b_pg;
 4267         char *a_cp, *b_cp;
 4268         vm_offset_t a_pg_offset, b_pg_offset;
 4269         int cnt;
 4270 
 4271         sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 4272         mtx_lock(&sysmaps->lock);
 4273         if (*sysmaps->CMAP1 != 0)
 4274                 panic("pmap_copy_pages: CMAP1 busy");
 4275         if (*sysmaps->CMAP2 != 0)
 4276                 panic("pmap_copy_pages: CMAP2 busy");
 4277         sched_pin();
 4278         while (xfersize > 0) {
 4279                 invlpg((u_int)sysmaps->CADDR1);
 4280                 invlpg((u_int)sysmaps->CADDR2);
 4281                 a_pg = ma[a_offset >> PAGE_SHIFT];
 4282                 a_pg_offset = a_offset & PAGE_MASK;
 4283                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 4284                 b_pg = mb[b_offset >> PAGE_SHIFT];
 4285                 b_pg_offset = b_offset & PAGE_MASK;
 4286                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 4287                 *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
 4288                     pmap_cache_bits(b_pg->md.pat_mode, 0);
 4289                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
 4290                     PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
 4291                 a_cp = sysmaps->CADDR1 + a_pg_offset;
 4292                 b_cp = sysmaps->CADDR2 + b_pg_offset;
 4293                 bcopy(a_cp, b_cp, cnt);
 4294                 a_offset += cnt;
 4295                 b_offset += cnt;
 4296                 xfersize -= cnt;
 4297         }
 4298         *sysmaps->CMAP1 = 0;
 4299         *sysmaps->CMAP2 = 0;
 4300         sched_unpin();
 4301         mtx_unlock(&sysmaps->lock);
 4302 }
 4303 
 4304 /*
 4305  * Returns true if the pmap's pv is one of the first
 4306  * 16 pvs linked to from this page.  This count may
 4307  * be changed upwards or downwards in the future; it
 4308  * is only necessary that true be returned for a small
 4309  * subset of pmaps for proper page aging.
 4310  */
 4311 boolean_t
 4312 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4313 {
 4314         struct md_page *pvh;
 4315         pv_entry_t pv;
 4316         int loops = 0;
 4317         boolean_t rv;
 4318 
 4319         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4320             ("pmap_page_exists_quick: page %p is not managed", m));
 4321         rv = FALSE;
 4322         rw_wlock(&pvh_global_lock);
 4323         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4324                 if (PV_PMAP(pv) == pmap) {
 4325                         rv = TRUE;
 4326                         break;
 4327                 }
 4328                 loops++;
 4329                 if (loops >= 16)
 4330                         break;
 4331         }
 4332         if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 4333                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4334                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4335                         if (PV_PMAP(pv) == pmap) {
 4336                                 rv = TRUE;
 4337                                 break;
 4338                         }
 4339                         loops++;
 4340                         if (loops >= 16)
 4341                                 break;
 4342                 }
 4343         }
 4344         rw_wunlock(&pvh_global_lock);
 4345         return (rv);
 4346 }
 4347 
 4348 /*
 4349  *      pmap_page_wired_mappings:
 4350  *
 4351  *      Return the number of managed mappings to the given physical page
 4352  *      that are wired.
 4353  */
 4354 int
 4355 pmap_page_wired_mappings(vm_page_t m)
 4356 {
 4357         int count;
 4358 
 4359         count = 0;
 4360         if ((m->oflags & VPO_UNMANAGED) != 0)
 4361                 return (count);
 4362         rw_wlock(&pvh_global_lock);
 4363         count = pmap_pvh_wired_mappings(&m->md, count);
 4364         if ((m->flags & PG_FICTITIOUS) == 0) {
 4365             count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
 4366                 count);
 4367         }
 4368         rw_wunlock(&pvh_global_lock);
 4369         return (count);
 4370 }
 4371 
 4372 /*
 4373  *      pmap_pvh_wired_mappings:
 4374  *
 4375  *      Return the updated number "count" of managed mappings that are wired.
 4376  */
 4377 static int
 4378 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
 4379 {
 4380         pmap_t pmap;
 4381         pt_entry_t *pte;
 4382         pv_entry_t pv;
 4383 
 4384         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4385         sched_pin();
 4386         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4387                 pmap = PV_PMAP(pv);
 4388                 PMAP_LOCK(pmap);
 4389                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4390                 if ((*pte & PG_W) != 0)
 4391                         count++;
 4392                 PMAP_UNLOCK(pmap);
 4393         }
 4394         sched_unpin();
 4395         return (count);
 4396 }
 4397 
 4398 /*
 4399  * Returns TRUE if the given page is mapped individually or as part of
 4400  * a 4mpage.  Otherwise, returns FALSE.
 4401  */
 4402 boolean_t
 4403 pmap_page_is_mapped(vm_page_t m)
 4404 {
 4405         boolean_t rv;
 4406 
 4407         if ((m->oflags & VPO_UNMANAGED) != 0)
 4408                 return (FALSE);
 4409         rw_wlock(&pvh_global_lock);
 4410         rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 4411             ((m->flags & PG_FICTITIOUS) == 0 &&
 4412             !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 4413         rw_wunlock(&pvh_global_lock);
 4414         return (rv);
 4415 }
 4416 
 4417 /*
 4418  * Remove all pages from specified address space
 4419  * this aids process exit speeds.  Also, this code
 4420  * is special cased for current process only, but
 4421  * can have the more generic (and slightly slower)
 4422  * mode enabled.  This is much faster than pmap_remove
 4423  * in the case of running down an entire address space.
 4424  */
 4425 void
 4426 pmap_remove_pages(pmap_t pmap)
 4427 {
 4428         pt_entry_t *pte, tpte;
 4429         vm_page_t free = NULL;
 4430         vm_page_t m, mpte, mt;
 4431         pv_entry_t pv;
 4432         struct md_page *pvh;
 4433         struct pv_chunk *pc, *npc;
 4434         int field, idx;
 4435         int32_t bit;
 4436         uint32_t inuse, bitmask;
 4437         int allfree;
 4438 
 4439         if (pmap != PCPU_GET(curpmap)) {
 4440                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 4441                 return;
 4442         }
 4443         rw_wlock(&pvh_global_lock);
 4444         PMAP_LOCK(pmap);
 4445         sched_pin();
 4446         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 4447                 KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
 4448                     pc->pc_pmap));
 4449                 allfree = 1;
 4450                 for (field = 0; field < _NPCM; field++) {
 4451                         inuse = ~pc->pc_map[field] & pc_freemask[field];
 4452                         while (inuse != 0) {
 4453                                 bit = bsfl(inuse);
 4454                                 bitmask = 1UL << bit;
 4455                                 idx = field * 32 + bit;
 4456                                 pv = &pc->pc_pventry[idx];
 4457                                 inuse &= ~bitmask;
 4458 
 4459                                 pte = pmap_pde(pmap, pv->pv_va);
 4460                                 tpte = *pte;
 4461                                 if ((tpte & PG_PS) == 0) {
 4462                                         pte = vtopte(pv->pv_va);
 4463                                         tpte = *pte & ~PG_PTE_PAT;
 4464                                 }
 4465 
 4466                                 if (tpte == 0) {
 4467                                         printf(
 4468                                             "TPTE at %p  IS ZERO @ VA %08x\n",
 4469                                             pte, pv->pv_va);
 4470                                         panic("bad pte");
 4471                                 }
 4472 
 4473 /*
 4474  * We cannot remove wired pages from a process' mapping at this time
 4475  */
 4476                                 if (tpte & PG_W) {
 4477                                         allfree = 0;
 4478                                         continue;
 4479                                 }
 4480 
 4481                                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 4482                                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 4483                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 4484                                     m, (uintmax_t)m->phys_addr,
 4485                                     (uintmax_t)tpte));
 4486 
 4487                                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 4488                                     m < &vm_page_array[vm_page_array_size],
 4489                                     ("pmap_remove_pages: bad tpte %#jx",
 4490                                     (uintmax_t)tpte));
 4491 
 4492                                 pte_clear(pte);
 4493 
 4494                                 /*
 4495                                  * Update the vm_page_t clean/reference bits.
 4496                                  */
 4497                                 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4498                                         if ((tpte & PG_PS) != 0) {
 4499                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4500                                                         vm_page_dirty(mt);
 4501                                         } else
 4502                                                 vm_page_dirty(m);
 4503                                 }
 4504 
 4505                                 /* Mark free */
 4506                                 PV_STAT(pv_entry_frees++);
 4507                                 PV_STAT(pv_entry_spare++);
 4508                                 pv_entry_count--;
 4509                                 pc->pc_map[field] |= bitmask;
 4510                                 if ((tpte & PG_PS) != 0) {
 4511                                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 4512                                         pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 4513                                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
 4514                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
 4515                                                 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 4516                                                         if (TAILQ_EMPTY(&mt->md.pv_list))
 4517                                                                 vm_page_aflag_clear(mt, PGA_WRITEABLE);
 4518                                         }
 4519                                         mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
 4520                                         if (mpte != NULL) {
 4521                                                 pmap_remove_pt_page(pmap, mpte);
 4522                                                 pmap->pm_stats.resident_count--;
 4523                                                 KASSERT(mpte->wire_count == NPTEPG,
 4524                                                     ("pmap_remove_pages: pte page wire count error"));
 4525                                                 mpte->wire_count = 0;
 4526                                                 pmap_add_delayed_free_list(mpte, &free, FALSE);
 4527                                                 atomic_subtract_int(&cnt.v_wire_count, 1);
 4528                                         }
 4529                                 } else {
 4530                                         pmap->pm_stats.resident_count--;
 4531                                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 4532                                         if (TAILQ_EMPTY(&m->md.pv_list) &&
 4533                                             (m->flags & PG_FICTITIOUS) == 0) {
 4534                                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4535                                                 if (TAILQ_EMPTY(&pvh->pv_list))
 4536                                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4537                                         }
 4538                                         pmap_unuse_pt(pmap, pv->pv_va, &free);
 4539                                 }
 4540                         }
 4541                 }
 4542                 if (allfree) {
 4543                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 4544                         free_pv_chunk(pc);
 4545                 }
 4546         }
 4547         sched_unpin();
 4548         pmap_invalidate_all(pmap);
 4549         rw_wunlock(&pvh_global_lock);
 4550         PMAP_UNLOCK(pmap);
 4551         pmap_free_zero_pages(free);
 4552 }
 4553 
 4554 /*
 4555  *      pmap_is_modified:
 4556  *
 4557  *      Return whether or not the specified physical page was modified
 4558  *      in any physical maps.
 4559  */
 4560 boolean_t
 4561 pmap_is_modified(vm_page_t m)
 4562 {
 4563         boolean_t rv;
 4564 
 4565         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4566             ("pmap_is_modified: page %p is not managed", m));
 4567 
 4568         /*
 4569          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
 4570          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 4571          * is clear, no PTEs can have PG_M set.
 4572          */
 4573         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 4574         if ((m->oflags & VPO_BUSY) == 0 &&
 4575             (m->aflags & PGA_WRITEABLE) == 0)
 4576                 return (FALSE);
 4577         rw_wlock(&pvh_global_lock);
 4578         rv = pmap_is_modified_pvh(&m->md) ||
 4579             ((m->flags & PG_FICTITIOUS) == 0 &&
 4580             pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4581         rw_wunlock(&pvh_global_lock);
 4582         return (rv);
 4583 }
 4584 
 4585 /*
 4586  * Returns TRUE if any of the given mappings were used to modify
 4587  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
 4588  * mappings are supported.
 4589  */
 4590 static boolean_t
 4591 pmap_is_modified_pvh(struct md_page *pvh)
 4592 {
 4593         pv_entry_t pv;
 4594         pt_entry_t *pte;
 4595         pmap_t pmap;
 4596         boolean_t rv;
 4597 
 4598         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4599         rv = FALSE;
 4600         sched_pin();
 4601         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4602                 pmap = PV_PMAP(pv);
 4603                 PMAP_LOCK(pmap);
 4604                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4605                 rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
 4606                 PMAP_UNLOCK(pmap);
 4607                 if (rv)
 4608                         break;
 4609         }
 4610         sched_unpin();
 4611         return (rv);
 4612 }
 4613 
 4614 /*
 4615  *      pmap_is_prefaultable:
 4616  *
 4617  *      Return whether or not the specified virtual address is elgible
 4618  *      for prefault.
 4619  */
 4620 boolean_t
 4621 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 4622 {
 4623         pd_entry_t *pde;
 4624         pt_entry_t *pte;
 4625         boolean_t rv;
 4626 
 4627         rv = FALSE;
 4628         PMAP_LOCK(pmap);
 4629         pde = pmap_pde(pmap, addr);
 4630         if (*pde != 0 && (*pde & PG_PS) == 0) {
 4631                 pte = vtopte(addr);
 4632                 rv = *pte == 0;
 4633         }
 4634         PMAP_UNLOCK(pmap);
 4635         return (rv);
 4636 }
 4637 
 4638 /*
 4639  *      pmap_is_referenced:
 4640  *
 4641  *      Return whether or not the specified physical page was referenced
 4642  *      in any physical maps.
 4643  */
 4644 boolean_t
 4645 pmap_is_referenced(vm_page_t m)
 4646 {
 4647         boolean_t rv;
 4648 
 4649         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4650             ("pmap_is_referenced: page %p is not managed", m));
 4651         rw_wlock(&pvh_global_lock);
 4652         rv = pmap_is_referenced_pvh(&m->md) ||
 4653             ((m->flags & PG_FICTITIOUS) == 0 &&
 4654             pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
 4655         rw_wunlock(&pvh_global_lock);
 4656         return (rv);
 4657 }
 4658 
 4659 /*
 4660  * Returns TRUE if any of the given mappings were referenced and FALSE
 4661  * otherwise.  Both page and 4mpage mappings are supported.
 4662  */
 4663 static boolean_t
 4664 pmap_is_referenced_pvh(struct md_page *pvh)
 4665 {
 4666         pv_entry_t pv;
 4667         pt_entry_t *pte;
 4668         pmap_t pmap;
 4669         boolean_t rv;
 4670 
 4671         rw_assert(&pvh_global_lock, RA_WLOCKED);
 4672         rv = FALSE;
 4673         sched_pin();
 4674         TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
 4675                 pmap = PV_PMAP(pv);
 4676                 PMAP_LOCK(pmap);
 4677                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4678                 rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
 4679                 PMAP_UNLOCK(pmap);
 4680                 if (rv)
 4681                         break;
 4682         }
 4683         sched_unpin();
 4684         return (rv);
 4685 }
 4686 
 4687 /*
 4688  * Clear the write and modified bits in each of the given page's mappings.
 4689  */
 4690 void
 4691 pmap_remove_write(vm_page_t m)
 4692 {
 4693         struct md_page *pvh;
 4694         pv_entry_t next_pv, pv;
 4695         pmap_t pmap;
 4696         pd_entry_t *pde;
 4697         pt_entry_t oldpte, *pte;
 4698         vm_offset_t va;
 4699 
 4700         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4701             ("pmap_remove_write: page %p is not managed", m));
 4702 
 4703         /*
 4704          * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
 4705          * another thread while the object is locked.  Thus, if PGA_WRITEABLE
 4706          * is clear, no page table entries need updating.
 4707          */
 4708         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 4709         if ((m->oflags & VPO_BUSY) == 0 &&
 4710             (m->aflags & PGA_WRITEABLE) == 0)
 4711                 return;
 4712         rw_wlock(&pvh_global_lock);
 4713         sched_pin();
 4714         if ((m->flags & PG_FICTITIOUS) != 0)
 4715                 goto small_mappings;
 4716         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4717         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
 4718                 va = pv->pv_va;
 4719                 pmap = PV_PMAP(pv);
 4720                 PMAP_LOCK(pmap);
 4721                 pde = pmap_pde(pmap, va);
 4722                 if ((*pde & PG_RW) != 0)
 4723                         (void)pmap_demote_pde(pmap, pde, va);
 4724                 PMAP_UNLOCK(pmap);
 4725         }
 4726 small_mappings:
 4727         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4728                 pmap = PV_PMAP(pv);
 4729                 PMAP_LOCK(pmap);
 4730                 pde = pmap_pde(pmap, pv->pv_va);
 4731                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
 4732                     " a 4mpage in page %p's pv list", m));
 4733                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4734 retry:
 4735                 oldpte = *pte;
 4736                 if ((oldpte & PG_RW) != 0) {
 4737                         /*
 4738                          * Regardless of whether a pte is 32 or 64 bits
 4739                          * in size, PG_RW and PG_M are among the least
 4740                          * significant 32 bits.
 4741                          */
 4742                         if (!atomic_cmpset_int((u_int *)pte, oldpte,
 4743                             oldpte & ~(PG_RW | PG_M)))
 4744                                 goto retry;
 4745                         if ((oldpte & PG_M) != 0)
 4746                                 vm_page_dirty(m);
 4747                         pmap_invalidate_page(pmap, pv->pv_va);
 4748                 }
 4749                 PMAP_UNLOCK(pmap);
 4750         }
 4751         vm_page_aflag_clear(m, PGA_WRITEABLE);
 4752         sched_unpin();
 4753         rw_wunlock(&pvh_global_lock);
 4754 }
 4755 
 4756 /*
 4757  *      pmap_ts_referenced:
 4758  *
 4759  *      Return a count of reference bits for a page, clearing those bits.
 4760  *      It is not necessary for every reference bit to be cleared, but it
 4761  *      is necessary that 0 only be returned when there are truly no
 4762  *      reference bits set.
 4763  *
 4764  *      XXX: The exact number of bits to check and clear is a matter that
 4765  *      should be tested and standardized at some point in the future for
 4766  *      optimal aging of shared pages.
 4767  */
 4768 int
 4769 pmap_ts_referenced(vm_page_t m)
 4770 {
 4771         struct md_page *pvh;
 4772         pv_entry_t pv, pvf, pvn;
 4773         pmap_t pmap;
 4774         pd_entry_t oldpde, *pde;
 4775         pt_entry_t *pte;
 4776         vm_offset_t va;
 4777         int rtval = 0;
 4778 
 4779         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4780             ("pmap_ts_referenced: page %p is not managed", m));
 4781         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4782         rw_wlock(&pvh_global_lock);
 4783         sched_pin();
 4784         if ((m->flags & PG_FICTITIOUS) != 0)
 4785                 goto small_mappings;
 4786         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
 4787                 va = pv->pv_va;
 4788                 pmap = PV_PMAP(pv);
 4789                 PMAP_LOCK(pmap);
 4790                 pde = pmap_pde(pmap, va);
 4791                 oldpde = *pde;
 4792                 if ((oldpde & PG_A) != 0) {
 4793                         if (pmap_demote_pde(pmap, pde, va)) {
 4794                                 if ((oldpde & PG_W) == 0) {
 4795                                         /*
 4796                                          * Remove the mapping to a single page
 4797                                          * so that a subsequent access may
 4798                                          * repromote.  Since the underlying
 4799                                          * page table page is fully populated,
 4800                                          * this removal never frees a page
 4801                                          * table page.
 4802                                          */
 4803                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 4804                                             PG_PS_FRAME);
 4805                                         pmap_remove_page(pmap, va, NULL);
 4806                                         rtval++;
 4807                                         if (rtval > 4) {
 4808                                                 PMAP_UNLOCK(pmap);
 4809                                                 goto out;
 4810                                         }
 4811                                 }
 4812                         }
 4813                 }
 4814                 PMAP_UNLOCK(pmap);
 4815         }
 4816 small_mappings:
 4817         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 4818                 pvf = pv;
 4819                 do {
 4820                         pvn = TAILQ_NEXT(pv, pv_list);
 4821                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 4822                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 4823                         pmap = PV_PMAP(pv);
 4824                         PMAP_LOCK(pmap);
 4825                         pde = pmap_pde(pmap, pv->pv_va);
 4826                         KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
 4827                             " found a 4mpage in page %p's pv list", m));
 4828                         pte = pmap_pte_quick(pmap, pv->pv_va);
 4829                         if ((*pte & PG_A) != 0) {
 4830                                 atomic_clear_int((u_int *)pte, PG_A);
 4831                                 pmap_invalidate_page(pmap, pv->pv_va);
 4832                                 rtval++;
 4833                                 if (rtval > 4)
 4834                                         pvn = NULL;
 4835                         }
 4836                         PMAP_UNLOCK(pmap);
 4837                 } while ((pv = pvn) != NULL && pv != pvf);
 4838         }
 4839 out:
 4840         sched_unpin();
 4841         rw_wunlock(&pvh_global_lock);
 4842         return (rtval);
 4843 }
 4844 
 4845 /*
 4846  *      Clear the modify bits on the specified physical page.
 4847  */
 4848 void
 4849 pmap_clear_modify(vm_page_t m)
 4850 {
 4851         struct md_page *pvh;
 4852         pv_entry_t next_pv, pv;
 4853         pmap_t pmap;
 4854         pd_entry_t oldpde, *pde;
 4855         pt_entry_t oldpte, *pte;
 4856         vm_offset_t va;
 4857 
 4858         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4859             ("pmap_clear_modify: page %p is not managed", m));
 4860         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 4861         KASSERT((m->oflags & VPO_BUSY) == 0,
 4862             ("pmap_clear_modify: page %p is busy", m));
 4863 
 4864         /*
 4865          * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 4866          * If the object containing the page is locked and the page is not
 4867          * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
 4868          */
 4869         if ((m->aflags & PGA_WRITEABLE) == 0)
 4870                 return;
 4871         rw_wlock(&pvh_global_lock);
 4872         sched_pin();
 4873         if ((m->flags & PG_FICTITIOUS) != 0)
 4874                 goto small_mappings;
 4875         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4876         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
 4877                 va = pv->pv_va;
 4878                 pmap = PV_PMAP(pv);
 4879                 PMAP_LOCK(pmap);
 4880                 pde = pmap_pde(pmap, va);
 4881                 oldpde = *pde;
 4882                 if ((oldpde & PG_RW) != 0) {
 4883                         if (pmap_demote_pde(pmap, pde, va)) {
 4884                                 if ((oldpde & PG_W) == 0) {
 4885                                         /*
 4886                                          * Write protect the mapping to a
 4887                                          * single page so that a subsequent
 4888                                          * write access may repromote.
 4889                                          */
 4890                                         va += VM_PAGE_TO_PHYS(m) - (oldpde &
 4891                                             PG_PS_FRAME);
 4892                                         pte = pmap_pte_quick(pmap, va);
 4893                                         oldpte = *pte;
 4894                                         if ((oldpte & PG_V) != 0) {
 4895                                                 /*
 4896                                                  * Regardless of whether a pte is 32 or 64 bits
 4897                                                  * in size, PG_RW and PG_M are among the least
 4898                                                  * significant 32 bits.
 4899                                                  */
 4900                                                 while (!atomic_cmpset_int((u_int *)pte,
 4901                                                     oldpte,
 4902                                                     oldpte & ~(PG_M | PG_RW)))
 4903                                                         oldpte = *pte;
 4904                                                 vm_page_dirty(m);
 4905                                                 pmap_invalidate_page(pmap, va);
 4906                                         }
 4907                                 }
 4908                         }
 4909                 }
 4910                 PMAP_UNLOCK(pmap);
 4911         }
 4912 small_mappings:
 4913         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4914                 pmap = PV_PMAP(pv);
 4915                 PMAP_LOCK(pmap);
 4916                 pde = pmap_pde(pmap, pv->pv_va);
 4917                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 4918                     " a 4mpage in page %p's pv list", m));
 4919                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4920                 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 4921                         /*
 4922                          * Regardless of whether a pte is 32 or 64 bits
 4923                          * in size, PG_M is among the least significant
 4924                          * 32 bits. 
 4925                          */
 4926                         atomic_clear_int((u_int *)pte, PG_M);
 4927                         pmap_invalidate_page(pmap, pv->pv_va);
 4928                 }
 4929                 PMAP_UNLOCK(pmap);
 4930         }
 4931         sched_unpin();
 4932         rw_wunlock(&pvh_global_lock);
 4933 }
 4934 
 4935 /*
 4936  *      pmap_clear_reference:
 4937  *
 4938  *      Clear the reference bit on the specified physical page.
 4939  */
 4940 void
 4941 pmap_clear_reference(vm_page_t m)
 4942 {
 4943         struct md_page *pvh;
 4944         pv_entry_t next_pv, pv;
 4945         pmap_t pmap;
 4946         pd_entry_t oldpde, *pde;
 4947         pt_entry_t *pte;
 4948         vm_offset_t va;
 4949 
 4950         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 4951             ("pmap_clear_reference: page %p is not managed", m));
 4952         rw_wlock(&pvh_global_lock);
 4953         sched_pin();
 4954         if ((m->flags & PG_FICTITIOUS) != 0)
 4955                 goto small_mappings;
 4956         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 4957         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
 4958                 va = pv->pv_va;
 4959                 pmap = PV_PMAP(pv);
 4960                 PMAP_LOCK(pmap);
 4961                 pde = pmap_pde(pmap, va);
 4962                 oldpde = *pde;
 4963                 if ((oldpde & PG_A) != 0) {
 4964                         if (pmap_demote_pde(pmap, pde, va)) {
 4965                                 /*
 4966                                  * Remove the mapping to a single page so
 4967                                  * that a subsequent access may repromote.
 4968                                  * Since the underlying page table page is
 4969                                  * fully populated, this removal never frees
 4970                                  * a page table page.
 4971                                  */
 4972                                 va += VM_PAGE_TO_PHYS(m) - (oldpde &
 4973                                     PG_PS_FRAME);
 4974                                 pmap_remove_page(pmap, va, NULL);
 4975                         }
 4976                 }
 4977                 PMAP_UNLOCK(pmap);
 4978         }
 4979 small_mappings:
 4980         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 4981                 pmap = PV_PMAP(pv);
 4982                 PMAP_LOCK(pmap);
 4983                 pde = pmap_pde(pmap, pv->pv_va);
 4984                 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
 4985                     " a 4mpage in page %p's pv list", m));
 4986                 pte = pmap_pte_quick(pmap, pv->pv_va);
 4987                 if ((*pte & PG_A) != 0) {
 4988                         /*
 4989                          * Regardless of whether a pte is 32 or 64 bits
 4990                          * in size, PG_A is among the least significant
 4991                          * 32 bits. 
 4992                          */
 4993                         atomic_clear_int((u_int *)pte, PG_A);
 4994                         pmap_invalidate_page(pmap, pv->pv_va);
 4995                 }
 4996                 PMAP_UNLOCK(pmap);
 4997         }
 4998         sched_unpin();
 4999         rw_wunlock(&pvh_global_lock);
 5000 }
 5001 
 5002 /*
 5003  * Miscellaneous support routines follow
 5004  */
 5005 
 5006 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 5007 static __inline void
 5008 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
 5009 {
 5010         u_int opte, npte;
 5011 
 5012         /*
 5013          * The cache mode bits are all in the low 32-bits of the
 5014          * PTE, so we can just spin on updating the low 32-bits.
 5015          */
 5016         do {
 5017                 opte = *(u_int *)pte;
 5018                 npte = opte & ~PG_PTE_CACHE;
 5019                 npte |= cache_bits;
 5020         } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 5021 }
 5022 
 5023 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
 5024 static __inline void
 5025 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
 5026 {
 5027         u_int opde, npde;
 5028 
 5029         /*
 5030          * The cache mode bits are all in the low 32-bits of the
 5031          * PDE, so we can just spin on updating the low 32-bits.
 5032          */
 5033         do {
 5034                 opde = *(u_int *)pde;
 5035                 npde = opde & ~PG_PDE_CACHE;
 5036                 npde |= cache_bits;
 5037         } while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 5038 }
 5039 
 5040 /*
 5041  * Map a set of physical memory pages into the kernel virtual
 5042  * address space. Return a pointer to where it is mapped. This
 5043  * routine is intended to be used for mapping device memory,
 5044  * NOT real memory.
 5045  */
 5046 void *
 5047 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 5048 {
 5049         vm_offset_t va, offset;
 5050         vm_size_t tmpsize;
 5051 
 5052         offset = pa & PAGE_MASK;
 5053         size = roundup(offset + size, PAGE_SIZE);
 5054         pa = pa & PG_FRAME;
 5055 
 5056         if (pa < KERNLOAD && pa + size <= KERNLOAD)
 5057                 va = KERNBASE + pa;
 5058         else
 5059                 va = kmem_alloc_nofault(kernel_map, size);
 5060         if (!va)
 5061                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 5062 
 5063         for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 5064                 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 5065         pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 5066         pmap_invalidate_cache_range(va, va + size);
 5067         return ((void *)(va + offset));
 5068 }
 5069 
 5070 void *
 5071 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 5072 {
 5073 
 5074         return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 5075 }
 5076 
 5077 void *
 5078 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 5079 {
 5080 
 5081         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 5082 }
 5083 
 5084 void
 5085 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 5086 {
 5087         vm_offset_t base, offset;
 5088 
 5089         if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
 5090                 return;
 5091         base = trunc_page(va);
 5092         offset = va & PAGE_MASK;
 5093         size = roundup(offset + size, PAGE_SIZE);
 5094         kmem_free(kernel_map, base, size);
 5095 }
 5096 
 5097 /*
 5098  * Sets the memory attribute for the specified page.
 5099  */
 5100 void
 5101 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 5102 {
 5103 
 5104         m->md.pat_mode = ma;
 5105         if ((m->flags & PG_FICTITIOUS) != 0)
 5106                 return;
 5107 
 5108         /*
 5109          * If "m" is a normal page, flush it from the cache.
 5110          * See pmap_invalidate_cache_range().
 5111          *
 5112          * First, try to find an existing mapping of the page by sf
 5113          * buffer. sf_buf_invalidate_cache() modifies mapping and
 5114          * flushes the cache.
 5115          */    
 5116         if (sf_buf_invalidate_cache(m))
 5117                 return;
 5118 
 5119         /*
 5120          * If page is not mapped by sf buffer, but CPU does not
 5121          * support self snoop, map the page transient and do
 5122          * invalidation. In the worst case, whole cache is flushed by
 5123          * pmap_invalidate_cache_range().
 5124          */
 5125         if ((cpu_feature & CPUID_SS) == 0)
 5126                 pmap_flush_page(m);
 5127 }
 5128 
 5129 static void
 5130 pmap_flush_page(vm_page_t m)
 5131 {
 5132         struct sysmaps *sysmaps;
 5133         vm_offset_t sva, eva;
 5134 
 5135         if ((cpu_feature & CPUID_CLFSH) != 0) {
 5136                 sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
 5137                 mtx_lock(&sysmaps->lock);
 5138                 if (*sysmaps->CMAP2)
 5139                         panic("pmap_flush_page: CMAP2 busy");
 5140                 sched_pin();
 5141                 *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
 5142                     PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
 5143                 invlcaddr(sysmaps->CADDR2);
 5144                 sva = (vm_offset_t)sysmaps->CADDR2;
 5145                 eva = sva + PAGE_SIZE;
 5146 
 5147                 /*
 5148                  * Use mfence despite the ordering implied by
 5149                  * mtx_{un,}lock() because clflush is not guaranteed
 5150                  * to be ordered by any other instruction.
 5151                  */
 5152                 mfence();
 5153                 for (; sva < eva; sva += cpu_clflush_line_size)
 5154                         clflush(sva);
 5155                 mfence();
 5156                 *sysmaps->CMAP2 = 0;
 5157                 sched_unpin();
 5158                 mtx_unlock(&sysmaps->lock);
 5159         } else
 5160                 pmap_invalidate_cache();
 5161 }
 5162 
 5163 /*
 5164  * Changes the specified virtual address range's memory type to that given by
 5165  * the parameter "mode".  The specified virtual address range must be
 5166  * completely contained within either the kernel map.
 5167  *
 5168  * Returns zero if the change completed successfully, and either EINVAL or
 5169  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
 5170  * of the virtual address range was not mapped, and ENOMEM is returned if
 5171  * there was insufficient memory available to complete the change.
 5172  */
 5173 int
 5174 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 5175 {
 5176         vm_offset_t base, offset, tmpva;
 5177         pd_entry_t *pde;
 5178         pt_entry_t *pte;
 5179         int cache_bits_pte, cache_bits_pde;
 5180         boolean_t changed;
 5181 
 5182         base = trunc_page(va);
 5183         offset = va & PAGE_MASK;
 5184         size = roundup(offset + size, PAGE_SIZE);
 5185 
 5186         /*
 5187          * Only supported on kernel virtual addresses above the recursive map.
 5188          */
 5189         if (base < VM_MIN_KERNEL_ADDRESS)
 5190                 return (EINVAL);
 5191 
 5192         cache_bits_pde = pmap_cache_bits(mode, 1);
 5193         cache_bits_pte = pmap_cache_bits(mode, 0);
 5194         changed = FALSE;
 5195 
 5196         /*
 5197          * Pages that aren't mapped aren't supported.  Also break down
 5198          * 2/4MB pages into 4KB pages if required.
 5199          */
 5200         PMAP_LOCK(kernel_pmap);
 5201         for (tmpva = base; tmpva < base + size; ) {
 5202                 pde = pmap_pde(kernel_pmap, tmpva);
 5203                 if (*pde == 0) {
 5204                         PMAP_UNLOCK(kernel_pmap);
 5205                         return (EINVAL);
 5206                 }
 5207                 if (*pde & PG_PS) {
 5208                         /*
 5209                          * If the current 2/4MB page already has
 5210                          * the required memory type, then we need not
 5211                          * demote this page.  Just increment tmpva to
 5212                          * the next 2/4MB page frame.
 5213                          */
 5214                         if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
 5215                                 tmpva = trunc_4mpage(tmpva) + NBPDR;
 5216                                 continue;
 5217                         }
 5218 
 5219                         /*
 5220                          * If the current offset aligns with a 2/4MB
 5221                          * page frame and there is at least 2/4MB left
 5222                          * within the range, then we need not break
 5223                          * down this page into 4KB pages.
 5224                          */
 5225                         if ((tmpva & PDRMASK) == 0 &&
 5226                             tmpva + PDRMASK < base + size) {
 5227                                 tmpva += NBPDR;
 5228                                 continue;
 5229                         }
 5230                         if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
 5231                                 PMAP_UNLOCK(kernel_pmap);
 5232                                 return (ENOMEM);
 5233                         }
 5234                 }
 5235                 pte = vtopte(tmpva);
 5236                 if (*pte == 0) {
 5237                         PMAP_UNLOCK(kernel_pmap);
 5238                         return (EINVAL);
 5239                 }
 5240                 tmpva += PAGE_SIZE;
 5241         }
 5242         PMAP_UNLOCK(kernel_pmap);
 5243 
 5244         /*
 5245          * Ok, all the pages exist, so run through them updating their
 5246          * cache mode if required.
 5247          */
 5248         for (tmpva = base; tmpva < base + size; ) {
 5249                 pde = pmap_pde(kernel_pmap, tmpva);
 5250                 if (*pde & PG_PS) {
 5251                         if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
 5252                                 pmap_pde_attr(pde, cache_bits_pde);
 5253                                 changed = TRUE;
 5254                         }
 5255                         tmpva = trunc_4mpage(tmpva) + NBPDR;
 5256                 } else {
 5257                         pte = vtopte(tmpva);
 5258                         if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
 5259                                 pmap_pte_attr(pte, cache_bits_pte);
 5260                                 changed = TRUE;
 5261                         }
 5262                         tmpva += PAGE_SIZE;
 5263                 }
 5264         }
 5265 
 5266         /*
 5267          * Flush CPU caches to make sure any data isn't cached that
 5268          * shouldn't be, etc.
 5269          */
 5270         if (changed) {
 5271                 pmap_invalidate_range(kernel_pmap, base, tmpva);
 5272                 pmap_invalidate_cache_range(base, tmpva);
 5273         }
 5274         return (0);
 5275 }
 5276 
 5277 /*
 5278  * perform the pmap work for mincore
 5279  */
 5280 int
 5281 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 5282 {
 5283         pd_entry_t *pdep;
 5284         pt_entry_t *ptep, pte;
 5285         vm_paddr_t pa;
 5286         int val;
 5287 
 5288         PMAP_LOCK(pmap);
 5289 retry:
 5290         pdep = pmap_pde(pmap, addr);
 5291         if (*pdep != 0) {
 5292                 if (*pdep & PG_PS) {
 5293                         pte = *pdep;
 5294                         /* Compute the physical address of the 4KB page. */
 5295                         pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 5296                             PG_FRAME;
 5297                         val = MINCORE_SUPER;
 5298                 } else {
 5299                         ptep = pmap_pte(pmap, addr);
 5300                         pte = *ptep;
 5301                         pmap_pte_release(ptep);
 5302                         pa = pte & PG_FRAME;
 5303                         val = 0;
 5304                 }
 5305         } else {
 5306                 pte = 0;
 5307                 pa = 0;
 5308                 val = 0;
 5309         }
 5310         if ((pte & PG_V) != 0) {
 5311                 val |= MINCORE_INCORE;
 5312                 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 5313                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 5314                 if ((pte & PG_A) != 0)
 5315                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 5316         }
 5317         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 5318             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 5319             (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 5320                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 5321                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 5322                         goto retry;
 5323         } else
 5324                 PA_UNLOCK_COND(*locked_pa);
 5325         PMAP_UNLOCK(pmap);
 5326         return (val);
 5327 }
 5328 
 5329 void
 5330 pmap_activate(struct thread *td)
 5331 {
 5332         pmap_t  pmap, oldpmap;
 5333         u_int   cpuid;
 5334         u_int32_t  cr3;
 5335 
 5336         critical_enter();
 5337         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 5338         oldpmap = PCPU_GET(curpmap);
 5339         cpuid = PCPU_GET(cpuid);
 5340 #if defined(SMP)
 5341         CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 5342         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 5343 #else
 5344         CPU_CLR(cpuid, &oldpmap->pm_active);
 5345         CPU_SET(cpuid, &pmap->pm_active);
 5346 #endif
 5347 #ifdef PAE
 5348         cr3 = vtophys(pmap->pm_pdpt);
 5349 #else
 5350         cr3 = vtophys(pmap->pm_pdir);
 5351 #endif
 5352         /*
 5353          * pmap_activate is for the current thread on the current cpu
 5354          */
 5355         td->td_pcb->pcb_cr3 = cr3;
 5356         load_cr3(cr3);
 5357         PCPU_SET(curpmap, pmap);
 5358         critical_exit();
 5359 }
 5360 
 5361 void
 5362 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 5363 {
 5364 }
 5365 
 5366 /*
 5367  *      Increase the starting virtual address of the given mapping if a
 5368  *      different alignment might result in more superpage mappings.
 5369  */
 5370 void
 5371 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 5372     vm_offset_t *addr, vm_size_t size)
 5373 {
 5374         vm_offset_t superpage_offset;
 5375 
 5376         if (size < NBPDR)
 5377                 return;
 5378         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 5379                 offset += ptoa(object->pg_color);
 5380         superpage_offset = offset & PDRMASK;
 5381         if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 5382             (*addr & PDRMASK) == superpage_offset)
 5383                 return;
 5384         if ((*addr & PDRMASK) < superpage_offset)
 5385                 *addr = (*addr & ~PDRMASK) + superpage_offset;
 5386         else
 5387                 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 5388 }
 5389 
 5390 
 5391 #if defined(PMAP_DEBUG)
 5392 pmap_pid_dump(int pid)
 5393 {
 5394         pmap_t pmap;
 5395         struct proc *p;
 5396         int npte = 0;
 5397         int index;
 5398 
 5399         sx_slock(&allproc_lock);
 5400         FOREACH_PROC_IN_SYSTEM(p) {
 5401                 if (p->p_pid != pid)
 5402                         continue;
 5403 
 5404                 if (p->p_vmspace) {
 5405                         int i,j;
 5406                         index = 0;
 5407                         pmap = vmspace_pmap(p->p_vmspace);
 5408                         for (i = 0; i < NPDEPTD; i++) {
 5409                                 pd_entry_t *pde;
 5410                                 pt_entry_t *pte;
 5411                                 vm_offset_t base = i << PDRSHIFT;
 5412                                 
 5413                                 pde = &pmap->pm_pdir[i];
 5414                                 if (pde && pmap_pde_v(pde)) {
 5415                                         for (j = 0; j < NPTEPG; j++) {
 5416                                                 vm_offset_t va = base + (j << PAGE_SHIFT);
 5417                                                 if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
 5418                                                         if (index) {
 5419                                                                 index = 0;
 5420                                                                 printf("\n");
 5421                                                         }
 5422                                                         sx_sunlock(&allproc_lock);
 5423                                                         return (npte);
 5424                                                 }
 5425                                                 pte = pmap_pte(pmap, va);
 5426                                                 if (pte && pmap_pte_v(pte)) {
 5427                                                         pt_entry_t pa;
 5428                                                         vm_page_t m;
 5429                                                         pa = *pte;
 5430                                                         m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
 5431                                                         printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
 5432                                                                 va, pa, m->hold_count, m->wire_count, m->flags);
 5433                                                         npte++;
 5434                                                         index++;
 5435                                                         if (index >= 2) {
 5436                                                                 index = 0;
 5437                                                                 printf("\n");
 5438                                                         } else {
 5439                                                                 printf(" ");
 5440                                                         }
 5441                                                 }
 5442                                         }
 5443                                 }
 5444                         }
 5445                 }
 5446         }
 5447         sx_sunlock(&allproc_lock);
 5448         return (npte);
 5449 }
 5450 #endif
 5451 
 5452 #if defined(DEBUG)
 5453 
 5454 static void     pads(pmap_t pm);
 5455 void            pmap_pvdump(vm_paddr_t pa);
 5456 
 5457 /* print address space of pmap*/
 5458 static void
 5459 pads(pmap_t pm)
 5460 {
 5461         int i, j;
 5462         vm_paddr_t va;
 5463         pt_entry_t *ptep;
 5464 
 5465         if (pm == kernel_pmap)
 5466                 return;
 5467         for (i = 0; i < NPDEPTD; i++)
 5468                 if (pm->pm_pdir[i])
 5469                         for (j = 0; j < NPTEPG; j++) {
 5470                                 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
 5471                                 if (pm == kernel_pmap && va < KERNBASE)
 5472                                         continue;
 5473                                 if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
 5474                                         continue;
 5475                                 ptep = pmap_pte(pm, va);
 5476                                 if (pmap_pte_v(ptep))
 5477                                         printf("%x:%x ", va, *ptep);
 5478                         };
 5479 
 5480 }
 5481 
 5482 void
 5483 pmap_pvdump(vm_paddr_t pa)
 5484 {
 5485         pv_entry_t pv;
 5486         pmap_t pmap;
 5487         vm_page_t m;
 5488 
 5489         printf("pa %x", pa);
 5490         m = PHYS_TO_VM_PAGE(pa);
 5491         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 5492                 pmap = PV_PMAP(pv);
 5493                 printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
 5494                 pads(pmap);
 5495         }
 5496         printf(" ");
 5497 }
 5498 #endif

Cache object: f7ecc9d03f2dc7187ba298eab097071b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.