FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/vm86.c
1 /*-
2 * Copyright (c) 1997 Jonathan Lemon
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD: releng/11.2/sys/i386/i386/vm86.c 332314 2018-04-09 01:06:09Z emaste $");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/priv.h>
33 #include <sys/proc.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37
38 #include <vm/vm.h>
39 #include <vm/pmap.h>
40 #include <vm/vm_map.h>
41 #include <vm/vm_page.h>
42
43 #include <machine/md_var.h>
44 #include <machine/pcb.h>
45 #include <machine/pcb_ext.h>
46 #include <machine/psl.h>
47 #include <machine/specialreg.h>
48 #include <machine/sysarch.h>
49
50 extern int vm86pa;
51 extern struct pcb *vm86pcb;
52
53 static struct mtx vm86_lock;
54
55 extern int vm86_bioscall(struct vm86frame *);
56 extern void vm86_biosret(struct vm86frame *);
57
58 void vm86_prepcall(struct vm86frame *);
59
60 struct system_map {
61 int type;
62 vm_offset_t start;
63 vm_offset_t end;
64 };
65
66 #define HLT 0xf4
67 #define CLI 0xfa
68 #define STI 0xfb
69 #define PUSHF 0x9c
70 #define POPF 0x9d
71 #define INTn 0xcd
72 #define IRET 0xcf
73 #define CALLm 0xff
74 #define OPERAND_SIZE_PREFIX 0x66
75 #define ADDRESS_SIZE_PREFIX 0x67
76 #define PUSH_MASK ~(PSL_VM | PSL_RF | PSL_I)
77 #define POP_MASK ~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
78
79 static __inline caddr_t
80 MAKE_ADDR(u_short sel, u_short off)
81 {
82 return ((caddr_t)((sel << 4) + off));
83 }
84
85 static __inline void
86 GET_VEC(u_int vec, u_short *sel, u_short *off)
87 {
88 *sel = vec >> 16;
89 *off = vec & 0xffff;
90 }
91
92 static __inline u_int
93 MAKE_VEC(u_short sel, u_short off)
94 {
95 return ((sel << 16) | off);
96 }
97
98 static __inline void
99 PUSH(u_short x, struct vm86frame *vmf)
100 {
101 vmf->vmf_sp -= 2;
102 suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
103 }
104
105 static __inline void
106 PUSHL(u_int x, struct vm86frame *vmf)
107 {
108 vmf->vmf_sp -= 4;
109 suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
110 }
111
112 static __inline u_short
113 POP(struct vm86frame *vmf)
114 {
115 u_short x = fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
116
117 vmf->vmf_sp += 2;
118 return (x);
119 }
120
121 static __inline u_int
122 POPL(struct vm86frame *vmf)
123 {
124 u_int x = fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
125
126 vmf->vmf_sp += 4;
127 return (x);
128 }
129
130 int
131 vm86_emulate(struct vm86frame *vmf)
132 {
133 struct vm86_kernel *vm86;
134 caddr_t addr;
135 u_char i_byte;
136 u_int temp_flags;
137 int inc_ip = 1;
138 int retcode = 0;
139
140 /*
141 * pcb_ext contains the address of the extension area, or zero if
142 * the extension is not present. (This check should not be needed,
143 * as we can't enter vm86 mode until we set up an extension area)
144 */
145 if (curpcb->pcb_ext == 0)
146 return (SIGBUS);
147 vm86 = &curpcb->pcb_ext->ext_vm86;
148
149 if (vmf->vmf_eflags & PSL_T)
150 retcode = SIGTRAP;
151
152 addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
153 i_byte = fubyte(addr);
154 if (i_byte == ADDRESS_SIZE_PREFIX) {
155 i_byte = fubyte(++addr);
156 inc_ip++;
157 }
158
159 if (vm86->vm86_has_vme) {
160 switch (i_byte) {
161 case OPERAND_SIZE_PREFIX:
162 i_byte = fubyte(++addr);
163 inc_ip++;
164 switch (i_byte) {
165 case PUSHF:
166 if (vmf->vmf_eflags & PSL_VIF)
167 PUSHL((vmf->vmf_eflags & PUSH_MASK)
168 | PSL_IOPL | PSL_I, vmf);
169 else
170 PUSHL((vmf->vmf_eflags & PUSH_MASK)
171 | PSL_IOPL, vmf);
172 vmf->vmf_ip += inc_ip;
173 return (retcode);
174
175 case POPF:
176 temp_flags = POPL(vmf) & POP_MASK;
177 vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
178 | temp_flags | PSL_VM | PSL_I;
179 vmf->vmf_ip += inc_ip;
180 if (temp_flags & PSL_I) {
181 vmf->vmf_eflags |= PSL_VIF;
182 if (vmf->vmf_eflags & PSL_VIP)
183 break;
184 } else {
185 vmf->vmf_eflags &= ~PSL_VIF;
186 }
187 return (retcode);
188 }
189 break;
190
191 /* VME faults here if VIP is set, but does not set VIF. */
192 case STI:
193 vmf->vmf_eflags |= PSL_VIF;
194 vmf->vmf_ip += inc_ip;
195 if ((vmf->vmf_eflags & PSL_VIP) == 0) {
196 uprintf("fatal sti\n");
197 return (SIGKILL);
198 }
199 break;
200
201 /* VME if no redirection support */
202 case INTn:
203 break;
204
205 /* VME if trying to set PSL_T, or PSL_I when VIP is set */
206 case POPF:
207 temp_flags = POP(vmf) & POP_MASK;
208 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
209 | temp_flags | PSL_VM | PSL_I;
210 vmf->vmf_ip += inc_ip;
211 if (temp_flags & PSL_I) {
212 vmf->vmf_eflags |= PSL_VIF;
213 if (vmf->vmf_eflags & PSL_VIP)
214 break;
215 } else {
216 vmf->vmf_eflags &= ~PSL_VIF;
217 }
218 return (retcode);
219
220 /* VME if trying to set PSL_T, or PSL_I when VIP is set */
221 case IRET:
222 vmf->vmf_ip = POP(vmf);
223 vmf->vmf_cs = POP(vmf);
224 temp_flags = POP(vmf) & POP_MASK;
225 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
226 | temp_flags | PSL_VM | PSL_I;
227 if (temp_flags & PSL_I) {
228 vmf->vmf_eflags |= PSL_VIF;
229 if (vmf->vmf_eflags & PSL_VIP)
230 break;
231 } else {
232 vmf->vmf_eflags &= ~PSL_VIF;
233 }
234 return (retcode);
235
236 }
237 return (SIGBUS);
238 }
239
240 switch (i_byte) {
241 case OPERAND_SIZE_PREFIX:
242 i_byte = fubyte(++addr);
243 inc_ip++;
244 switch (i_byte) {
245 case PUSHF:
246 if (vm86->vm86_eflags & PSL_VIF)
247 PUSHL((vmf->vmf_flags & PUSH_MASK)
248 | PSL_IOPL | PSL_I, vmf);
249 else
250 PUSHL((vmf->vmf_flags & PUSH_MASK)
251 | PSL_IOPL, vmf);
252 vmf->vmf_ip += inc_ip;
253 return (retcode);
254
255 case POPF:
256 temp_flags = POPL(vmf) & POP_MASK;
257 vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
258 | temp_flags | PSL_VM | PSL_I;
259 vmf->vmf_ip += inc_ip;
260 if (temp_flags & PSL_I) {
261 vm86->vm86_eflags |= PSL_VIF;
262 if (vm86->vm86_eflags & PSL_VIP)
263 break;
264 } else {
265 vm86->vm86_eflags &= ~PSL_VIF;
266 }
267 return (retcode);
268 }
269 return (SIGBUS);
270
271 case CLI:
272 vm86->vm86_eflags &= ~PSL_VIF;
273 vmf->vmf_ip += inc_ip;
274 return (retcode);
275
276 case STI:
277 /* if there is a pending interrupt, go to the emulator */
278 vm86->vm86_eflags |= PSL_VIF;
279 vmf->vmf_ip += inc_ip;
280 if (vm86->vm86_eflags & PSL_VIP)
281 break;
282 return (retcode);
283
284 case PUSHF:
285 if (vm86->vm86_eflags & PSL_VIF)
286 PUSH((vmf->vmf_flags & PUSH_MASK)
287 | PSL_IOPL | PSL_I, vmf);
288 else
289 PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
290 vmf->vmf_ip += inc_ip;
291 return (retcode);
292
293 case INTn:
294 i_byte = fubyte(addr + 1);
295 if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
296 break;
297 if (vm86->vm86_eflags & PSL_VIF)
298 PUSH((vmf->vmf_flags & PUSH_MASK)
299 | PSL_IOPL | PSL_I, vmf);
300 else
301 PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
302 PUSH(vmf->vmf_cs, vmf);
303 PUSH(vmf->vmf_ip + inc_ip + 1, vmf); /* increment IP */
304 GET_VEC(fuword((caddr_t)(i_byte * 4)),
305 &vmf->vmf_cs, &vmf->vmf_ip);
306 vmf->vmf_flags &= ~PSL_T;
307 vm86->vm86_eflags &= ~PSL_VIF;
308 return (retcode);
309
310 case IRET:
311 vmf->vmf_ip = POP(vmf);
312 vmf->vmf_cs = POP(vmf);
313 temp_flags = POP(vmf) & POP_MASK;
314 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
315 | temp_flags | PSL_VM | PSL_I;
316 if (temp_flags & PSL_I) {
317 vm86->vm86_eflags |= PSL_VIF;
318 if (vm86->vm86_eflags & PSL_VIP)
319 break;
320 } else {
321 vm86->vm86_eflags &= ~PSL_VIF;
322 }
323 return (retcode);
324
325 case POPF:
326 temp_flags = POP(vmf) & POP_MASK;
327 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
328 | temp_flags | PSL_VM | PSL_I;
329 vmf->vmf_ip += inc_ip;
330 if (temp_flags & PSL_I) {
331 vm86->vm86_eflags |= PSL_VIF;
332 if (vm86->vm86_eflags & PSL_VIP)
333 break;
334 } else {
335 vm86->vm86_eflags &= ~PSL_VIF;
336 }
337 return (retcode);
338 }
339 return (SIGBUS);
340 }
341
342 #define PGTABLE_SIZE ((1024 + 64) * 1024 / PAGE_SIZE)
343 #define INTMAP_SIZE 32
344 #define IOMAP_SIZE ctob(IOPAGES)
345 #define TSS_SIZE \
346 (sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
347 INTMAP_SIZE + IOMAP_SIZE + 1)
348
349 struct vm86_layout {
350 pt_entry_t vml_pgtbl[PGTABLE_SIZE];
351 struct pcb vml_pcb;
352 struct pcb_ext vml_ext;
353 char vml_intmap[INTMAP_SIZE];
354 char vml_iomap[IOMAP_SIZE];
355 char vml_iomap_trailer;
356 };
357
358 void
359 vm86_initialize(void)
360 {
361 int i;
362 u_int *addr;
363 struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
364 struct pcb *pcb;
365 struct pcb_ext *ext;
366 struct soft_segment_descriptor ssd = {
367 0, /* segment base address (overwritten) */
368 0, /* length (overwritten) */
369 SDT_SYS386TSS, /* segment type */
370 0, /* priority level */
371 1, /* descriptor present */
372 0, 0,
373 0, /* default 16 size */
374 0 /* granularity */
375 };
376
377 /*
378 * this should be a compile time error, but cpp doesn't grok sizeof().
379 */
380 if (sizeof(struct vm86_layout) > ctob(3))
381 panic("struct vm86_layout exceeds space allocated in locore.s");
382
383 /*
384 * Below is the memory layout that we use for the vm86 region.
385 *
386 * +--------+
387 * | |
388 * | |
389 * | page 0 |
390 * | | +--------+
391 * | | | stack |
392 * +--------+ +--------+ <--------- vm86paddr
393 * | | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
394 * | | +--------+
395 * | | | PCB | size: ~240 bytes
396 * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
397 * | | +--------+
398 * | | |int map |
399 * | | +--------+
400 * +--------+ | |
401 * | page 2 | | I/O |
402 * +--------+ | bitmap |
403 * | page 3 | | |
404 * | | +--------+
405 * +--------+
406 */
407
408 /*
409 * A rudimentary PCB must be installed, in order to get to the
410 * PCB extension area. We use the PCB area as a scratchpad for
411 * data storage, the layout of which is shown below.
412 *
413 * pcb_esi = new PTD entry 0
414 * pcb_ebp = pointer to frame on vm86 stack
415 * pcb_esp = stack frame pointer at time of switch
416 * pcb_ebx = va of vm86 page table
417 * pcb_eip = argument pointer to initial call
418 * pcb_vm86[0] = saved TSS descriptor, word 0
419 * pcb_vm86[1] = saved TSS descriptor, word 1
420 */
421 #define new_ptd pcb_esi
422 #define vm86_frame pcb_ebp
423 #define pgtable_va pcb_ebx
424
425 pcb = &vml->vml_pcb;
426 ext = &vml->vml_ext;
427
428 mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);
429
430 bzero(pcb, sizeof(struct pcb));
431 pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
432 pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
433 pcb->pgtable_va = vm86paddr;
434 pcb->pcb_flags = PCB_VM86CALL;
435 pcb->pcb_ext = ext;
436
437 bzero(ext, sizeof(struct pcb_ext));
438 ext->ext_tss.tss_esp0 = vm86paddr;
439 ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
440 ext->ext_tss.tss_ioopt =
441 ((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
442 ext->ext_iomap = vml->vml_iomap;
443 ext->ext_vm86.vm86_intmap = vml->vml_intmap;
444
445 if (cpu_feature & CPUID_VME)
446 ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
447
448 addr = (u_int *)ext->ext_vm86.vm86_intmap;
449 for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
450 *addr++ = 0;
451 vml->vml_iomap_trailer = 0xff;
452
453 ssd.ssd_base = (u_int)&ext->ext_tss;
454 ssd.ssd_limit = TSS_SIZE - 1;
455 ssdtosd(&ssd, &ext->ext_tssd);
456
457 vm86pcb = pcb;
458
459 #if 0
460 /*
461 * use whatever is leftover of the vm86 page layout as a
462 * message buffer so we can capture early output.
463 */
464 msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
465 ctob(3) - sizeof(struct vm86_layout));
466 #endif
467 }
468
469 vm_offset_t
470 vm86_getpage(struct vm86context *vmc, int pagenum)
471 {
472 int i;
473
474 for (i = 0; i < vmc->npages; i++)
475 if (vmc->pmap[i].pte_num == pagenum)
476 return (vmc->pmap[i].kva);
477 return (0);
478 }
479
480 vm_offset_t
481 vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
482 {
483 int i, flags = 0;
484
485 for (i = 0; i < vmc->npages; i++)
486 if (vmc->pmap[i].pte_num == pagenum)
487 goto overlap;
488
489 if (vmc->npages == VM86_PMAPSIZE)
490 goto full; /* XXX grow map? */
491
492 if (kva == 0) {
493 kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
494 flags = VMAP_MALLOC;
495 }
496
497 i = vmc->npages++;
498 vmc->pmap[i].flags = flags;
499 vmc->pmap[i].kva = kva;
500 vmc->pmap[i].pte_num = pagenum;
501 return (kva);
502 overlap:
503 panic("vm86_addpage: overlap");
504 full:
505 panic("vm86_addpage: not enough room");
506 }
507
508 /*
509 * called from vm86_bioscall, while in vm86 address space, to finalize setup.
510 */
511 void
512 vm86_prepcall(struct vm86frame *vmf)
513 {
514 struct vm86_kernel *vm86;
515 uint32_t *stack;
516 uint8_t *code;
517
518 code = (void *)0xa00;
519 stack = (void *)(0x1000 - 2); /* keep aligned */
520 if ((vmf->vmf_trapno & PAGE_MASK) <= 0xff) {
521 /* interrupt call requested */
522 code[0] = INTn;
523 code[1] = vmf->vmf_trapno & 0xff;
524 code[2] = HLT;
525 vmf->vmf_ip = (uintptr_t)code;
526 vmf->vmf_cs = 0;
527 } else {
528 code[0] = HLT;
529 stack--;
530 stack[0] = MAKE_VEC(0, (uintptr_t)code);
531 }
532 vmf->vmf_sp = (uintptr_t)stack;
533 vmf->vmf_ss = 0;
534 vmf->kernel_fs = vmf->kernel_es = vmf->kernel_ds = 0;
535 vmf->vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
536
537 vm86 = &curpcb->pcb_ext->ext_vm86;
538 if (!vm86->vm86_has_vme)
539 vm86->vm86_eflags = vmf->vmf_eflags; /* save VIF, VIP */
540 }
541
542 /*
543 * vm86 trap handler; determines whether routine succeeded or not.
544 * Called while in vm86 space, returns to calling process.
545 */
546 void
547 vm86_trap(struct vm86frame *vmf)
548 {
549 caddr_t addr;
550
551 /* "should not happen" */
552 if ((vmf->vmf_eflags & PSL_VM) == 0)
553 panic("vm86_trap called, but not in vm86 mode");
554
555 addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
556 if (*(u_char *)addr == HLT)
557 vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
558 else
559 vmf->vmf_trapno = vmf->vmf_trapno << 16;
560
561 vm86_biosret(vmf);
562 }
563
564 int
565 vm86_intcall(int intnum, struct vm86frame *vmf)
566 {
567 int retval;
568
569 if (intnum < 0 || intnum > 0xff)
570 return (EINVAL);
571
572 vmf->vmf_trapno = intnum;
573 mtx_lock(&vm86_lock);
574 critical_enter();
575 retval = vm86_bioscall(vmf);
576 critical_exit();
577 mtx_unlock(&vm86_lock);
578 return (retval);
579 }
580
581 /*
582 * struct vm86context contains the page table to use when making
583 * vm86 calls. If intnum is a valid interrupt number (0-255), then
584 * the "interrupt trampoline" will be used, otherwise we use the
585 * caller's cs:ip routine.
586 */
587 int
588 vm86_datacall(int intnum, struct vm86frame *vmf, struct vm86context *vmc)
589 {
590 pt_entry_t *pte = (pt_entry_t *)vm86paddr;
591 vm_paddr_t page;
592 int i, entry, retval;
593
594 mtx_lock(&vm86_lock);
595 for (i = 0; i < vmc->npages; i++) {
596 page = vtophys(vmc->pmap[i].kva & PG_FRAME);
597 entry = vmc->pmap[i].pte_num;
598 vmc->pmap[i].old_pte = pte[entry];
599 pte[entry] = page | PG_V | PG_RW | PG_U;
600 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
601 }
602
603 vmf->vmf_trapno = intnum;
604 critical_enter();
605 retval = vm86_bioscall(vmf);
606 critical_exit();
607
608 for (i = 0; i < vmc->npages; i++) {
609 entry = vmc->pmap[i].pte_num;
610 pte[entry] = vmc->pmap[i].old_pte;
611 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
612 }
613 mtx_unlock(&vm86_lock);
614
615 return (retval);
616 }
617
618 vm_offset_t
619 vm86_getaddr(struct vm86context *vmc, u_short sel, u_short off)
620 {
621 int i, page;
622 vm_offset_t addr;
623
624 addr = (vm_offset_t)MAKE_ADDR(sel, off);
625 page = addr >> PAGE_SHIFT;
626 for (i = 0; i < vmc->npages; i++)
627 if (page == vmc->pmap[i].pte_num)
628 return (vmc->pmap[i].kva + (addr & PAGE_MASK));
629 return (0);
630 }
631
632 int
633 vm86_getptr(struct vm86context *vmc, vm_offset_t kva, u_short *sel,
634 u_short *off)
635 {
636 int i;
637
638 for (i = 0; i < vmc->npages; i++)
639 if (kva >= vmc->pmap[i].kva &&
640 kva < vmc->pmap[i].kva + PAGE_SIZE) {
641 *off = kva - vmc->pmap[i].kva;
642 *sel = vmc->pmap[i].pte_num << 8;
643 return (1);
644 }
645 return (0);
646 }
647
648 int
649 vm86_sysarch(struct thread *td, char *args)
650 {
651 int error = 0;
652 struct i386_vm86_args ua;
653 struct vm86_kernel *vm86;
654
655 if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
656 return (error);
657
658 if (td->td_pcb->pcb_ext == 0)
659 if ((error = i386_extend_pcb(td)) != 0)
660 return (error);
661 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
662
663 switch (ua.sub_op) {
664 case VM86_INIT: {
665 struct vm86_init_args sa;
666
667 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
668 return (error);
669 if (cpu_feature & CPUID_VME)
670 vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
671 else
672 vm86->vm86_has_vme = 0;
673 vm86->vm86_inited = 1;
674 vm86->vm86_debug = sa.debug;
675 bcopy(&sa.int_map, vm86->vm86_intmap, 32);
676 }
677 break;
678
679 #if 0
680 case VM86_SET_VME: {
681 struct vm86_vme_args sa;
682
683 if ((cpu_feature & CPUID_VME) == 0)
684 return (ENODEV);
685
686 if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
687 return (error);
688 if (sa.state)
689 load_cr4(rcr4() | CR4_VME);
690 else
691 load_cr4(rcr4() & ~CR4_VME);
692 }
693 break;
694 #endif
695
696 case VM86_GET_VME: {
697 struct vm86_vme_args sa;
698
699 sa.state = (rcr4() & CR4_VME ? 1 : 0);
700 error = copyout(&sa, ua.sub_args, sizeof(sa));
701 }
702 break;
703
704 case VM86_INTCALL: {
705 struct vm86_intcall_args sa;
706
707 if ((error = priv_check(td, PRIV_VM86_INTCALL)))
708 return (error);
709 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
710 return (error);
711 if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
712 return (error);
713 error = copyout(&sa, ua.sub_args, sizeof(sa));
714 }
715 break;
716
717 default:
718 error = EINVAL;
719 }
720 return (error);
721 }
Cache object: f2e3bcf42fa15caa28a202d1cb546d38
|