The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/vm86.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1997 Jonathan Lemon
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/priv.h>
   35 #include <sys/proc.h>
   36 #include <sys/lock.h>
   37 #include <sys/malloc.h>
   38 #include <sys/mutex.h>
   39 
   40 #include <vm/vm.h>
   41 #include <vm/pmap.h>
   42 #include <vm/vm_map.h>
   43 #include <vm/vm_page.h>
   44 
   45 #include <machine/md_var.h>
   46 #include <machine/pcb.h>
   47 #include <machine/pcb_ext.h>
   48 #include <machine/psl.h>
   49 #include <machine/specialreg.h>
   50 #include <machine/sysarch.h>
   51 
   52 extern int vm86pa;
   53 extern struct pcb *vm86pcb;
   54 
   55 static struct mtx vm86_lock;
   56 
   57 extern int vm86_bioscall(struct vm86frame *);
   58 extern void vm86_biosret(struct vm86frame *);
   59 
   60 void vm86_prepcall(struct vm86frame *);
   61 
   62 struct system_map {
   63         int             type;
   64         vm_offset_t     start;
   65         vm_offset_t     end;
   66 };
   67 
   68 #define HLT     0xf4
   69 #define CLI     0xfa
   70 #define STI     0xfb
   71 #define PUSHF   0x9c
   72 #define POPF    0x9d
   73 #define INTn    0xcd
   74 #define IRET    0xcf
   75 #define CALLm   0xff
   76 #define OPERAND_SIZE_PREFIX     0x66
   77 #define ADDRESS_SIZE_PREFIX     0x67
   78 #define PUSH_MASK       ~(PSL_VM | PSL_RF | PSL_I)
   79 #define POP_MASK        ~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
   80 
   81 static int
   82 vm86_suword16(volatile void *base, int word)
   83 {
   84 
   85         if (curthread->td_critnest != 0) {
   86                 *(volatile uint16_t *)base = word;
   87                 return (0);
   88         }
   89         return (suword16(base, word));
   90 }
   91 
   92 static int
   93 vm86_suword(volatile void *base, long word)
   94 {
   95 
   96         if (curthread->td_critnest != 0) {
   97                 *(volatile long *)base = word;
   98                 return (0);
   99         }
  100         return (suword(base, word));
  101 }
  102 
  103 static int
  104 vm86_fubyte(volatile const void *base)
  105 {
  106 
  107         if (curthread->td_critnest != 0)
  108                 return (*(volatile const u_char *)base);
  109         return (fubyte(base));
  110 }
  111 
  112 static int
  113 vm86_fuword16(volatile const void *base)
  114 {
  115 
  116         if (curthread->td_critnest != 0)
  117                 return (*(volatile const uint16_t *)base);
  118         return (fuword16(base));
  119 }
  120 
  121 static long
  122 vm86_fuword(volatile const void *base)
  123 {
  124 
  125         if (curthread->td_critnest != 0)
  126                 return (*(volatile const long *)base);
  127         return (fuword(base));
  128 }
  129 
  130 static __inline caddr_t
  131 MAKE_ADDR(u_short sel, u_short off)
  132 {
  133         return ((caddr_t)((sel << 4) + off));
  134 }
  135 
  136 static __inline void
  137 GET_VEC(u_int vec, u_short *sel, u_short *off)
  138 {
  139         *sel = vec >> 16;
  140         *off = vec & 0xffff;
  141 }
  142 
  143 static __inline u_int
  144 MAKE_VEC(u_short sel, u_short off)
  145 {
  146         return ((sel << 16) | off);
  147 }
  148 
  149 static __inline void
  150 PUSH(u_short x, struct vm86frame *vmf)
  151 {
  152         vmf->vmf_sp -= 2;
  153         vm86_suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
  154 }
  155 
  156 static __inline void
  157 PUSHL(u_int x, struct vm86frame *vmf)
  158 {
  159         vmf->vmf_sp -= 4;
  160         vm86_suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
  161 }
  162 
  163 static __inline u_short
  164 POP(struct vm86frame *vmf)
  165 {
  166         u_short x = vm86_fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
  167 
  168         vmf->vmf_sp += 2;
  169         return (x);
  170 }
  171 
  172 static __inline u_int
  173 POPL(struct vm86frame *vmf)
  174 {
  175         u_int x = vm86_fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
  176 
  177         vmf->vmf_sp += 4;
  178         return (x);
  179 }
  180 
  181 int
  182 vm86_emulate(struct vm86frame *vmf)
  183 {
  184         struct vm86_kernel *vm86;
  185         caddr_t addr;
  186         u_char i_byte;
  187         u_int temp_flags;
  188         int inc_ip = 1;
  189         int retcode = 0;
  190 
  191         /*
  192          * pcb_ext contains the address of the extension area, or zero if
  193          * the extension is not present.  (This check should not be needed,
  194          * as we can't enter vm86 mode until we set up an extension area)
  195          */
  196         if (curpcb->pcb_ext == 0)
  197                 return (SIGBUS);
  198         vm86 = &curpcb->pcb_ext->ext_vm86;
  199 
  200         if (vmf->vmf_eflags & PSL_T)
  201                 retcode = SIGTRAP;
  202 
  203         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
  204         i_byte = vm86_fubyte(addr);
  205         if (i_byte == ADDRESS_SIZE_PREFIX) {
  206                 i_byte = vm86_fubyte(++addr);
  207                 inc_ip++;
  208         }
  209 
  210         if (vm86->vm86_has_vme) {
  211                 switch (i_byte) {
  212                 case OPERAND_SIZE_PREFIX:
  213                         i_byte = vm86_fubyte(++addr);
  214                         inc_ip++;
  215                         switch (i_byte) {
  216                         case PUSHF:
  217                                 if (vmf->vmf_eflags & PSL_VIF)
  218                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
  219                                             | PSL_IOPL | PSL_I, vmf);
  220                                 else
  221                                         PUSHL((vmf->vmf_eflags & PUSH_MASK)
  222                                             | PSL_IOPL, vmf);
  223                                 vmf->vmf_ip += inc_ip;
  224                                 return (retcode);
  225 
  226                         case POPF:
  227                                 temp_flags = POPL(vmf) & POP_MASK;
  228                                 vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
  229                                     | temp_flags | PSL_VM | PSL_I;
  230                                 vmf->vmf_ip += inc_ip;
  231                                 if (temp_flags & PSL_I) {
  232                                         vmf->vmf_eflags |= PSL_VIF;
  233                                         if (vmf->vmf_eflags & PSL_VIP)
  234                                                 break;
  235                                 } else {
  236                                         vmf->vmf_eflags &= ~PSL_VIF;
  237                                 }
  238                                 return (retcode);
  239                         }
  240                         break;
  241 
  242                 /* VME faults here if VIP is set, but does not set VIF. */
  243                 case STI:
  244                         vmf->vmf_eflags |= PSL_VIF;
  245                         vmf->vmf_ip += inc_ip;
  246                         if ((vmf->vmf_eflags & PSL_VIP) == 0) {
  247                                 uprintf("fatal sti\n");
  248                                 return (SIGKILL);
  249                         }
  250                         break;
  251 
  252                 /* VME if no redirection support */
  253                 case INTn:
  254                         break;
  255 
  256                 /* VME if trying to set PSL_T, or PSL_I when VIP is set */
  257                 case POPF:
  258                         temp_flags = POP(vmf) & POP_MASK;
  259                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
  260                             | temp_flags | PSL_VM | PSL_I;
  261                         vmf->vmf_ip += inc_ip;
  262                         if (temp_flags & PSL_I) {
  263                                 vmf->vmf_eflags |= PSL_VIF;
  264                                 if (vmf->vmf_eflags & PSL_VIP)
  265                                         break;
  266                         } else {
  267                                 vmf->vmf_eflags &= ~PSL_VIF;
  268                         }
  269                         return (retcode);
  270 
  271                 /* VME if trying to set PSL_T, or PSL_I when VIP is set */
  272                 case IRET:
  273                         vmf->vmf_ip = POP(vmf);
  274                         vmf->vmf_cs = POP(vmf);
  275                         temp_flags = POP(vmf) & POP_MASK;
  276                         vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
  277                             | temp_flags | PSL_VM | PSL_I;
  278                         if (temp_flags & PSL_I) {
  279                                 vmf->vmf_eflags |= PSL_VIF;
  280                                 if (vmf->vmf_eflags & PSL_VIP)
  281                                         break;
  282                         } else {
  283                                 vmf->vmf_eflags &= ~PSL_VIF;
  284                         }
  285                         return (retcode);
  286 
  287                 }
  288                 return (SIGBUS);
  289         }
  290 
  291         switch (i_byte) {
  292         case OPERAND_SIZE_PREFIX:
  293                 i_byte = vm86_fubyte(++addr);
  294                 inc_ip++;
  295                 switch (i_byte) {
  296                 case PUSHF:
  297                         if (vm86->vm86_eflags & PSL_VIF)
  298                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
  299                                     | PSL_IOPL | PSL_I, vmf);
  300                         else
  301                                 PUSHL((vmf->vmf_flags & PUSH_MASK)
  302                                     | PSL_IOPL, vmf);
  303                         vmf->vmf_ip += inc_ip;
  304                         return (retcode);
  305 
  306                 case POPF:
  307                         temp_flags = POPL(vmf) & POP_MASK;
  308                         vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
  309                             | temp_flags | PSL_VM | PSL_I;
  310                         vmf->vmf_ip += inc_ip;
  311                         if (temp_flags & PSL_I) {
  312                                 vm86->vm86_eflags |= PSL_VIF;
  313                                 if (vm86->vm86_eflags & PSL_VIP)
  314                                         break;
  315                         } else {
  316                                 vm86->vm86_eflags &= ~PSL_VIF;
  317                         }
  318                         return (retcode);
  319                 }
  320                 return (SIGBUS);
  321 
  322         case CLI:
  323                 vm86->vm86_eflags &= ~PSL_VIF;
  324                 vmf->vmf_ip += inc_ip;
  325                 return (retcode);
  326 
  327         case STI:
  328                 /* if there is a pending interrupt, go to the emulator */
  329                 vm86->vm86_eflags |= PSL_VIF;
  330                 vmf->vmf_ip += inc_ip;
  331                 if (vm86->vm86_eflags & PSL_VIP)
  332                         break;
  333                 return (retcode);
  334 
  335         case PUSHF:
  336                 if (vm86->vm86_eflags & PSL_VIF)
  337                         PUSH((vmf->vmf_flags & PUSH_MASK)
  338                             | PSL_IOPL | PSL_I, vmf);
  339                 else
  340                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
  341                 vmf->vmf_ip += inc_ip;
  342                 return (retcode);
  343 
  344         case INTn:
  345                 i_byte = vm86_fubyte(addr + 1);
  346                 if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
  347                         break;
  348                 if (vm86->vm86_eflags & PSL_VIF)
  349                         PUSH((vmf->vmf_flags & PUSH_MASK)
  350                             | PSL_IOPL | PSL_I, vmf);
  351                 else
  352                         PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
  353                 PUSH(vmf->vmf_cs, vmf);
  354                 PUSH(vmf->vmf_ip + inc_ip + 1, vmf);    /* increment IP */
  355                 GET_VEC(vm86_fuword((caddr_t)(i_byte * 4)),
  356                      &vmf->vmf_cs, &vmf->vmf_ip);
  357                 vmf->vmf_flags &= ~PSL_T;
  358                 vm86->vm86_eflags &= ~PSL_VIF;
  359                 return (retcode);
  360 
  361         case IRET:
  362                 vmf->vmf_ip = POP(vmf);
  363                 vmf->vmf_cs = POP(vmf);
  364                 temp_flags = POP(vmf) & POP_MASK;
  365                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
  366                     | temp_flags | PSL_VM | PSL_I;
  367                 if (temp_flags & PSL_I) {
  368                         vm86->vm86_eflags |= PSL_VIF;
  369                         if (vm86->vm86_eflags & PSL_VIP)
  370                                 break;
  371                 } else {
  372                         vm86->vm86_eflags &= ~PSL_VIF;
  373                 }
  374                 return (retcode);
  375 
  376         case POPF:
  377                 temp_flags = POP(vmf) & POP_MASK;
  378                 vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
  379                     | temp_flags | PSL_VM | PSL_I;
  380                 vmf->vmf_ip += inc_ip;
  381                 if (temp_flags & PSL_I) {
  382                         vm86->vm86_eflags |= PSL_VIF;
  383                         if (vm86->vm86_eflags & PSL_VIP)
  384                                 break;
  385                 } else {
  386                         vm86->vm86_eflags &= ~PSL_VIF;
  387                 }
  388                 return (retcode);
  389         }
  390         return (SIGBUS);
  391 }
  392 
  393 #define PGTABLE_SIZE    ((1024 + 64) * 1024 / PAGE_SIZE)
  394 #define INTMAP_SIZE     32
  395 #define IOMAP_SIZE      ctob(IOPAGES)
  396 #define TSS_SIZE \
  397         (sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
  398          INTMAP_SIZE + IOMAP_SIZE + 1)
  399 
  400 struct vm86_layout {
  401         pt_entry_t      vml_pgtbl[PGTABLE_SIZE];
  402         struct  pcb vml_pcb;
  403         struct  pcb_ext vml_ext;
  404         char    vml_intmap[INTMAP_SIZE];
  405         char    vml_iomap[IOMAP_SIZE];
  406         char    vml_iomap_trailer;
  407 };
  408 
  409 void
  410 vm86_initialize(void)
  411 {
  412         int i;
  413         u_int *addr;
  414         struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
  415         struct pcb *pcb;
  416         struct pcb_ext *ext;
  417         struct soft_segment_descriptor ssd = {
  418                 0,                      /* segment base address (overwritten) */
  419                 0,                      /* length (overwritten) */
  420                 SDT_SYS386TSS,          /* segment type */
  421                 0,                      /* priority level */
  422                 1,                      /* descriptor present */
  423                 0, 0,
  424                 0,                      /* default 16 size */
  425                 0                       /* granularity */
  426         };
  427 
  428         /*
  429          * this should be a compile time error, but cpp doesn't grok sizeof().
  430          */
  431         if (sizeof(struct vm86_layout) > ctob(3))
  432                 panic("struct vm86_layout exceeds space allocated in locore.s");
  433 
  434         /*
  435          * Below is the memory layout that we use for the vm86 region.
  436          *
  437          * +--------+
  438          * |        | 
  439          * |        |
  440          * | page 0 |       
  441          * |        | +--------+
  442          * |        | | stack  |
  443          * +--------+ +--------+ <--------- vm86paddr
  444          * |        | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
  445          * |        | +--------+
  446          * |        | |  PCB   | size: ~240 bytes
  447          * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
  448          * |        | +--------+
  449          * |        | |int map |
  450          * |        | +--------+
  451          * +--------+ |        |
  452          * | page 2 | |  I/O   |
  453          * +--------+ | bitmap |
  454          * | page 3 | |        |
  455          * |        | +--------+
  456          * +--------+ 
  457          */
  458 
  459         /*
  460          * A rudimentary PCB must be installed, in order to get to the
  461          * PCB extension area.  We use the PCB area as a scratchpad for
  462          * data storage, the layout of which is shown below.
  463          *
  464          * pcb_esi      = new PTD entry 0
  465          * pcb_ebp      = pointer to frame on vm86 stack
  466          * pcb_esp      =    stack frame pointer at time of switch
  467          * pcb_ebx      = va of vm86 page table
  468          * pcb_eip      =    argument pointer to initial call
  469          * pcb_vm86[0]  =    saved TSS descriptor, word 0
  470          * pcb_vm86[1]  =    saved TSS descriptor, word 1
  471          */
  472 #define new_ptd         pcb_esi
  473 #define vm86_frame      pcb_ebp
  474 #define pgtable_va      pcb_ebx
  475 
  476         pcb = &vml->vml_pcb;
  477         ext = &vml->vml_ext;
  478 
  479         mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);
  480 
  481         bzero(pcb, sizeof(struct pcb));
  482         pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
  483         pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
  484         pcb->pgtable_va = vm86paddr;
  485         pcb->pcb_flags = PCB_VM86CALL; 
  486         pcb->pcb_ext = ext;
  487 
  488         bzero(ext, sizeof(struct pcb_ext)); 
  489         ext->ext_tss.tss_esp0 = vm86paddr;
  490         ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
  491         ext->ext_tss.tss_ioopt = 
  492                 ((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
  493         ext->ext_iomap = vml->vml_iomap;
  494         ext->ext_vm86.vm86_intmap = vml->vml_intmap;
  495 
  496         if (cpu_feature & CPUID_VME)
  497                 ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
  498 
  499         addr = (u_int *)ext->ext_vm86.vm86_intmap;
  500         for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
  501                 *addr++ = 0;
  502         vml->vml_iomap_trailer = 0xff;
  503 
  504         ssd.ssd_base = (u_int)&ext->ext_tss;
  505         ssd.ssd_limit = TSS_SIZE - 1; 
  506         ssdtosd(&ssd, &ext->ext_tssd);
  507 
  508         vm86pcb = pcb;
  509 
  510 #if 0
  511         /*
  512          * use whatever is leftover of the vm86 page layout as a
  513          * message buffer so we can capture early output.
  514          */
  515         msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
  516             ctob(3) - sizeof(struct vm86_layout));
  517 #endif
  518 }
  519 
  520 vm_offset_t
  521 vm86_getpage(struct vm86context *vmc, int pagenum)
  522 {
  523         int i;
  524 
  525         for (i = 0; i < vmc->npages; i++)
  526                 if (vmc->pmap[i].pte_num == pagenum)
  527                         return (vmc->pmap[i].kva);
  528         return (0);
  529 }
  530 
  531 vm_offset_t
  532 vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
  533 {
  534         int i, flags = 0;
  535 
  536         for (i = 0; i < vmc->npages; i++)
  537                 if (vmc->pmap[i].pte_num == pagenum)
  538                         goto overlap;
  539 
  540         if (vmc->npages == VM86_PMAPSIZE)
  541                 goto full;                      /* XXX grow map? */
  542 
  543         if (kva == 0) {
  544                 kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
  545                 flags = VMAP_MALLOC;
  546         }
  547 
  548         i = vmc->npages++;
  549         vmc->pmap[i].flags = flags;
  550         vmc->pmap[i].kva = kva;
  551         vmc->pmap[i].pte_num = pagenum;
  552         return (kva);
  553 overlap:
  554         panic("vm86_addpage: overlap");
  555 full:
  556         panic("vm86_addpage: not enough room");
  557 }
  558 
  559 /*
  560  * called from vm86_bioscall, while in vm86 address space, to finalize setup.
  561  */
  562 void
  563 vm86_prepcall(struct vm86frame *vmf)
  564 {
  565         struct vm86_kernel *vm86;
  566         uint32_t *stack;
  567         uint8_t *code;
  568 
  569         code = (void *)0xa00;
  570         stack = (void *)(0x1000 - 2);   /* keep aligned */
  571         if ((vmf->vmf_trapno & PAGE_MASK) <= 0xff) {
  572                 /* interrupt call requested */
  573                 code[0] = INTn;
  574                 code[1] = vmf->vmf_trapno & 0xff;
  575                 code[2] = HLT;
  576                 vmf->vmf_ip = (uintptr_t)code;
  577                 vmf->vmf_cs = 0;
  578         } else {
  579                 code[0] = HLT;
  580                 stack--;
  581                 stack[0] = MAKE_VEC(0, (uintptr_t)code);
  582         }
  583         vmf->vmf_sp = (uintptr_t)stack;
  584         vmf->vmf_ss = 0;
  585         vmf->kernel_fs = vmf->kernel_es = vmf->kernel_ds = 0;
  586         vmf->vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
  587 
  588         vm86 = &curpcb->pcb_ext->ext_vm86;
  589         if (!vm86->vm86_has_vme) 
  590                 vm86->vm86_eflags = vmf->vmf_eflags;  /* save VIF, VIP */
  591 }
  592 
  593 /*
  594  * vm86 trap handler; determines whether routine succeeded or not.
  595  * Called while in vm86 space, returns to calling process.
  596  */
  597 void
  598 vm86_trap(struct vm86frame *vmf)
  599 {
  600         void (*p)(struct vm86frame *);
  601         caddr_t addr;
  602 
  603         /* "should not happen" */
  604         if ((vmf->vmf_eflags & PSL_VM) == 0)
  605                 panic("vm86_trap called, but not in vm86 mode");
  606 
  607         addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
  608         if (*(u_char *)addr == HLT)
  609                 vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
  610         else
  611                 vmf->vmf_trapno = vmf->vmf_trapno << 16;
  612 
  613         p = (void (*)(struct vm86frame *))((uintptr_t)vm86_biosret +
  614             setidt_disp);
  615         p(vmf);
  616 }
  617 
  618 int
  619 vm86_intcall(int intnum, struct vm86frame *vmf)
  620 {
  621         int (*p)(struct vm86frame *);
  622         int retval;
  623 
  624         if (intnum < 0 || intnum > 0xff)
  625                 return (EINVAL);
  626 
  627         vmf->vmf_trapno = intnum;
  628         p = (int (*)(struct vm86frame *))((uintptr_t)vm86_bioscall +
  629             setidt_disp);
  630         mtx_lock(&vm86_lock);
  631         critical_enter();
  632         retval = p(vmf);
  633         critical_exit();
  634         mtx_unlock(&vm86_lock);
  635         return (retval);
  636 }
  637 
  638 /*
  639  * struct vm86context contains the page table to use when making
  640  * vm86 calls.  If intnum is a valid interrupt number (0-255), then
  641  * the "interrupt trampoline" will be used, otherwise we use the
  642  * caller's cs:ip routine.  
  643  */
  644 int
  645 vm86_datacall(int intnum, struct vm86frame *vmf, struct vm86context *vmc)
  646 {
  647         pt_entry_t *pte;
  648         int (*p)(struct vm86frame *);
  649         vm_paddr_t page;
  650         int i, entry, retval;
  651 
  652         pte = (pt_entry_t *)vm86paddr;
  653         mtx_lock(&vm86_lock);
  654         for (i = 0; i < vmc->npages; i++) {
  655                 page = vtophys(vmc->pmap[i].kva & PG_FRAME);
  656                 entry = vmc->pmap[i].pte_num; 
  657                 vmc->pmap[i].old_pte = pte[entry];
  658                 pte[entry] = page | PG_V | PG_RW | PG_U;
  659                 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
  660         }
  661 
  662         vmf->vmf_trapno = intnum;
  663         p = (int (*)(struct vm86frame *))((uintptr_t)vm86_bioscall +
  664             setidt_disp);
  665         critical_enter();
  666         retval = p(vmf);
  667         critical_exit();
  668 
  669         for (i = 0; i < vmc->npages; i++) {
  670                 entry = vmc->pmap[i].pte_num;
  671                 pte[entry] = vmc->pmap[i].old_pte;
  672                 pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
  673         }
  674         mtx_unlock(&vm86_lock);
  675 
  676         return (retval);
  677 }
  678 
  679 vm_offset_t
  680 vm86_getaddr(struct vm86context *vmc, u_short sel, u_short off)
  681 {
  682         int i, page;
  683         vm_offset_t addr;
  684 
  685         addr = (vm_offset_t)MAKE_ADDR(sel, off);
  686         page = addr >> PAGE_SHIFT;
  687         for (i = 0; i < vmc->npages; i++)
  688                 if (page == vmc->pmap[i].pte_num)
  689                         return (vmc->pmap[i].kva + (addr & PAGE_MASK));
  690         return (0);
  691 }
  692 
  693 int
  694 vm86_getptr(struct vm86context *vmc, vm_offset_t kva, u_short *sel,
  695      u_short *off)
  696 {
  697         int i;
  698 
  699         for (i = 0; i < vmc->npages; i++)
  700                 if (kva >= vmc->pmap[i].kva &&
  701                     kva < vmc->pmap[i].kva + PAGE_SIZE) {
  702                         *off = kva - vmc->pmap[i].kva;
  703                         *sel = vmc->pmap[i].pte_num << 8;
  704                         return (1);
  705                 }
  706         return (0);
  707 }
  708         
  709 int
  710 vm86_sysarch(struct thread *td, char *args)
  711 {
  712         int error = 0;
  713         struct i386_vm86_args ua;
  714         struct vm86_kernel *vm86;
  715 
  716         if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
  717                 return (error);
  718 
  719         if (td->td_pcb->pcb_ext == 0)
  720                 if ((error = i386_extend_pcb(td)) != 0)
  721                         return (error);
  722         vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  723 
  724         switch (ua.sub_op) {
  725         case VM86_INIT: {
  726                 struct vm86_init_args sa;
  727 
  728                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
  729                         return (error);
  730                 if (cpu_feature & CPUID_VME)
  731                         vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
  732                 else
  733                         vm86->vm86_has_vme = 0;
  734                 vm86->vm86_inited = 1;
  735                 vm86->vm86_debug = sa.debug;
  736                 bcopy(&sa.int_map, vm86->vm86_intmap, 32);
  737                 }
  738                 break;
  739 
  740 #if 0
  741         case VM86_SET_VME: {
  742                 struct vm86_vme_args sa;
  743         
  744                 if ((cpu_feature & CPUID_VME) == 0)
  745                         return (ENODEV);
  746 
  747                 if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
  748                         return (error);
  749                 if (sa.state)
  750                         load_cr4(rcr4() | CR4_VME);
  751                 else
  752                         load_cr4(rcr4() & ~CR4_VME);
  753                 }
  754                 break;
  755 #endif
  756 
  757         case VM86_GET_VME: {
  758                 struct vm86_vme_args sa;
  759 
  760                 sa.state = (rcr4() & CR4_VME ? 1 : 0);
  761                 error = copyout(&sa, ua.sub_args, sizeof(sa));
  762                 }
  763                 break;
  764 
  765         case VM86_INTCALL: {
  766                 struct vm86_intcall_args sa;
  767 
  768                 if ((error = priv_check(td, PRIV_VM86_INTCALL)))
  769                         return (error);
  770                 if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
  771                         return (error);
  772                 if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
  773                         return (error);
  774                 error = copyout(&sa, ua.sub_args, sizeof(sa));
  775                 }
  776                 break;
  777 
  778         default:
  779                 error = EINVAL;
  780         }
  781         return (error);
  782 }

Cache object: 93e1e5e4e0fa575c506dbf243ccca246


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.