The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/10.0/sys/i386/i386/vm_machdep.c 255827 2013-09-23 20:14:15Z kib $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_npx.h"
   48 #include "opt_reset.h"
   49 #include "opt_cpu.h"
   50 #include "opt_xbox.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/bio.h>
   55 #include <sys/buf.h>
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mbuf.h>
   61 #include <sys/mutex.h>
   62 #include <sys/pioctl.h>
   63 #include <sys/proc.h>
   64 #include <sys/sysent.h>
   65 #include <sys/sf_buf.h>
   66 #include <sys/smp.h>
   67 #include <sys/sched.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/unistd.h>
   70 #include <sys/vnode.h>
   71 #include <sys/vmmeter.h>
   72 
   73 #include <machine/cpu.h>
   74 #include <machine/cputypes.h>
   75 #include <machine/md_var.h>
   76 #include <machine/pcb.h>
   77 #include <machine/pcb_ext.h>
   78 #include <machine/smp.h>
   79 #include <machine/vm86.h>
   80 
   81 #ifdef CPU_ELAN
   82 #include <machine/elan_mmcr.h>
   83 #endif
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_extern.h>
   87 #include <vm/vm_kern.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_param.h>
   91 
   92 #ifdef XEN
   93 #include <xen/hypervisor.h>
   94 #endif
   95 #ifdef PC98
   96 #include <pc98/cbus/cbus.h>
   97 #else
   98 #include <x86/isa/isa.h>
   99 #endif
  100 
  101 #ifdef XBOX
  102 #include <machine/xbox.h>
  103 #endif
  104 
  105 #ifndef NSFBUFS
  106 #define NSFBUFS         (512 + maxusers * 16)
  107 #endif
  108 
  109 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
  110     "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
  111 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
  112     "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
  113 
  114 static void     cpu_reset_real(void);
  115 #ifdef SMP
  116 static void     cpu_reset_proxy(void);
  117 static u_int    cpu_reset_proxyid;
  118 static volatile u_int   cpu_reset_proxy_active;
  119 #endif
  120 
  121 static int nsfbufs;
  122 static int nsfbufspeak;
  123 static int nsfbufsused;
  124 
  125 SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RDTUN, &nsfbufs, 0,
  126     "Maximum number of sendfile(2) sf_bufs available");
  127 SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufspeak, CTLFLAG_RD, &nsfbufspeak, 0,
  128     "Number of sendfile(2) sf_bufs at peak usage");
  129 SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufsused, CTLFLAG_RD, &nsfbufsused, 0,
  130     "Number of sendfile(2) sf_bufs in use");
  131 
  132 static void     sf_buf_init(void *arg);
  133 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
  134 
  135 LIST_HEAD(sf_head, sf_buf);
  136 
  137 /*
  138  * A hash table of active sendfile(2) buffers
  139  */
  140 static struct sf_head *sf_buf_active;
  141 static u_long sf_buf_hashmask;
  142 
  143 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
  144 
  145 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
  146 static u_int    sf_buf_alloc_want;
  147 
  148 /*
  149  * A lock used to synchronize access to the hash table and free list
  150  */
  151 static struct mtx sf_buf_lock;
  152 
  153 extern int      _ucodesel, _udatasel;
  154 
  155 /*
  156  * Finish a fork operation, with process p2 nearly set up.
  157  * Copy and update the pcb, set up the stack so that the child
  158  * ready to run and return to user mode.
  159  */
  160 void
  161 cpu_fork(td1, p2, td2, flags)
  162         register struct thread *td1;
  163         register struct proc *p2;
  164         struct thread *td2;
  165         int flags;
  166 {
  167         register struct proc *p1;
  168         struct pcb *pcb2;
  169         struct mdproc *mdp2;
  170 
  171         p1 = td1->td_proc;
  172         if ((flags & RFPROC) == 0) {
  173                 if ((flags & RFMEM) == 0) {
  174                         /* unshare user LDT */
  175                         struct mdproc *mdp1 = &p1->p_md;
  176                         struct proc_ldt *pldt, *pldt1;
  177 
  178                         mtx_lock_spin(&dt_lock);
  179                         if ((pldt1 = mdp1->md_ldt) != NULL &&
  180                             pldt1->ldt_refcnt > 1) {
  181                                 pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
  182                                 if (pldt == NULL)
  183                                         panic("could not copy LDT");
  184                                 mdp1->md_ldt = pldt;
  185                                 set_user_ldt(mdp1);
  186                                 user_ldt_deref(pldt1);
  187                         } else
  188                                 mtx_unlock_spin(&dt_lock);
  189                 }
  190                 return;
  191         }
  192 
  193         /* Ensure that td1's pcb is up to date. */
  194         if (td1 == curthread)
  195                 td1->td_pcb->pcb_gs = rgs();
  196 #ifdef DEV_NPX
  197         critical_enter();
  198         if (PCPU_GET(fpcurthread) == td1)
  199                 npxsave(td1->td_pcb->pcb_save);
  200         critical_exit();
  201 #endif
  202 
  203         /* Point the pcb to the top of the stack */
  204         pcb2 = (struct pcb *)(td2->td_kstack +
  205             td2->td_kstack_pages * PAGE_SIZE) - 1;
  206         td2->td_pcb = pcb2;
  207 
  208         /* Copy td1's pcb */
  209         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  210 
  211         /* Properly initialize pcb_save */
  212         pcb2->pcb_save = &pcb2->pcb_user_save;
  213 
  214         /* Point mdproc and then copy over td1's contents */
  215         mdp2 = &p2->p_md;
  216         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  217 
  218         /*
  219          * Create a new fresh stack for the new process.
  220          * Copy the trap frame for the return to user mode as if from a
  221          * syscall.  This copies most of the user mode register values.
  222          * The -16 is so we can expand the trapframe if we go to vm86.
  223          */
  224         td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
  225         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  226 
  227         td2->td_frame->tf_eax = 0;              /* Child returns zero */
  228         td2->td_frame->tf_eflags &= ~PSL_C;     /* success */
  229         td2->td_frame->tf_edx = 1;
  230 
  231         /*
  232          * If the parent process has the trap bit set (i.e. a debugger had
  233          * single stepped the process to the system call), we need to clear
  234          * the trap flag from the new frame unless the debugger had set PF_FORK
  235          * on the parent.  Otherwise, the child will receive a (likely
  236          * unexpected) SIGTRAP when it executes the first instruction after
  237          * returning  to userland.
  238          */
  239         if ((p1->p_pfsflags & PF_FORK) == 0)
  240                 td2->td_frame->tf_eflags &= ~PSL_T;
  241 
  242         /*
  243          * Set registers for trampoline to user mode.  Leave space for the
  244          * return address on stack.  These are the kernel mode register values.
  245          */
  246 #ifdef PAE
  247         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
  248 #else
  249         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
  250 #endif
  251         pcb2->pcb_edi = 0;
  252         pcb2->pcb_esi = (int)fork_return;       /* fork_trampoline argument */
  253         pcb2->pcb_ebp = 0;
  254         pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
  255         pcb2->pcb_ebx = (int)td2;               /* fork_trampoline argument */
  256         pcb2->pcb_eip = (int)fork_trampoline;
  257         pcb2->pcb_psl = PSL_KERNEL;             /* ints disabled */
  258         /*-
  259          * pcb2->pcb_dr*:       cloned above.
  260          * pcb2->pcb_savefpu:   cloned above.
  261          * pcb2->pcb_flags:     cloned above.
  262          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  263          * pcb2->pcb_gs:        cloned above.
  264          * pcb2->pcb_ext:       cleared below.
  265          */
  266 
  267         /*
  268          * XXX don't copy the i/o pages.  this should probably be fixed.
  269          */
  270         pcb2->pcb_ext = 0;
  271 
  272         /* Copy the LDT, if necessary. */
  273         mtx_lock_spin(&dt_lock);
  274         if (mdp2->md_ldt != NULL) {
  275                 if (flags & RFMEM) {
  276                         mdp2->md_ldt->ldt_refcnt++;
  277                 } else {
  278                         mdp2->md_ldt = user_ldt_alloc(mdp2,
  279                             mdp2->md_ldt->ldt_len);
  280                         if (mdp2->md_ldt == NULL)
  281                                 panic("could not copy LDT");
  282                 }
  283         }
  284         mtx_unlock_spin(&dt_lock);
  285 
  286         /* Setup to release spin count in fork_exit(). */
  287         td2->td_md.md_spinlock_count = 1;
  288         /*
  289          * XXX XEN need to check on PSL_USER is handled
  290          */
  291         td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  292         /*
  293          * Now, cpu_switch() can schedule the new process.
  294          * pcb_esp is loaded pointing to the cpu_switch() stack frame
  295          * containing the return address when exiting cpu_switch.
  296          * This will normally be to fork_trampoline(), which will have
  297          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  298          * will set up a stack to call fork_return(p, frame); to complete
  299          * the return to user-mode.
  300          */
  301 }
  302 
  303 /*
  304  * Intercept the return address from a freshly forked process that has NOT
  305  * been scheduled yet.
  306  *
  307  * This is needed to make kernel threads stay in kernel mode.
  308  */
  309 void
  310 cpu_set_fork_handler(td, func, arg)
  311         struct thread *td;
  312         void (*func)(void *);
  313         void *arg;
  314 {
  315         /*
  316          * Note that the trap frame follows the args, so the function
  317          * is really called like this:  func(arg, frame);
  318          */
  319         td->td_pcb->pcb_esi = (int) func;       /* function */
  320         td->td_pcb->pcb_ebx = (int) arg;        /* first arg */
  321 }
  322 
  323 void
  324 cpu_exit(struct thread *td)
  325 {
  326 
  327         /*
  328          * If this process has a custom LDT, release it.  Reset pc->pcb_gs
  329          * and %gs before we free it in case they refer to an LDT entry.
  330          */
  331         mtx_lock_spin(&dt_lock);
  332         if (td->td_proc->p_md.md_ldt) {
  333                 td->td_pcb->pcb_gs = _udatasel;
  334                 load_gs(_udatasel);
  335                 user_ldt_free(td);
  336         } else
  337                 mtx_unlock_spin(&dt_lock);
  338 }
  339 
  340 void
  341 cpu_thread_exit(struct thread *td)
  342 {
  343 
  344 #ifdef DEV_NPX
  345         critical_enter();
  346         if (td == PCPU_GET(fpcurthread))
  347                 npxdrop();
  348         critical_exit();
  349 #endif
  350 
  351         /* Disable any hardware breakpoints. */
  352         if (td->td_pcb->pcb_flags & PCB_DBREGS) {
  353                 reset_dbregs();
  354                 td->td_pcb->pcb_flags &= ~PCB_DBREGS;
  355         }
  356 }
  357 
  358 void
  359 cpu_thread_clean(struct thread *td)
  360 {
  361         struct pcb *pcb;
  362 
  363         pcb = td->td_pcb; 
  364         if (pcb->pcb_ext != NULL) {
  365                 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
  366                 /*
  367                  * XXX do we need to move the TSS off the allocated pages
  368                  * before freeing them?  (not done here)
  369                  */
  370                 kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
  371                     ctob(IOPAGES + 1));
  372                 pcb->pcb_ext = NULL;
  373         }
  374 }
  375 
  376 void
  377 cpu_thread_swapin(struct thread *td)
  378 {
  379 }
  380 
  381 void
  382 cpu_thread_swapout(struct thread *td)
  383 {
  384 }
  385 
  386 void
  387 cpu_thread_alloc(struct thread *td)
  388 {
  389 
  390         td->td_pcb = (struct pcb *)(td->td_kstack +
  391             td->td_kstack_pages * PAGE_SIZE) - 1;
  392         td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
  393         td->td_pcb->pcb_ext = NULL; 
  394         td->td_pcb->pcb_save = &td->td_pcb->pcb_user_save;
  395 }
  396 
  397 void
  398 cpu_thread_free(struct thread *td)
  399 {
  400 
  401         cpu_thread_clean(td);
  402 }
  403 
  404 void
  405 cpu_set_syscall_retval(struct thread *td, int error)
  406 {
  407 
  408         switch (error) {
  409         case 0:
  410                 td->td_frame->tf_eax = td->td_retval[0];
  411                 td->td_frame->tf_edx = td->td_retval[1];
  412                 td->td_frame->tf_eflags &= ~PSL_C;
  413                 break;
  414 
  415         case ERESTART:
  416                 /*
  417                  * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
  418                  * 0x80 is 2 bytes. We saved this in tf_err.
  419                  */
  420                 td->td_frame->tf_eip -= td->td_frame->tf_err;
  421                 break;
  422 
  423         case EJUSTRETURN:
  424                 break;
  425 
  426         default:
  427                 if (td->td_proc->p_sysent->sv_errsize) {
  428                         if (error >= td->td_proc->p_sysent->sv_errsize)
  429                                 error = -1;     /* XXX */
  430                         else
  431                                 error = td->td_proc->p_sysent->sv_errtbl[error];
  432                 }
  433                 td->td_frame->tf_eax = error;
  434                 td->td_frame->tf_eflags |= PSL_C;
  435                 break;
  436         }
  437 }
  438 
  439 /*
  440  * Initialize machine state (pcb and trap frame) for a new thread about to
  441  * upcall. Put enough state in the new thread's PCB to get it to go back 
  442  * userret(), where we can intercept it again to set the return (upcall)
  443  * Address and stack, along with those from upcals that are from other sources
  444  * such as those generated in thread_userret() itself.
  445  */
  446 void
  447 cpu_set_upcall(struct thread *td, struct thread *td0)
  448 {
  449         struct pcb *pcb2;
  450 
  451         /* Point the pcb to the top of the stack. */
  452         pcb2 = td->td_pcb;
  453 
  454         /*
  455          * Copy the upcall pcb.  This loads kernel regs.
  456          * Those not loaded individually below get their default
  457          * values here.
  458          */
  459         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  460         pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE);
  461         pcb2->pcb_save = &pcb2->pcb_user_save;
  462 
  463         /*
  464          * Create a new fresh stack for the new thread.
  465          */
  466         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  467 
  468         /* If the current thread has the trap bit set (i.e. a debugger had
  469          * single stepped the process to the system call), we need to clear
  470          * the trap flag from the new frame. Otherwise, the new thread will
  471          * receive a (likely unexpected) SIGTRAP when it executes the first
  472          * instruction after returning to userland.
  473          */
  474         td->td_frame->tf_eflags &= ~PSL_T;
  475 
  476         /*
  477          * Set registers for trampoline to user mode.  Leave space for the
  478          * return address on stack.  These are the kernel mode register values.
  479          */
  480         pcb2->pcb_edi = 0;
  481         pcb2->pcb_esi = (int)fork_return;                   /* trampoline arg */
  482         pcb2->pcb_ebp = 0;
  483         pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
  484         pcb2->pcb_ebx = (int)td;                            /* trampoline arg */
  485         pcb2->pcb_eip = (int)fork_trampoline;
  486         pcb2->pcb_psl &= ~(PSL_I);      /* interrupts must be disabled */
  487         pcb2->pcb_gs = rgs();
  488         /*
  489          * If we didn't copy the pcb, we'd need to do the following registers:
  490          * pcb2->pcb_cr3:       cloned above.
  491          * pcb2->pcb_dr*:       cloned above.
  492          * pcb2->pcb_savefpu:   cloned above.
  493          * pcb2->pcb_flags:     cloned above.
  494          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  495          * pcb2->pcb_gs:        cloned above.
  496          * pcb2->pcb_ext:       cleared below.
  497          */
  498         pcb2->pcb_ext = NULL;
  499 
  500         /* Setup to release spin count in fork_exit(). */
  501         td->td_md.md_spinlock_count = 1;
  502         td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  503 }
  504 
  505 /*
  506  * Set that machine state for performing an upcall that has to
  507  * be done in thread_userret() so that those upcalls generated
  508  * in thread_userret() itself can be done as well.
  509  */
  510 void
  511 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  512         stack_t *stack)
  513 {
  514 
  515         /* 
  516          * Do any extra cleaning that needs to be done.
  517          * The thread may have optional components
  518          * that are not present in a fresh thread.
  519          * This may be a recycled thread so make it look
  520          * as though it's newly allocated.
  521          */
  522         cpu_thread_clean(td);
  523 
  524         /*
  525          * Set the trap frame to point at the beginning of the uts
  526          * function.
  527          */
  528         td->td_frame->tf_ebp = 0; 
  529         td->td_frame->tf_esp =
  530             (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
  531         td->td_frame->tf_eip = (int)entry;
  532 
  533         /*
  534          * Pass the address of the mailbox for this kse to the uts
  535          * function as a parameter on the stack.
  536          */
  537         suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
  538             (int)arg);
  539 }
  540 
  541 int
  542 cpu_set_user_tls(struct thread *td, void *tls_base)
  543 {
  544         struct segment_descriptor sd;
  545         uint32_t base;
  546 
  547         /*
  548          * Construct a descriptor and store it in the pcb for
  549          * the next context switch.  Also store it in the gdt
  550          * so that the load of tf_fs into %fs will activate it
  551          * at return to userland.
  552          */
  553         base = (uint32_t)tls_base;
  554         sd.sd_lobase = base & 0xffffff;
  555         sd.sd_hibase = (base >> 24) & 0xff;
  556         sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */
  557         sd.sd_hilimit = 0xf;
  558         sd.sd_type  = SDT_MEMRWA;
  559         sd.sd_dpl   = SEL_UPL;
  560         sd.sd_p     = 1;
  561         sd.sd_xx    = 0;
  562         sd.sd_def32 = 1;
  563         sd.sd_gran  = 1;
  564         critical_enter();
  565         /* set %gs */
  566         td->td_pcb->pcb_gsd = sd;
  567         if (td == curthread) {
  568                 PCPU_GET(fsgs_gdt)[1] = sd;
  569                 load_gs(GSEL(GUGS_SEL, SEL_UPL));
  570         }
  571         critical_exit();
  572         return (0);
  573 }
  574 
  575 /*
  576  * Convert kernel VA to physical address
  577  */
  578 vm_paddr_t
  579 kvtop(void *addr)
  580 {
  581         vm_paddr_t pa;
  582 
  583         pa = pmap_kextract((vm_offset_t)addr);
  584         if (pa == 0)
  585                 panic("kvtop: zero page frame");
  586         return (pa);
  587 }
  588 
  589 #ifdef SMP
  590 static void
  591 cpu_reset_proxy()
  592 {
  593         cpuset_t tcrp;
  594 
  595         cpu_reset_proxy_active = 1;
  596         while (cpu_reset_proxy_active == 1)
  597                 ;       /* Wait for other cpu to see that we've started */
  598         CPU_SETOF(cpu_reset_proxyid, &tcrp);
  599         stop_cpus(tcrp);
  600         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  601         DELAY(1000000);
  602         cpu_reset_real();
  603 }
  604 #endif
  605 
  606 void
  607 cpu_reset()
  608 {
  609 #ifdef XBOX
  610         if (arch_i386_is_xbox) {
  611                 /* Kick the PIC16L, it can reboot the box */
  612                 pic16l_reboot();
  613                 for (;;);
  614         }
  615 #endif
  616 
  617 #ifdef SMP
  618         cpuset_t map;
  619         u_int cnt;
  620 
  621         if (smp_active) {
  622                 map = all_cpus;
  623                 CPU_CLR(PCPU_GET(cpuid), &map);
  624                 CPU_NAND(&map, &stopped_cpus);
  625                 if (!CPU_EMPTY(&map)) {
  626                         printf("cpu_reset: Stopping other CPUs\n");
  627                         stop_cpus(map);
  628                 }
  629 
  630                 if (PCPU_GET(cpuid) != 0) {
  631                         cpu_reset_proxyid = PCPU_GET(cpuid);
  632                         cpustop_restartfunc = cpu_reset_proxy;
  633                         cpu_reset_proxy_active = 0;
  634                         printf("cpu_reset: Restarting BSP\n");
  635 
  636                         /* Restart CPU #0. */
  637                         /* XXX: restart_cpus(1 << 0); */
  638                         CPU_SETOF(0, &started_cpus);
  639                         wmb();
  640 
  641                         cnt = 0;
  642                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  643                                 cnt++;  /* Wait for BSP to announce restart */
  644                         if (cpu_reset_proxy_active == 0)
  645                                 printf("cpu_reset: Failed to restart BSP\n");
  646                         enable_intr();
  647                         cpu_reset_proxy_active = 2;
  648 
  649                         while (1);
  650                         /* NOTREACHED */
  651                 }
  652 
  653                 DELAY(1000000);
  654         }
  655 #endif
  656         cpu_reset_real();
  657         /* NOTREACHED */
  658 }
  659 
  660 static void
  661 cpu_reset_real()
  662 {
  663         struct region_descriptor null_idt;
  664 #ifndef PC98
  665         int b;
  666 #endif
  667 
  668         disable_intr();
  669 #ifdef XEN
  670         if (smp_processor_id() == 0)
  671                 HYPERVISOR_shutdown(SHUTDOWN_reboot);
  672         else
  673                 HYPERVISOR_shutdown(SHUTDOWN_poweroff);
  674 #endif 
  675 #ifdef CPU_ELAN
  676         if (elan_mmcr != NULL)
  677                 elan_mmcr->RESCFG = 1;
  678 #endif
  679 
  680         if (cpu == CPU_GEODE1100) {
  681                 /* Attempt Geode's own reset */
  682                 outl(0xcf8, 0x80009044ul);
  683                 outl(0xcfc, 0xf);
  684         }
  685 
  686 #ifdef PC98
  687         /*
  688          * Attempt to do a CPU reset via CPU reset port.
  689          */
  690         if ((inb(0x35) & 0xa0) != 0xa0) {
  691                 outb(0x37, 0x0f);               /* SHUT0 = 0. */
  692                 outb(0x37, 0x0b);               /* SHUT1 = 0. */
  693         }
  694         outb(0xf0, 0x00);               /* Reset. */
  695 #else
  696 #if !defined(BROKEN_KEYBOARD_RESET)
  697         /*
  698          * Attempt to do a CPU reset via the keyboard controller,
  699          * do not turn off GateA20, as any machine that fails
  700          * to do the reset here would then end up in no man's land.
  701          */
  702         outb(IO_KBD + 4, 0xFE);
  703         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  704 #endif
  705 
  706         /*
  707          * Attempt to force a reset via the Reset Control register at
  708          * I/O port 0xcf9.  Bit 2 forces a system reset when it
  709          * transitions from 0 to 1.  Bit 1 selects the type of reset
  710          * to attempt: 0 selects a "soft" reset, and 1 selects a
  711          * "hard" reset.  We try a "hard" reset.  The first write sets
  712          * bit 1 to select a "hard" reset and clears bit 2.  The
  713          * second write forces a 0 -> 1 transition in bit 2 to trigger
  714          * a reset.
  715          */
  716         outb(0xcf9, 0x2);
  717         outb(0xcf9, 0x6);
  718         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  719 
  720         /*
  721          * Attempt to force a reset via the Fast A20 and Init register
  722          * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
  723          * Bit 0 asserts INIT# when set to 1.  We are careful to only
  724          * preserve bit 1 while setting bit 0.  We also must clear bit
  725          * 0 before setting it if it isn't already clear.
  726          */
  727         b = inb(0x92);
  728         if (b != 0xff) {
  729                 if ((b & 0x1) != 0)
  730                         outb(0x92, b & 0xfe);
  731                 outb(0x92, b | 0x1);
  732                 DELAY(500000);  /* wait 0.5 sec to see if that did it */
  733         }
  734 #endif /* PC98 */
  735 
  736         printf("No known reset method worked, attempting CPU shutdown\n");
  737         DELAY(1000000); /* wait 1 sec for printf to complete */
  738 
  739         /* Wipe the IDT. */
  740         null_idt.rd_limit = 0;
  741         null_idt.rd_base = 0;
  742         lidt(&null_idt);
  743 
  744         /* "good night, sweet prince .... <THUNK!>" */
  745         breakpoint();
  746 
  747         /* NOTREACHED */
  748         while(1);
  749 }
  750 
  751 /*
  752  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  753  */
  754 static void
  755 sf_buf_init(void *arg)
  756 {
  757         struct sf_buf *sf_bufs;
  758         vm_offset_t sf_base;
  759         int i;
  760 
  761         nsfbufs = NSFBUFS;
  762         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  763 
  764         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  765         TAILQ_INIT(&sf_buf_freelist);
  766         sf_base = kva_alloc(nsfbufs * PAGE_SIZE);
  767         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  768             M_NOWAIT | M_ZERO);
  769         for (i = 0; i < nsfbufs; i++) {
  770                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  771                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  772         }
  773         sf_buf_alloc_want = 0;
  774         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  775 }
  776 
  777 /*
  778  * Invalidate the cache lines that may belong to the page, if
  779  * (possibly old) mapping of the page by sf buffer exists.  Returns
  780  * TRUE when mapping was found and cache invalidated.
  781  */
  782 boolean_t
  783 sf_buf_invalidate_cache(vm_page_t m)
  784 {
  785         struct sf_head *hash_list;
  786         struct sf_buf *sf;
  787         boolean_t ret;
  788 
  789         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  790         ret = FALSE;
  791         mtx_lock(&sf_buf_lock);
  792         LIST_FOREACH(sf, hash_list, list_entry) {
  793                 if (sf->m == m) {
  794                         /*
  795                          * Use pmap_qenter to update the pte for
  796                          * existing mapping, in particular, the PAT
  797                          * settings are recalculated.
  798                          */
  799                         pmap_qenter(sf->kva, &m, 1);
  800                         pmap_invalidate_cache_range(sf->kva, sf->kva +
  801                             PAGE_SIZE);
  802                         ret = TRUE;
  803                         break;
  804                 }
  805         }
  806         mtx_unlock(&sf_buf_lock);
  807         return (ret);
  808 }
  809 
  810 /*
  811  * Get an sf_buf from the freelist.  May block if none are available.
  812  */
  813 struct sf_buf *
  814 sf_buf_alloc(struct vm_page *m, int flags)
  815 {
  816         pt_entry_t opte, *ptep;
  817         struct sf_head *hash_list;
  818         struct sf_buf *sf;
  819 #ifdef SMP
  820         cpuset_t other_cpus;
  821         u_int cpuid;
  822 #endif
  823         int error;
  824 
  825         KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
  826             ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
  827         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  828         mtx_lock(&sf_buf_lock);
  829         LIST_FOREACH(sf, hash_list, list_entry) {
  830                 if (sf->m == m) {
  831                         sf->ref_count++;
  832                         if (sf->ref_count == 1) {
  833                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  834                                 nsfbufsused++;
  835                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  836                         }
  837 #ifdef SMP
  838                         goto shootdown; 
  839 #else
  840                         goto done;
  841 #endif
  842                 }
  843         }
  844         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  845                 if (flags & SFB_NOWAIT)
  846                         goto done;
  847                 sf_buf_alloc_want++;
  848                 SFSTAT_INC(sf_allocwait);
  849                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  850                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  851                 sf_buf_alloc_want--;
  852 
  853                 /*
  854                  * If we got a signal, don't risk going back to sleep. 
  855                  */
  856                 if (error)
  857                         goto done;
  858         }
  859         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  860         if (sf->m != NULL)
  861                 LIST_REMOVE(sf, list_entry);
  862         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  863         sf->ref_count = 1;
  864         sf->m = m;
  865         nsfbufsused++;
  866         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  867 
  868         /*
  869          * Update the sf_buf's virtual-to-physical mapping, flushing the
  870          * virtual address from the TLB.  Since the reference count for 
  871          * the sf_buf's old mapping was zero, that mapping is not 
  872          * currently in use.  Consequently, there is no need to exchange 
  873          * the old and new PTEs atomically, even under PAE.
  874          */
  875         ptep = vtopte(sf->kva);
  876         opte = *ptep;
  877 #ifdef XEN
  878        PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag
  879            | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0));
  880 #else
  881         *ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V |
  882             pmap_cache_bits(m->md.pat_mode, 0);
  883 #endif
  884 
  885         /*
  886          * Avoid unnecessary TLB invalidations: If the sf_buf's old
  887          * virtual-to-physical mapping was not used, then any processor
  888          * that has invalidated the sf_buf's virtual address from its TLB
  889          * since the last used mapping need not invalidate again.
  890          */
  891 #ifdef SMP
  892         if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
  893                 CPU_ZERO(&sf->cpumask);
  894 shootdown:
  895         sched_pin();
  896         cpuid = PCPU_GET(cpuid);
  897         if (!CPU_ISSET(cpuid, &sf->cpumask)) {
  898                 CPU_SET(cpuid, &sf->cpumask);
  899                 invlpg(sf->kva);
  900         }
  901         if ((flags & SFB_CPUPRIVATE) == 0) {
  902                 other_cpus = all_cpus;
  903                 CPU_CLR(cpuid, &other_cpus);
  904                 CPU_NAND(&other_cpus, &sf->cpumask);
  905                 if (!CPU_EMPTY(&other_cpus)) {
  906                         CPU_OR(&sf->cpumask, &other_cpus);
  907                         smp_masked_invlpg(other_cpus, sf->kva);
  908                 }
  909         }
  910         sched_unpin();
  911 #else
  912         if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
  913                 pmap_invalidate_page(kernel_pmap, sf->kva);
  914 #endif
  915 done:
  916         mtx_unlock(&sf_buf_lock);
  917         return (sf);
  918 }
  919 
  920 /*
  921  * Remove a reference from the given sf_buf, adding it to the free
  922  * list when its reference count reaches zero.  A freed sf_buf still,
  923  * however, retains its virtual-to-physical mapping until it is
  924  * recycled or reactivated by sf_buf_alloc(9).
  925  */
  926 void
  927 sf_buf_free(struct sf_buf *sf)
  928 {
  929 
  930         mtx_lock(&sf_buf_lock);
  931         sf->ref_count--;
  932         if (sf->ref_count == 0) {
  933                 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  934                 nsfbufsused--;
  935 #ifdef XEN
  936 /*
  937  * Xen doesn't like having dangling R/W mappings
  938  */
  939                 pmap_qremove(sf->kva, 1);
  940                 sf->m = NULL;
  941                 LIST_REMOVE(sf, list_entry);
  942 #endif
  943                 if (sf_buf_alloc_want > 0)
  944                         wakeup(&sf_buf_freelist);
  945         }
  946         mtx_unlock(&sf_buf_lock);
  947 }
  948 
  949 /*
  950  * Software interrupt handler for queued VM system processing.
  951  */   
  952 void  
  953 swi_vm(void *dummy) 
  954 {     
  955         if (busdma_swi_pending != 0)
  956                 busdma_swi();
  957 }
  958 
  959 /*
  960  * Tell whether this address is in some physical memory region.
  961  * Currently used by the kernel coredump code in order to avoid
  962  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  963  * or other unpredictable behaviour.
  964  */
  965 
  966 int
  967 is_physical_memory(vm_paddr_t addr)
  968 {
  969 
  970 #ifdef DEV_ISA
  971         /* The ISA ``memory hole''. */
  972         if (addr >= 0xa0000 && addr < 0x100000)
  973                 return 0;
  974 #endif
  975 
  976         /*
  977          * stuff other tests for known memory-mapped devices (PCI?)
  978          * here
  979          */
  980 
  981         return 1;
  982 }

Cache object: 653495676f8d8fe0376ad6cb89a66f59


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.