The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/5.3/sys/i386/i386/vm_machdep.c 132422 2004-07-20 01:38:59Z davidxu $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_npx.h"
   48 #ifdef PC98
   49 #include "opt_pc98.h"
   50 #endif
   51 #include "opt_reset.h"
   52 #include "opt_cpu.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/bio.h>
   57 #include <sys/buf.h>
   58 #include <sys/kse.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/lock.h>
   62 #include <sys/malloc.h>
   63 #include <sys/mbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/proc.h>
   66 #include <sys/sf_buf.h>
   67 #include <sys/smp.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/unistd.h>
   70 #include <sys/user.h>
   71 #include <sys/vnode.h>
   72 #include <sys/vmmeter.h>
   73 
   74 #include <machine/cpu.h>
   75 #include <machine/cputypes.h>
   76 #include <machine/md_var.h>
   77 #include <machine/pcb.h>
   78 #include <machine/pcb_ext.h>
   79 #include <machine/vm86.h>
   80 
   81 #ifdef CPU_ELAN
   82 #include <machine/elan_mmcr.h>
   83 #endif
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_extern.h>
   87 #include <vm/vm_kern.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_param.h>
   91 
   92 #ifdef PC98
   93 #include <pc98/pc98/pc98.h>
   94 #else
   95 #include <i386/isa/isa.h>
   96 #endif
   97 
   98 #ifndef NSFBUFS
   99 #define NSFBUFS         (512 + maxusers * 16)
  100 #endif
  101 
  102 static void     cpu_reset_real(void);
  103 #ifdef SMP
  104 static void     cpu_reset_proxy(void);
  105 static u_int    cpu_reset_proxyid;
  106 static volatile u_int   cpu_reset_proxy_active;
  107 #endif
  108 static void     sf_buf_init(void *arg);
  109 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
  110 
  111 LIST_HEAD(sf_head, sf_buf);
  112 
  113 /*
  114  * A hash table of active sendfile(2) buffers
  115  */
  116 static struct sf_head *sf_buf_active;
  117 static u_long sf_buf_hashmask;
  118 
  119 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
  120 
  121 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
  122 static u_int    sf_buf_alloc_want;
  123 
  124 /*
  125  * A lock used to synchronize access to the hash table and free list
  126  */
  127 static struct mtx sf_buf_lock;
  128 
  129 extern int      _ucodesel, _udatasel;
  130 
  131 /*
  132  * Finish a fork operation, with process p2 nearly set up.
  133  * Copy and update the pcb, set up the stack so that the child
  134  * ready to run and return to user mode.
  135  */
  136 void
  137 cpu_fork(td1, p2, td2, flags)
  138         register struct thread *td1;
  139         register struct proc *p2;
  140         struct thread *td2;
  141         int flags;
  142 {
  143         register struct proc *p1;
  144         struct pcb *pcb2;
  145         struct mdproc *mdp2;
  146 #ifdef DEV_NPX
  147         register_t savecrit;
  148 #endif
  149 
  150         p1 = td1->td_proc;
  151         if ((flags & RFPROC) == 0) {
  152                 if ((flags & RFMEM) == 0) {
  153                         /* unshare user LDT */
  154                         struct mdproc *mdp1 = &p1->p_md;
  155                         struct proc_ldt *pldt = mdp1->md_ldt;
  156                         if (pldt && pldt->ldt_refcnt > 1) {
  157                                 pldt = user_ldt_alloc(mdp1, pldt->ldt_len);
  158                                 if (pldt == NULL)
  159                                         panic("could not copy LDT");
  160                                 mdp1->md_ldt = pldt;
  161                                 set_user_ldt(mdp1);
  162                                 user_ldt_free(td1);
  163                         }
  164                 }
  165                 return;
  166         }
  167 
  168         /* Ensure that p1's pcb is up to date. */
  169 #ifdef DEV_NPX
  170         if (td1 == curthread)
  171                 td1->td_pcb->pcb_gs = rgs();
  172         savecrit = intr_disable();
  173         if (PCPU_GET(fpcurthread) == td1)
  174                 npxsave(&td1->td_pcb->pcb_save);
  175         intr_restore(savecrit);
  176 #endif
  177 
  178         /* Point the pcb to the top of the stack */
  179         pcb2 = (struct pcb *)(td2->td_kstack +
  180             td2->td_kstack_pages * PAGE_SIZE) - 1;
  181         td2->td_pcb = pcb2;
  182 
  183         /* Copy p1's pcb */
  184         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  185 
  186         /* Point mdproc and then copy over td1's contents */
  187         mdp2 = &p2->p_md;
  188         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  189 
  190         /*
  191          * Create a new fresh stack for the new process.
  192          * Copy the trap frame for the return to user mode as if from a
  193          * syscall.  This copies most of the user mode register values.
  194          * The -16 is so we can expand the trapframe if we go to vm86.
  195          */
  196         td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
  197         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  198 
  199         td2->td_frame->tf_eax = 0;              /* Child returns zero */
  200         td2->td_frame->tf_eflags &= ~PSL_C;     /* success */
  201         td2->td_frame->tf_edx = 1;
  202 
  203         /*
  204          * Set registers for trampoline to user mode.  Leave space for the
  205          * return address on stack.  These are the kernel mode register values.
  206          */
  207 #ifdef PAE
  208         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
  209 #else
  210         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
  211 #endif
  212         pcb2->pcb_edi = 0;
  213         pcb2->pcb_esi = (int)fork_return;       /* fork_trampoline argument */
  214         pcb2->pcb_ebp = 0;
  215         pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
  216         pcb2->pcb_ebx = (int)td2;               /* fork_trampoline argument */
  217         pcb2->pcb_eip = (int)fork_trampoline;
  218         pcb2->pcb_psl = PSL_KERNEL;             /* ints disabled */
  219         pcb2->pcb_gs = rgs();
  220         /*-
  221          * pcb2->pcb_dr*:       cloned above.
  222          * pcb2->pcb_savefpu:   cloned above.
  223          * pcb2->pcb_flags:     cloned above.
  224          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  225          * pcb2->pcb_gs:        cloned above.
  226          * pcb2->pcb_ext:       cleared below.
  227          */
  228 
  229         /*
  230          * XXX don't copy the i/o pages.  this should probably be fixed.
  231          */
  232         pcb2->pcb_ext = 0;
  233 
  234         /* Copy the LDT, if necessary. */
  235         mtx_lock_spin(&sched_lock);
  236         if (mdp2->md_ldt != 0) {
  237                 if (flags & RFMEM) {
  238                         mdp2->md_ldt->ldt_refcnt++;
  239                 } else {
  240                         mdp2->md_ldt = user_ldt_alloc(mdp2,
  241                             mdp2->md_ldt->ldt_len);
  242                         if (mdp2->md_ldt == NULL)
  243                                 panic("could not copy LDT");
  244                 }
  245         }
  246         mtx_unlock_spin(&sched_lock);
  247 
  248         /*
  249          * Now, cpu_switch() can schedule the new process.
  250          * pcb_esp is loaded pointing to the cpu_switch() stack frame
  251          * containing the return address when exiting cpu_switch.
  252          * This will normally be to fork_trampoline(), which will have
  253          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  254          * will set up a stack to call fork_return(p, frame); to complete
  255          * the return to user-mode.
  256          */
  257 }
  258 
  259 /*
  260  * Intercept the return address from a freshly forked process that has NOT
  261  * been scheduled yet.
  262  *
  263  * This is needed to make kernel threads stay in kernel mode.
  264  */
  265 void
  266 cpu_set_fork_handler(td, func, arg)
  267         struct thread *td;
  268         void (*func)(void *);
  269         void *arg;
  270 {
  271         /*
  272          * Note that the trap frame follows the args, so the function
  273          * is really called like this:  func(arg, frame);
  274          */
  275         td->td_pcb->pcb_esi = (int) func;       /* function */
  276         td->td_pcb->pcb_ebx = (int) arg;        /* first arg */
  277 }
  278 
  279 void
  280 cpu_exit(struct thread *td)
  281 {
  282         struct mdproc *mdp;
  283         struct pcb *pcb = td->td_pcb; 
  284 
  285 
  286         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
  287         mdp = &td->td_proc->p_md;
  288         if (mdp->md_ldt) {
  289                 td->td_pcb->pcb_gs = _udatasel;
  290                 load_gs(_udatasel);
  291                 user_ldt_free(td);
  292         }
  293         if (pcb->pcb_flags & PCB_DBREGS) {
  294                 /* disable all hardware breakpoints */
  295                 reset_dbregs();
  296                 pcb->pcb_flags &= ~PCB_DBREGS;
  297         }
  298 }
  299 
  300 void
  301 cpu_thread_exit(struct thread *td)
  302 {
  303         struct pcb *pcb = td->td_pcb; 
  304 #ifdef DEV_NPX
  305         if (td == PCPU_GET(fpcurthread))
  306                 npxdrop();
  307 #endif
  308         if (pcb->pcb_flags & PCB_DBREGS) {
  309                 /* disable all hardware breakpoints */
  310                 reset_dbregs();
  311                 pcb->pcb_flags &= ~PCB_DBREGS;
  312         }
  313 }
  314 
  315 void
  316 cpu_thread_clean(struct thread *td)
  317 {
  318         struct pcb *pcb;
  319 
  320         pcb = td->td_pcb; 
  321         if (pcb->pcb_ext != 0) {
  322                 /* XXXKSE  XXXSMP  not SMP SAFE.. what locks do we have? */
  323                 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
  324                 /*
  325                  * XXX do we need to move the TSS off the allocated pages
  326                  * before freeing them?  (not done here)
  327                  */
  328                 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
  329                     ctob(IOPAGES + 1));
  330                 pcb->pcb_ext = 0;
  331         }
  332 }
  333 
  334 void
  335 cpu_thread_swapin(struct thread *td)
  336 {
  337 }
  338 
  339 void
  340 cpu_thread_swapout(struct thread *td)
  341 {
  342 }
  343 
  344 void
  345 cpu_thread_setup(struct thread *td)
  346 {
  347 
  348         td->td_pcb = (struct pcb *)(td->td_kstack +
  349             td->td_kstack_pages * PAGE_SIZE) - 1;
  350         td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
  351         td->td_pcb->pcb_ext = NULL; 
  352 }
  353 
  354 /*
  355  * Initialize machine state (pcb and trap frame) for a new thread about to
  356  * upcall. Pu t enough state in the new thread's PCB to get it to go back 
  357  * userret(), where we can intercept it again to set the return (upcall)
  358  * Address and stack, along with those from upcals that are from other sources
  359  * such as those generated in thread_userret() itself.
  360  */
  361 void
  362 cpu_set_upcall(struct thread *td, struct thread *td0)
  363 {
  364         struct pcb *pcb2;
  365 
  366         /* Point the pcb to the top of the stack. */
  367         pcb2 = td->td_pcb;
  368 
  369         /*
  370          * Copy the upcall pcb.  This loads kernel regs.
  371          * Those not loaded individually below get their default
  372          * values here.
  373          *
  374          * XXXKSE It might be a good idea to simply skip this as
  375          * the values of the other registers may be unimportant.
  376          * This would remove any requirement for knowing the KSE
  377          * at this time (see the matching comment below for
  378          * more analysis) (need a good safe default).
  379          */
  380         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  381         pcb2->pcb_flags &= ~(PCB_NPXTRAP|PCB_NPXINITDONE);
  382 
  383         /*
  384          * Create a new fresh stack for the new thread.
  385          * The -16 is so we can expand the trapframe if we go to vm86.
  386          * Don't forget to set this stack value into whatever supplies
  387          * the address for the fault handlers.
  388          * The contexts are filled in at the time we actually DO the
  389          * upcall as only then do we know which KSE we got.
  390          */
  391         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  392 
  393         /*
  394          * Set registers for trampoline to user mode.  Leave space for the
  395          * return address on stack.  These are the kernel mode register values.
  396          */
  397 #ifdef PAE
  398         pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdpt);
  399 #else
  400         pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdir);
  401 #endif
  402         pcb2->pcb_edi = 0;
  403         pcb2->pcb_esi = (int)fork_return;                   /* trampoline arg */
  404         pcb2->pcb_ebp = 0;
  405         pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
  406         pcb2->pcb_ebx = (int)td;                            /* trampoline arg */
  407         pcb2->pcb_eip = (int)fork_trampoline;
  408         pcb2->pcb_psl &= ~(PSL_I);      /* interrupts must be disabled */
  409         pcb2->pcb_gs = rgs();
  410         /*
  411          * If we didn't copy the pcb, we'd need to do the following registers:
  412          * pcb2->pcb_dr*:       cloned above.
  413          * pcb2->pcb_savefpu:   cloned above.
  414          * pcb2->pcb_flags:     cloned above.
  415          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  416          * pcb2->pcb_gs:        cloned above.  XXXKSE ???
  417          * pcb2->pcb_ext:       cleared below.
  418          */
  419          pcb2->pcb_ext = NULL;
  420 }
  421 
  422 /*
  423  * Set that machine state for performing an upcall that has to
  424  * be done in thread_userret() so that those upcalls generated
  425  * in thread_userret() itself can be done as well.
  426  */
  427 void
  428 cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
  429 {
  430 
  431         /* 
  432          * Do any extra cleaning that needs to be done.
  433          * The thread may have optional components
  434          * that are not present in a fresh thread.
  435          * This may be a recycled thread so make it look
  436          * as though it's newly allocated.
  437          */
  438         cpu_thread_clean(td);
  439 
  440         /*
  441          * Set the trap frame to point at the beginning of the uts
  442          * function.
  443          */
  444         td->td_frame->tf_ebp = 0; 
  445         td->td_frame->tf_esp =
  446             (int)ku->ku_stack.ss_sp + ku->ku_stack.ss_size - 16;
  447         td->td_frame->tf_eip = (int)ku->ku_func;
  448 
  449         /*
  450          * Pass the address of the mailbox for this kse to the uts
  451          * function as a parameter on the stack.
  452          */
  453         suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
  454             (int)ku->ku_mailbox);
  455 }
  456 
  457 /*
  458  * Convert kernel VA to physical address
  459  */
  460 vm_paddr_t
  461 kvtop(void *addr)
  462 {
  463         vm_paddr_t pa;
  464 
  465         pa = pmap_kextract((vm_offset_t)addr);
  466         if (pa == 0)
  467                 panic("kvtop: zero page frame");
  468         return (pa);
  469 }
  470 
  471 /*
  472  * Force reset the processor by invalidating the entire address space!
  473  */
  474 
  475 #ifdef SMP
  476 static void
  477 cpu_reset_proxy()
  478 {
  479 
  480         cpu_reset_proxy_active = 1;
  481         while (cpu_reset_proxy_active == 1)
  482                 ;        /* Wait for other cpu to see that we've started */
  483         stop_cpus((1<<cpu_reset_proxyid));
  484         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  485         DELAY(1000000);
  486         cpu_reset_real();
  487 }
  488 #endif
  489 
  490 void
  491 cpu_reset()
  492 {
  493 #ifdef SMP
  494         if (smp_active == 0) {
  495                 cpu_reset_real();
  496                 /* NOTREACHED */
  497         } else {
  498 
  499                 u_int map;
  500                 int cnt;
  501                 printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
  502 
  503                 map = PCPU_GET(other_cpus) & ~ stopped_cpus;
  504 
  505                 if (map != 0) {
  506                         printf("cpu_reset: Stopping other CPUs\n");
  507                         stop_cpus(map);         /* Stop all other CPUs */
  508                 }
  509 
  510                 if (PCPU_GET(cpuid) == 0) {
  511                         DELAY(1000000);
  512                         cpu_reset_real();
  513                         /* NOTREACHED */
  514                 } else {
  515                         /* We are not BSP (CPU #0) */
  516 
  517                         cpu_reset_proxyid = PCPU_GET(cpuid);
  518                         cpustop_restartfunc = cpu_reset_proxy;
  519                         cpu_reset_proxy_active = 0;
  520                         printf("cpu_reset: Restarting BSP\n");
  521                         started_cpus = (1<<0);          /* Restart CPU #0 */
  522 
  523                         cnt = 0;
  524                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  525                                 cnt++;  /* Wait for BSP to announce restart */
  526                         if (cpu_reset_proxy_active == 0)
  527                                 printf("cpu_reset: Failed to restart BSP\n");
  528                         enable_intr();
  529                         cpu_reset_proxy_active = 2;
  530 
  531                         while (1);
  532                         /* NOTREACHED */
  533                 }
  534         }
  535 #else
  536         cpu_reset_real();
  537 #endif
  538 }
  539 
  540 static void
  541 cpu_reset_real()
  542 {
  543 
  544 #ifdef CPU_ELAN
  545         if (elan_mmcr != NULL)
  546                 elan_mmcr->RESCFG = 1;
  547 #endif
  548 
  549         if (cpu == CPU_GEODE1100) {
  550                 /* Attempt Geode's own reset */
  551                 outl(0xcf8, 0x80009044ul);
  552                 outl(0xcfc, 0xf);
  553         }
  554 
  555 #ifdef PC98
  556         /*
  557          * Attempt to do a CPU reset via CPU reset port.
  558          */
  559         disable_intr();
  560         if ((inb(0x35) & 0xa0) != 0xa0) {
  561                 outb(0x37, 0x0f);               /* SHUT0 = 0. */
  562                 outb(0x37, 0x0b);               /* SHUT1 = 0. */
  563         }
  564         outb(0xf0, 0x00);               /* Reset. */
  565 #else
  566         /*
  567          * Attempt to do a CPU reset via the keyboard controller,
  568          * do not turn of the GateA20, as any machine that fails
  569          * to do the reset here would then end up in no man's land.
  570          */
  571 
  572 #if !defined(BROKEN_KEYBOARD_RESET)
  573         outb(IO_KBD + 4, 0xFE);
  574         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  575         printf("Keyboard reset did not work, attempting CPU shutdown\n");
  576         DELAY(1000000); /* wait 1 sec for printf to complete */
  577 #endif
  578 #endif /* PC98 */
  579         /* force a shutdown by unmapping entire address space ! */
  580         bzero((caddr_t)PTD, NBPTD);
  581 
  582         /* "good night, sweet prince .... <THUNK!>" */
  583         invltlb();
  584         /* NOTREACHED */
  585         while(1);
  586 }
  587 
  588 /*
  589  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  590  */
  591 static void
  592 sf_buf_init(void *arg)
  593 {
  594         struct sf_buf *sf_bufs;
  595         vm_offset_t sf_base;
  596         int i;
  597 
  598         nsfbufs = NSFBUFS;
  599         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  600 
  601         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  602         TAILQ_INIT(&sf_buf_freelist);
  603         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  604         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  605             M_NOWAIT | M_ZERO);
  606         for (i = 0; i < nsfbufs; i++) {
  607                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  608                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  609         }
  610         sf_buf_alloc_want = 0;
  611         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  612 }
  613 
  614 /*
  615  * Get an sf_buf from the freelist. Will block if none are available.
  616  */
  617 struct sf_buf *
  618 sf_buf_alloc(struct vm_page *m, int pri)
  619 {
  620         struct sf_head *hash_list;
  621         struct sf_buf *sf;
  622         int error;
  623 
  624         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  625         mtx_lock(&sf_buf_lock);
  626         LIST_FOREACH(sf, hash_list, list_entry) {
  627                 if (sf->m == m) {
  628                         sf->ref_count++;
  629                         if (sf->ref_count == 1) {
  630                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  631                                 nsfbufsused++;
  632                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  633                         }
  634                         goto done;
  635                 }
  636         }
  637         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  638                 sf_buf_alloc_want++;
  639                 mbstat.sf_allocwait++;
  640                 error = msleep(&sf_buf_freelist, &sf_buf_lock, PVM | pri,
  641                     "sfbufa", 0);
  642                 sf_buf_alloc_want--;
  643 
  644                 /*
  645                  * If we got a signal, don't risk going back to sleep. 
  646                  */
  647                 if (error)
  648                         goto done;
  649         }
  650         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  651         if (sf->m != NULL)
  652                 LIST_REMOVE(sf, list_entry);
  653         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  654         sf->ref_count = 1;
  655         sf->m = m;
  656         nsfbufsused++;
  657         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  658         pmap_qenter(sf->kva, &sf->m, 1);
  659 done:
  660         mtx_unlock(&sf_buf_lock);
  661         return (sf);
  662 }
  663 
  664 /*
  665  * Remove a reference from the given sf_buf, adding it to the free
  666  * list when its reference count reaches zero.  A freed sf_buf still,
  667  * however, retains its virtual-to-physical mapping until it is
  668  * recycled or reactivated by sf_buf_alloc(9).
  669  */
  670 void
  671 sf_buf_free(struct sf_buf *sf)
  672 {
  673 
  674         mtx_lock(&sf_buf_lock);
  675         sf->ref_count--;
  676         if (sf->ref_count == 0) {
  677                 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  678                 nsfbufsused--;
  679                 if (sf_buf_alloc_want > 0)
  680                         wakeup_one(&sf_buf_freelist);
  681         }
  682         mtx_unlock(&sf_buf_lock);
  683 }
  684 
  685 /*
  686  * Software interrupt handler for queued VM system processing.
  687  */   
  688 void  
  689 swi_vm(void *dummy) 
  690 {     
  691         if (busdma_swi_pending != 0)
  692                 busdma_swi();
  693 }
  694 
  695 /*
  696  * Tell whether this address is in some physical memory region.
  697  * Currently used by the kernel coredump code in order to avoid
  698  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  699  * or other unpredictable behaviour.
  700  */
  701 
  702 int
  703 is_physical_memory(vm_paddr_t addr)
  704 {
  705 
  706 #ifdef DEV_ISA
  707         /* The ISA ``memory hole''. */
  708         if (addr >= 0xa0000 && addr < 0x100000)
  709                 return 0;
  710 #endif
  711 
  712         /*
  713          * stuff other tests for known memory-mapped devices (PCI?)
  714          * here
  715          */
  716 
  717         return 1;
  718 }

Cache object: c4cff0d81eb7bf2ba7446d1c3a7816db


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.