The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/5.4/sys/i386/i386/vm_machdep.c 145335 2005-04-20 19:11:07Z cvs2svn $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_npx.h"
   48 #ifdef PC98
   49 #include "opt_pc98.h"
   50 #endif
   51 #include "opt_reset.h"
   52 #include "opt_cpu.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/bio.h>
   57 #include <sys/buf.h>
   58 #include <sys/kse.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/lock.h>
   62 #include <sys/malloc.h>
   63 #include <sys/mbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pioctl.h>
   66 #include <sys/proc.h>
   67 #include <sys/sf_buf.h>
   68 #include <sys/smp.h>
   69 #include <sys/sysctl.h>
   70 #include <sys/unistd.h>
   71 #include <sys/vnode.h>
   72 #include <sys/vmmeter.h>
   73 
   74 #include <machine/cpu.h>
   75 #include <machine/cputypes.h>
   76 #include <machine/md_var.h>
   77 #include <machine/pcb.h>
   78 #include <machine/pcb_ext.h>
   79 #include <machine/smp.h>
   80 #include <machine/vm86.h>
   81 
   82 #ifdef CPU_ELAN
   83 #include <machine/elan_mmcr.h>
   84 #endif
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_extern.h>
   88 #include <vm/vm_kern.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_param.h>
   92 
   93 #ifdef PC98
   94 #include <pc98/pc98/pc98.h>
   95 #else
   96 #include <i386/isa/isa.h>
   97 #endif
   98 
   99 #ifndef NSFBUFS
  100 #define NSFBUFS         (512 + maxusers * 16)
  101 #endif
  102 
  103 static void     cpu_reset_real(void);
  104 #ifdef SMP
  105 static void     cpu_reset_proxy(void);
  106 static u_int    cpu_reset_proxyid;
  107 static volatile u_int   cpu_reset_proxy_active;
  108 #endif
  109 static void     sf_buf_init(void *arg);
  110 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
  111 
  112 LIST_HEAD(sf_head, sf_buf);
  113 
  114 /*
  115  * A hash table of active sendfile(2) buffers
  116  */
  117 static struct sf_head *sf_buf_active;
  118 static u_long sf_buf_hashmask;
  119 
  120 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
  121 
  122 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
  123 static u_int    sf_buf_alloc_want;
  124 
  125 /*
  126  * A lock used to synchronize access to the hash table and free list
  127  */
  128 static struct mtx sf_buf_lock;
  129 
  130 extern int      _ucodesel, _udatasel;
  131 
  132 /*
  133  * Finish a fork operation, with process p2 nearly set up.
  134  * Copy and update the pcb, set up the stack so that the child
  135  * ready to run and return to user mode.
  136  */
  137 void
  138 cpu_fork(td1, p2, td2, flags)
  139         register struct thread *td1;
  140         register struct proc *p2;
  141         struct thread *td2;
  142         int flags;
  143 {
  144         register struct proc *p1;
  145         struct pcb *pcb2;
  146         struct mdproc *mdp2;
  147 #ifdef DEV_NPX
  148         register_t savecrit;
  149 #endif
  150 
  151         p1 = td1->td_proc;
  152         if ((flags & RFPROC) == 0) {
  153                 if ((flags & RFMEM) == 0) {
  154                         /* unshare user LDT */
  155                         struct mdproc *mdp1 = &p1->p_md;
  156                         struct proc_ldt *pldt = mdp1->md_ldt;
  157                         if (pldt && pldt->ldt_refcnt > 1) {
  158                                 pldt = user_ldt_alloc(mdp1, pldt->ldt_len);
  159                                 if (pldt == NULL)
  160                                         panic("could not copy LDT");
  161                                 mdp1->md_ldt = pldt;
  162                                 set_user_ldt(mdp1);
  163                                 user_ldt_free(td1);
  164                         }
  165                 }
  166                 return;
  167         }
  168 
  169         /* Ensure that p1's pcb is up to date. */
  170 #ifdef DEV_NPX
  171         if (td1 == curthread)
  172                 td1->td_pcb->pcb_gs = rgs();
  173         savecrit = intr_disable();
  174         if (PCPU_GET(fpcurthread) == td1)
  175                 npxsave(&td1->td_pcb->pcb_save);
  176         intr_restore(savecrit);
  177 #endif
  178 
  179         /* Point the pcb to the top of the stack */
  180         pcb2 = (struct pcb *)(td2->td_kstack +
  181             td2->td_kstack_pages * PAGE_SIZE) - 1;
  182         td2->td_pcb = pcb2;
  183 
  184         /* Copy p1's pcb */
  185         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  186 
  187         /* Point mdproc and then copy over td1's contents */
  188         mdp2 = &p2->p_md;
  189         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  190 
  191         /*
  192          * Create a new fresh stack for the new process.
  193          * Copy the trap frame for the return to user mode as if from a
  194          * syscall.  This copies most of the user mode register values.
  195          * The -16 is so we can expand the trapframe if we go to vm86.
  196          */
  197         td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
  198         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  199 
  200         td2->td_frame->tf_eax = 0;              /* Child returns zero */
  201         td2->td_frame->tf_eflags &= ~PSL_C;     /* success */
  202         td2->td_frame->tf_edx = 1;
  203 
  204         /*
  205          * If the parent process has the trap bit set (i.e. a debugger had
  206          * single stepped the process to the system call), we need to clear
  207          * the trap flag from the new frame unless the debugger had set PF_FORK
  208          * on the parent.  Otherwise, the child will receive a (likely
  209          * unexpected) SIGTRAP when it executes the first instruction after
  210          * returning to userland.
  211          */
  212         if ((p1->p_pfsflags & PF_FORK) == 0)
  213                 td2->td_frame->tf_eflags &= ~PSL_T;
  214 
  215         /*
  216          * Set registers for trampoline to user mode.  Leave space for the
  217          * return address on stack.  These are the kernel mode register values.
  218          */
  219 #ifdef PAE
  220         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
  221 #else
  222         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
  223 #endif
  224         pcb2->pcb_edi = 0;
  225         pcb2->pcb_esi = (int)fork_return;       /* fork_trampoline argument */
  226         pcb2->pcb_ebp = 0;
  227         pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
  228         pcb2->pcb_ebx = (int)td2;               /* fork_trampoline argument */
  229         pcb2->pcb_eip = (int)fork_trampoline;
  230         pcb2->pcb_psl = PSL_KERNEL;             /* ints disabled */
  231         pcb2->pcb_gs = rgs();
  232         /*-
  233          * pcb2->pcb_dr*:       cloned above.
  234          * pcb2->pcb_savefpu:   cloned above.
  235          * pcb2->pcb_flags:     cloned above.
  236          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  237          * pcb2->pcb_gs:        cloned above.
  238          * pcb2->pcb_ext:       cleared below.
  239          */
  240 
  241         /*
  242          * XXX don't copy the i/o pages.  this should probably be fixed.
  243          */
  244         pcb2->pcb_ext = 0;
  245 
  246         /* Copy the LDT, if necessary. */
  247         mtx_lock_spin(&sched_lock);
  248         if (mdp2->md_ldt != 0) {
  249                 if (flags & RFMEM) {
  250                         mdp2->md_ldt->ldt_refcnt++;
  251                 } else {
  252                         mdp2->md_ldt = user_ldt_alloc(mdp2,
  253                             mdp2->md_ldt->ldt_len);
  254                         if (mdp2->md_ldt == NULL)
  255                                 panic("could not copy LDT");
  256                 }
  257         }
  258         mtx_unlock_spin(&sched_lock);
  259 
  260         /*
  261          * Now, cpu_switch() can schedule the new process.
  262          * pcb_esp is loaded pointing to the cpu_switch() stack frame
  263          * containing the return address when exiting cpu_switch.
  264          * This will normally be to fork_trampoline(), which will have
  265          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  266          * will set up a stack to call fork_return(p, frame); to complete
  267          * the return to user-mode.
  268          */
  269 }
  270 
  271 /*
  272  * Intercept the return address from a freshly forked process that has NOT
  273  * been scheduled yet.
  274  *
  275  * This is needed to make kernel threads stay in kernel mode.
  276  */
  277 void
  278 cpu_set_fork_handler(td, func, arg)
  279         struct thread *td;
  280         void (*func)(void *);
  281         void *arg;
  282 {
  283         /*
  284          * Note that the trap frame follows the args, so the function
  285          * is really called like this:  func(arg, frame);
  286          */
  287         td->td_pcb->pcb_esi = (int) func;       /* function */
  288         td->td_pcb->pcb_ebx = (int) arg;        /* first arg */
  289 }
  290 
  291 void
  292 cpu_exit(struct thread *td)
  293 {
  294         struct mdproc *mdp;
  295         struct pcb *pcb = td->td_pcb; 
  296 
  297 
  298         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
  299         mdp = &td->td_proc->p_md;
  300         if (mdp->md_ldt) {
  301                 td->td_pcb->pcb_gs = _udatasel;
  302                 load_gs(_udatasel);
  303                 user_ldt_free(td);
  304         }
  305         if (pcb->pcb_flags & PCB_DBREGS) {
  306                 /* disable all hardware breakpoints */
  307                 reset_dbregs();
  308                 pcb->pcb_flags &= ~PCB_DBREGS;
  309         }
  310 }
  311 
  312 void
  313 cpu_thread_exit(struct thread *td)
  314 {
  315         struct pcb *pcb = td->td_pcb; 
  316 #ifdef DEV_NPX
  317         if (td == PCPU_GET(fpcurthread))
  318                 npxdrop();
  319 #endif
  320         if (pcb->pcb_flags & PCB_DBREGS) {
  321                 /* disable all hardware breakpoints */
  322                 reset_dbregs();
  323                 pcb->pcb_flags &= ~PCB_DBREGS;
  324         }
  325 }
  326 
  327 void
  328 cpu_thread_clean(struct thread *td)
  329 {
  330         struct pcb *pcb;
  331 
  332         pcb = td->td_pcb; 
  333         if (pcb->pcb_ext != 0) {
  334                 /* XXXKSE  XXXSMP  not SMP SAFE.. what locks do we have? */
  335                 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
  336                 /*
  337                  * XXX do we need to move the TSS off the allocated pages
  338                  * before freeing them?  (not done here)
  339                  */
  340                 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
  341                     ctob(IOPAGES + 1));
  342                 pcb->pcb_ext = 0;
  343         }
  344 }
  345 
  346 void
  347 cpu_thread_swapin(struct thread *td)
  348 {
  349 }
  350 
  351 void
  352 cpu_thread_swapout(struct thread *td)
  353 {
  354 }
  355 
  356 void
  357 cpu_thread_setup(struct thread *td)
  358 {
  359 
  360         td->td_pcb = (struct pcb *)(td->td_kstack +
  361             td->td_kstack_pages * PAGE_SIZE) - 1;
  362         td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
  363         td->td_pcb->pcb_ext = NULL; 
  364 }
  365 
  366 /*
  367  * Initialize machine state (pcb and trap frame) for a new thread about to
  368  * upcall. Pu t enough state in the new thread's PCB to get it to go back 
  369  * userret(), where we can intercept it again to set the return (upcall)
  370  * Address and stack, along with those from upcals that are from other sources
  371  * such as those generated in thread_userret() itself.
  372  */
  373 void
  374 cpu_set_upcall(struct thread *td, struct thread *td0)
  375 {
  376         struct pcb *pcb2;
  377 
  378         /* Point the pcb to the top of the stack. */
  379         pcb2 = td->td_pcb;
  380 
  381         /*
  382          * Copy the upcall pcb.  This loads kernel regs.
  383          * Those not loaded individually below get their default
  384          * values here.
  385          *
  386          * XXXKSE It might be a good idea to simply skip this as
  387          * the values of the other registers may be unimportant.
  388          * This would remove any requirement for knowing the KSE
  389          * at this time (see the matching comment below for
  390          * more analysis) (need a good safe default).
  391          */
  392         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  393         pcb2->pcb_flags &= ~(PCB_NPXTRAP|PCB_NPXINITDONE);
  394 
  395         /*
  396          * Create a new fresh stack for the new thread.
  397          * The -16 is so we can expand the trapframe if we go to vm86.
  398          * Don't forget to set this stack value into whatever supplies
  399          * the address for the fault handlers.
  400          * The contexts are filled in at the time we actually DO the
  401          * upcall as only then do we know which KSE we got.
  402          */
  403         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  404 
  405         /*
  406          * Set registers for trampoline to user mode.  Leave space for the
  407          * return address on stack.  These are the kernel mode register values.
  408          */
  409 #ifdef PAE
  410         pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdpt);
  411 #else
  412         pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdir);
  413 #endif
  414         pcb2->pcb_edi = 0;
  415         pcb2->pcb_esi = (int)fork_return;                   /* trampoline arg */
  416         pcb2->pcb_ebp = 0;
  417         pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
  418         pcb2->pcb_ebx = (int)td;                            /* trampoline arg */
  419         pcb2->pcb_eip = (int)fork_trampoline;
  420         pcb2->pcb_psl &= ~(PSL_I);      /* interrupts must be disabled */
  421         pcb2->pcb_gs = rgs();
  422         /*
  423          * If we didn't copy the pcb, we'd need to do the following registers:
  424          * pcb2->pcb_dr*:       cloned above.
  425          * pcb2->pcb_savefpu:   cloned above.
  426          * pcb2->pcb_flags:     cloned above.
  427          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  428          * pcb2->pcb_gs:        cloned above.  XXXKSE ???
  429          * pcb2->pcb_ext:       cleared below.
  430          */
  431          pcb2->pcb_ext = NULL;
  432 }
  433 
  434 /*
  435  * Set that machine state for performing an upcall that has to
  436  * be done in thread_userret() so that those upcalls generated
  437  * in thread_userret() itself can be done as well.
  438  */
  439 void
  440 cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
  441 {
  442 
  443         /* 
  444          * Do any extra cleaning that needs to be done.
  445          * The thread may have optional components
  446          * that are not present in a fresh thread.
  447          * This may be a recycled thread so make it look
  448          * as though it's newly allocated.
  449          */
  450         cpu_thread_clean(td);
  451 
  452         /*
  453          * Set the trap frame to point at the beginning of the uts
  454          * function.
  455          */
  456         td->td_frame->tf_ebp = 0; 
  457         td->td_frame->tf_esp =
  458             (int)ku->ku_stack.ss_sp + ku->ku_stack.ss_size - 16;
  459         td->td_frame->tf_eip = (int)ku->ku_func;
  460 
  461         /*
  462          * Pass the address of the mailbox for this kse to the uts
  463          * function as a parameter on the stack.
  464          */
  465         suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
  466             (int)ku->ku_mailbox);
  467 }
  468 
  469 /*
  470  * Convert kernel VA to physical address
  471  */
  472 vm_paddr_t
  473 kvtop(void *addr)
  474 {
  475         vm_paddr_t pa;
  476 
  477         pa = pmap_kextract((vm_offset_t)addr);
  478         if (pa == 0)
  479                 panic("kvtop: zero page frame");
  480         return (pa);
  481 }
  482 
  483 /*
  484  * Force reset the processor by invalidating the entire address space!
  485  */
  486 
  487 #ifdef SMP
  488 static void
  489 cpu_reset_proxy()
  490 {
  491 
  492         cpu_reset_proxy_active = 1;
  493         while (cpu_reset_proxy_active == 1)
  494                 ;        /* Wait for other cpu to see that we've started */
  495         stop_cpus((1<<cpu_reset_proxyid));
  496         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  497         DELAY(1000000);
  498         cpu_reset_real();
  499 }
  500 #endif
  501 
  502 void
  503 cpu_reset()
  504 {
  505 #ifdef SMP
  506         if (smp_active == 0) {
  507                 cpu_reset_real();
  508                 /* NOTREACHED */
  509         } else {
  510 
  511                 u_int map;
  512                 int cnt;
  513                 printf("cpu_reset called on cpu#%d\n", PCPU_GET(cpuid));
  514 
  515                 map = PCPU_GET(other_cpus) & ~ stopped_cpus;
  516 
  517                 if (map != 0) {
  518                         printf("cpu_reset: Stopping other CPUs\n");
  519                         stop_cpus(map);         /* Stop all other CPUs */
  520                 }
  521 
  522                 if (PCPU_GET(cpuid) == 0) {
  523                         DELAY(1000000);
  524                         cpu_reset_real();
  525                         /* NOTREACHED */
  526                 } else {
  527                         /* We are not BSP (CPU #0) */
  528 
  529                         cpu_reset_proxyid = PCPU_GET(cpuid);
  530                         cpustop_restartfunc = cpu_reset_proxy;
  531                         cpu_reset_proxy_active = 0;
  532                         printf("cpu_reset: Restarting BSP\n");
  533                         started_cpus = (1<<0);          /* Restart CPU #0 */
  534 
  535                         cnt = 0;
  536                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  537                                 cnt++;  /* Wait for BSP to announce restart */
  538                         if (cpu_reset_proxy_active == 0)
  539                                 printf("cpu_reset: Failed to restart BSP\n");
  540                         enable_intr();
  541                         cpu_reset_proxy_active = 2;
  542 
  543                         while (1);
  544                         /* NOTREACHED */
  545                 }
  546         }
  547 #else
  548         cpu_reset_real();
  549 #endif
  550 }
  551 
  552 static void
  553 cpu_reset_real()
  554 {
  555 
  556 #ifdef CPU_ELAN
  557         if (elan_mmcr != NULL)
  558                 elan_mmcr->RESCFG = 1;
  559 #endif
  560 
  561         if (cpu == CPU_GEODE1100) {
  562                 /* Attempt Geode's own reset */
  563                 outl(0xcf8, 0x80009044ul);
  564                 outl(0xcfc, 0xf);
  565         }
  566 
  567 #ifdef PC98
  568         /*
  569          * Attempt to do a CPU reset via CPU reset port.
  570          */
  571         disable_intr();
  572         if ((inb(0x35) & 0xa0) != 0xa0) {
  573                 outb(0x37, 0x0f);               /* SHUT0 = 0. */
  574                 outb(0x37, 0x0b);               /* SHUT1 = 0. */
  575         }
  576         outb(0xf0, 0x00);               /* Reset. */
  577 #else
  578         /*
  579          * Attempt to do a CPU reset via the keyboard controller,
  580          * do not turn of the GateA20, as any machine that fails
  581          * to do the reset here would then end up in no man's land.
  582          */
  583 
  584 #if !defined(BROKEN_KEYBOARD_RESET)
  585         outb(IO_KBD + 4, 0xFE);
  586         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  587         printf("Keyboard reset did not work, attempting CPU shutdown\n");
  588         DELAY(1000000); /* wait 1 sec for printf to complete */
  589 #endif
  590 #endif /* PC98 */
  591         /* force a shutdown by unmapping entire address space ! */
  592         bzero((caddr_t)PTD, NBPTD);
  593 
  594         /* "good night, sweet prince .... <THUNK!>" */
  595         invltlb();
  596         /* NOTREACHED */
  597         while(1);
  598 }
  599 
  600 /*
  601  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  602  */
  603 static void
  604 sf_buf_init(void *arg)
  605 {
  606         struct sf_buf *sf_bufs;
  607         vm_offset_t sf_base;
  608         int i;
  609 
  610         nsfbufs = NSFBUFS;
  611         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  612 
  613         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  614         TAILQ_INIT(&sf_buf_freelist);
  615         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  616         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  617             M_NOWAIT | M_ZERO);
  618         for (i = 0; i < nsfbufs; i++) {
  619                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  620                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  621         }
  622         sf_buf_alloc_want = 0;
  623         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  624 }
  625 
  626 /*
  627  * Get an sf_buf from the freelist. Will block if none are available.
  628  */
  629 struct sf_buf *
  630 sf_buf_alloc(struct vm_page *m, int flags)
  631 {
  632         pt_entry_t opte, *ptep;
  633         struct sf_head *hash_list;
  634         struct sf_buf *sf;
  635 #ifdef SMP
  636         cpumask_t cpumask, other_cpus;
  637 #endif
  638         int error;
  639 
  640         KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
  641             ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
  642         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  643         mtx_lock(&sf_buf_lock);
  644         LIST_FOREACH(sf, hash_list, list_entry) {
  645                 if (sf->m == m) {
  646                         sf->ref_count++;
  647                         if (sf->ref_count == 1) {
  648                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  649                                 nsfbufsused++;
  650                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  651                         }
  652 #ifdef SMP
  653                         cpumask = PCPU_GET(cpumask);
  654                         if ((sf->cpumask & cpumask) == 0) {
  655                                 sf->cpumask |= cpumask;
  656                                 invlpg(sf->kva);
  657                         }
  658                         if ((flags & SFB_CPUPRIVATE) == 0) {
  659                                 other_cpus = PCPU_GET(other_cpus) & ~sf->cpumask;
  660                                 if (other_cpus != 0) {
  661                                         sf->cpumask |= other_cpus;
  662                                         mtx_lock_spin(&smp_ipi_mtx);
  663                                         smp_masked_invlpg(other_cpus, sf->kva);
  664                                         mtx_unlock_spin(&smp_ipi_mtx);
  665                                 }
  666                         }
  667 #endif
  668                         goto done;
  669                 }
  670         }
  671         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  672                 if (flags & SFB_NOWAIT)
  673                         goto done;
  674                 sf_buf_alloc_want++;
  675                 mbstat.sf_allocwait++;
  676                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  677                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  678                 sf_buf_alloc_want--;
  679 
  680                 /*
  681                  * If we got a signal, don't risk going back to sleep. 
  682                  */
  683                 if (error)
  684                         goto done;
  685         }
  686         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  687         if (sf->m != NULL)
  688                 LIST_REMOVE(sf, list_entry);
  689         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  690         sf->ref_count = 1;
  691         sf->m = m;
  692         nsfbufsused++;
  693         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  694 
  695         /*
  696          * Update the sf_buf's virtual-to-physical mapping, flushing the
  697          * virtual address from the TLB only if the PTE implies that the old
  698          * mapping has been used.  Since the reference count for the sf_buf's
  699          * old mapping was zero, that mapping is not currently in use.
  700          * Consequently, there is no need to exchange the old and new PTEs
  701          * atomically, even under PAE.
  702          */
  703         ptep = vtopte(sf->kva);
  704         opte = *ptep;
  705         *ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V;
  706 #ifdef SMP
  707         if (flags & SFB_CPUPRIVATE) {
  708                 if ((opte & (PG_A | PG_V)) == (PG_A | PG_V)) {
  709                         sf->cpumask = PCPU_GET(cpumask);
  710                         invlpg(sf->kva);
  711                 } else
  712                         sf->cpumask = all_cpus;
  713                 goto done;
  714         } else
  715                 sf->cpumask = all_cpus;
  716 #endif
  717         if ((opte & (PG_A | PG_V)) == (PG_A | PG_V))
  718                 pmap_invalidate_page(kernel_pmap, sf->kva);
  719 done:
  720         mtx_unlock(&sf_buf_lock);
  721         return (sf);
  722 }
  723 
  724 /*
  725  * Remove a reference from the given sf_buf, adding it to the free
  726  * list when its reference count reaches zero.  A freed sf_buf still,
  727  * however, retains its virtual-to-physical mapping until it is
  728  * recycled or reactivated by sf_buf_alloc(9).
  729  */
  730 void
  731 sf_buf_free(struct sf_buf *sf)
  732 {
  733 
  734         mtx_lock(&sf_buf_lock);
  735         sf->ref_count--;
  736         if (sf->ref_count == 0) {
  737                 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  738                 nsfbufsused--;
  739                 if (sf_buf_alloc_want > 0)
  740                         wakeup_one(&sf_buf_freelist);
  741         }
  742         mtx_unlock(&sf_buf_lock);
  743 }
  744 
  745 /*
  746  * Software interrupt handler for queued VM system processing.
  747  */   
  748 void  
  749 swi_vm(void *dummy) 
  750 {     
  751         if (busdma_swi_pending != 0)
  752                 busdma_swi();
  753 }
  754 
  755 /*
  756  * Tell whether this address is in some physical memory region.
  757  * Currently used by the kernel coredump code in order to avoid
  758  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  759  * or other unpredictable behaviour.
  760  */
  761 
  762 int
  763 is_physical_memory(vm_paddr_t addr)
  764 {
  765 
  766 #ifdef DEV_ISA
  767         /* The ISA ``memory hole''. */
  768         if (addr >= 0xa0000 && addr < 0x100000)
  769                 return 0;
  770 #endif
  771 
  772         /*
  773          * stuff other tests for known memory-mapped devices (PCI?)
  774          * here
  775          */
  776 
  777         return 1;
  778 }

Cache object: 7e4b987cf10a21ebacf28ff7a623efc3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.