The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/i386/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/8.0/sys/i386/i386/vm_machdep.c 195940 2009-07-29 08:49:58Z kib $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_npx.h"
   48 #include "opt_reset.h"
   49 #include "opt_cpu.h"
   50 #include "opt_xbox.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/bio.h>
   55 #include <sys/buf.h>
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mbuf.h>
   61 #include <sys/mutex.h>
   62 #include <sys/pioctl.h>
   63 #include <sys/proc.h>
   64 #include <sys/sf_buf.h>
   65 #include <sys/smp.h>
   66 #include <sys/sched.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/unistd.h>
   69 #include <sys/vnode.h>
   70 #include <sys/vmmeter.h>
   71 
   72 #include <machine/cpu.h>
   73 #include <machine/cputypes.h>
   74 #include <machine/md_var.h>
   75 #include <machine/pcb.h>
   76 #include <machine/pcb_ext.h>
   77 #include <machine/smp.h>
   78 #include <machine/vm86.h>
   79 
   80 #ifdef CPU_ELAN
   81 #include <machine/elan_mmcr.h>
   82 #endif
   83 
   84 #include <vm/vm.h>
   85 #include <vm/vm_extern.h>
   86 #include <vm/vm_kern.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_param.h>
   90 
   91 #ifdef XEN
   92 #include <xen/hypervisor.h>
   93 #endif
   94 #ifdef PC98
   95 #include <pc98/cbus/cbus.h>
   96 #else
   97 #include <i386/isa/isa.h>
   98 #endif
   99 
  100 #ifdef XBOX
  101 #include <machine/xbox.h>
  102 #endif
  103 
  104 #ifndef NSFBUFS
  105 #define NSFBUFS         (512 + maxusers * 16)
  106 #endif
  107 
  108 static void     cpu_reset_real(void);
  109 #ifdef SMP
  110 static void     cpu_reset_proxy(void);
  111 static u_int    cpu_reset_proxyid;
  112 static volatile u_int   cpu_reset_proxy_active;
  113 #endif
  114 static void     sf_buf_init(void *arg);
  115 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
  116 
  117 LIST_HEAD(sf_head, sf_buf);
  118 
  119 /*
  120  * A hash table of active sendfile(2) buffers
  121  */
  122 static struct sf_head *sf_buf_active;
  123 static u_long sf_buf_hashmask;
  124 
  125 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
  126 
  127 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
  128 static u_int    sf_buf_alloc_want;
  129 
  130 /*
  131  * A lock used to synchronize access to the hash table and free list
  132  */
  133 static struct mtx sf_buf_lock;
  134 
  135 extern int      _ucodesel, _udatasel;
  136 
  137 /*
  138  * Finish a fork operation, with process p2 nearly set up.
  139  * Copy and update the pcb, set up the stack so that the child
  140  * ready to run and return to user mode.
  141  */
  142 void
  143 cpu_fork(td1, p2, td2, flags)
  144         register struct thread *td1;
  145         register struct proc *p2;
  146         struct thread *td2;
  147         int flags;
  148 {
  149         register struct proc *p1;
  150         struct pcb *pcb2;
  151         struct mdproc *mdp2;
  152 #ifdef DEV_NPX
  153         register_t savecrit;
  154 #endif
  155 
  156         p1 = td1->td_proc;
  157         if ((flags & RFPROC) == 0) {
  158                 if ((flags & RFMEM) == 0) {
  159                         /* unshare user LDT */
  160                         struct mdproc *mdp1 = &p1->p_md;
  161                         struct proc_ldt *pldt, *pldt1;
  162 
  163                         mtx_lock_spin(&dt_lock);
  164                         if ((pldt1 = mdp1->md_ldt) != NULL &&
  165                             pldt1->ldt_refcnt > 1) {
  166                                 pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
  167                                 if (pldt == NULL)
  168                                         panic("could not copy LDT");
  169                                 mdp1->md_ldt = pldt;
  170                                 set_user_ldt(mdp1);
  171                                 user_ldt_deref(pldt1);
  172                         } else
  173                                 mtx_unlock_spin(&dt_lock);
  174                 }
  175                 return;
  176         }
  177 
  178         /* Ensure that p1's pcb is up to date. */
  179         if (td1 == curthread)
  180                 td1->td_pcb->pcb_gs = rgs();
  181 #ifdef DEV_NPX
  182         savecrit = intr_disable();
  183         if (PCPU_GET(fpcurthread) == td1)
  184                 npxsave(&td1->td_pcb->pcb_save);
  185         intr_restore(savecrit);
  186 #endif
  187 
  188         /* Point the pcb to the top of the stack */
  189         pcb2 = (struct pcb *)(td2->td_kstack +
  190             td2->td_kstack_pages * PAGE_SIZE) - 1;
  191         td2->td_pcb = pcb2;
  192 
  193         /* Copy p1's pcb */
  194         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  195 
  196         /* Point mdproc and then copy over td1's contents */
  197         mdp2 = &p2->p_md;
  198         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  199 
  200         /*
  201          * Create a new fresh stack for the new process.
  202          * Copy the trap frame for the return to user mode as if from a
  203          * syscall.  This copies most of the user mode register values.
  204          * The -16 is so we can expand the trapframe if we go to vm86.
  205          */
  206         td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
  207         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  208 
  209         td2->td_frame->tf_eax = 0;              /* Child returns zero */
  210         td2->td_frame->tf_eflags &= ~PSL_C;     /* success */
  211         td2->td_frame->tf_edx = 1;
  212 
  213         /*
  214          * If the parent process has the trap bit set (i.e. a debugger had
  215          * single stepped the process to the system call), we need to clear
  216          * the trap flag from the new frame unless the debugger had set PF_FORK
  217          * on the parent.  Otherwise, the child will receive a (likely
  218          * unexpected) SIGTRAP when it executes the first instruction after
  219          * returning  to userland.
  220          */
  221         if ((p1->p_pfsflags & PF_FORK) == 0)
  222                 td2->td_frame->tf_eflags &= ~PSL_T;
  223 
  224         /*
  225          * Set registers for trampoline to user mode.  Leave space for the
  226          * return address on stack.  These are the kernel mode register values.
  227          */
  228 #ifdef PAE
  229         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
  230 #else
  231         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
  232 #endif
  233         pcb2->pcb_edi = 0;
  234         pcb2->pcb_esi = (int)fork_return;       /* fork_trampoline argument */
  235         pcb2->pcb_ebp = 0;
  236         pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
  237         pcb2->pcb_ebx = (int)td2;               /* fork_trampoline argument */
  238         pcb2->pcb_eip = (int)fork_trampoline;
  239         pcb2->pcb_psl = PSL_KERNEL;             /* ints disabled */
  240         /*-
  241          * pcb2->pcb_dr*:       cloned above.
  242          * pcb2->pcb_savefpu:   cloned above.
  243          * pcb2->pcb_flags:     cloned above.
  244          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  245          * pcb2->pcb_gs:        cloned above.
  246          * pcb2->pcb_ext:       cleared below.
  247          */
  248 
  249         /*
  250          * XXX don't copy the i/o pages.  this should probably be fixed.
  251          */
  252         pcb2->pcb_ext = 0;
  253 
  254         /* Copy the LDT, if necessary. */
  255         mtx_lock_spin(&dt_lock);
  256         if (mdp2->md_ldt != NULL) {
  257                 if (flags & RFMEM) {
  258                         mdp2->md_ldt->ldt_refcnt++;
  259                 } else {
  260                         mdp2->md_ldt = user_ldt_alloc(mdp2,
  261                             mdp2->md_ldt->ldt_len);
  262                         if (mdp2->md_ldt == NULL)
  263                                 panic("could not copy LDT");
  264                 }
  265         }
  266         mtx_unlock_spin(&dt_lock);
  267 
  268         /* Setup to release spin count in fork_exit(). */
  269         td2->td_md.md_spinlock_count = 1;
  270         /*
  271          * XXX XEN need to check on PSL_USER is handled
  272          */
  273 #ifdef XEN
  274         td2->td_md.md_saved_flags = 0;
  275 #else   
  276         td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  277 #endif
  278         /*
  279          * Now, cpu_switch() can schedule the new process.
  280          * pcb_esp is loaded pointing to the cpu_switch() stack frame
  281          * containing the return address when exiting cpu_switch.
  282          * This will normally be to fork_trampoline(), which will have
  283          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  284          * will set up a stack to call fork_return(p, frame); to complete
  285          * the return to user-mode.
  286          */
  287 }
  288 
  289 /*
  290  * Intercept the return address from a freshly forked process that has NOT
  291  * been scheduled yet.
  292  *
  293  * This is needed to make kernel threads stay in kernel mode.
  294  */
  295 void
  296 cpu_set_fork_handler(td, func, arg)
  297         struct thread *td;
  298         void (*func)(void *);
  299         void *arg;
  300 {
  301         /*
  302          * Note that the trap frame follows the args, so the function
  303          * is really called like this:  func(arg, frame);
  304          */
  305         td->td_pcb->pcb_esi = (int) func;       /* function */
  306         td->td_pcb->pcb_ebx = (int) arg;        /* first arg */
  307 }
  308 
  309 void
  310 cpu_exit(struct thread *td)
  311 {
  312 
  313         /*
  314          * If this process has a custom LDT, release it.  Reset pc->pcb_gs
  315          * and %gs before we free it in case they refer to an LDT entry.
  316          */
  317         mtx_lock_spin(&dt_lock);
  318         if (td->td_proc->p_md.md_ldt) {
  319                 td->td_pcb->pcb_gs = _udatasel;
  320                 load_gs(_udatasel);
  321                 user_ldt_free(td);
  322         } else
  323                 mtx_unlock_spin(&dt_lock);
  324 }
  325 
  326 void
  327 cpu_thread_exit(struct thread *td)
  328 {
  329 
  330 #ifdef DEV_NPX
  331         if (td == PCPU_GET(fpcurthread))
  332                 npxdrop();
  333 #endif
  334 
  335         /* Disable any hardware breakpoints. */
  336         if (td->td_pcb->pcb_flags & PCB_DBREGS) {
  337                 reset_dbregs();
  338                 td->td_pcb->pcb_flags &= ~PCB_DBREGS;
  339         }
  340 }
  341 
  342 void
  343 cpu_thread_clean(struct thread *td)
  344 {
  345         struct pcb *pcb;
  346 
  347         pcb = td->td_pcb; 
  348         if (pcb->pcb_ext != NULL) {
  349                 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
  350                 /*
  351                  * XXX do we need to move the TSS off the allocated pages
  352                  * before freeing them?  (not done here)
  353                  */
  354                 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
  355                     ctob(IOPAGES + 1));
  356                 pcb->pcb_ext = NULL;
  357         }
  358 }
  359 
  360 void
  361 cpu_thread_swapin(struct thread *td)
  362 {
  363 }
  364 
  365 void
  366 cpu_thread_swapout(struct thread *td)
  367 {
  368 }
  369 
  370 void
  371 cpu_thread_alloc(struct thread *td)
  372 {
  373 
  374         td->td_pcb = (struct pcb *)(td->td_kstack +
  375             td->td_kstack_pages * PAGE_SIZE) - 1;
  376         td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
  377         td->td_pcb->pcb_ext = NULL; 
  378 }
  379 
  380 void
  381 cpu_thread_free(struct thread *td)
  382 {
  383 
  384         cpu_thread_clean(td);
  385 }
  386 
  387 /*
  388  * Initialize machine state (pcb and trap frame) for a new thread about to
  389  * upcall. Put enough state in the new thread's PCB to get it to go back 
  390  * userret(), where we can intercept it again to set the return (upcall)
  391  * Address and stack, along with those from upcals that are from other sources
  392  * such as those generated in thread_userret() itself.
  393  */
  394 void
  395 cpu_set_upcall(struct thread *td, struct thread *td0)
  396 {
  397         struct pcb *pcb2;
  398 
  399         /* Point the pcb to the top of the stack. */
  400         pcb2 = td->td_pcb;
  401 
  402         /*
  403          * Copy the upcall pcb.  This loads kernel regs.
  404          * Those not loaded individually below get their default
  405          * values here.
  406          */
  407         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  408         pcb2->pcb_flags &= ~(PCB_NPXTRAP|PCB_NPXINITDONE);
  409 
  410         /*
  411          * Create a new fresh stack for the new thread.
  412          */
  413         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  414 
  415         /* If the current thread has the trap bit set (i.e. a debugger had
  416          * single stepped the process to the system call), we need to clear
  417          * the trap flag from the new frame. Otherwise, the new thread will
  418          * receive a (likely unexpected) SIGTRAP when it executes the first
  419          * instruction after returning to userland.
  420          */
  421         td->td_frame->tf_eflags &= ~PSL_T;
  422 
  423         /*
  424          * Set registers for trampoline to user mode.  Leave space for the
  425          * return address on stack.  These are the kernel mode register values.
  426          */
  427         pcb2->pcb_edi = 0;
  428         pcb2->pcb_esi = (int)fork_return;                   /* trampoline arg */
  429         pcb2->pcb_ebp = 0;
  430         pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
  431         pcb2->pcb_ebx = (int)td;                            /* trampoline arg */
  432         pcb2->pcb_eip = (int)fork_trampoline;
  433         pcb2->pcb_psl &= ~(PSL_I);      /* interrupts must be disabled */
  434         pcb2->pcb_gs = rgs();
  435         /*
  436          * If we didn't copy the pcb, we'd need to do the following registers:
  437          * pcb2->pcb_cr3:       cloned above.
  438          * pcb2->pcb_dr*:       cloned above.
  439          * pcb2->pcb_savefpu:   cloned above.
  440          * pcb2->pcb_flags:     cloned above.
  441          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  442          * pcb2->pcb_gs:        cloned above.
  443          * pcb2->pcb_ext:       cleared below.
  444          */
  445         pcb2->pcb_ext = NULL;
  446 
  447         /* Setup to release spin count in fork_exit(). */
  448         td->td_md.md_spinlock_count = 1;
  449 #ifdef XEN      
  450         td->td_md.md_saved_flags = 0;   
  451 #else
  452         td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  453 #endif
  454 }
  455 
  456 /*
  457  * Set that machine state for performing an upcall that has to
  458  * be done in thread_userret() so that those upcalls generated
  459  * in thread_userret() itself can be done as well.
  460  */
  461 void
  462 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  463         stack_t *stack)
  464 {
  465 
  466         /* 
  467          * Do any extra cleaning that needs to be done.
  468          * The thread may have optional components
  469          * that are not present in a fresh thread.
  470          * This may be a recycled thread so make it look
  471          * as though it's newly allocated.
  472          */
  473         cpu_thread_clean(td);
  474 
  475         /*
  476          * Set the trap frame to point at the beginning of the uts
  477          * function.
  478          */
  479         td->td_frame->tf_ebp = 0; 
  480         td->td_frame->tf_esp =
  481             (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
  482         td->td_frame->tf_eip = (int)entry;
  483 
  484         /*
  485          * Pass the address of the mailbox for this kse to the uts
  486          * function as a parameter on the stack.
  487          */
  488         suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
  489             (int)arg);
  490 }
  491 
  492 int
  493 cpu_set_user_tls(struct thread *td, void *tls_base)
  494 {
  495         struct segment_descriptor sd;
  496         uint32_t base;
  497 
  498         /*
  499          * Construct a descriptor and store it in the pcb for
  500          * the next context switch.  Also store it in the gdt
  501          * so that the load of tf_fs into %fs will activate it
  502          * at return to userland.
  503          */
  504         base = (uint32_t)tls_base;
  505         sd.sd_lobase = base & 0xffffff;
  506         sd.sd_hibase = (base >> 24) & 0xff;
  507         sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */
  508         sd.sd_hilimit = 0xf;
  509         sd.sd_type  = SDT_MEMRWA;
  510         sd.sd_dpl   = SEL_UPL;
  511         sd.sd_p     = 1;
  512         sd.sd_xx    = 0;
  513         sd.sd_def32 = 1;
  514         sd.sd_gran  = 1;
  515         critical_enter();
  516         /* set %gs */
  517         td->td_pcb->pcb_gsd = sd;
  518         if (td == curthread) {
  519                 PCPU_GET(fsgs_gdt)[1] = sd;
  520                 load_gs(GSEL(GUGS_SEL, SEL_UPL));
  521         }
  522         critical_exit();
  523         return (0);
  524 }
  525 
  526 /*
  527  * Convert kernel VA to physical address
  528  */
  529 vm_paddr_t
  530 kvtop(void *addr)
  531 {
  532         vm_paddr_t pa;
  533 
  534         pa = pmap_kextract((vm_offset_t)addr);
  535         if (pa == 0)
  536                 panic("kvtop: zero page frame");
  537         return (pa);
  538 }
  539 
  540 #ifdef SMP
  541 static void
  542 cpu_reset_proxy()
  543 {
  544 
  545         cpu_reset_proxy_active = 1;
  546         while (cpu_reset_proxy_active == 1)
  547                 ;       /* Wait for other cpu to see that we've started */
  548         stop_cpus((1<<cpu_reset_proxyid));
  549         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  550         DELAY(1000000);
  551         cpu_reset_real();
  552 }
  553 #endif
  554 
  555 void
  556 cpu_reset()
  557 {
  558 #ifdef XBOX
  559         if (arch_i386_is_xbox) {
  560                 /* Kick the PIC16L, it can reboot the box */
  561                 pic16l_reboot();
  562                 for (;;);
  563         }
  564 #endif
  565 
  566 #ifdef SMP
  567         u_int cnt, map;
  568 
  569         if (smp_active) {
  570                 map = PCPU_GET(other_cpus) & ~stopped_cpus;
  571                 if (map != 0) {
  572                         printf("cpu_reset: Stopping other CPUs\n");
  573                         stop_cpus(map);
  574                 }
  575 
  576                 if (PCPU_GET(cpuid) != 0) {
  577                         cpu_reset_proxyid = PCPU_GET(cpuid);
  578                         cpustop_restartfunc = cpu_reset_proxy;
  579                         cpu_reset_proxy_active = 0;
  580                         printf("cpu_reset: Restarting BSP\n");
  581 
  582                         /* Restart CPU #0. */
  583                         /* XXX: restart_cpus(1 << 0); */
  584                         atomic_store_rel_int(&started_cpus, (1 << 0));
  585 
  586                         cnt = 0;
  587                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  588                                 cnt++;  /* Wait for BSP to announce restart */
  589                         if (cpu_reset_proxy_active == 0)
  590                                 printf("cpu_reset: Failed to restart BSP\n");
  591                         enable_intr();
  592                         cpu_reset_proxy_active = 2;
  593 
  594                         while (1);
  595                         /* NOTREACHED */
  596                 }
  597 
  598                 DELAY(1000000);
  599         }
  600 #endif
  601         cpu_reset_real();
  602         /* NOTREACHED */
  603 }
  604 
  605 static void
  606 cpu_reset_real()
  607 {
  608         struct region_descriptor null_idt;
  609 #ifndef PC98
  610         int b;
  611 #endif
  612 
  613         disable_intr();
  614 #ifdef XEN
  615         if (smp_processor_id() == 0)
  616                 HYPERVISOR_shutdown(SHUTDOWN_reboot);
  617         else
  618                 HYPERVISOR_shutdown(SHUTDOWN_poweroff);
  619 #endif 
  620 #ifdef CPU_ELAN
  621         if (elan_mmcr != NULL)
  622                 elan_mmcr->RESCFG = 1;
  623 #endif
  624 
  625         if (cpu == CPU_GEODE1100) {
  626                 /* Attempt Geode's own reset */
  627                 outl(0xcf8, 0x80009044ul);
  628                 outl(0xcfc, 0xf);
  629         }
  630 
  631 #ifdef PC98
  632         /*
  633          * Attempt to do a CPU reset via CPU reset port.
  634          */
  635         if ((inb(0x35) & 0xa0) != 0xa0) {
  636                 outb(0x37, 0x0f);               /* SHUT0 = 0. */
  637                 outb(0x37, 0x0b);               /* SHUT1 = 0. */
  638         }
  639         outb(0xf0, 0x00);               /* Reset. */
  640 #else
  641 #if !defined(BROKEN_KEYBOARD_RESET)
  642         /*
  643          * Attempt to do a CPU reset via the keyboard controller,
  644          * do not turn off GateA20, as any machine that fails
  645          * to do the reset here would then end up in no man's land.
  646          */
  647         outb(IO_KBD + 4, 0xFE);
  648         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  649 #endif
  650 
  651         /*
  652          * Attempt to force a reset via the Reset Control register at
  653          * I/O port 0xcf9.  Bit 2 forces a system reset when it
  654          * transitions from 0 to 1.  Bit 1 selects the type of reset
  655          * to attempt: 0 selects a "soft" reset, and 1 selects a
  656          * "hard" reset.  We try a "hard" reset.  The first write sets
  657          * bit 1 to select a "hard" reset and clears bit 2.  The
  658          * second write forces a 0 -> 1 transition in bit 2 to trigger
  659          * a reset.
  660          */
  661         outb(0xcf9, 0x2);
  662         outb(0xcf9, 0x6);
  663         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  664 
  665         /*
  666          * Attempt to force a reset via the Fast A20 and Init register
  667          * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
  668          * Bit 0 asserts INIT# when set to 1.  We are careful to only
  669          * preserve bit 1 while setting bit 0.  We also must clear bit
  670          * 0 before setting it if it isn't already clear.
  671          */
  672         b = inb(0x92);
  673         if (b != 0xff) {
  674                 if ((b & 0x1) != 0)
  675                         outb(0x92, b & 0xfe);
  676                 outb(0x92, b | 0x1);
  677                 DELAY(500000);  /* wait 0.5 sec to see if that did it */
  678         }
  679 #endif /* PC98 */
  680 
  681         printf("No known reset method worked, attempting CPU shutdown\n");
  682         DELAY(1000000); /* wait 1 sec for printf to complete */
  683 
  684         /* Wipe the IDT. */
  685         null_idt.rd_limit = 0;
  686         null_idt.rd_base = 0;
  687         lidt(&null_idt);
  688 
  689         /* "good night, sweet prince .... <THUNK!>" */
  690         breakpoint();
  691 
  692         /* NOTREACHED */
  693         while(1);
  694 }
  695 
  696 /*
  697  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  698  */
  699 static void
  700 sf_buf_init(void *arg)
  701 {
  702         struct sf_buf *sf_bufs;
  703         vm_offset_t sf_base;
  704         int i;
  705 
  706         nsfbufs = NSFBUFS;
  707         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  708 
  709         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  710         TAILQ_INIT(&sf_buf_freelist);
  711         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  712         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  713             M_NOWAIT | M_ZERO);
  714         for (i = 0; i < nsfbufs; i++) {
  715                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  716                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  717         }
  718         sf_buf_alloc_want = 0;
  719         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  720 }
  721 
  722 /*
  723  * Invalidate the cache lines that may belong to the page, if
  724  * (possibly old) mapping of the page by sf buffer exists.  Returns
  725  * TRUE when mapping was found and cache invalidated.
  726  */
  727 boolean_t
  728 sf_buf_invalidate_cache(vm_page_t m)
  729 {
  730         struct sf_head *hash_list;
  731         struct sf_buf *sf;
  732         boolean_t ret;
  733 
  734         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  735         ret = FALSE;
  736         mtx_lock(&sf_buf_lock);
  737         LIST_FOREACH(sf, hash_list, list_entry) {
  738                 if (sf->m == m) {
  739                         /*
  740                          * Use pmap_qenter to update the pte for
  741                          * existing mapping, in particular, the PAT
  742                          * settings are recalculated.
  743                          */
  744                         pmap_qenter(sf->kva, &m, 1);
  745                         pmap_invalidate_cache_range(sf->kva, sf->kva +
  746                             PAGE_SIZE);
  747                         ret = TRUE;
  748                         break;
  749                 }
  750         }
  751         mtx_unlock(&sf_buf_lock);
  752         return (ret);
  753 }
  754 
  755 /*
  756  * Get an sf_buf from the freelist.  May block if none are available.
  757  */
  758 struct sf_buf *
  759 sf_buf_alloc(struct vm_page *m, int flags)
  760 {
  761         pt_entry_t opte, *ptep;
  762         struct sf_head *hash_list;
  763         struct sf_buf *sf;
  764 #ifdef SMP
  765         cpumask_t cpumask, other_cpus;
  766 #endif
  767         int error;
  768 
  769         KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
  770             ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
  771         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  772         mtx_lock(&sf_buf_lock);
  773         LIST_FOREACH(sf, hash_list, list_entry) {
  774                 if (sf->m == m) {
  775                         sf->ref_count++;
  776                         if (sf->ref_count == 1) {
  777                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  778                                 nsfbufsused++;
  779                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  780                         }
  781 #ifdef SMP
  782                         goto shootdown; 
  783 #else
  784                         goto done;
  785 #endif
  786                 }
  787         }
  788         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  789                 if (flags & SFB_NOWAIT)
  790                         goto done;
  791                 sf_buf_alloc_want++;
  792                 mbstat.sf_allocwait++;
  793                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  794                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  795                 sf_buf_alloc_want--;
  796 
  797                 /*
  798                  * If we got a signal, don't risk going back to sleep. 
  799                  */
  800                 if (error)
  801                         goto done;
  802         }
  803         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  804         if (sf->m != NULL)
  805                 LIST_REMOVE(sf, list_entry);
  806         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  807         sf->ref_count = 1;
  808         sf->m = m;
  809         nsfbufsused++;
  810         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  811 
  812         /*
  813          * Update the sf_buf's virtual-to-physical mapping, flushing the
  814          * virtual address from the TLB.  Since the reference count for 
  815          * the sf_buf's old mapping was zero, that mapping is not 
  816          * currently in use.  Consequently, there is no need to exchange 
  817          * the old and new PTEs atomically, even under PAE.
  818          */
  819         ptep = vtopte(sf->kva);
  820         opte = *ptep;
  821 #ifdef XEN
  822        PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag
  823            | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0));
  824 #else
  825         *ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V |
  826             pmap_cache_bits(m->md.pat_mode, 0);
  827 #endif
  828 
  829         /*
  830          * Avoid unnecessary TLB invalidations: If the sf_buf's old
  831          * virtual-to-physical mapping was not used, then any processor
  832          * that has invalidated the sf_buf's virtual address from its TLB
  833          * since the last used mapping need not invalidate again.
  834          */
  835 #ifdef SMP
  836         if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
  837                 sf->cpumask = 0;
  838 shootdown:
  839         sched_pin();
  840         cpumask = PCPU_GET(cpumask);
  841         if ((sf->cpumask & cpumask) == 0) {
  842                 sf->cpumask |= cpumask;
  843                 invlpg(sf->kva);
  844         }
  845         if ((flags & SFB_CPUPRIVATE) == 0) {
  846                 other_cpus = PCPU_GET(other_cpus) & ~sf->cpumask;
  847                 if (other_cpus != 0) {
  848                         sf->cpumask |= other_cpus;
  849                         smp_masked_invlpg(other_cpus, sf->kva);
  850                 }
  851         }
  852         sched_unpin();  
  853 #else
  854         if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
  855                 pmap_invalidate_page(kernel_pmap, sf->kva);
  856 #endif
  857 done:
  858         mtx_unlock(&sf_buf_lock);
  859         return (sf);
  860 }
  861 
  862 /*
  863  * Remove a reference from the given sf_buf, adding it to the free
  864  * list when its reference count reaches zero.  A freed sf_buf still,
  865  * however, retains its virtual-to-physical mapping until it is
  866  * recycled or reactivated by sf_buf_alloc(9).
  867  */
  868 void
  869 sf_buf_free(struct sf_buf *sf)
  870 {
  871 
  872         mtx_lock(&sf_buf_lock);
  873         sf->ref_count--;
  874         if (sf->ref_count == 0) {
  875                 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  876                 nsfbufsused--;
  877 #ifdef XEN
  878 /*
  879  * Xen doesn't like having dangling R/W mappings
  880  */
  881                 pmap_qremove(sf->kva, 1);
  882                 sf->m = NULL;
  883                 LIST_REMOVE(sf, list_entry);
  884 #endif
  885                 if (sf_buf_alloc_want > 0)
  886                         wakeup_one(&sf_buf_freelist);
  887         }
  888         mtx_unlock(&sf_buf_lock);
  889 }
  890 
  891 /*
  892  * Software interrupt handler for queued VM system processing.
  893  */   
  894 void  
  895 swi_vm(void *dummy) 
  896 {     
  897         if (busdma_swi_pending != 0)
  898                 busdma_swi();
  899 }
  900 
  901 /*
  902  * Tell whether this address is in some physical memory region.
  903  * Currently used by the kernel coredump code in order to avoid
  904  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  905  * or other unpredictable behaviour.
  906  */
  907 
  908 int
  909 is_physical_memory(vm_paddr_t addr)
  910 {
  911 
  912 #ifdef DEV_ISA
  913         /* The ISA ``memory hole''. */
  914         if (addr >= 0xa0000 && addr < 0x100000)
  915                 return 0;
  916 #endif
  917 
  918         /*
  919          * stuff other tests for known memory-mapped devices (PCI?)
  920          * here
  921          */
  922 
  923         return 1;
  924 }

Cache object: e6da93f27452f198ee85a2b7b4656f00


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.