The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   37  * $FreeBSD$
   38  */
   39 
   40 /*
   41  * Routines to handle clock hardware.
   42  */
   43 
   44 /*
   45  * inittodr, settodr and support routines written
   46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   47  *
   48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   49  */
   50 
   51 #include "opt_clock.h"
   52 #include "apm.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/time.h>
   57 #include <sys/kernel.h>
   58 #ifndef SMP
   59 #include <sys/lock.h>
   60 #endif
   61 #include <sys/sysctl.h>
   62 
   63 #include <machine/clock.h>
   64 #ifdef CLK_CALIBRATION_LOOP
   65 #include <machine/cons.h>
   66 #endif
   67 #include <machine/cputypes.h>
   68 #include <machine/frame.h>
   69 #include <machine/ipl.h>
   70 #include <machine/limits.h>
   71 #include <machine/md_var.h>
   72 #if NAPM > 0
   73 #include <machine/apm_bios.h>
   74 #include <i386/apm/apm_setup.h>
   75 #endif
   76 #ifdef APIC_IO
   77 #include <machine/segments.h>
   78 #endif
   79 #if defined(SMP) || defined(APIC_IO)
   80 #include <machine/smp.h>
   81 #endif /* SMP || APIC_IO */
   82 #include <machine/specialreg.h>
   83 
   84 #include <i386/isa/icu.h>
   85 #include <i386/isa/isa.h>
   86 #include <i386/isa/rtc.h>
   87 #include <i386/isa/timerreg.h>
   88 
   89 #include <sys/interrupt.h>
   90 
   91 #ifdef SMP
   92 #define disable_intr()  CLOCK_DISABLE_INTR()
   93 #define enable_intr()   CLOCK_ENABLE_INTR()
   94 
   95 #ifdef APIC_IO
   96 #include <i386/isa/intr_machdep.h>
   97 /* The interrupt triggered by the 8254 (timer) chip */
   98 int apic_8254_intr;
   99 static u_long read_intr_count __P((int vec));
  100 static void setup_8254_mixed_mode __P((void));
  101 #endif
  102 #endif /* SMP */
  103 
  104 /*
  105  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
  106  * can use a simple formula for leap years.
  107  */
  108 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
  109 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
  110 
  111 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
  112 
  113 /*
  114  * Time in timer cycles that it takes for microtime() to disable interrupts
  115  * and latch the count.  microtime() currently uses "cli; outb ..." so it
  116  * normally takes less than 2 timer cycles.  Add a few for cache misses.
  117  * Add a few more to allow for latency in bogus calls to microtime() with
  118  * interrupts already disabled.
  119  */
  120 #define TIMER0_LATCH_COUNT      20
  121 
  122 /*
  123  * Maximum frequency that we are willing to allow for timer0.  Must be
  124  * low enough to guarantee that the timer interrupt handler returns
  125  * before the next timer interrupt.
  126  */
  127 #define TIMER0_MAX_FREQ         20000
  128 
  129 int     adjkerntz;              /* local offset from GMT in seconds */
  130 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  131 volatile u_int  idelayed;
  132 int     statclock_disable;
  133 u_int   stat_imask = SWI_CLOCK_MASK;
  134 #ifndef TIMER_FREQ
  135 #define TIMER_FREQ   1193182
  136 #endif
  137 u_int   timer_freq = TIMER_FREQ;
  138 int     timer0_max_count;
  139 u_int   tsc_freq;
  140 int     tsc_is_broken;
  141 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  142 
  143 static  int     beeping = 0;
  144 static  u_int   clk_imask = HWI_MASK | SWI_MASK;
  145 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  146 static  u_int   hardclock_max_count;
  147 static  u_int32_t i8254_lastcount;
  148 static  u_int32_t i8254_offset;
  149 static  int     i8254_ticked;
  150 /*
  151  * XXX new_function and timer_func should not handle clockframes, but
  152  * timer_func currently needs to hold hardclock to handle the
  153  * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
  154  * to switch between clkintr() and a slightly different timerintr().
  155  */
  156 static  void    (*new_function) __P((struct clockframe *frame));
  157 static  u_int   new_rate;
  158 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  159 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
  160 static  u_int   timer0_prescaler_count;
  161 
  162 /* Values for timerX_state: */
  163 #define RELEASED        0
  164 #define RELEASE_PENDING 1
  165 #define ACQUIRED        2
  166 #define ACQUIRE_PENDING 3
  167 
  168 static  u_char  timer0_state;
  169 static  u_char  timer2_state;
  170 static  void    (*timer_func) __P((struct clockframe *frame)) = hardclock;
  171 static  u_int   tsc_present;
  172 
  173 static  unsigned i8254_get_timecount __P((struct timecounter *tc));
  174 static  unsigned tsc_get_timecount __P((struct timecounter *tc));
  175 static  void    set_timer_freq(u_int freq, int intr_freq);
  176 
  177 static struct timecounter tsc_timecounter = {
  178         tsc_get_timecount,      /* get_timecount */
  179         0,                      /* no poll_pps */
  180         ~0u,                    /* counter_mask */
  181         0,                      /* frequency */
  182          "TSC"                  /* name */
  183 };
  184 
  185 SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD, 
  186         &tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
  187 
  188 static struct timecounter i8254_timecounter = {
  189         i8254_get_timecount,    /* get_timecount */
  190         0,                      /* no poll_pps */
  191         ~0u,                    /* counter_mask */
  192         0,                      /* frequency */
  193         "i8254"                 /* name */
  194 };
  195 
  196 SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD, 
  197         &i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
  198 
  199 static void
  200 clkintr(struct clockframe frame)
  201 {
  202         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  203                 /*
  204                  * Maintain i8254_offset and related variables.  Optimize
  205                  * the usual case where i8254 counter rollover has not been
  206                  * detected in i8254_get_timecount() by pretending that we
  207                  * read the counter when it rolled over.  Otherwise, call
  208                  * i8254_get_timecount() to do most of the work.  The
  209                  * hardware counter must be read to ensure monotonicity
  210                  * despite multiple rollovers and misbehaving hardware.
  211                  */
  212                 (disable_intr)();       /* XXX avoid clock locking */
  213                 if (i8254_ticked) {
  214                         i8254_get_timecount(NULL);
  215                         i8254_ticked = 0;
  216                 } else {
  217                         i8254_offset += timer0_max_count;
  218                         i8254_lastcount = 0;
  219                 }
  220                 (enable_intr)();        /* XXX avoid clock locking */
  221         }
  222         timer_func(&frame);
  223         switch (timer0_state) {
  224 
  225         case RELEASED:
  226                 setdelayed();
  227                 break;
  228 
  229         case ACQUIRED:
  230                 if ((timer0_prescaler_count += timer0_max_count)
  231                     >= hardclock_max_count) {
  232                         timer0_prescaler_count -= hardclock_max_count;
  233                         hardclock(&frame);
  234                         setdelayed();
  235                 }
  236                 break;
  237 
  238         case ACQUIRE_PENDING:
  239                 setdelayed();
  240                 timer0_max_count = TIMER_DIV(new_rate);
  241                 disable_intr();
  242                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  243                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  244                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  245                 enable_intr();
  246                 timer0_prescaler_count = 0;
  247                 timer_func = new_function;
  248                 timer0_state = ACQUIRED;
  249                 break;
  250 
  251         case RELEASE_PENDING:
  252                 if ((timer0_prescaler_count += timer0_max_count)
  253                     >= hardclock_max_count) {
  254                         timer0_prescaler_count -= hardclock_max_count;
  255 #ifdef FIXME
  256                         /*
  257                          * XXX: This magic doesn't work, but It shouldn't be 
  258                          * needed now anyway since we will not be able to 
  259                          * aquire the i8254 if it is used for timecounting.
  260                          */
  261                         /*
  262                          * See microtime.s for this magic.
  263                          */
  264                         time.tv_usec += (27465 * timer0_prescaler_count) >> 15;
  265                         if (time.tv_usec >= 1000000)
  266                                 time.tv_usec -= 1000000;
  267 #endif
  268                         hardclock(&frame);
  269                         setdelayed();
  270                         timer0_max_count = hardclock_max_count;
  271                         disable_intr();
  272                         outb(TIMER_MODE,
  273                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  274                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  275                         outb(TIMER_CNTR0, timer0_max_count >> 8);
  276                         enable_intr();
  277                         timer0_prescaler_count = 0;
  278                         timer_func = hardclock;
  279                         timer0_state = RELEASED;
  280                 }
  281                 break;
  282         }
  283 }
  284 
  285 /*
  286  * The acquire and release functions must be called at ipl >= splclock().
  287  */
  288 int
  289 acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
  290 {
  291         static int old_rate;
  292 
  293         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
  294                 return (-1);
  295         if (strcmp(timecounter->tc_name, "i8254") == 0)
  296                 return (-1);
  297         switch (timer0_state) {
  298 
  299         case RELEASED:
  300                 timer0_state = ACQUIRE_PENDING;
  301                 break;
  302 
  303         case RELEASE_PENDING:
  304                 if (rate != old_rate)
  305                         return (-1);
  306                 /*
  307                  * The timer has been released recently, but is being
  308                  * re-acquired before the release completed.  In this
  309                  * case, we simply reclaim it as if it had not been
  310                  * released at all.
  311                  */
  312                 timer0_state = ACQUIRED;
  313                 break;
  314 
  315         default:
  316                 return (-1);    /* busy */
  317         }
  318         new_function = function;
  319         old_rate = new_rate = rate;
  320         return (0);
  321 }
  322 
  323 int
  324 acquire_timer2(int mode)
  325 {
  326 
  327         if (timer2_state != RELEASED)
  328                 return (-1);
  329         timer2_state = ACQUIRED;
  330 
  331         /*
  332          * This access to the timer registers is as atomic as possible
  333          * because it is a single instruction.  We could do better if we
  334          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  335          * and this is probably good enough for timer2, so we aren't as
  336          * careful with it as with timer0.
  337          */
  338         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  339 
  340         return (0);
  341 }
  342 
  343 int
  344 release_timer0()
  345 {
  346         switch (timer0_state) {
  347 
  348         case ACQUIRED:
  349                 timer0_state = RELEASE_PENDING;
  350                 break;
  351 
  352         case ACQUIRE_PENDING:
  353                 /* Nothing happened yet, release quickly. */
  354                 timer0_state = RELEASED;
  355                 break;
  356 
  357         default:
  358                 return (-1);
  359         }
  360         return (0);
  361 }
  362 
  363 int
  364 release_timer2()
  365 {
  366 
  367         if (timer2_state != ACQUIRED)
  368                 return (-1);
  369         timer2_state = RELEASED;
  370         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  371         return (0);
  372 }
  373 
  374 /*
  375  * This routine receives statistical clock interrupts from the RTC.
  376  * As explained above, these occur at 128 interrupts per second.
  377  * When profiling, we receive interrupts at a rate of 1024 Hz.
  378  *
  379  * This does not actually add as much overhead as it sounds, because
  380  * when the statistical clock is active, the hardclock driver no longer
  381  * needs to keep (inaccurate) statistics on its own.  This decouples
  382  * statistics gathering from scheduling interrupts.
  383  *
  384  * The RTC chip requires that we read status register C (RTC_INTR)
  385  * to acknowledge an interrupt, before it will generate the next one.
  386  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  387  * the clock can tick immediately after the read from RTC_INTR.  In this
  388  * case, the mc146818A interrupt signal will not drop for long enough
  389  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  390  * clock will halt, considerably degrading system performance.  This is
  391  * why we use 'while' rather than a more straightforward 'if' below.
  392  * Stat clock ticks can still be lost, causing minor loss of accuracy
  393  * in the statistics, but the stat clock will no longer stop.
  394  */
  395 static void
  396 rtcintr(struct clockframe frame)
  397 {
  398         while (rtcin(RTC_INTR) & RTCIR_PERIOD)
  399                 statclock(&frame);
  400 }
  401 
  402 #include "opt_ddb.h"
  403 #ifdef DDB
  404 #include <ddb/ddb.h>
  405 
  406 DB_SHOW_COMMAND(rtc, rtc)
  407 {
  408         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  409                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  410                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  411                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  412 }
  413 #endif /* DDB */
  414 
  415 static int
  416 getit(void)
  417 {
  418         u_long ef;
  419         int high, low;
  420 
  421         ef = read_eflags();
  422         disable_intr();
  423 
  424         /* Select timer0 and latch counter value. */
  425         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  426 
  427         low = inb(TIMER_CNTR0);
  428         high = inb(TIMER_CNTR0);
  429 
  430         CLOCK_UNLOCK();
  431         write_eflags(ef);
  432         return ((high << 8) | low);
  433 }
  434 
  435 /*
  436  * Wait "n" microseconds.
  437  * Relies on timer 1 counting down from (timer_freq / hz)
  438  * Note: timer had better have been programmed before this is first used!
  439  */
  440 void
  441 DELAY(int n)
  442 {
  443         int delta, prev_tick, tick, ticks_left;
  444 
  445 #ifdef DELAYDEBUG
  446         int getit_calls = 1;
  447         int n1;
  448         static int state = 0;
  449 
  450         if (state == 0) {
  451                 state = 1;
  452                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  453                         DELAY(n1);
  454                 state = 2;
  455         }
  456         if (state == 1)
  457                 printf("DELAY(%d)...", n);
  458 #endif
  459         /*
  460          * Guard against the timer being uninitialized if we are called
  461          * early for console i/o.
  462          */
  463         if (timer0_max_count == 0)
  464                 set_timer_freq(timer_freq, hz);
  465 
  466         /*
  467          * Read the counter first, so that the rest of the setup overhead is
  468          * counted.  Guess the initial overhead is 20 usec (on most systems it
  469          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  470          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  471          * multiplications and divisions to scale the count take a while).
  472          */
  473         prev_tick = getit();
  474         n -= 0;                 /* XXX actually guess no initial overhead */
  475         /*
  476          * Calculate (n * (timer_freq / 1e6)) without using floating point
  477          * and without any avoidable overflows.
  478          */
  479         if (n <= 0)
  480                 ticks_left = 0;
  481         else if (n < 256)
  482                 /*
  483                  * Use fixed point to avoid a slow division by 1000000.
  484                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  485                  * 2^15 is the first power of 2 that gives exact results
  486                  * for n between 0 and 256.
  487                  */
  488                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  489         else
  490                 /*
  491                  * Don't bother using fixed point, although gcc-2.7.2
  492                  * generates particularly poor code for the long long
  493                  * division, since even the slow way will complete long
  494                  * before the delay is up (unless we're interrupted).
  495                  */
  496                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  497                              / 1000000;
  498 
  499         while (ticks_left > 0) {
  500                 tick = getit();
  501 #ifdef DELAYDEBUG
  502                 ++getit_calls;
  503 #endif
  504                 delta = prev_tick - tick;
  505                 prev_tick = tick;
  506                 if (delta < 0) {
  507                         delta += timer0_max_count;
  508                         /*
  509                          * Guard against timer0_max_count being wrong.
  510                          * This shouldn't happen in normal operation,
  511                          * but it may happen if set_timer_freq() is
  512                          * traced.
  513                          */
  514                         if (delta < 0)
  515                                 delta = 0;
  516                 }
  517                 ticks_left -= delta;
  518         }
  519 #ifdef DELAYDEBUG
  520         if (state == 1)
  521                 printf(" %d calls to getit() at %d usec each\n",
  522                        getit_calls, (n + 5) / getit_calls);
  523 #endif
  524 }
  525 
  526 static void
  527 sysbeepstop(void *chan)
  528 {
  529         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
  530         release_timer2();
  531         beeping = 0;
  532 }
  533 
  534 int
  535 sysbeep(int pitch, int period)
  536 {
  537         int x = splclock();
  538 
  539         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
  540                 if (!beeping) {
  541                         /* Something else owns it. */
  542                         splx(x);
  543                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  544                 }
  545         disable_intr();
  546         outb(TIMER_CNTR2, pitch);
  547         outb(TIMER_CNTR2, (pitch>>8));
  548         enable_intr();
  549         if (!beeping) {
  550                 /* enable counter2 output to speaker */
  551                 outb(IO_PPI, inb(IO_PPI) | 3);
  552                 beeping = period;
  553                 timeout(sysbeepstop, (void *)NULL, period);
  554         }
  555         splx(x);
  556         return (0);
  557 }
  558 
  559 /*
  560  * RTC support routines
  561  */
  562 
  563 int
  564 rtcin(reg)
  565         int reg;
  566 {
  567         u_char val;
  568 
  569         outb(IO_RTC, reg);
  570         inb(0x84);
  571         val = inb(IO_RTC + 1);
  572         inb(0x84);
  573         return (val);
  574 }
  575 
  576 static __inline void
  577 writertc(u_char reg, u_char val)
  578 {
  579         inb(0x84);
  580         outb(IO_RTC, reg);
  581         inb(0x84);
  582         outb(IO_RTC + 1, val);
  583         inb(0x84);              /* XXX work around wrong order in rtcin() */
  584 }
  585 
  586 static __inline int
  587 readrtc(int port)
  588 {
  589         return(bcd2bin(rtcin(port)));
  590 }
  591 
  592 static u_int
  593 calibrate_clocks(void)
  594 {
  595         u_int64_t old_tsc;
  596         u_int count, prev_count, tot_count;
  597         int sec, start_sec, timeout;
  598 
  599         if (bootverbose)
  600                 printf("Calibrating clock(s) ... ");
  601         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  602                 goto fail;
  603         timeout = 100000000;
  604 
  605         /* Read the mc146818A seconds counter. */
  606         for (;;) {
  607                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  608                         sec = rtcin(RTC_SEC);
  609                         break;
  610                 }
  611                 if (--timeout == 0)
  612                         goto fail;
  613         }
  614 
  615         /* Wait for the mC146818A seconds counter to change. */
  616         start_sec = sec;
  617         for (;;) {
  618                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  619                         sec = rtcin(RTC_SEC);
  620                         if (sec != start_sec)
  621                                 break;
  622                 }
  623                 if (--timeout == 0)
  624                         goto fail;
  625         }
  626 
  627         /* Start keeping track of the i8254 counter. */
  628         prev_count = getit();
  629         if (prev_count == 0 || prev_count > timer0_max_count)
  630                 goto fail;
  631         tot_count = 0;
  632 
  633         if (tsc_present) 
  634                 old_tsc = rdtsc();
  635 
  636         /*
  637          * Wait for the mc146818A seconds counter to change.  Read the i8254
  638          * counter for each iteration since this is convenient and only
  639          * costs a few usec of inaccuracy. The timing of the final reads
  640          * of the counters almost matches the timing of the initial reads,
  641          * so the main cause of inaccuracy is the varying latency from 
  642          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  643          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  644          * maximum inaccuracy from this cause is < 10 usec on 486's.
  645          */
  646         start_sec = sec;
  647         for (;;) {
  648                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  649                         sec = rtcin(RTC_SEC);
  650                 count = getit();
  651                 if (count == 0 || count > timer0_max_count)
  652                         goto fail;
  653                 if (count > prev_count)
  654                         tot_count += prev_count - (count - timer0_max_count);
  655                 else
  656                         tot_count += prev_count - count;
  657                 prev_count = count;
  658                 if (sec != start_sec)
  659                         break;
  660                 if (--timeout == 0)
  661                         goto fail;
  662         }
  663 
  664         /*
  665          * Read the cpu cycle counter.  The timing considerations are
  666          * similar to those for the i8254 clock.
  667          */
  668         if (tsc_present) 
  669                 tsc_freq = rdtsc() - old_tsc;
  670 
  671         if (bootverbose) {
  672                 if (tsc_present)
  673                         printf("TSC clock: %u Hz, ", tsc_freq);
  674                 printf("i8254 clock: %u Hz\n", tot_count);
  675         }
  676         return (tot_count);
  677 
  678 fail:
  679         if (bootverbose)
  680                 printf("failed, using default i8254 clock of %u Hz\n",
  681                        timer_freq);
  682         return (timer_freq);
  683 }
  684 
  685 static void
  686 set_timer_freq(u_int freq, int intr_freq)
  687 {
  688         u_long ef;
  689         int new_timer0_max_count;
  690 
  691         ef = read_eflags();
  692         disable_intr();
  693         timer_freq = freq;
  694         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
  695         if (new_timer0_max_count != timer0_max_count) {
  696                 timer0_max_count = new_timer0_max_count;
  697                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  698                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  699                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  700         }
  701         CLOCK_UNLOCK();
  702         write_eflags(ef);
  703 }
  704 
  705 /*
  706  * i8254_restore is called from apm_default_resume() to reload
  707  * the countdown register.
  708  * this should not be necessary but there are broken laptops that
  709  * do not restore the countdown register on resume.
  710  * when it happnes, it messes up the hardclock interval and system clock,
  711  * which leads to the infamous "calcru: negative time" problem.
  712  */
  713 void
  714 i8254_restore(void)
  715 {
  716         u_long ef;
  717 
  718         ef = read_eflags();
  719         disable_intr();
  720         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  721         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  722         outb(TIMER_CNTR0, timer0_max_count >> 8);
  723         CLOCK_UNLOCK();
  724         write_eflags(ef);
  725 }
  726 
  727 /*
  728  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  729  * XXX initialization of other timers is unintentionally left blank.
  730  */
  731 void
  732 startrtclock()
  733 {
  734         u_int delta, freq;
  735 
  736         if (cpu_feature & CPUID_TSC)
  737                 tsc_present = 1;
  738         else
  739                 tsc_present = 0;
  740 
  741         writertc(RTC_STATUSA, rtc_statusa);
  742         writertc(RTC_STATUSB, RTCSB_24HR);
  743 
  744         set_timer_freq(timer_freq, hz);
  745         freq = calibrate_clocks();
  746 #ifdef CLK_CALIBRATION_LOOP
  747         if (bootverbose) {
  748                 printf(
  749                 "Press a key on the console to abort clock calibration\n");
  750                 while (cncheckc() == -1)
  751                         calibrate_clocks();
  752         }
  753 #endif
  754 
  755         /*
  756          * Use the calibrated i8254 frequency if it seems reasonable.
  757          * Otherwise use the default, and don't use the calibrated i586
  758          * frequency.
  759          */
  760         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  761         if (delta < timer_freq / 100) {
  762 #ifndef CLK_USE_I8254_CALIBRATION
  763                 if (bootverbose)
  764                         printf(
  765 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  766                 freq = timer_freq;
  767 #endif
  768                 timer_freq = freq;
  769         } else {
  770                 if (bootverbose)
  771                         printf(
  772                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  773                                freq, timer_freq);
  774                 tsc_freq = 0;
  775         }
  776 
  777         set_timer_freq(timer_freq, hz);
  778         i8254_timecounter.tc_frequency = timer_freq;
  779         init_timecounter(&i8254_timecounter);
  780 
  781 #ifndef CLK_USE_TSC_CALIBRATION
  782         if (tsc_freq != 0) {
  783                 if (bootverbose)
  784                         printf(
  785 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
  786                 tsc_freq = 0;
  787         }
  788 #endif
  789         if (tsc_present && tsc_freq == 0) {
  790                 /*
  791                  * Calibration of the i586 clock relative to the mc146818A
  792                  * clock failed.  Do a less accurate calibration relative
  793                  * to the i8254 clock.
  794                  */
  795                 u_int64_t old_tsc = rdtsc();
  796 
  797                 DELAY(1000000);
  798                 tsc_freq = rdtsc() - old_tsc;
  799 #ifdef CLK_USE_TSC_CALIBRATION
  800                 if (bootverbose)
  801                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
  802 #endif
  803         }
  804 
  805 #if !defined(SMP)
  806         /*
  807          * We can not use the TSC in SMP mode, until we figure out a
  808          * cheap (impossible), reliable and precise (yeah right!)  way
  809          * to synchronize the TSCs of all the CPUs.
  810          * Curse Intel for leaving the counter out of the I/O APIC.
  811          */
  812 
  813 #if NAPM > 0
  814         /*
  815          * We can not use the TSC if we found an APM bios.  Too many
  816          * of them lie about their ability&intention to fiddle the CPU
  817          * clock for us to rely on this.  Precise timekeeping on an
  818          * APM'ed machine is at best a fools pursuit anyway, since 
  819          * any and all of the time spent in various SMM code can't 
  820          * be reliably accounted for.  Reading the RTC is your only
  821          * source of reliable time info.  The i8254 looses too of course
  822          * but we need to have some kind of time...
  823          */
  824         if (apm_version != APMINI_CANTFIND)
  825                 return;
  826 #endif /* NAPM > 0 */
  827 
  828         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
  829                 tsc_timecounter.tc_frequency = tsc_freq;
  830                 init_timecounter(&tsc_timecounter);
  831         }
  832 
  833 #endif /* !defined(SMP) */
  834 }
  835 
  836 /*
  837  * Initialize the time of day register, based on the time base which is, e.g.
  838  * from a filesystem.
  839  */
  840 void
  841 inittodr(time_t base)
  842 {
  843         unsigned long   sec, days;
  844         int             yd;
  845         int             year, month;
  846         int             y, m, s;
  847         struct timespec ts;
  848 
  849         if (base) {
  850                 s = splclock();
  851                 ts.tv_sec = base;
  852                 ts.tv_nsec = 0;
  853                 set_timecounter(&ts);
  854                 splx(s);
  855         }
  856 
  857         /* Look if we have a RTC present and the time is valid */
  858         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  859                 goto wrong_time;
  860 
  861         /* wait for time update to complete */
  862         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  863         while (rtcin(RTC_STATUSA) & RTCSA_TUP);
  864 
  865         days = 0;
  866 #ifdef USE_RTC_CENTURY
  867         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  868 #else
  869         year = readrtc(RTC_YEAR) + 1900;
  870         if (year < 1970)
  871                 year += 100;
  872 #endif
  873         if (year < 1970)
  874                 goto wrong_time;
  875         month = readrtc(RTC_MONTH);
  876         for (m = 1; m < month; m++)
  877                 days += daysinmonth[m-1];
  878         if ((month > 2) && LEAPYEAR(year))
  879                 days ++;
  880         days += readrtc(RTC_DAY) - 1;
  881         yd = days;
  882         for (y = 1970; y < year; y++)
  883                 days += DAYSPERYEAR + LEAPYEAR(y);
  884         sec = ((( days * 24 +
  885                   readrtc(RTC_HRS)) * 60 +
  886                   readrtc(RTC_MIN)) * 60 +
  887                   readrtc(RTC_SEC));
  888         /* sec now contains the number of seconds, since Jan 1 1970,
  889            in the local time zone */
  890 
  891         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  892 
  893         y = time_second - sec;
  894         if (y <= -2 || y >= 2) {
  895                 /* badly off, adjust it */
  896                 s = splclock();
  897                 ts.tv_sec = sec;
  898                 ts.tv_nsec = 0;
  899                 set_timecounter(&ts);
  900                 splx(s);
  901         }
  902         return;
  903 
  904 wrong_time:
  905         printf("Invalid time in real time clock.\n");
  906         printf("Check and reset the date immediately!\n");
  907 }
  908 
  909 /*
  910  * Write system time back to RTC
  911  */
  912 void
  913 resettodr()
  914 {
  915         unsigned long   tm;
  916         int             y, m, s;
  917 
  918         if (disable_rtc_set)
  919                 return;
  920 
  921         s = splclock();
  922         tm = time_second;
  923         splx(s);
  924 
  925         /* Disable RTC updates and interrupts. */
  926         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  927 
  928         /* Calculate local time to put in RTC */
  929 
  930         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  931 
  932         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  933         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  934         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  935 
  936         /* We have now the days since 01-01-1970 in tm */
  937         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
  938         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  939              tm >= m;
  940              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  941              tm -= m;
  942 
  943         /* Now we have the years in y and the day-of-the-year in tm */
  944         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  945 #ifdef USE_RTC_CENTURY
  946         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  947 #endif
  948         for (m = 0; ; m++) {
  949                 int ml;
  950 
  951                 ml = daysinmonth[m];
  952                 if (m == 1 && LEAPYEAR(y))
  953                         ml++;
  954                 if (tm < ml)
  955                         break;
  956                 tm -= ml;
  957         }
  958 
  959         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  960         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  961 
  962         /* Reenable RTC updates and interrupts. */
  963         writertc(RTC_STATUSB, rtc_statusb);
  964 }
  965 
  966 
  967 /*
  968  * Start both clocks running.
  969  */
  970 void
  971 cpu_initclocks()
  972 {
  973         int diag;
  974 #ifdef APIC_IO
  975         int apic_8254_trial;
  976 #endif /* APIC_IO */
  977 
  978         if (statclock_disable) {
  979                 /*
  980                  * The stat interrupt mask is different without the
  981                  * statistics clock.  Also, don't set the interrupt
  982                  * flag which would normally cause the RTC to generate
  983                  * interrupts.
  984                  */
  985                 stat_imask = HWI_MASK | SWI_MASK;
  986                 rtc_statusb = RTCSB_24HR;
  987         } else {
  988                 /* Setting stathz to nonzero early helps avoid races. */
  989                 stathz = RTC_NOPROFRATE;
  990                 profhz = RTC_PROFRATE;
  991         }
  992 
  993         /* Finish initializing 8253 timer 0. */
  994 #ifdef APIC_IO
  995 
  996         apic_8254_intr = isa_apic_irq(0);
  997         apic_8254_trial = 0;
  998         if (apic_8254_intr >= 0 ) {
  999                 if (apic_int_type(0, 0) == 3)
 1000                         apic_8254_trial = 1;
 1001         } else {
 1002                 /* look for ExtInt on pin 0 */
 1003                 if (apic_int_type(0, 0) == 3) {
 1004                         apic_8254_intr = 0;
 1005                         setup_8254_mixed_mode();
 1006                 } else 
 1007                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
 1008         }
 1009 
 1010         register_intr(/* irq */ apic_8254_intr, /* XXX id */ 0, /* flags */ 0,
 1011                       /* XXX */ (inthand2_t *)clkintr, &clk_imask,
 1012                       /* unit */ 0);
 1013         INTREN(1 << apic_8254_intr);
 1014         
 1015 #else /* APIC_IO */
 1016 
 1017         register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
 1018                       /* XXX */ (inthand2_t *)clkintr, &clk_imask,
 1019                       /* unit */ 0);
 1020         INTREN(IRQ0);
 1021 
 1022 #endif /* APIC_IO */
 1023 
 1024         /* Initialize RTC. */
 1025         writertc(RTC_STATUSA, rtc_statusa);
 1026         writertc(RTC_STATUSB, RTCSB_24HR);
 1027 
 1028         /* Don't bother enabling the statistics clock. */
 1029         if (statclock_disable)
 1030                 return;
 1031         diag = rtcin(RTC_DIAG);
 1032         if (diag != 0)
 1033                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
 1034 
 1035 #ifdef APIC_IO
 1036         if (isa_apic_irq(8) != 8)
 1037                 panic("APIC RTC != 8");
 1038 #endif /* APIC_IO */
 1039 
 1040         register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
 1041                       /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
 1042                       /* unit */ 0);
 1043 
 1044 #ifdef APIC_IO
 1045         INTREN(APIC_IRQ8);
 1046 #else
 1047         INTREN(IRQ8);
 1048 #endif /* APIC_IO */
 1049 
 1050         writertc(RTC_STATUSB, rtc_statusb);
 1051 
 1052 #ifdef APIC_IO
 1053         if (apic_8254_trial) {
 1054                 
 1055                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
 1056                 while (read_intr_count(8) < 6)
 1057                         ;       /* nothing */
 1058                 if (read_intr_count(apic_8254_intr) < 3) {
 1059                         /* 
 1060                          * The MP table is broken.
 1061                          * The 8254 was not connected to the specified pin
 1062                          * on the IO APIC.
 1063                          * Workaround: Limited variant of mixed mode.
 1064                          */
 1065                         INTRDIS(1 << apic_8254_intr);
 1066                         unregister_intr(apic_8254_intr, 
 1067                                         /* XXX */ (inthand2_t *) clkintr);
 1068                         printf("APIC_IO: Broken MP table detected: "
 1069                                "8254 is not connected to IO APIC int pin %d\n",
 1070                                apic_8254_intr);
 1071                         
 1072                         apic_8254_intr = 0;
 1073                         setup_8254_mixed_mode();
 1074                         register_intr(/* irq */ apic_8254_intr, /* XXX id */ 0, /* flags */ 0,
 1075                                       /* XXX */ (inthand2_t *)clkintr, &clk_imask,
 1076                                       /* unit */ 0);
 1077                         INTREN(1 << apic_8254_intr);
 1078                 }
 1079                 
 1080         }
 1081         if (apic_8254_intr)
 1082                 printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
 1083         else
 1084                 printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
 1085 #endif
 1086         
 1087 }
 1088 
 1089 #ifdef APIC_IO
 1090 static u_long
 1091 read_intr_count(int vec)
 1092 {
 1093         u_long *up;
 1094         up = intr_countp[vec];
 1095         if (up)
 1096                 return *up;
 1097         return 0UL;
 1098 }
 1099 
 1100 static void 
 1101 setup_8254_mixed_mode()
 1102 {
 1103         /*
 1104          * Allow 8254 timer to INTerrupt 8259:
 1105          *  re-initialize master 8259:
 1106          *   reset; prog 4 bytes, single ICU, edge triggered
 1107          */
 1108         outb(IO_ICU1, 0x13);
 1109         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
 1110         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
 1111         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
 1112         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
 1113         
 1114         /* program IO APIC for type 3 INT on INT0 */
 1115         if (ext_int_setup(0, 0) < 0)
 1116                 panic("8254 redirect via APIC pin0 impossible!");
 1117 }
 1118 #endif
 1119 
 1120 void
 1121 setstatclockrate(int newhz)
 1122 {
 1123         if (newhz == RTC_PROFRATE)
 1124                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
 1125         else
 1126                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
 1127         writertc(RTC_STATUSA, rtc_statusa);
 1128 }
 1129 
 1130 static int
 1131 sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
 1132 {
 1133         int error;
 1134         u_int freq;
 1135 
 1136         /*
 1137          * Use `i8254' instead of `timer' in external names because `timer'
 1138          * is is too generic.  Should use it everywhere.
 1139          */
 1140         freq = timer_freq;
 1141         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
 1142         if (error == 0 && req->newptr != NULL) {
 1143                 if (timer0_state != RELEASED)
 1144                         return (EBUSY); /* too much trouble to handle */
 1145                 set_timer_freq(freq, hz);
 1146                 i8254_timecounter.tc_frequency = freq;
 1147                 update_timecounter(&i8254_timecounter);
 1148         }
 1149         return (error);
 1150 }
 1151 
 1152 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
 1153     0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
 1154 
 1155 static int
 1156 sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
 1157 {
 1158         int error;
 1159         u_int freq;
 1160 
 1161         if (tsc_timecounter.tc_frequency == 0)
 1162                 return (EOPNOTSUPP);
 1163         freq = tsc_freq;
 1164         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
 1165         if (error == 0 && req->newptr != NULL) {
 1166                 tsc_freq = freq;
 1167                 tsc_timecounter.tc_frequency = tsc_freq;
 1168                 update_timecounter(&tsc_timecounter);
 1169         }
 1170         return (error);
 1171 }
 1172 
 1173 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
 1174     0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
 1175 
 1176 static unsigned
 1177 i8254_get_timecount(struct timecounter *tc)
 1178 {
 1179         u_int count;
 1180         u_long ef;
 1181         u_int high, low;
 1182 
 1183         ef = read_eflags();
 1184         disable_intr();
 1185 
 1186         /* Select timer0 and latch counter value. */
 1187         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
 1188 
 1189         low = inb(TIMER_CNTR0);
 1190         high = inb(TIMER_CNTR0);
 1191 
 1192         count = hardclock_max_count - ((high << 8) | low);
 1193         if (count < i8254_lastcount) {
 1194                 i8254_ticked = 1;
 1195                 i8254_offset += hardclock_max_count;
 1196         }
 1197 
 1198         i8254_lastcount = count;
 1199         count += i8254_offset;
 1200         CLOCK_UNLOCK();
 1201         write_eflags(ef);
 1202         return (count);
 1203 }
 1204 
 1205 static unsigned
 1206 tsc_get_timecount(struct timecounter *tc)
 1207 {
 1208         return (rdtsc());
 1209 }

Cache object: c50e31c877e5a88922fa208ed3aad444


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.