The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   37  * $FreeBSD$
   38  */
   39 
   40 /*
   41  * Routines to handle clock hardware.
   42  */
   43 
   44 /*
   45  * inittodr, settodr and support routines written
   46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   47  *
   48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   49  */
   50 
   51 #include "opt_clock.h"
   52 #include "apm.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/time.h>
   57 #include <sys/kernel.h>
   58 #ifndef SMP
   59 #include <sys/lock.h>
   60 #endif
   61 #include <sys/sysctl.h>
   62 #include <sys/cons.h>
   63 
   64 #include <machine/clock.h>
   65 #ifdef CLK_CALIBRATION_LOOP
   66 #endif
   67 #include <machine/cputypes.h>
   68 #include <machine/frame.h>
   69 #include <machine/ipl.h>
   70 #include <machine/limits.h>
   71 #include <machine/md_var.h>
   72 #include <machine/psl.h>
   73 #ifdef APIC_IO
   74 #include <machine/segments.h>
   75 #endif
   76 #if defined(SMP) || defined(APIC_IO)
   77 #include <machine/smp.h>
   78 #endif /* SMP || APIC_IO */
   79 #include <machine/specialreg.h>
   80 
   81 #include <i386/isa/icu.h>
   82 #include <i386/isa/isa.h>
   83 #include <isa/rtc.h>
   84 #include <i386/isa/timerreg.h>
   85 
   86 #include <i386/isa/intr_machdep.h>
   87 
   88 #include "mca.h"
   89 #if NMCA > 0
   90 #include <i386/isa/mca_machdep.h>
   91 #endif
   92 
   93 #ifdef SMP
   94 #define disable_intr()  CLOCK_DISABLE_INTR()
   95 #define enable_intr()   CLOCK_ENABLE_INTR()
   96 
   97 #ifdef APIC_IO
   98 #include <i386/isa/intr_machdep.h>
   99 /* The interrupt triggered by the 8254 (timer) chip */
  100 int apic_8254_intr;
  101 static u_long read_intr_count __P((int vec));
  102 static void setup_8254_mixed_mode __P((void));
  103 #endif
  104 #endif /* SMP */
  105 
  106 /*
  107  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
  108  * can use a simple formula for leap years.
  109  */
  110 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
  111 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
  112 
  113 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
  114 
  115 /*
  116  * Time in timer cycles that it takes for microtime() to disable interrupts
  117  * and latch the count.  microtime() currently uses "cli; outb ..." so it
  118  * normally takes less than 2 timer cycles.  Add a few for cache misses.
  119  * Add a few more to allow for latency in bogus calls to microtime() with
  120  * interrupts already disabled.
  121  */
  122 #define TIMER0_LATCH_COUNT      20
  123 
  124 /*
  125  * Maximum frequency that we are willing to allow for timer0.  Must be
  126  * low enough to guarantee that the timer interrupt handler returns
  127  * before the next timer interrupt.
  128  */
  129 #define TIMER0_MAX_FREQ         20000
  130 
  131 int     adjkerntz;              /* local offset from GMT in seconds */
  132 int     clkintr_pending;
  133 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  134 volatile u_int  idelayed;
  135 int     statclock_disable;
  136 u_int   stat_imask = SWI_CLOCK_MASK;
  137 #ifndef TIMER_FREQ
  138 #define TIMER_FREQ   1193182
  139 #endif
  140 u_int   timer_freq = TIMER_FREQ;
  141 int     timer0_max_count;
  142 u_int   tsc_freq;
  143 int     tsc_is_broken;
  144 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  145 
  146 static  int     beeping = 0;
  147 static  u_int   clk_imask = HWI_MASK | SWI_MASK;
  148 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  149 static  u_int   hardclock_max_count;
  150 static  u_int32_t i8254_lastcount;
  151 static  u_int32_t i8254_offset;
  152 static  int     i8254_ticked;
  153 /*
  154  * XXX new_function and timer_func should not handle clockframes, but
  155  * timer_func currently needs to hold hardclock to handle the
  156  * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
  157  * to switch between clkintr() and a slightly different timerintr().
  158  */
  159 static  void    (*new_function) __P((struct clockframe *frame));
  160 static  u_int   new_rate;
  161 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  162 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
  163 static  u_int   timer0_prescaler_count;
  164 
  165 /* Values for timerX_state: */
  166 #define RELEASED        0
  167 #define RELEASE_PENDING 1
  168 #define ACQUIRED        2
  169 #define ACQUIRE_PENDING 3
  170 
  171 static  u_char  timer0_state;
  172 static  u_char  timer2_state;
  173 static  void    (*timer_func) __P((struct clockframe *frame)) = hardclock;
  174 static  u_int   tsc_present;
  175 
  176 static  unsigned i8254_get_timecount __P((struct timecounter *tc));
  177 static  unsigned tsc_get_timecount __P((struct timecounter *tc));
  178 static  void    set_timer_freq(u_int freq, int intr_freq);
  179 
  180 static struct timecounter tsc_timecounter = {
  181         tsc_get_timecount,      /* get_timecount */
  182         0,                      /* no poll_pps */
  183         ~0u,                    /* counter_mask */
  184         0,                      /* frequency */
  185          "TSC"                  /* name */
  186 };
  187 
  188 SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD, 
  189         &tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
  190 
  191 static struct timecounter i8254_timecounter = {
  192         i8254_get_timecount,    /* get_timecount */
  193         0,                      /* no poll_pps */
  194         ~0u,                    /* counter_mask */
  195         0,                      /* frequency */
  196         "i8254"                 /* name */
  197 };
  198 
  199 SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD, 
  200         &i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
  201 
  202 static void
  203 clkintr(struct clockframe frame)
  204 {
  205         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  206                 disable_intr();
  207                 if (i8254_ticked)
  208                         i8254_ticked = 0;
  209                 else {
  210                         i8254_offset += timer0_max_count;
  211                         i8254_lastcount = 0;
  212                 }
  213                 clkintr_pending = 0;
  214                 enable_intr();
  215         }
  216         timer_func(&frame);
  217         switch (timer0_state) {
  218 
  219         case RELEASED:
  220                 setdelayed();
  221                 break;
  222 
  223         case ACQUIRED:
  224                 if ((timer0_prescaler_count += timer0_max_count)
  225                     >= hardclock_max_count) {
  226                         timer0_prescaler_count -= hardclock_max_count;
  227                         hardclock(&frame);
  228                         setdelayed();
  229                 }
  230                 break;
  231 
  232         case ACQUIRE_PENDING:
  233                 disable_intr();
  234                 i8254_offset = i8254_get_timecount(NULL);
  235                 i8254_lastcount = 0;
  236                 timer0_max_count = TIMER_DIV(new_rate);
  237                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  238                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  239                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  240                 enable_intr();
  241                 timer_func = new_function;
  242                 timer0_state = ACQUIRED;
  243                 setdelayed();
  244                 break;
  245 
  246         case RELEASE_PENDING:
  247                 if ((timer0_prescaler_count += timer0_max_count)
  248                     >= hardclock_max_count) {
  249                         disable_intr();
  250                         i8254_offset = i8254_get_timecount(NULL);
  251                         i8254_lastcount = 0;
  252                         timer0_max_count = hardclock_max_count;
  253                         outb(TIMER_MODE,
  254                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  255                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  256                         outb(TIMER_CNTR0, timer0_max_count >> 8);
  257                         enable_intr();
  258                         timer0_prescaler_count = 0;
  259                         timer_func = hardclock;
  260                         timer0_state = RELEASED;
  261                         hardclock(&frame);
  262                         setdelayed();
  263                 }
  264                 break;
  265         }
  266 #if NMCA > 0
  267         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  268         if (MCA_system)
  269                 outb(0x61, inb(0x61) | 0x80);
  270 #endif
  271 }
  272 
  273 /*
  274  * The acquire and release functions must be called at ipl >= splclock().
  275  */
  276 int
  277 acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
  278 {
  279         static int old_rate;
  280 
  281         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
  282                 return (-1);
  283         switch (timer0_state) {
  284 
  285         case RELEASED:
  286                 timer0_state = ACQUIRE_PENDING;
  287                 break;
  288 
  289         case RELEASE_PENDING:
  290                 if (rate != old_rate)
  291                         return (-1);
  292                 /*
  293                  * The timer has been released recently, but is being
  294                  * re-acquired before the release completed.  In this
  295                  * case, we simply reclaim it as if it had not been
  296                  * released at all.
  297                  */
  298                 timer0_state = ACQUIRED;
  299                 break;
  300 
  301         default:
  302                 return (-1);    /* busy */
  303         }
  304         new_function = function;
  305         old_rate = new_rate = rate;
  306         return (0);
  307 }
  308 
  309 int
  310 acquire_timer2(int mode)
  311 {
  312 
  313         if (timer2_state != RELEASED)
  314                 return (-1);
  315         timer2_state = ACQUIRED;
  316 
  317         /*
  318          * This access to the timer registers is as atomic as possible
  319          * because it is a single instruction.  We could do better if we
  320          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  321          * and this is probably good enough for timer2, so we aren't as
  322          * careful with it as with timer0.
  323          */
  324         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  325 
  326         return (0);
  327 }
  328 
  329 int
  330 release_timer0()
  331 {
  332         switch (timer0_state) {
  333 
  334         case ACQUIRED:
  335                 timer0_state = RELEASE_PENDING;
  336                 break;
  337 
  338         case ACQUIRE_PENDING:
  339                 /* Nothing happened yet, release quickly. */
  340                 timer0_state = RELEASED;
  341                 break;
  342 
  343         default:
  344                 return (-1);
  345         }
  346         return (0);
  347 }
  348 
  349 int
  350 release_timer2()
  351 {
  352 
  353         if (timer2_state != ACQUIRED)
  354                 return (-1);
  355         timer2_state = RELEASED;
  356         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  357         return (0);
  358 }
  359 
  360 /*
  361  * This routine receives statistical clock interrupts from the RTC.
  362  * As explained above, these occur at 128 interrupts per second.
  363  * When profiling, we receive interrupts at a rate of 1024 Hz.
  364  *
  365  * This does not actually add as much overhead as it sounds, because
  366  * when the statistical clock is active, the hardclock driver no longer
  367  * needs to keep (inaccurate) statistics on its own.  This decouples
  368  * statistics gathering from scheduling interrupts.
  369  *
  370  * The RTC chip requires that we read status register C (RTC_INTR)
  371  * to acknowledge an interrupt, before it will generate the next one.
  372  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  373  * the clock can tick immediately after the read from RTC_INTR.  In this
  374  * case, the mc146818A interrupt signal will not drop for long enough
  375  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  376  * clock will halt, considerably degrading system performance.  This is
  377  * why we use 'while' rather than a more straightforward 'if' below.
  378  * Stat clock ticks can still be lost, causing minor loss of accuracy
  379  * in the statistics, but the stat clock will no longer stop.
  380  */
  381 static void
  382 rtcintr(struct clockframe frame)
  383 {
  384         while (rtcin(RTC_INTR) & RTCIR_PERIOD)
  385                 statclock(&frame);
  386 }
  387 
  388 #include "opt_ddb.h"
  389 #ifdef DDB
  390 #include <ddb/ddb.h>
  391 
  392 DB_SHOW_COMMAND(rtc, rtc)
  393 {
  394         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  395                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  396                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  397                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  398 }
  399 #endif /* DDB */
  400 
  401 static int
  402 getit(void)
  403 {
  404         u_long ef;
  405         int high, low;
  406 
  407         ef = read_eflags();
  408         disable_intr();
  409 
  410         /* Select timer0 and latch counter value. */
  411         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  412 
  413         low = inb(TIMER_CNTR0);
  414         high = inb(TIMER_CNTR0);
  415 
  416         CLOCK_UNLOCK();
  417         write_eflags(ef);
  418         return ((high << 8) | low);
  419 }
  420 
  421 /*
  422  * Wait "n" microseconds.
  423  * Relies on timer 1 counting down from (timer_freq / hz)
  424  * Note: timer had better have been programmed before this is first used!
  425  */
  426 void
  427 DELAY(int n)
  428 {
  429         int delta, prev_tick, tick, ticks_left;
  430 
  431 #ifdef DELAYDEBUG
  432         int getit_calls = 1;
  433         int n1;
  434         static int state = 0;
  435 
  436         if (state == 0) {
  437                 state = 1;
  438                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  439                         DELAY(n1);
  440                 state = 2;
  441         }
  442         if (state == 1)
  443                 printf("DELAY(%d)...", n);
  444 #endif
  445         /*
  446          * Guard against the timer being uninitialized if we are called
  447          * early for console i/o.
  448          */
  449         if (timer0_max_count == 0)
  450                 set_timer_freq(timer_freq, hz);
  451 
  452         /*
  453          * Read the counter first, so that the rest of the setup overhead is
  454          * counted.  Guess the initial overhead is 20 usec (on most systems it
  455          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  456          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  457          * multiplications and divisions to scale the count take a while).
  458          */
  459         prev_tick = getit();
  460         n -= 0;                 /* XXX actually guess no initial overhead */
  461         /*
  462          * Calculate (n * (timer_freq / 1e6)) without using floating point
  463          * and without any avoidable overflows.
  464          */
  465         if (n <= 0)
  466                 ticks_left = 0;
  467         else if (n < 256)
  468                 /*
  469                  * Use fixed point to avoid a slow division by 1000000.
  470                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  471                  * 2^15 is the first power of 2 that gives exact results
  472                  * for n between 0 and 256.
  473                  */
  474                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  475         else
  476                 /*
  477                  * Don't bother using fixed point, although gcc-2.7.2
  478                  * generates particularly poor code for the long long
  479                  * division, since even the slow way will complete long
  480                  * before the delay is up (unless we're interrupted).
  481                  */
  482                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  483                              / 1000000;
  484 
  485         while (ticks_left > 0) {
  486                 tick = getit();
  487 #ifdef DELAYDEBUG
  488                 ++getit_calls;
  489 #endif
  490                 delta = prev_tick - tick;
  491                 prev_tick = tick;
  492                 if (delta < 0) {
  493                         delta += timer0_max_count;
  494                         /*
  495                          * Guard against timer0_max_count being wrong.
  496                          * This shouldn't happen in normal operation,
  497                          * but it may happen if set_timer_freq() is
  498                          * traced.
  499                          */
  500                         if (delta < 0)
  501                                 delta = 0;
  502                 }
  503                 ticks_left -= delta;
  504         }
  505 #ifdef DELAYDEBUG
  506         if (state == 1)
  507                 printf(" %d calls to getit() at %d usec each\n",
  508                        getit_calls, (n + 5) / getit_calls);
  509 #endif
  510 }
  511 
  512 static void
  513 sysbeepstop(void *chan)
  514 {
  515         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
  516         release_timer2();
  517         beeping = 0;
  518 }
  519 
  520 int
  521 sysbeep(int pitch, int period)
  522 {
  523         int x = splclock();
  524 
  525         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
  526                 if (!beeping) {
  527                         /* Something else owns it. */
  528                         splx(x);
  529                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  530                 }
  531         disable_intr();
  532         outb(TIMER_CNTR2, pitch);
  533         outb(TIMER_CNTR2, (pitch>>8));
  534         enable_intr();
  535         if (!beeping) {
  536                 /* enable counter2 output to speaker */
  537                 outb(IO_PPI, inb(IO_PPI) | 3);
  538                 beeping = period;
  539                 timeout(sysbeepstop, (void *)NULL, period);
  540         }
  541         splx(x);
  542         return (0);
  543 }
  544 
  545 /*
  546  * RTC support routines
  547  */
  548 
  549 int
  550 rtcin(reg)
  551         int reg;
  552 {
  553         int s;
  554         u_char val;
  555 
  556         s = splhigh();
  557         outb(IO_RTC, reg);
  558         inb(0x84);
  559         val = inb(IO_RTC + 1);
  560         inb(0x84);
  561         splx(s);
  562         return (val);
  563 }
  564 
  565 static __inline void
  566 writertc(u_char reg, u_char val)
  567 {
  568         int s;
  569 
  570         s = splhigh();
  571         inb(0x84);
  572         outb(IO_RTC, reg);
  573         inb(0x84);
  574         outb(IO_RTC + 1, val);
  575         inb(0x84);              /* XXX work around wrong order in rtcin() */
  576         splx(s);
  577 }
  578 
  579 static __inline int
  580 readrtc(int port)
  581 {
  582         return(bcd2bin(rtcin(port)));
  583 }
  584 
  585 static u_int
  586 calibrate_clocks(void)
  587 {
  588         u_int64_t old_tsc;
  589         u_int count, prev_count, tot_count;
  590         int sec, start_sec, timeout;
  591 
  592         if (bootverbose)
  593                 printf("Calibrating clock(s) ... ");
  594         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  595                 goto fail;
  596         timeout = 100000000;
  597 
  598         /* Read the mc146818A seconds counter. */
  599         for (;;) {
  600                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  601                         sec = rtcin(RTC_SEC);
  602                         break;
  603                 }
  604                 if (--timeout == 0)
  605                         goto fail;
  606         }
  607 
  608         /* Wait for the mC146818A seconds counter to change. */
  609         start_sec = sec;
  610         for (;;) {
  611                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  612                         sec = rtcin(RTC_SEC);
  613                         if (sec != start_sec)
  614                                 break;
  615                 }
  616                 if (--timeout == 0)
  617                         goto fail;
  618         }
  619 
  620         /* Start keeping track of the i8254 counter. */
  621         prev_count = getit();
  622         if (prev_count == 0 || prev_count > timer0_max_count)
  623                 goto fail;
  624         tot_count = 0;
  625 
  626         if (tsc_present) 
  627                 old_tsc = rdtsc();
  628         else
  629                 old_tsc = 0;            /* shut up gcc */
  630 
  631         /*
  632          * Wait for the mc146818A seconds counter to change.  Read the i8254
  633          * counter for each iteration since this is convenient and only
  634          * costs a few usec of inaccuracy. The timing of the final reads
  635          * of the counters almost matches the timing of the initial reads,
  636          * so the main cause of inaccuracy is the varying latency from 
  637          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  638          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  639          * maximum inaccuracy from this cause is < 10 usec on 486's.
  640          */
  641         start_sec = sec;
  642         for (;;) {
  643                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  644                         sec = rtcin(RTC_SEC);
  645                 count = getit();
  646                 if (count == 0 || count > timer0_max_count)
  647                         goto fail;
  648                 if (count > prev_count)
  649                         tot_count += prev_count - (count - timer0_max_count);
  650                 else
  651                         tot_count += prev_count - count;
  652                 prev_count = count;
  653                 if (sec != start_sec)
  654                         break;
  655                 if (--timeout == 0)
  656                         goto fail;
  657         }
  658 
  659         /*
  660          * Read the cpu cycle counter.  The timing considerations are
  661          * similar to those for the i8254 clock.
  662          */
  663         if (tsc_present) 
  664                 tsc_freq = rdtsc() - old_tsc;
  665 
  666         if (bootverbose) {
  667                 if (tsc_present)
  668                         printf("TSC clock: %u Hz, ", tsc_freq);
  669                 printf("i8254 clock: %u Hz\n", tot_count);
  670         }
  671         return (tot_count);
  672 
  673 fail:
  674         if (bootverbose)
  675                 printf("failed, using default i8254 clock of %u Hz\n",
  676                        timer_freq);
  677         return (timer_freq);
  678 }
  679 
  680 static void
  681 set_timer_freq(u_int freq, int intr_freq)
  682 {
  683         u_long ef;
  684         int new_timer0_max_count;
  685 
  686         ef = read_eflags();
  687         disable_intr();
  688         timer_freq = freq;
  689         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
  690         if (new_timer0_max_count != timer0_max_count) {
  691                 timer0_max_count = new_timer0_max_count;
  692                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  693                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  694                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  695         }
  696         CLOCK_UNLOCK();
  697         write_eflags(ef);
  698 }
  699 
  700 static void
  701 i8254_restore(void)
  702 {
  703         u_long ef;
  704 
  705         ef = read_eflags();
  706         disable_intr();
  707         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  708         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  709         outb(TIMER_CNTR0, timer0_max_count >> 8);
  710         CLOCK_UNLOCK();
  711         write_eflags(ef);
  712 }
  713 
  714 static void
  715 rtc_restore(void)
  716 {
  717 
  718         /* Restore all of the RTC's "status" (actually, control) registers. */
  719         writertc(RTC_STATUSB, RTCSB_24HR);
  720         writertc(RTC_STATUSA, rtc_statusa);
  721         writertc(RTC_STATUSB, rtc_statusb);
  722         rtcin(RTC_INTR);
  723 }
  724 
  725 /*
  726  * Restore all the timers non-atomically (XXX: should be atomically).
  727  *
  728  * This function is called from apm_default_resume() to restore all the timers.
  729  * This should not be necessary, but there are broken laptops that do not
  730  * restore all the timers on resume.
  731  */
  732 void
  733 timer_restore(void)
  734 {
  735 
  736         i8254_restore();                /* restore timer_freq and hz */
  737         rtc_restore();                  /* reenable RTC interrupts */
  738 }
  739 
  740 /*
  741  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  742  * XXX initialization of other timers is unintentionally left blank.
  743  */
  744 void
  745 startrtclock()
  746 {
  747         u_int delta, freq;
  748 
  749         if (cpu_feature & CPUID_TSC)
  750                 tsc_present = 1;
  751         else
  752                 tsc_present = 0;
  753 
  754         writertc(RTC_STATUSA, rtc_statusa);
  755         writertc(RTC_STATUSB, RTCSB_24HR);
  756 
  757         set_timer_freq(timer_freq, hz);
  758         freq = calibrate_clocks();
  759 #ifdef CLK_CALIBRATION_LOOP
  760         if (bootverbose) {
  761                 printf(
  762                 "Press a key on the console to abort clock calibration\n");
  763                 while (cncheckc() == -1)
  764                         calibrate_clocks();
  765         }
  766 #endif
  767 
  768         /*
  769          * Use the calibrated i8254 frequency if it seems reasonable.
  770          * Otherwise use the default, and don't use the calibrated i586
  771          * frequency.
  772          */
  773         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  774         if (delta < timer_freq / 100) {
  775 #ifndef CLK_USE_I8254_CALIBRATION
  776                 if (bootverbose)
  777                         printf(
  778 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  779                 freq = timer_freq;
  780 #endif
  781                 timer_freq = freq;
  782         } else {
  783                 if (bootverbose)
  784                         printf(
  785                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  786                                freq, timer_freq);
  787                 tsc_freq = 0;
  788         }
  789 
  790         set_timer_freq(timer_freq, hz);
  791         i8254_timecounter.tc_frequency = timer_freq;
  792         init_timecounter(&i8254_timecounter);
  793 
  794 #ifndef CLK_USE_TSC_CALIBRATION
  795         if (tsc_freq != 0) {
  796                 if (bootverbose)
  797                         printf(
  798 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
  799                 tsc_freq = 0;
  800         }
  801 #endif
  802         if (tsc_present && tsc_freq == 0) {
  803                 /*
  804                  * Calibration of the i586 clock relative to the mc146818A
  805                  * clock failed.  Do a less accurate calibration relative
  806                  * to the i8254 clock.
  807                  */
  808                 u_int64_t old_tsc = rdtsc();
  809 
  810                 DELAY(1000000);
  811                 tsc_freq = rdtsc() - old_tsc;
  812 #ifdef CLK_USE_TSC_CALIBRATION
  813                 if (bootverbose)
  814                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
  815 #endif
  816         }
  817 
  818 #if !defined(SMP)
  819         /*
  820          * We can not use the TSC in SMP mode, until we figure out a
  821          * cheap (impossible), reliable and precise (yeah right!)  way
  822          * to synchronize the TSCs of all the CPUs.
  823          * Curse Intel for leaving the counter out of the I/O APIC.
  824          */
  825 
  826 #if NAPM > 0
  827         /*
  828          * We can not use the TSC if we support APM. Precise timekeeping
  829          * on an APM'ed machine is at best a fools pursuit, since 
  830          * any and all of the time spent in various SMM code can't 
  831          * be reliably accounted for.  Reading the RTC is your only
  832          * source of reliable time info.  The i8254 looses too of course
  833          * but we need to have some kind of time...
  834          * We don't know at this point whether APM is going to be used
  835          * or not, nor when it might be activated.  Play it safe.
  836          */
  837         return;
  838 #endif /* NAPM > 0 */
  839 
  840         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
  841                 tsc_timecounter.tc_frequency = tsc_freq;
  842                 init_timecounter(&tsc_timecounter);
  843         }
  844 
  845 #endif /* !defined(SMP) */
  846 }
  847 
  848 /*
  849  * Initialize the time of day register, based on the time base which is, e.g.
  850  * from a filesystem.
  851  */
  852 void
  853 inittodr(time_t base)
  854 {
  855         unsigned long   sec, days;
  856         int             yd;
  857         int             year, month;
  858         int             y, m, s;
  859         struct timespec ts;
  860 
  861         if (base) {
  862                 s = splclock();
  863                 ts.tv_sec = base;
  864                 ts.tv_nsec = 0;
  865                 set_timecounter(&ts);
  866                 splx(s);
  867         }
  868 
  869         /* Look if we have a RTC present and the time is valid */
  870         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  871                 goto wrong_time;
  872 
  873         /* wait for time update to complete */
  874         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  875         s = splhigh();
  876         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
  877                 splx(s);
  878                 s = splhigh();
  879         }
  880 
  881         days = 0;
  882 #ifdef USE_RTC_CENTURY
  883         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  884 #else
  885         year = readrtc(RTC_YEAR) + 1900;
  886         if (year < 1970)
  887                 year += 100;
  888 #endif
  889         if (year < 1970) {
  890                 splx(s);
  891                 goto wrong_time;
  892         }
  893         month = readrtc(RTC_MONTH);
  894         for (m = 1; m < month; m++)
  895                 days += daysinmonth[m-1];
  896         if ((month > 2) && LEAPYEAR(year))
  897                 days ++;
  898         days += readrtc(RTC_DAY) - 1;
  899         yd = days;
  900         for (y = 1970; y < year; y++)
  901                 days += DAYSPERYEAR + LEAPYEAR(y);
  902         sec = ((( days * 24 +
  903                   readrtc(RTC_HRS)) * 60 +
  904                   readrtc(RTC_MIN)) * 60 +
  905                   readrtc(RTC_SEC));
  906         /* sec now contains the number of seconds, since Jan 1 1970,
  907            in the local time zone */
  908 
  909         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  910 
  911         y = time_second - sec;
  912         if (y <= -2 || y >= 2) {
  913                 /* badly off, adjust it */
  914                 ts.tv_sec = sec;
  915                 ts.tv_nsec = 0;
  916                 set_timecounter(&ts);
  917         }
  918         splx(s);
  919         return;
  920 
  921 wrong_time:
  922         printf("Invalid time in real time clock.\n");
  923         printf("Check and reset the date immediately!\n");
  924 }
  925 
  926 /*
  927  * Write system time back to RTC
  928  */
  929 void
  930 resettodr()
  931 {
  932         unsigned long   tm;
  933         int             y, m, s;
  934 
  935         if (disable_rtc_set)
  936                 return;
  937 
  938         s = splclock();
  939         tm = time_second;
  940         splx(s);
  941 
  942         /* Disable RTC updates and interrupts. */
  943         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  944 
  945         /* Calculate local time to put in RTC */
  946 
  947         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  948 
  949         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  950         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  951         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  952 
  953         /* We have now the days since 01-01-1970 in tm */
  954         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
  955         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  956              tm >= m;
  957              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  958              tm -= m;
  959 
  960         /* Now we have the years in y and the day-of-the-year in tm */
  961         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  962 #ifdef USE_RTC_CENTURY
  963         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  964 #endif
  965         for (m = 0; ; m++) {
  966                 int ml;
  967 
  968                 ml = daysinmonth[m];
  969                 if (m == 1 && LEAPYEAR(y))
  970                         ml++;
  971                 if (tm < ml)
  972                         break;
  973                 tm -= ml;
  974         }
  975 
  976         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  977         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  978 
  979         /* Reenable RTC updates and interrupts. */
  980         writertc(RTC_STATUSB, rtc_statusb);
  981         rtcin(RTC_INTR);
  982 }
  983 
  984 
  985 /*
  986  * Start both clocks running.
  987  */
  988 void
  989 cpu_initclocks()
  990 {
  991         int diag;
  992 #ifdef APIC_IO
  993         int apic_8254_trial;
  994         struct intrec *clkdesc;
  995 #endif /* APIC_IO */
  996 
  997         if (statclock_disable) {
  998                 /*
  999                  * The stat interrupt mask is different without the
 1000                  * statistics clock.  Also, don't set the interrupt
 1001                  * flag which would normally cause the RTC to generate
 1002                  * interrupts.
 1003                  */
 1004                 stat_imask = HWI_MASK | SWI_MASK;
 1005                 rtc_statusb = RTCSB_24HR;
 1006         } else {
 1007                 /* Setting stathz to nonzero early helps avoid races. */
 1008                 stathz = RTC_NOPROFRATE;
 1009                 profhz = RTC_PROFRATE;
 1010         }
 1011 
 1012         /* Finish initializing 8253 timer 0. */
 1013 #ifdef APIC_IO
 1014 
 1015         apic_8254_intr = isa_apic_irq(0);
 1016         apic_8254_trial = 0;
 1017         if (apic_8254_intr >= 0 ) {
 1018                 if (apic_int_type(0, 0) == 3)
 1019                         apic_8254_trial = 1;
 1020         } else {
 1021                 /* look for ExtInt on pin 0 */
 1022                 if (apic_int_type(0, 0) == 3) {
 1023                         apic_8254_intr = apic_irq(0, 0);
 1024                         setup_8254_mixed_mode();
 1025                 } else 
 1026                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
 1027         }
 1028 
 1029         clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
 1030                               NULL, &clk_imask, INTR_EXCL);
 1031         INTREN(1 << apic_8254_intr);
 1032         
 1033 #else /* APIC_IO */
 1034 
 1035         inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
 1036                     INTR_EXCL);
 1037         INTREN(IRQ0);
 1038 
 1039 #endif /* APIC_IO */
 1040 
 1041         /* Initialize RTC. */
 1042         writertc(RTC_STATUSA, rtc_statusa);
 1043         writertc(RTC_STATUSB, RTCSB_24HR);
 1044 
 1045         /* Don't bother enabling the statistics clock. */
 1046         if (statclock_disable)
 1047                 return;
 1048         diag = rtcin(RTC_DIAG);
 1049         if (diag != 0)
 1050                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
 1051 
 1052 #ifdef APIC_IO
 1053         if (isa_apic_irq(8) != 8)
 1054                 panic("APIC RTC != 8");
 1055 #endif /* APIC_IO */
 1056 
 1057         inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
 1058                     INTR_EXCL);
 1059 
 1060 #ifdef APIC_IO
 1061         INTREN(APIC_IRQ8);
 1062 #else
 1063         INTREN(IRQ8);
 1064 #endif /* APIC_IO */
 1065 
 1066         writertc(RTC_STATUSB, rtc_statusb);
 1067         rtcin(RTC_INTR);
 1068 
 1069 #ifdef APIC_IO
 1070         if (apic_8254_trial) {
 1071                 
 1072                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
 1073                 while (read_intr_count(8) < 6)
 1074                         ;       /* nothing */
 1075                 if (read_intr_count(apic_8254_intr) < 3) {
 1076                         /* 
 1077                          * The MP table is broken.
 1078                          * The 8254 was not connected to the specified pin
 1079                          * on the IO APIC.
 1080                          * Workaround: Limited variant of mixed mode.
 1081                          */
 1082                         INTRDIS(1 << apic_8254_intr);
 1083                         inthand_remove(clkdesc);
 1084                         printf("APIC_IO: Broken MP table detected: "
 1085                                "8254 is not connected to "
 1086                                "IOAPIC #%d intpin %d\n",
 1087                                int_to_apicintpin[apic_8254_intr].ioapic,
 1088                                int_to_apicintpin[apic_8254_intr].int_pin);
 1089                         /* 
 1090                          * Revoke current ISA IRQ 0 assignment and 
 1091                          * configure a fallback interrupt routing from
 1092                          * the 8254 Timer via the 8259 PIC to the
 1093                          * an ExtInt interrupt line on IOAPIC #0 intpin 0.
 1094                          * We reuse the low level interrupt handler number.
 1095                          */
 1096                         if (apic_irq(0, 0) < 0) {
 1097                                 revoke_apic_irq(apic_8254_intr);
 1098                                 assign_apic_irq(0, 0, apic_8254_intr);
 1099                         }
 1100                         apic_8254_intr = apic_irq(0, 0);
 1101                         setup_8254_mixed_mode();
 1102                         inthand_add("clk", apic_8254_intr,
 1103                                     (inthand2_t *)clkintr,
 1104                                     NULL, &clk_imask, INTR_EXCL);
 1105                         INTREN(1 << apic_8254_intr);
 1106                 }
 1107                 
 1108         }
 1109         if (apic_int_type(0, 0) != 3 ||
 1110             int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
 1111             int_to_apicintpin[apic_8254_intr].int_pin != 0)
 1112                 printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
 1113                        int_to_apicintpin[apic_8254_intr].ioapic,
 1114                        int_to_apicintpin[apic_8254_intr].int_pin);
 1115         else
 1116                 printf("APIC_IO: "
 1117                        "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
 1118 #endif
 1119         
 1120 }
 1121 
 1122 #ifdef APIC_IO
 1123 static u_long
 1124 read_intr_count(int vec)
 1125 {
 1126         u_long *up;
 1127         up = intr_countp[vec];
 1128         if (up)
 1129                 return *up;
 1130         return 0UL;
 1131 }
 1132 
 1133 static void 
 1134 setup_8254_mixed_mode()
 1135 {
 1136         /*
 1137          * Allow 8254 timer to INTerrupt 8259:
 1138          *  re-initialize master 8259:
 1139          *   reset; prog 4 bytes, single ICU, edge triggered
 1140          */
 1141         outb(IO_ICU1, 0x13);
 1142         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
 1143         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
 1144         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
 1145         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
 1146         
 1147         /* program IO APIC for type 3 INT on INT0 */
 1148         if (ext_int_setup(0, 0) < 0)
 1149                 panic("8254 redirect via APIC pin0 impossible!");
 1150 }
 1151 #endif
 1152 
 1153 void
 1154 setstatclockrate(int newhz)
 1155 {
 1156         if (newhz == RTC_PROFRATE)
 1157                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
 1158         else
 1159                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
 1160         writertc(RTC_STATUSA, rtc_statusa);
 1161 }
 1162 
 1163 static int
 1164 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
 1165 {
 1166         int error;
 1167         u_int freq;
 1168 
 1169         /*
 1170          * Use `i8254' instead of `timer' in external names because `timer'
 1171          * is is too generic.  Should use it everywhere.
 1172          */
 1173         freq = timer_freq;
 1174         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
 1175         if (error == 0 && req->newptr != NULL) {
 1176                 if (timer0_state != RELEASED)
 1177                         return (EBUSY); /* too much trouble to handle */
 1178                 set_timer_freq(freq, hz);
 1179                 i8254_timecounter.tc_frequency = freq;
 1180                 update_timecounter(&i8254_timecounter);
 1181         }
 1182         return (error);
 1183 }
 1184 
 1185 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_UINT | CTLFLAG_RW,
 1186     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
 1187 
 1188 static int
 1189 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
 1190 {
 1191         int error;
 1192         u_int freq;
 1193 
 1194         if (tsc_timecounter.tc_frequency == 0)
 1195                 return (EOPNOTSUPP);
 1196         freq = tsc_freq;
 1197         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
 1198         if (error == 0 && req->newptr != NULL) {
 1199                 tsc_freq = freq;
 1200                 tsc_timecounter.tc_frequency = tsc_freq;
 1201                 update_timecounter(&tsc_timecounter);
 1202         }
 1203         return (error);
 1204 }
 1205 
 1206 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_UINT | CTLFLAG_RW,
 1207     0, sizeof(u_int), sysctl_machdep_tsc_freq, "IU", "");
 1208 
 1209 static unsigned
 1210 i8254_get_timecount(struct timecounter *tc)
 1211 {
 1212         u_int count;
 1213         u_long ef;
 1214         u_int high, low;
 1215 
 1216         ef = read_eflags();
 1217         disable_intr();
 1218 
 1219         /* Select timer0 and latch counter value. */
 1220         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
 1221 
 1222         low = inb(TIMER_CNTR0);
 1223         high = inb(TIMER_CNTR0);
 1224         count = timer0_max_count - ((high << 8) | low);
 1225         if (count < i8254_lastcount ||
 1226             (!i8254_ticked && (clkintr_pending ||
 1227             ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
 1228 #ifdef APIC_IO
 1229 #define lapic_irr1      ((volatile u_int *)&lapic)[0x210 / 4]   /* XXX XXX */
 1230             /* XXX this assumes that apic_8254_intr is < 24. */
 1231             (lapic_irr1 & (1 << apic_8254_intr))))
 1232 #else
 1233             (inb(IO_ICU1) & 1)))
 1234 #endif
 1235             )) {
 1236                 i8254_ticked = 1;
 1237                 i8254_offset += timer0_max_count;
 1238         }
 1239         i8254_lastcount = count;
 1240         count += i8254_offset;
 1241         CLOCK_UNLOCK();
 1242         write_eflags(ef);
 1243         return (count);
 1244 }
 1245 
 1246 static unsigned
 1247 tsc_get_timecount(struct timecounter *tc)
 1248 {
 1249         return (rdtsc());
 1250 }
 1251 
 1252 #ifdef KERN_TIMESTAMP
 1253 #define KERN_TIMESTAMP_SIZE 16384
 1254 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
 1255 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
 1256         sizeof(tsc), "LU", "Kernel timestamps");
 1257 void  
 1258 _TSTMP(u_int32_t x)
 1259 {
 1260         static int i;
 1261 
 1262         tsc[i] = (u_int32_t)rdtsc();
 1263         tsc[i+1] = x;
 1264         i = i + 2;
 1265         if (i >= KERN_TIMESTAMP_SIZE)
 1266                 i = 0;
 1267         tsc[i] = 0; /* mark last entry */
 1268 }
 1269 #endif KERN_TIMESTAMP
 1270 

Cache object: 8e5b8bf7c3ab5726bcaa2c6ddb46bfd4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.