The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/5.4/sys/i386/isa/clock.c 144126 2005-03-25 21:31:46Z jhb $");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 /*
   43  * inittodr, settodr and support routines written
   44  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   45  *
   46  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   47  */
   48 
   49 #include "opt_clock.h"
   50 #include "opt_isa.h"
   51 #include "opt_mca.h"
   52 
   53 #include <sys/param.h>
   54 #include <sys/systm.h>
   55 #include <sys/bus.h>
   56 #include <sys/lock.h>
   57 #include <sys/kdb.h>
   58 #include <sys/mutex.h>
   59 #include <sys/proc.h>
   60 #include <sys/time.h>
   61 #include <sys/timetc.h>
   62 #include <sys/kernel.h>
   63 #include <sys/limits.h>
   64 #include <sys/module.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/cons.h>
   67 #include <sys/power.h>
   68 
   69 #include <machine/clock.h>
   70 #include <machine/cputypes.h>
   71 #include <machine/frame.h>
   72 #include <machine/intr_machdep.h>
   73 #include <machine/md_var.h>
   74 #include <machine/psl.h>
   75 #if defined(SMP)
   76 #include <machine/smp.h>
   77 #endif
   78 #include <machine/specialreg.h>
   79 
   80 #include <i386/isa/isa.h>
   81 #include <isa/rtc.h>
   82 #ifdef DEV_ISA
   83 #include <isa/isavar.h>
   84 #endif
   85 #include <i386/isa/timerreg.h>
   86 
   87 #ifdef DEV_MCA
   88 #include <i386/bios/mca_machdep.h>
   89 #endif
   90 
   91 /*
   92  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
   93  * can use a simple formula for leap years.
   94  */
   95 #define LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0)
   96 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
   97 
   98 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
   99 
  100 #ifndef BURN_BRIDGES
  101 /*
  102  * Time in timer cycles that it takes for microtime() to disable interrupts
  103  * and latch the count.  microtime() currently uses "cli; outb ..." so it
  104  * normally takes less than 2 timer cycles.  Add a few for cache misses.
  105  * Add a few more to allow for latency in bogus calls to microtime() with
  106  * interrupts already disabled.
  107  */
  108 #define TIMER0_LATCH_COUNT      20
  109 
  110 /*
  111  * Maximum frequency that we are willing to allow for timer0.  Must be
  112  * low enough to guarantee that the timer interrupt handler returns
  113  * before the next timer interrupt.
  114  */
  115 #define TIMER0_MAX_FREQ         20000
  116 #endif
  117 
  118 int     adjkerntz;              /* local offset from GMT in seconds */
  119 int     clkintr_pending;
  120 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  121 int     pscnt = 1;
  122 int     psdiv = 1;
  123 int     statclock_disable;
  124 #ifndef TIMER_FREQ
  125 #define TIMER_FREQ   1193182
  126 #endif
  127 u_int   timer_freq = TIMER_FREQ;
  128 int     timer0_max_count;
  129 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  130 struct mtx clock_lock;
  131 
  132 static  int     beeping = 0;
  133 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  134 static  u_int   hardclock_max_count;
  135 static  struct intsrc *i8254_intsrc;
  136 static  u_int32_t i8254_lastcount;
  137 static  u_int32_t i8254_offset;
  138 static  int     (*i8254_pending)(struct intsrc *);
  139 static  int     i8254_ticked;
  140 #ifndef BURN_BRIDGES
  141 /*
  142  * XXX new_function and timer_func should not handle clockframes, but
  143  * timer_func currently needs to hold hardclock to handle the
  144  * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
  145  * to switch between clkintr() and a slightly different timerintr().
  146  */
  147 static  void    (*new_function)(struct clockframe *frame);
  148 static  u_int   new_rate;
  149 static  u_int   timer0_prescaler_count;
  150 static  u_char  timer0_state;
  151 #endif
  152 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  153 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
  154 
  155 /* Values for timerX_state: */
  156 #define RELEASED        0
  157 #define RELEASE_PENDING 1
  158 #define ACQUIRED        2
  159 #define ACQUIRE_PENDING 3
  160 
  161 static  u_char  timer2_state;
  162 static  void    (*timer_func)(struct clockframe *frame) = hardclock;
  163 
  164 static  unsigned i8254_get_timecount(struct timecounter *tc);
  165 static  void    set_timer_freq(u_int freq, int intr_freq);
  166 
  167 static struct timecounter i8254_timecounter = {
  168         i8254_get_timecount,    /* get_timecount */
  169         0,                      /* no poll_pps */
  170         ~0u,                    /* counter_mask */
  171         0,                      /* frequency */
  172         "i8254",                /* name */
  173         0                       /* quality */
  174 };
  175 
  176 static void
  177 clkintr(struct clockframe *frame)
  178 {
  179 
  180         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  181                 mtx_lock_spin(&clock_lock);
  182                 if (i8254_ticked)
  183                         i8254_ticked = 0;
  184                 else {
  185                         i8254_offset += timer0_max_count;
  186                         i8254_lastcount = 0;
  187                 }
  188                 clkintr_pending = 0;
  189                 mtx_unlock_spin(&clock_lock);
  190         }
  191         timer_func(frame);
  192 #ifdef SMP
  193         if (timer_func == hardclock)
  194                 forward_hardclock();
  195 #endif
  196 #ifndef BURN_BRIDGES
  197         switch (timer0_state) {
  198 
  199         case RELEASED:
  200                 break;
  201 
  202         case ACQUIRED:
  203                 if ((timer0_prescaler_count += timer0_max_count)
  204                     >= hardclock_max_count) {
  205                         timer0_prescaler_count -= hardclock_max_count;
  206                         hardclock(frame);
  207 #ifdef SMP
  208                         forward_hardclock();
  209 #endif
  210                 }
  211                 break;
  212 
  213         case ACQUIRE_PENDING:
  214                 mtx_lock_spin(&clock_lock);
  215                 i8254_offset = i8254_get_timecount(NULL);
  216                 i8254_lastcount = 0;
  217                 timer0_max_count = TIMER_DIV(new_rate);
  218                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  219                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  220                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  221                 mtx_unlock_spin(&clock_lock);
  222                 timer_func = new_function;
  223                 timer0_state = ACQUIRED;
  224                 break;
  225 
  226         case RELEASE_PENDING:
  227                 if ((timer0_prescaler_count += timer0_max_count)
  228                     >= hardclock_max_count) {
  229                         mtx_lock_spin(&clock_lock);
  230                         i8254_offset = i8254_get_timecount(NULL);
  231                         i8254_lastcount = 0;
  232                         timer0_max_count = hardclock_max_count;
  233                         outb(TIMER_MODE,
  234                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  235                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  236                         outb(TIMER_CNTR0, timer0_max_count >> 8);
  237                         mtx_unlock_spin(&clock_lock);
  238                         timer0_prescaler_count = 0;
  239                         timer_func = hardclock;
  240                         timer0_state = RELEASED;
  241                         hardclock(frame);
  242 #ifdef SMP
  243                         forward_hardclock();
  244 #endif
  245                 }
  246                 break;
  247         }
  248 #endif
  249 #ifdef DEV_MCA
  250         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  251         if (MCA_system)
  252                 outb(0x61, inb(0x61) | 0x80);
  253 #endif
  254 }
  255 
  256 #ifndef BURN_BRIDGES
  257 /*
  258  * The acquire and release functions must be called at ipl >= splclock().
  259  */
  260 int
  261 acquire_timer0(int rate, void (*function)(struct clockframe *frame))
  262 {
  263         static int old_rate;
  264 
  265         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
  266                 return (-1);
  267         switch (timer0_state) {
  268 
  269         case RELEASED:
  270                 timer0_state = ACQUIRE_PENDING;
  271                 break;
  272 
  273         case RELEASE_PENDING:
  274                 if (rate != old_rate)
  275                         return (-1);
  276                 /*
  277                  * The timer has been released recently, but is being
  278                  * re-acquired before the release completed.  In this
  279                  * case, we simply reclaim it as if it had not been
  280                  * released at all.
  281                  */
  282                 timer0_state = ACQUIRED;
  283                 break;
  284 
  285         default:
  286                 return (-1);    /* busy */
  287         }
  288         new_function = function;
  289         old_rate = new_rate = rate;
  290         return (0);
  291 }
  292 #endif
  293 
  294 int
  295 acquire_timer2(int mode)
  296 {
  297 
  298         if (timer2_state != RELEASED)
  299                 return (-1);
  300         timer2_state = ACQUIRED;
  301 
  302         /*
  303          * This access to the timer registers is as atomic as possible
  304          * because it is a single instruction.  We could do better if we
  305          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  306          * and this is probably good enough for timer2, so we aren't as
  307          * careful with it as with timer0.
  308          */
  309         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  310 
  311         return (0);
  312 }
  313 
  314 #ifndef BURN_BRIDGES
  315 int
  316 release_timer0()
  317 {
  318         switch (timer0_state) {
  319 
  320         case ACQUIRED:
  321                 timer0_state = RELEASE_PENDING;
  322                 break;
  323 
  324         case ACQUIRE_PENDING:
  325                 /* Nothing happened yet, release quickly. */
  326                 timer0_state = RELEASED;
  327                 break;
  328 
  329         default:
  330                 return (-1);
  331         }
  332         return (0);
  333 }
  334 #endif
  335 
  336 int
  337 release_timer2()
  338 {
  339 
  340         if (timer2_state != ACQUIRED)
  341                 return (-1);
  342         timer2_state = RELEASED;
  343         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  344         return (0);
  345 }
  346 
  347 /*
  348  * This routine receives statistical clock interrupts from the RTC.
  349  * As explained above, these occur at 128 interrupts per second.
  350  * When profiling, we receive interrupts at a rate of 1024 Hz.
  351  *
  352  * This does not actually add as much overhead as it sounds, because
  353  * when the statistical clock is active, the hardclock driver no longer
  354  * needs to keep (inaccurate) statistics on its own.  This decouples
  355  * statistics gathering from scheduling interrupts.
  356  *
  357  * The RTC chip requires that we read status register C (RTC_INTR)
  358  * to acknowledge an interrupt, before it will generate the next one.
  359  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  360  * the clock can tick immediately after the read from RTC_INTR.  In this
  361  * case, the mc146818A interrupt signal will not drop for long enough
  362  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  363  * clock will halt, considerably degrading system performance.  This is
  364  * why we use 'while' rather than a more straightforward 'if' below.
  365  * Stat clock ticks can still be lost, causing minor loss of accuracy
  366  * in the statistics, but the stat clock will no longer stop.
  367  */
  368 static void
  369 rtcintr(struct clockframe *frame)
  370 {
  371 
  372         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  373                 if (profprocs != 0) {
  374                         if (--pscnt == 0)
  375                                 pscnt = psdiv;
  376                         profclock(frame);
  377                 }
  378                 if (pscnt == psdiv)
  379                         statclock(frame);
  380 #ifdef SMP
  381                 forward_statclock();
  382 #endif
  383         }
  384 }
  385 
  386 #include "opt_ddb.h"
  387 #ifdef DDB
  388 #include <ddb/ddb.h>
  389 
  390 DB_SHOW_COMMAND(rtc, rtc)
  391 {
  392         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  393                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  394                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  395                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  396 }
  397 #endif /* DDB */
  398 
  399 static int
  400 getit(void)
  401 {
  402         int high, low;
  403 
  404         mtx_lock_spin(&clock_lock);
  405 
  406         /* Select timer0 and latch counter value. */
  407         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  408 
  409         low = inb(TIMER_CNTR0);
  410         high = inb(TIMER_CNTR0);
  411 
  412         mtx_unlock_spin(&clock_lock);
  413         return ((high << 8) | low);
  414 }
  415 
  416 /*
  417  * Wait "n" microseconds.
  418  * Relies on timer 1 counting down from (timer_freq / hz)
  419  * Note: timer had better have been programmed before this is first used!
  420  */
  421 void
  422 DELAY(int n)
  423 {
  424         int delta, prev_tick, tick, ticks_left;
  425 
  426 #ifdef DELAYDEBUG
  427         int getit_calls = 1;
  428         int n1;
  429         static int state = 0;
  430 
  431         if (state == 0) {
  432                 state = 1;
  433                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  434                         DELAY(n1);
  435                 state = 2;
  436         }
  437         if (state == 1)
  438                 printf("DELAY(%d)...", n);
  439 #endif
  440         /*
  441          * Guard against the timer being uninitialized if we are called
  442          * early for console i/o.
  443          */
  444         if (timer0_max_count == 0)
  445                 set_timer_freq(timer_freq, hz);
  446 
  447         /*
  448          * Read the counter first, so that the rest of the setup overhead is
  449          * counted.  Guess the initial overhead is 20 usec (on most systems it
  450          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  451          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  452          * multiplications and divisions to scale the count take a while).
  453          *
  454          * However, if ddb is active then use a fake counter since reading
  455          * the i8254 counter involves acquiring a lock.  ddb must not do
  456          * locking for many reasons, but it calls here for at least atkbd
  457          * input.
  458          */
  459 #ifdef KDB
  460         if (kdb_active)
  461                 prev_tick = 1;
  462         else
  463 #endif
  464                 prev_tick = getit();
  465         n -= 0;                 /* XXX actually guess no initial overhead */
  466         /*
  467          * Calculate (n * (timer_freq / 1e6)) without using floating point
  468          * and without any avoidable overflows.
  469          */
  470         if (n <= 0)
  471                 ticks_left = 0;
  472         else if (n < 256)
  473                 /*
  474                  * Use fixed point to avoid a slow division by 1000000.
  475                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  476                  * 2^15 is the first power of 2 that gives exact results
  477                  * for n between 0 and 256.
  478                  */
  479                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  480         else
  481                 /*
  482                  * Don't bother using fixed point, although gcc-2.7.2
  483                  * generates particularly poor code for the long long
  484                  * division, since even the slow way will complete long
  485                  * before the delay is up (unless we're interrupted).
  486                  */
  487                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  488                              / 1000000;
  489 
  490         while (ticks_left > 0) {
  491 #ifdef KDB
  492                 if (kdb_active) {
  493                         inb(0x84);
  494                         tick = prev_tick - 1;
  495                         if (tick <= 0)
  496                                 tick = timer0_max_count;
  497                 } else
  498 #endif
  499                         tick = getit();
  500 #ifdef DELAYDEBUG
  501                 ++getit_calls;
  502 #endif
  503                 delta = prev_tick - tick;
  504                 prev_tick = tick;
  505                 if (delta < 0) {
  506                         delta += timer0_max_count;
  507                         /*
  508                          * Guard against timer0_max_count being wrong.
  509                          * This shouldn't happen in normal operation,
  510                          * but it may happen if set_timer_freq() is
  511                          * traced.
  512                          */
  513                         if (delta < 0)
  514                                 delta = 0;
  515                 }
  516                 ticks_left -= delta;
  517         }
  518 #ifdef DELAYDEBUG
  519         if (state == 1)
  520                 printf(" %d calls to getit() at %d usec each\n",
  521                        getit_calls, (n + 5) / getit_calls);
  522 #endif
  523 }
  524 
  525 static void
  526 sysbeepstop(void *chan)
  527 {
  528         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
  529         release_timer2();
  530         beeping = 0;
  531 }
  532 
  533 int
  534 sysbeep(int pitch, int period)
  535 {
  536         int x = splclock();
  537 
  538         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
  539                 if (!beeping) {
  540                         /* Something else owns it. */
  541                         splx(x);
  542                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  543                 }
  544         mtx_lock_spin(&clock_lock);
  545         outb(TIMER_CNTR2, pitch);
  546         outb(TIMER_CNTR2, (pitch>>8));
  547         mtx_unlock_spin(&clock_lock);
  548         if (!beeping) {
  549                 /* enable counter2 output to speaker */
  550                 outb(IO_PPI, inb(IO_PPI) | 3);
  551                 beeping = period;
  552                 timeout(sysbeepstop, (void *)NULL, period);
  553         }
  554         splx(x);
  555         return (0);
  556 }
  557 
  558 /*
  559  * RTC support routines
  560  */
  561 
  562 int
  563 rtcin(reg)
  564         int reg;
  565 {
  566         int s;
  567         u_char val;
  568 
  569         s = splhigh();
  570         outb(IO_RTC, reg);
  571         inb(0x84);
  572         val = inb(IO_RTC + 1);
  573         inb(0x84);
  574         splx(s);
  575         return (val);
  576 }
  577 
  578 static __inline void
  579 writertc(u_char reg, u_char val)
  580 {
  581         int s;
  582 
  583         s = splhigh();
  584         inb(0x84);
  585         outb(IO_RTC, reg);
  586         inb(0x84);
  587         outb(IO_RTC + 1, val);
  588         inb(0x84);              /* XXX work around wrong order in rtcin() */
  589         splx(s);
  590 }
  591 
  592 static __inline int
  593 readrtc(int port)
  594 {
  595         return(bcd2bin(rtcin(port)));
  596 }
  597 
  598 static u_int
  599 calibrate_clocks(void)
  600 {
  601         u_int count, prev_count, tot_count;
  602         int sec, start_sec, timeout;
  603 
  604         if (bootverbose)
  605                 printf("Calibrating clock(s) ... ");
  606         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  607                 goto fail;
  608         timeout = 100000000;
  609 
  610         /* Read the mc146818A seconds counter. */
  611         for (;;) {
  612                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  613                         sec = rtcin(RTC_SEC);
  614                         break;
  615                 }
  616                 if (--timeout == 0)
  617                         goto fail;
  618         }
  619 
  620         /* Wait for the mC146818A seconds counter to change. */
  621         start_sec = sec;
  622         for (;;) {
  623                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  624                         sec = rtcin(RTC_SEC);
  625                         if (sec != start_sec)
  626                                 break;
  627                 }
  628                 if (--timeout == 0)
  629                         goto fail;
  630         }
  631 
  632         /* Start keeping track of the i8254 counter. */
  633         prev_count = getit();
  634         if (prev_count == 0 || prev_count > timer0_max_count)
  635                 goto fail;
  636         tot_count = 0;
  637 
  638         /*
  639          * Wait for the mc146818A seconds counter to change.  Read the i8254
  640          * counter for each iteration since this is convenient and only
  641          * costs a few usec of inaccuracy. The timing of the final reads
  642          * of the counters almost matches the timing of the initial reads,
  643          * so the main cause of inaccuracy is the varying latency from 
  644          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  645          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  646          * maximum inaccuracy from this cause is < 10 usec on 486's.
  647          */
  648         start_sec = sec;
  649         for (;;) {
  650                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  651                         sec = rtcin(RTC_SEC);
  652                 count = getit();
  653                 if (count == 0 || count > timer0_max_count)
  654                         goto fail;
  655                 if (count > prev_count)
  656                         tot_count += prev_count - (count - timer0_max_count);
  657                 else
  658                         tot_count += prev_count - count;
  659                 prev_count = count;
  660                 if (sec != start_sec)
  661                         break;
  662                 if (--timeout == 0)
  663                         goto fail;
  664         }
  665 
  666         if (bootverbose) {
  667                 printf("i8254 clock: %u Hz\n", tot_count);
  668         }
  669         return (tot_count);
  670 
  671 fail:
  672         if (bootverbose)
  673                 printf("failed, using default i8254 clock of %u Hz\n",
  674                        timer_freq);
  675         return (timer_freq);
  676 }
  677 
  678 static void
  679 set_timer_freq(u_int freq, int intr_freq)
  680 {
  681         int new_timer0_max_count;
  682 
  683         mtx_lock_spin(&clock_lock);
  684         timer_freq = freq;
  685         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
  686         if (new_timer0_max_count != timer0_max_count) {
  687                 timer0_max_count = new_timer0_max_count;
  688                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  689                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  690                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  691         }
  692         mtx_unlock_spin(&clock_lock);
  693 }
  694 
  695 static void
  696 i8254_restore(void)
  697 {
  698 
  699         mtx_lock_spin(&clock_lock);
  700         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  701         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  702         outb(TIMER_CNTR0, timer0_max_count >> 8);
  703         mtx_unlock_spin(&clock_lock);
  704 }
  705 
  706 static void
  707 rtc_restore(void)
  708 {
  709 
  710         /* Restore all of the RTC's "status" (actually, control) registers. */
  711         /* XXX locking is needed for RTC access. */
  712         writertc(RTC_STATUSB, RTCSB_24HR);
  713         writertc(RTC_STATUSA, rtc_statusa);
  714         writertc(RTC_STATUSB, rtc_statusb);
  715         rtcin(RTC_INTR);
  716 }
  717 
  718 /*
  719  * Restore all the timers non-atomically (XXX: should be atomically).
  720  *
  721  * This function is called from pmtimer_resume() to restore all the timers.
  722  * This should not be necessary, but there are broken laptops that do not
  723  * restore all the timers on resume.
  724  */
  725 void
  726 timer_restore(void)
  727 {
  728 
  729         i8254_restore();                /* restore timer_freq and hz */
  730         rtc_restore();                  /* reenable RTC interrupts */
  731 }
  732 
  733 /*
  734  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  735  * XXX initialization of other timers is unintentionally left blank.
  736  */
  737 void
  738 startrtclock()
  739 {
  740         u_int delta, freq;
  741 
  742         writertc(RTC_STATUSA, rtc_statusa);
  743         writertc(RTC_STATUSB, RTCSB_24HR);
  744 
  745         set_timer_freq(timer_freq, hz);
  746         freq = calibrate_clocks();
  747 #ifdef CLK_CALIBRATION_LOOP
  748         if (bootverbose) {
  749                 printf(
  750                 "Press a key on the console to abort clock calibration\n");
  751                 while (cncheckc() == -1)
  752                         calibrate_clocks();
  753         }
  754 #endif
  755 
  756         /*
  757          * Use the calibrated i8254 frequency if it seems reasonable.
  758          * Otherwise use the default, and don't use the calibrated i586
  759          * frequency.
  760          */
  761         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  762         if (delta < timer_freq / 100) {
  763 #ifndef CLK_USE_I8254_CALIBRATION
  764                 if (bootverbose)
  765                         printf(
  766 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  767                 freq = timer_freq;
  768 #endif
  769                 timer_freq = freq;
  770         } else {
  771                 if (bootverbose)
  772                         printf(
  773                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  774                                freq, timer_freq);
  775         }
  776 
  777         set_timer_freq(timer_freq, hz);
  778         i8254_timecounter.tc_frequency = timer_freq;
  779         tc_init(&i8254_timecounter);
  780 
  781         init_TSC();
  782 }
  783 
  784 /*
  785  * Initialize the time of day register, based on the time base which is, e.g.
  786  * from a filesystem.
  787  */
  788 void
  789 inittodr(time_t base)
  790 {
  791         unsigned long   sec, days;
  792         int             year, month;
  793         int             y, m, s;
  794         struct timespec ts;
  795 
  796         if (base) {
  797                 s = splclock();
  798                 ts.tv_sec = base;
  799                 ts.tv_nsec = 0;
  800                 tc_setclock(&ts);
  801                 splx(s);
  802         }
  803 
  804         /* Look if we have a RTC present and the time is valid */
  805         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  806                 goto wrong_time;
  807 
  808         /* wait for time update to complete */
  809         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  810         s = splhigh();
  811         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
  812                 splx(s);
  813                 s = splhigh();
  814         }
  815 
  816         days = 0;
  817 #ifdef USE_RTC_CENTURY
  818         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  819 #else
  820         year = readrtc(RTC_YEAR) + 1900;
  821         if (year < 1970)
  822                 year += 100;
  823 #endif
  824         if (year < 1970) {
  825                 splx(s);
  826                 goto wrong_time;
  827         }
  828         month = readrtc(RTC_MONTH);
  829         for (m = 1; m < month; m++)
  830                 days += daysinmonth[m-1];
  831         if ((month > 2) && LEAPYEAR(year))
  832                 days ++;
  833         days += readrtc(RTC_DAY) - 1;
  834         for (y = 1970; y < year; y++)
  835                 days += DAYSPERYEAR + LEAPYEAR(y);
  836         sec = ((( days * 24 +
  837                   readrtc(RTC_HRS)) * 60 +
  838                   readrtc(RTC_MIN)) * 60 +
  839                   readrtc(RTC_SEC));
  840         /* sec now contains the number of seconds, since Jan 1 1970,
  841            in the local time zone */
  842 
  843         sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  844 
  845         y = time_second - sec;
  846         if (y <= -2 || y >= 2) {
  847                 /* badly off, adjust it */
  848                 ts.tv_sec = sec;
  849                 ts.tv_nsec = 0;
  850                 tc_setclock(&ts);
  851         }
  852         splx(s);
  853         return;
  854 
  855 wrong_time:
  856         printf("Invalid time in real time clock.\n");
  857         printf("Check and reset the date immediately!\n");
  858 }
  859 
  860 /*
  861  * Write system time back to RTC
  862  */
  863 void
  864 resettodr()
  865 {
  866         unsigned long   tm;
  867         int             y, m, s;
  868 
  869         if (disable_rtc_set)
  870                 return;
  871 
  872         s = splclock();
  873         tm = time_second;
  874         splx(s);
  875 
  876         /* Disable RTC updates and interrupts. */
  877         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  878 
  879         /* Calculate local time to put in RTC */
  880 
  881         tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  882 
  883         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  884         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  885         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  886 
  887         /* We have now the days since 01-01-1970 in tm */
  888         writertc(RTC_WDAY, (tm + 4) % 7 + 1);           /* Write back Weekday */
  889         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  890              tm >= m;
  891              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  892              tm -= m;
  893 
  894         /* Now we have the years in y and the day-of-the-year in tm */
  895         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  896 #ifdef USE_RTC_CENTURY
  897         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  898 #endif
  899         for (m = 0; ; m++) {
  900                 int ml;
  901 
  902                 ml = daysinmonth[m];
  903                 if (m == 1 && LEAPYEAR(y))
  904                         ml++;
  905                 if (tm < ml)
  906                         break;
  907                 tm -= ml;
  908         }
  909 
  910         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  911         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  912 
  913         /* Reenable RTC updates and interrupts. */
  914         writertc(RTC_STATUSB, rtc_statusb);
  915         rtcin(RTC_INTR);
  916 }
  917 
  918 
  919 /*
  920  * Start both clocks running.
  921  */
  922 void
  923 cpu_initclocks()
  924 {
  925         int diag;
  926 
  927         if (statclock_disable) {
  928                 /*
  929                  * The stat interrupt mask is different without the
  930                  * statistics clock.  Also, don't set the interrupt
  931                  * flag which would normally cause the RTC to generate
  932                  * interrupts.
  933                  */
  934                 rtc_statusb = RTCSB_24HR;
  935         } else {
  936                 /* Setting stathz to nonzero early helps avoid races. */
  937                 stathz = RTC_NOPROFRATE;
  938                 profhz = RTC_PROFRATE;
  939         }
  940 
  941         /* Finish initializing 8254 timer 0. */
  942         intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL,
  943             INTR_TYPE_CLK | INTR_FAST, NULL);
  944         i8254_intsrc = intr_lookup_source(0);
  945         if (i8254_intsrc != NULL)
  946                 i8254_pending = i8254_intsrc->is_pic->pic_source_pending;
  947 
  948         /* Initialize RTC. */
  949         writertc(RTC_STATUSA, rtc_statusa);
  950         writertc(RTC_STATUSB, RTCSB_24HR);
  951 
  952         /* Don't bother enabling the statistics clock. */
  953         if (!statclock_disable) {
  954                 diag = rtcin(RTC_DIAG);
  955                 if (diag != 0)
  956                         printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
  957 
  958                 intr_add_handler("rtc", 8, (driver_intr_t *)rtcintr, NULL,
  959                     INTR_TYPE_CLK | INTR_FAST, NULL);
  960 
  961                 writertc(RTC_STATUSB, rtc_statusb);
  962                 rtcin(RTC_INTR);
  963         }
  964 
  965         init_TSC_tc();
  966 }
  967 
  968 void
  969 cpu_startprofclock(void)
  970 {
  971 
  972         rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
  973         writertc(RTC_STATUSA, rtc_statusa);
  974         psdiv = pscnt = psratio;
  975 }
  976 
  977 void
  978 cpu_stopprofclock(void)
  979 {
  980 
  981         rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  982         writertc(RTC_STATUSA, rtc_statusa);
  983         psdiv = pscnt = 1;
  984 }
  985 
  986 static int
  987 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  988 {
  989         int error;
  990         u_int freq;
  991 
  992         /*
  993          * Use `i8254' instead of `timer' in external names because `timer'
  994          * is is too generic.  Should use it everywhere.
  995          */
  996         freq = timer_freq;
  997         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
  998         if (error == 0 && req->newptr != NULL) {
  999 #ifndef BURN_BRIDGES
 1000                 if (timer0_state != RELEASED)
 1001                         return (EBUSY); /* too much trouble to handle */
 1002 #endif
 1003                 set_timer_freq(freq, hz);
 1004                 i8254_timecounter.tc_frequency = freq;
 1005         }
 1006         return (error);
 1007 }
 1008 
 1009 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
 1010     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
 1011 
 1012 static unsigned
 1013 i8254_get_timecount(struct timecounter *tc)
 1014 {
 1015         u_int count;
 1016         u_int high, low;
 1017         u_int eflags;
 1018 
 1019         eflags = read_eflags();
 1020         mtx_lock_spin(&clock_lock);
 1021 
 1022         /* Select timer0 and latch counter value. */
 1023         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
 1024 
 1025         low = inb(TIMER_CNTR0);
 1026         high = inb(TIMER_CNTR0);
 1027         count = timer0_max_count - ((high << 8) | low);
 1028         if (count < i8254_lastcount ||
 1029             (!i8254_ticked && (clkintr_pending ||
 1030             ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
 1031             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
 1032                 i8254_ticked = 1;
 1033                 i8254_offset += timer0_max_count;
 1034         }
 1035         i8254_lastcount = count;
 1036         count += i8254_offset;
 1037         mtx_unlock_spin(&clock_lock);
 1038         return (count);
 1039 }
 1040 
 1041 #ifdef DEV_ISA
 1042 /*
 1043  * Attach to the ISA PnP descriptors for the timer and realtime clock.
 1044  */
 1045 static struct isa_pnp_id attimer_ids[] = {
 1046         { 0x0001d041 /* PNP0100 */, "AT timer" },
 1047         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
 1048         { 0 }
 1049 };
 1050 
 1051 static int
 1052 attimer_probe(device_t dev)
 1053 {
 1054         int result;
 1055         
 1056         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
 1057                 device_quiet(dev);
 1058         return(result);
 1059 }
 1060 
 1061 static int
 1062 attimer_attach(device_t dev)
 1063 {
 1064         return(0);
 1065 }
 1066 
 1067 static device_method_t attimer_methods[] = {
 1068         /* Device interface */
 1069         DEVMETHOD(device_probe,         attimer_probe),
 1070         DEVMETHOD(device_attach,        attimer_attach),
 1071         DEVMETHOD(device_detach,        bus_generic_detach),
 1072         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1073         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
 1074         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
 1075         { 0, 0 }
 1076 };
 1077 
 1078 static driver_t attimer_driver = {
 1079         "attimer",
 1080         attimer_methods,
 1081         1,              /* no softc */
 1082 };
 1083 
 1084 static devclass_t attimer_devclass;
 1085 
 1086 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
 1087 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
 1088 #endif /* DEV_ISA */

Cache object: 3bd67b68fed6e1411b16b3a0bf85c571


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.