The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/6.2/sys/i386/isa/clock.c 161534 2006-08-22 16:52:42Z rink $");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 /*
   43  * inittodr, settodr and support routines written
   44  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   45  *
   46  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   47  */
   48 
   49 #include "opt_apic.h"
   50 #include "opt_clock.h"
   51 #include "opt_isa.h"
   52 #include "opt_mca.h"
   53 #include "opt_xbox.h"
   54 
   55 #include <sys/param.h>
   56 #include <sys/systm.h>
   57 #include <sys/bus.h>
   58 #include <sys/lock.h>
   59 #include <sys/kdb.h>
   60 #include <sys/mutex.h>
   61 #include <sys/proc.h>
   62 #include <sys/time.h>
   63 #include <sys/timetc.h>
   64 #include <sys/kernel.h>
   65 #include <sys/limits.h>
   66 #include <sys/module.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/cons.h>
   69 #include <sys/power.h>
   70 
   71 #include <machine/clock.h>
   72 #include <machine/cputypes.h>
   73 #include <machine/frame.h>
   74 #include <machine/intr_machdep.h>
   75 #include <machine/md_var.h>
   76 #include <machine/psl.h>
   77 #ifdef DEV_APIC
   78 #include <machine/apicvar.h>
   79 #endif
   80 #include <machine/specialreg.h>
   81 #include <machine/ppireg.h>
   82 #include <machine/timerreg.h>
   83 
   84 #include <isa/rtc.h>
   85 #ifdef DEV_ISA
   86 #include <isa/isareg.h>
   87 #include <isa/isavar.h>
   88 #endif
   89 
   90 #ifdef DEV_MCA
   91 #include <i386/bios/mca_machdep.h>
   92 #endif
   93 
   94 #ifdef XBOX
   95 #include <machine/xbox.h>
   96 #endif
   97 
   98 /*
   99  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
  100  * can use a simple formula for leap years.
  101  */
  102 #define LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0)
  103 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
  104 
  105 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
  106 
  107 int     adjkerntz;              /* local offset from GMT in seconds */
  108 int     clkintr_pending;
  109 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  110 int     pscnt = 1;
  111 int     psdiv = 1;
  112 int     statclock_disable;
  113 #ifndef TIMER_FREQ
  114 #define TIMER_FREQ   1193182
  115 #endif
  116 u_int   timer_freq = TIMER_FREQ;
  117 int     timer0_max_count;
  118 int     timer0_real_max_count;
  119 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  120 struct mtx clock_lock;
  121 #define RTC_LOCK        mtx_lock_spin(&clock_lock)
  122 #define RTC_UNLOCK      mtx_unlock_spin(&clock_lock)
  123 
  124 static  int     beeping = 0;
  125 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  126 static  struct intsrc *i8254_intsrc;
  127 static  u_int32_t i8254_lastcount;
  128 static  u_int32_t i8254_offset;
  129 static  int     (*i8254_pending)(struct intsrc *);
  130 static  int     i8254_ticked;
  131 static  int     using_lapic_timer;
  132 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  133 static  u_char  rtc_statusb = RTCSB_24HR;
  134 
  135 /* Values for timerX_state: */
  136 #define RELEASED        0
  137 #define RELEASE_PENDING 1
  138 #define ACQUIRED        2
  139 #define ACQUIRE_PENDING 3
  140 
  141 static  u_char  timer2_state;
  142 
  143 static  unsigned i8254_get_timecount(struct timecounter *tc);
  144 static  unsigned i8254_simple_get_timecount(struct timecounter *tc);
  145 static  void    set_timer_freq(u_int freq, int intr_freq);
  146 
  147 static struct timecounter i8254_timecounter = {
  148         i8254_get_timecount,    /* get_timecount */
  149         0,                      /* no poll_pps */
  150         ~0u,                    /* counter_mask */
  151         0,                      /* frequency */
  152         "i8254",                /* name */
  153         0                       /* quality */
  154 };
  155 
  156 static void
  157 clkintr(struct clockframe *frame)
  158 {
  159 
  160         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  161                 mtx_lock_spin(&clock_lock);
  162                 if (i8254_ticked)
  163                         i8254_ticked = 0;
  164                 else {
  165                         i8254_offset += timer0_max_count;
  166                         i8254_lastcount = 0;
  167                 }
  168                 clkintr_pending = 0;
  169                 mtx_unlock_spin(&clock_lock);
  170         }
  171         if (!using_lapic_timer)
  172                 hardclock(frame);
  173 #ifdef DEV_MCA
  174         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  175         if (MCA_system)
  176                 outb(0x61, inb(0x61) | 0x80);
  177 #endif
  178 }
  179 
  180 int
  181 acquire_timer2(int mode)
  182 {
  183 
  184         if (timer2_state != RELEASED)
  185                 return (-1);
  186         timer2_state = ACQUIRED;
  187 
  188         /*
  189          * This access to the timer registers is as atomic as possible
  190          * because it is a single instruction.  We could do better if we
  191          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  192          * and this is probably good enough for timer2, so we aren't as
  193          * careful with it as with timer0.
  194          */
  195         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  196 
  197         return (0);
  198 }
  199 
  200 int
  201 release_timer2()
  202 {
  203 
  204         if (timer2_state != ACQUIRED)
  205                 return (-1);
  206         timer2_state = RELEASED;
  207         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  208         return (0);
  209 }
  210 
  211 /*
  212  * This routine receives statistical clock interrupts from the RTC.
  213  * As explained above, these occur at 128 interrupts per second.
  214  * When profiling, we receive interrupts at a rate of 1024 Hz.
  215  *
  216  * This does not actually add as much overhead as it sounds, because
  217  * when the statistical clock is active, the hardclock driver no longer
  218  * needs to keep (inaccurate) statistics on its own.  This decouples
  219  * statistics gathering from scheduling interrupts.
  220  *
  221  * The RTC chip requires that we read status register C (RTC_INTR)
  222  * to acknowledge an interrupt, before it will generate the next one.
  223  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  224  * the clock can tick immediately after the read from RTC_INTR.  In this
  225  * case, the mc146818A interrupt signal will not drop for long enough
  226  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  227  * clock will halt, considerably degrading system performance.  This is
  228  * why we use 'while' rather than a more straightforward 'if' below.
  229  * Stat clock ticks can still be lost, causing minor loss of accuracy
  230  * in the statistics, but the stat clock will no longer stop.
  231  */
  232 static void
  233 rtcintr(struct clockframe *frame)
  234 {
  235 
  236         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  237                 if (profprocs != 0) {
  238                         if (--pscnt == 0)
  239                                 pscnt = psdiv;
  240                         profclock(frame);
  241                 }
  242                 if (pscnt == psdiv)
  243                         statclock(frame);
  244         }
  245 }
  246 
  247 #include "opt_ddb.h"
  248 #ifdef DDB
  249 #include <ddb/ddb.h>
  250 
  251 DB_SHOW_COMMAND(rtc, rtc)
  252 {
  253         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  254                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  255                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  256                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  257 }
  258 #endif /* DDB */
  259 
  260 static int
  261 getit(void)
  262 {
  263         int high, low;
  264 
  265         mtx_lock_spin(&clock_lock);
  266 
  267         /* Select timer0 and latch counter value. */
  268         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  269 
  270         low = inb(TIMER_CNTR0);
  271         high = inb(TIMER_CNTR0);
  272 
  273         mtx_unlock_spin(&clock_lock);
  274         return ((high << 8) | low);
  275 }
  276 
  277 /*
  278  * Wait "n" microseconds.
  279  * Relies on timer 1 counting down from (timer_freq / hz)
  280  * Note: timer had better have been programmed before this is first used!
  281  */
  282 void
  283 DELAY(int n)
  284 {
  285         int delta, prev_tick, tick, ticks_left;
  286 
  287 #ifdef DELAYDEBUG
  288         int getit_calls = 1;
  289         int n1;
  290         static int state = 0;
  291 
  292         if (state == 0) {
  293                 state = 1;
  294                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  295                         DELAY(n1);
  296                 state = 2;
  297         }
  298         if (state == 1)
  299                 printf("DELAY(%d)...", n);
  300 #endif
  301         /*
  302          * Guard against the timer being uninitialized if we are called
  303          * early for console i/o.
  304          */
  305         if (timer0_max_count == 0)
  306                 set_timer_freq(timer_freq, hz);
  307 
  308         /*
  309          * Read the counter first, so that the rest of the setup overhead is
  310          * counted.  Guess the initial overhead is 20 usec (on most systems it
  311          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  312          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  313          * multiplications and divisions to scale the count take a while).
  314          *
  315          * However, if ddb is active then use a fake counter since reading
  316          * the i8254 counter involves acquiring a lock.  ddb must not do
  317          * locking for many reasons, but it calls here for at least atkbd
  318          * input.
  319          */
  320 #ifdef KDB
  321         if (kdb_active)
  322                 prev_tick = 1;
  323         else
  324 #endif
  325                 prev_tick = getit();
  326         n -= 0;                 /* XXX actually guess no initial overhead */
  327         /*
  328          * Calculate (n * (timer_freq / 1e6)) without using floating point
  329          * and without any avoidable overflows.
  330          */
  331         if (n <= 0)
  332                 ticks_left = 0;
  333         else if (n < 256)
  334                 /*
  335                  * Use fixed point to avoid a slow division by 1000000.
  336                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  337                  * 2^15 is the first power of 2 that gives exact results
  338                  * for n between 0 and 256.
  339                  */
  340                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  341         else
  342                 /*
  343                  * Don't bother using fixed point, although gcc-2.7.2
  344                  * generates particularly poor code for the long long
  345                  * division, since even the slow way will complete long
  346                  * before the delay is up (unless we're interrupted).
  347                  */
  348                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  349                              / 1000000;
  350 
  351         while (ticks_left > 0) {
  352 #ifdef KDB
  353                 if (kdb_active) {
  354                         inb(0x84);
  355                         tick = prev_tick - 1;
  356                         if (tick <= 0)
  357                                 tick = timer0_max_count;
  358                 } else
  359 #endif
  360                         tick = getit();
  361 #ifdef DELAYDEBUG
  362                 ++getit_calls;
  363 #endif
  364                 delta = prev_tick - tick;
  365                 prev_tick = tick;
  366                 if (delta < 0) {
  367                         delta += timer0_max_count;
  368                         /*
  369                          * Guard against timer0_max_count being wrong.
  370                          * This shouldn't happen in normal operation,
  371                          * but it may happen if set_timer_freq() is
  372                          * traced.
  373                          */
  374                         if (delta < 0)
  375                                 delta = 0;
  376                 }
  377                 ticks_left -= delta;
  378         }
  379 #ifdef DELAYDEBUG
  380         if (state == 1)
  381                 printf(" %d calls to getit() at %d usec each\n",
  382                        getit_calls, (n + 5) / getit_calls);
  383 #endif
  384 }
  385 
  386 static void
  387 sysbeepstop(void *chan)
  388 {
  389         ppi_spkr_off();         /* disable counter2 output to speaker */
  390         timer_spkr_release();
  391         beeping = 0;
  392 }
  393 
  394 int
  395 sysbeep(int pitch, int period)
  396 {
  397         int x = splclock();
  398 
  399         if (timer_spkr_acquire())
  400                 if (!beeping) {
  401                         /* Something else owns it. */
  402                         splx(x);
  403                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  404                 }
  405         mtx_lock_spin(&clock_lock);
  406         spkr_set_pitch(pitch);
  407         mtx_unlock_spin(&clock_lock);
  408         if (!beeping) {
  409                 /* enable counter2 output to speaker */
  410                 ppi_spkr_on();
  411                 beeping = period;
  412                 timeout(sysbeepstop, (void *)NULL, period);
  413         }
  414         splx(x);
  415         return (0);
  416 }
  417 
  418 /*
  419  * RTC support routines
  420  */
  421 
  422 int
  423 rtcin(reg)
  424         int reg;
  425 {
  426         u_char val;
  427 
  428         RTC_LOCK;
  429         outb(IO_RTC, reg);
  430         inb(0x84);
  431         val = inb(IO_RTC + 1);
  432         inb(0x84);
  433         RTC_UNLOCK;
  434         return (val);
  435 }
  436 
  437 static __inline void
  438 writertc(u_char reg, u_char val)
  439 {
  440 
  441         RTC_LOCK;
  442         inb(0x84);
  443         outb(IO_RTC, reg);
  444         inb(0x84);
  445         outb(IO_RTC + 1, val);
  446         inb(0x84);              /* XXX work around wrong order in rtcin() */
  447         RTC_UNLOCK;
  448 }
  449 
  450 static __inline int
  451 readrtc(int port)
  452 {
  453         return(bcd2bin(rtcin(port)));
  454 }
  455 
  456 static u_int
  457 calibrate_clocks(void)
  458 {
  459         u_int count, prev_count, tot_count;
  460         int sec, start_sec, timeout;
  461 
  462         if (bootverbose)
  463                 printf("Calibrating clock(s) ... ");
  464         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  465                 goto fail;
  466         timeout = 100000000;
  467 
  468         /* Read the mc146818A seconds counter. */
  469         for (;;) {
  470                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  471                         sec = rtcin(RTC_SEC);
  472                         break;
  473                 }
  474                 if (--timeout == 0)
  475                         goto fail;
  476         }
  477 
  478         /* Wait for the mC146818A seconds counter to change. */
  479         start_sec = sec;
  480         for (;;) {
  481                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  482                         sec = rtcin(RTC_SEC);
  483                         if (sec != start_sec)
  484                                 break;
  485                 }
  486                 if (--timeout == 0)
  487                         goto fail;
  488         }
  489 
  490         /* Start keeping track of the i8254 counter. */
  491         prev_count = getit();
  492         if (prev_count == 0 || prev_count > timer0_max_count)
  493                 goto fail;
  494         tot_count = 0;
  495 
  496         /*
  497          * Wait for the mc146818A seconds counter to change.  Read the i8254
  498          * counter for each iteration since this is convenient and only
  499          * costs a few usec of inaccuracy. The timing of the final reads
  500          * of the counters almost matches the timing of the initial reads,
  501          * so the main cause of inaccuracy is the varying latency from 
  502          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  503          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  504          * maximum inaccuracy from this cause is < 10 usec on 486's.
  505          */
  506         start_sec = sec;
  507         for (;;) {
  508                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  509                         sec = rtcin(RTC_SEC);
  510                 count = getit();
  511                 if (count == 0 || count > timer0_max_count)
  512                         goto fail;
  513                 if (count > prev_count)
  514                         tot_count += prev_count - (count - timer0_max_count);
  515                 else
  516                         tot_count += prev_count - count;
  517                 prev_count = count;
  518                 if (sec != start_sec)
  519                         break;
  520                 if (--timeout == 0)
  521                         goto fail;
  522         }
  523 
  524         if (bootverbose) {
  525                 printf("i8254 clock: %u Hz\n", tot_count);
  526         }
  527         return (tot_count);
  528 
  529 fail:
  530 #ifdef XBOX
  531         if (arch_i386_is_xbox)
  532                 timer_freq = 1125000; /* gives ~733.34MHz CPU clock */
  533 #endif
  534 
  535         if (bootverbose)
  536                 printf("failed, using default i8254 clock of %u Hz\n",
  537                        timer_freq);
  538         return (timer_freq);
  539 }
  540 
  541 static void
  542 set_timer_freq(u_int freq, int intr_freq)
  543 {
  544         int new_timer0_real_max_count;
  545 
  546         i8254_timecounter.tc_frequency = freq;
  547         mtx_lock_spin(&clock_lock);
  548         timer_freq = freq;
  549         if (using_lapic_timer)
  550                 new_timer0_real_max_count = 0x10000;
  551         else
  552                 new_timer0_real_max_count = TIMER_DIV(intr_freq);
  553         if (new_timer0_real_max_count != timer0_real_max_count) {
  554                 timer0_real_max_count = new_timer0_real_max_count;
  555                 if (timer0_real_max_count == 0x10000)
  556                         timer0_max_count = 0xffff;
  557                 else
  558                         timer0_max_count = timer0_real_max_count;
  559                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  560                 outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
  561                 outb(TIMER_CNTR0, timer0_real_max_count >> 8);
  562         }
  563         mtx_unlock_spin(&clock_lock);
  564 }
  565 
  566 static void
  567 i8254_restore(void)
  568 {
  569 
  570         mtx_lock_spin(&clock_lock);
  571         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  572         outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
  573         outb(TIMER_CNTR0, timer0_real_max_count >> 8);
  574         mtx_unlock_spin(&clock_lock);
  575 }
  576 
  577 static void
  578 rtc_restore(void)
  579 {
  580 
  581         /* Restore all of the RTC's "status" (actually, control) registers. */
  582         /* XXX locking is needed for RTC access. */
  583         writertc(RTC_STATUSB, RTCSB_24HR);
  584         writertc(RTC_STATUSA, rtc_statusa);
  585         writertc(RTC_STATUSB, rtc_statusb);
  586         rtcin(RTC_INTR);
  587 }
  588 
  589 /*
  590  * Restore all the timers non-atomically (XXX: should be atomically).
  591  *
  592  * This function is called from pmtimer_resume() to restore all the timers.
  593  * This should not be necessary, but there are broken laptops that do not
  594  * restore all the timers on resume.
  595  */
  596 void
  597 timer_restore(void)
  598 {
  599 
  600         i8254_restore();                /* restore timer_freq and hz */
  601         rtc_restore();                  /* reenable RTC interrupts */
  602 }
  603 
  604 /*
  605  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  606  * XXX initialization of other timers is unintentionally left blank.
  607  */
  608 void
  609 startrtclock()
  610 {
  611         u_int delta, freq;
  612 
  613         writertc(RTC_STATUSA, rtc_statusa);
  614         writertc(RTC_STATUSB, RTCSB_24HR);
  615 
  616         set_timer_freq(timer_freq, hz);
  617         freq = calibrate_clocks();
  618 #ifdef CLK_CALIBRATION_LOOP
  619         if (bootverbose) {
  620                 printf(
  621                 "Press a key on the console to abort clock calibration\n");
  622                 while (cncheckc() == -1)
  623                         calibrate_clocks();
  624         }
  625 #endif
  626 
  627         /*
  628          * Use the calibrated i8254 frequency if it seems reasonable.
  629          * Otherwise use the default, and don't use the calibrated i586
  630          * frequency.
  631          */
  632         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  633         if (delta < timer_freq / 100) {
  634 #ifndef CLK_USE_I8254_CALIBRATION
  635                 if (bootverbose)
  636                         printf(
  637 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  638                 freq = timer_freq;
  639 #endif
  640                 timer_freq = freq;
  641         } else {
  642                 if (bootverbose)
  643                         printf(
  644                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  645                                freq, timer_freq);
  646         }
  647 
  648         set_timer_freq(timer_freq, hz);
  649         tc_init(&i8254_timecounter);
  650 
  651         init_TSC();
  652 }
  653 
  654 /*
  655  * Initialize the time of day register, based on the time base which is, e.g.
  656  * from a filesystem.
  657  */
  658 void
  659 inittodr(time_t base)
  660 {
  661         unsigned long   sec, days;
  662         int             year, month;
  663         int             y, m, s;
  664         struct timespec ts;
  665 
  666         if (base) {
  667                 s = splclock();
  668                 ts.tv_sec = base;
  669                 ts.tv_nsec = 0;
  670                 tc_setclock(&ts);
  671                 splx(s);
  672         }
  673 
  674         /* Look if we have a RTC present and the time is valid */
  675         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  676                 goto wrong_time;
  677 
  678         /* wait for time update to complete */
  679         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  680         s = splhigh();
  681         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
  682                 splx(s);
  683                 s = splhigh();
  684         }
  685 
  686         days = 0;
  687 #ifdef USE_RTC_CENTURY
  688         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  689 #else
  690         year = readrtc(RTC_YEAR) + 1900;
  691         if (year < 1970)
  692                 year += 100;
  693 #endif
  694         if (year < 1970) {
  695                 splx(s);
  696                 goto wrong_time;
  697         }
  698         month = readrtc(RTC_MONTH);
  699         for (m = 1; m < month; m++)
  700                 days += daysinmonth[m-1];
  701         if ((month > 2) && LEAPYEAR(year))
  702                 days ++;
  703         days += readrtc(RTC_DAY) - 1;
  704         for (y = 1970; y < year; y++)
  705                 days += DAYSPERYEAR + LEAPYEAR(y);
  706         sec = ((( days * 24 +
  707                   readrtc(RTC_HRS)) * 60 +
  708                   readrtc(RTC_MIN)) * 60 +
  709                   readrtc(RTC_SEC));
  710         /* sec now contains the number of seconds, since Jan 1 1970,
  711            in the local time zone */
  712 
  713         sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  714 
  715         y = time_second - sec;
  716         if (y <= -2 || y >= 2) {
  717                 /* badly off, adjust it */
  718                 ts.tv_sec = sec;
  719                 ts.tv_nsec = 0;
  720                 tc_setclock(&ts);
  721         }
  722         splx(s);
  723         return;
  724 
  725 wrong_time:
  726         printf("Invalid time in real time clock.\n");
  727         printf("Check and reset the date immediately!\n");
  728 }
  729 
  730 /*
  731  * Write system time back to RTC
  732  */
  733 void
  734 resettodr()
  735 {
  736         unsigned long   tm;
  737         int             y, m, s;
  738 
  739         if (disable_rtc_set)
  740                 return;
  741 
  742         s = splclock();
  743         tm = time_second;
  744         splx(s);
  745 
  746         /* Disable RTC updates and interrupts. */
  747         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  748 
  749         /* Calculate local time to put in RTC */
  750 
  751         tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  752 
  753         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  754         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  755         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  756 
  757         /* We have now the days since 01-01-1970 in tm */
  758         writertc(RTC_WDAY, (tm + 4) % 7 + 1);           /* Write back Weekday */
  759         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  760              tm >= m;
  761              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  762              tm -= m;
  763 
  764         /* Now we have the years in y and the day-of-the-year in tm */
  765         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  766 #ifdef USE_RTC_CENTURY
  767         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  768 #endif
  769         for (m = 0; ; m++) {
  770                 int ml;
  771 
  772                 ml = daysinmonth[m];
  773                 if (m == 1 && LEAPYEAR(y))
  774                         ml++;
  775                 if (tm < ml)
  776                         break;
  777                 tm -= ml;
  778         }
  779 
  780         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  781         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  782 
  783         /* Reenable RTC updates and interrupts. */
  784         writertc(RTC_STATUSB, rtc_statusb);
  785         rtcin(RTC_INTR);
  786 }
  787 
  788 
  789 /*
  790  * Start both clocks running.
  791  */
  792 void
  793 cpu_initclocks()
  794 {
  795         int diag;
  796 
  797 #ifdef DEV_APIC
  798         using_lapic_timer = lapic_setup_clock();
  799 #endif
  800         /*
  801          * If we aren't using the local APIC timer to drive the kernel
  802          * clocks, setup the interrupt handler for the 8254 timer 0 so
  803          * that it can drive hardclock().  Otherwise, change the 8254
  804          * timecounter to user a simpler algorithm.
  805          */
  806         if (!using_lapic_timer) {
  807                 intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL,
  808                     INTR_TYPE_CLK | INTR_FAST, NULL);
  809                 i8254_intsrc = intr_lookup_source(0);
  810                 if (i8254_intsrc != NULL)
  811                         i8254_pending =
  812                             i8254_intsrc->is_pic->pic_source_pending;
  813         } else {
  814                 i8254_timecounter.tc_get_timecount =
  815                     i8254_simple_get_timecount;
  816                 i8254_timecounter.tc_counter_mask = 0xffff;
  817                 set_timer_freq(timer_freq, hz);
  818         }
  819 
  820         /* Initialize RTC. */
  821         writertc(RTC_STATUSA, rtc_statusa);
  822         writertc(RTC_STATUSB, RTCSB_24HR);
  823 
  824         /*
  825          * If the separate statistics clock hasn't been explicility disabled
  826          * and we aren't already using the local APIC timer to drive the
  827          * kernel clocks, then setup the RTC to periodically interrupt to
  828          * drive statclock() and profclock().
  829          */
  830         if (!statclock_disable && !using_lapic_timer) {
  831                 diag = rtcin(RTC_DIAG);
  832                 if (diag != 0)
  833                         printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
  834 
  835                 /* Setting stathz to nonzero early helps avoid races. */
  836                 stathz = RTC_NOPROFRATE;
  837                 profhz = RTC_PROFRATE;
  838 
  839                 /* Enable periodic interrupts from the RTC. */
  840                 rtc_statusb |= RTCSB_PINTR;
  841                 intr_add_handler("rtc", 8, (driver_intr_t *)rtcintr, NULL,
  842                     INTR_TYPE_CLK | INTR_FAST, NULL);
  843 
  844                 writertc(RTC_STATUSB, rtc_statusb);
  845                 rtcin(RTC_INTR);
  846         }
  847 
  848         init_TSC_tc();
  849 }
  850 
  851 void
  852 cpu_startprofclock(void)
  853 {
  854 
  855         if (using_lapic_timer)
  856                 return;
  857         rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
  858         writertc(RTC_STATUSA, rtc_statusa);
  859         psdiv = pscnt = psratio;
  860 }
  861 
  862 void
  863 cpu_stopprofclock(void)
  864 {
  865 
  866         if (using_lapic_timer)
  867                 return;
  868         rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  869         writertc(RTC_STATUSA, rtc_statusa);
  870         psdiv = pscnt = 1;
  871 }
  872 
  873 static int
  874 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  875 {
  876         int error;
  877         u_int freq;
  878 
  879         /*
  880          * Use `i8254' instead of `timer' in external names because `timer'
  881          * is is too generic.  Should use it everywhere.
  882          */
  883         freq = timer_freq;
  884         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
  885         if (error == 0 && req->newptr != NULL)
  886                 set_timer_freq(freq, hz);
  887         return (error);
  888 }
  889 
  890 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  891     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  892 
  893 static unsigned
  894 i8254_simple_get_timecount(struct timecounter *tc)
  895 {
  896 
  897         return (timer0_max_count - getit());
  898 }
  899 
  900 static unsigned
  901 i8254_get_timecount(struct timecounter *tc)
  902 {
  903         u_int count;
  904         u_int high, low;
  905         u_int eflags;
  906 
  907         eflags = read_eflags();
  908         mtx_lock_spin(&clock_lock);
  909 
  910         /* Select timer0 and latch counter value. */
  911         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  912 
  913         low = inb(TIMER_CNTR0);
  914         high = inb(TIMER_CNTR0);
  915         count = timer0_max_count - ((high << 8) | low);
  916         if (count < i8254_lastcount ||
  917             (!i8254_ticked && (clkintr_pending ||
  918             ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
  919             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  920                 i8254_ticked = 1;
  921                 i8254_offset += timer0_max_count;
  922         }
  923         i8254_lastcount = count;
  924         count += i8254_offset;
  925         mtx_unlock_spin(&clock_lock);
  926         return (count);
  927 }
  928 
  929 #ifdef DEV_ISA
  930 /*
  931  * Attach to the ISA PnP descriptors for the timer and realtime clock.
  932  */
  933 static struct isa_pnp_id attimer_ids[] = {
  934         { 0x0001d041 /* PNP0100 */, "AT timer" },
  935         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
  936         { 0 }
  937 };
  938 
  939 static int
  940 attimer_probe(device_t dev)
  941 {
  942         int result;
  943         
  944         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
  945                 device_quiet(dev);
  946         return(result);
  947 }
  948 
  949 static int
  950 attimer_attach(device_t dev)
  951 {
  952         return(0);
  953 }
  954 
  955 static device_method_t attimer_methods[] = {
  956         /* Device interface */
  957         DEVMETHOD(device_probe,         attimer_probe),
  958         DEVMETHOD(device_attach,        attimer_attach),
  959         DEVMETHOD(device_detach,        bus_generic_detach),
  960         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  961         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
  962         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
  963         { 0, 0 }
  964 };
  965 
  966 static driver_t attimer_driver = {
  967         "attimer",
  968         attimer_methods,
  969         1,              /* no softc */
  970 };
  971 
  972 static devclass_t attimer_devclass;
  973 
  974 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  975 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  976 #endif /* DEV_ISA */

Cache object: 9e2a93442a7de15381cfab8dc7bb3aa3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.