The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 /*
   43  * inittodr, settodr and support routines written
   44  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   45  *
   46  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   47  */
   48 
   49 #include "opt_apic.h"
   50 #include "opt_clock.h"
   51 #include "opt_isa.h"
   52 #include "opt_mca.h"
   53 #include "opt_xbox.h"
   54 
   55 #include <sys/param.h>
   56 #include <sys/systm.h>
   57 #include <sys/bus.h>
   58 #include <sys/conf.h>
   59 #include <sys/fcntl.h>
   60 #include <sys/lock.h>
   61 #include <sys/kdb.h>
   62 #include <sys/mutex.h>
   63 #include <sys/proc.h>
   64 #include <sys/time.h>
   65 #include <sys/timetc.h>
   66 #include <sys/uio.h>
   67 #include <sys/kernel.h>
   68 #include <sys/limits.h>
   69 #include <sys/module.h>
   70 #include <sys/sched.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/cons.h>
   73 #include <sys/power.h>
   74 
   75 #include <machine/clock.h>
   76 #include <machine/cpu.h>
   77 #include <machine/cputypes.h>
   78 #include <machine/frame.h>
   79 #include <machine/intr_machdep.h>
   80 #include <machine/md_var.h>
   81 #include <machine/psl.h>
   82 #ifdef DEV_APIC
   83 #include <machine/apicvar.h>
   84 #endif
   85 #include <machine/specialreg.h>
   86 #include <machine/ppireg.h>
   87 #include <machine/timerreg.h>
   88 
   89 #include <isa/rtc.h>
   90 #ifdef DEV_ISA
   91 #include <isa/isareg.h>
   92 #include <isa/isavar.h>
   93 #endif
   94 
   95 #ifdef DEV_MCA
   96 #include <i386/bios/mca_machdep.h>
   97 #endif
   98 
   99 #ifdef XBOX
  100 #include <machine/xbox.h>
  101 #endif
  102 
  103 /*
  104  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
  105  * can use a simple formula for leap years.
  106  */
  107 #define LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0)
  108 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
  109 
  110 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
  111 
  112 int     adjkerntz;              /* local offset from GMT in seconds */
  113 int     clkintr_pending;
  114 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  115 int     pscnt = 1;
  116 int     psdiv = 1;
  117 int     statclock_disable;
  118 #ifndef TIMER_FREQ
  119 #define TIMER_FREQ   1193182
  120 #endif
  121 u_int   timer_freq = TIMER_FREQ;
  122 int     timer0_max_count;
  123 int     timer0_real_max_count;
  124 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  125 struct mtx clock_lock;
  126 #define RTC_LOCK        mtx_lock_spin(&clock_lock)
  127 #define RTC_UNLOCK      mtx_unlock_spin(&clock_lock)
  128 
  129 static  int     beeping = 0;
  130 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  131 static  struct intsrc *i8254_intsrc;
  132 static  u_int32_t i8254_lastcount;
  133 static  u_int32_t i8254_offset;
  134 static  int     (*i8254_pending)(struct intsrc *);
  135 static  int     i8254_ticked;
  136 static  int     using_lapic_timer;
  137 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  138 static  u_char  rtc_statusb = RTCSB_24HR;
  139 
  140 /* Values for timerX_state: */
  141 #define RELEASED        0
  142 #define RELEASE_PENDING 1
  143 #define ACQUIRED        2
  144 #define ACQUIRE_PENDING 3
  145 
  146 static  u_char  timer2_state;
  147 
  148 static  unsigned i8254_get_timecount(struct timecounter *tc);
  149 static  unsigned i8254_simple_get_timecount(struct timecounter *tc);
  150 static  void    set_timer_freq(u_int freq, int intr_freq);
  151 
  152 static struct timecounter i8254_timecounter = {
  153         i8254_get_timecount,    /* get_timecount */
  154         0,                      /* no poll_pps */
  155         ~0u,                    /* counter_mask */
  156         0,                      /* frequency */
  157         "i8254",                /* name */
  158         0                       /* quality */
  159 };
  160 
  161 static void
  162 clkintr(struct clockframe *frame)
  163 {
  164 
  165         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  166                 mtx_lock_spin(&clock_lock);
  167                 if (i8254_ticked)
  168                         i8254_ticked = 0;
  169                 else {
  170                         i8254_offset += timer0_max_count;
  171                         i8254_lastcount = 0;
  172                 }
  173                 clkintr_pending = 0;
  174                 mtx_unlock_spin(&clock_lock);
  175         }
  176         if (!using_lapic_timer)
  177                 hardclock(frame);
  178 #ifdef DEV_MCA
  179         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  180         if (MCA_system)
  181                 outb(0x61, inb(0x61) | 0x80);
  182 #endif
  183 }
  184 
  185 int
  186 acquire_timer2(int mode)
  187 {
  188 
  189         if (timer2_state != RELEASED)
  190                 return (-1);
  191         timer2_state = ACQUIRED;
  192 
  193         /*
  194          * This access to the timer registers is as atomic as possible
  195          * because it is a single instruction.  We could do better if we
  196          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  197          * and this is probably good enough for timer2, so we aren't as
  198          * careful with it as with timer0.
  199          */
  200         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  201 
  202         return (0);
  203 }
  204 
  205 int
  206 release_timer2()
  207 {
  208 
  209         if (timer2_state != ACQUIRED)
  210                 return (-1);
  211         timer2_state = RELEASED;
  212         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  213         return (0);
  214 }
  215 
  216 /*
  217  * This routine receives statistical clock interrupts from the RTC.
  218  * As explained above, these occur at 128 interrupts per second.
  219  * When profiling, we receive interrupts at a rate of 1024 Hz.
  220  *
  221  * This does not actually add as much overhead as it sounds, because
  222  * when the statistical clock is active, the hardclock driver no longer
  223  * needs to keep (inaccurate) statistics on its own.  This decouples
  224  * statistics gathering from scheduling interrupts.
  225  *
  226  * The RTC chip requires that we read status register C (RTC_INTR)
  227  * to acknowledge an interrupt, before it will generate the next one.
  228  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  229  * the clock can tick immediately after the read from RTC_INTR.  In this
  230  * case, the mc146818A interrupt signal will not drop for long enough
  231  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  232  * clock will halt, considerably degrading system performance.  This is
  233  * why we use 'while' rather than a more straightforward 'if' below.
  234  * Stat clock ticks can still be lost, causing minor loss of accuracy
  235  * in the statistics, but the stat clock will no longer stop.
  236  */
  237 static void
  238 rtcintr(struct clockframe *frame)
  239 {
  240 
  241         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  242                 if (profprocs != 0) {
  243                         if (--pscnt == 0)
  244                                 pscnt = psdiv;
  245                         profclock(frame);
  246                 }
  247                 if (pscnt == psdiv)
  248                         statclock(frame);
  249         }
  250 }
  251 
  252 #include "opt_ddb.h"
  253 #ifdef DDB
  254 #include <ddb/ddb.h>
  255 
  256 DB_SHOW_COMMAND(rtc, rtc)
  257 {
  258         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  259                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  260                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  261                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  262 }
  263 #endif /* DDB */
  264 
  265 static int
  266 getit(void)
  267 {
  268         int high, low;
  269 
  270         mtx_lock_spin(&clock_lock);
  271 
  272         /* Select timer0 and latch counter value. */
  273         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  274 
  275         low = inb(TIMER_CNTR0);
  276         high = inb(TIMER_CNTR0);
  277 
  278         mtx_unlock_spin(&clock_lock);
  279         return ((high << 8) | low);
  280 }
  281 
  282 /*
  283  * Wait "n" microseconds.
  284  * Relies on timer 1 counting down from (timer_freq / hz)
  285  * Note: timer had better have been programmed before this is first used!
  286  */
  287 void
  288 DELAY(int n)
  289 {
  290         int delta, prev_tick, tick, ticks_left;
  291 
  292 #ifdef DELAYDEBUG
  293         int getit_calls = 1;
  294         int n1;
  295         static int state = 0;
  296 #endif
  297 
  298         if (tsc_freq != 0 && !tsc_is_broken) {
  299                 uint64_t start, end, now;
  300 
  301                 sched_pin();
  302                 start = rdtsc();
  303                 end = start + (tsc_freq * n) / 1000000;
  304                 do {
  305                         cpu_spinwait();
  306                         now = rdtsc();
  307                 } while (now < end || (now > start && end < start));
  308                 sched_unpin();
  309                 return;
  310         }
  311 #ifdef DELAYDEBUG
  312         if (state == 0) {
  313                 state = 1;
  314                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  315                         DELAY(n1);
  316                 state = 2;
  317         }
  318         if (state == 1)
  319                 printf("DELAY(%d)...", n);
  320 #endif
  321         /*
  322          * Guard against the timer being uninitialized if we are called
  323          * early for console i/o.
  324          */
  325         if (timer0_max_count == 0)
  326                 set_timer_freq(timer_freq, hz);
  327 
  328         /*
  329          * Read the counter first, so that the rest of the setup overhead is
  330          * counted.  Guess the initial overhead is 20 usec (on most systems it
  331          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  332          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  333          * multiplications and divisions to scale the count take a while).
  334          *
  335          * However, if ddb is active then use a fake counter since reading
  336          * the i8254 counter involves acquiring a lock.  ddb must not do
  337          * locking for many reasons, but it calls here for at least atkbd
  338          * input.
  339          */
  340 #ifdef KDB
  341         if (kdb_active)
  342                 prev_tick = 1;
  343         else
  344 #endif
  345                 prev_tick = getit();
  346         n -= 0;                 /* XXX actually guess no initial overhead */
  347         /*
  348          * Calculate (n * (timer_freq / 1e6)) without using floating point
  349          * and without any avoidable overflows.
  350          */
  351         if (n <= 0)
  352                 ticks_left = 0;
  353         else if (n < 256)
  354                 /*
  355                  * Use fixed point to avoid a slow division by 1000000.
  356                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  357                  * 2^15 is the first power of 2 that gives exact results
  358                  * for n between 0 and 256.
  359                  */
  360                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  361         else
  362                 /*
  363                  * Don't bother using fixed point, although gcc-2.7.2
  364                  * generates particularly poor code for the long long
  365                  * division, since even the slow way will complete long
  366                  * before the delay is up (unless we're interrupted).
  367                  */
  368                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  369                              / 1000000;
  370 
  371         while (ticks_left > 0) {
  372 #ifdef KDB
  373                 if (kdb_active) {
  374                         inb(0x84);
  375                         tick = prev_tick - 1;
  376                         if (tick <= 0)
  377                                 tick = timer0_max_count;
  378                 } else
  379 #endif
  380                         tick = getit();
  381 #ifdef DELAYDEBUG
  382                 ++getit_calls;
  383 #endif
  384                 delta = prev_tick - tick;
  385                 prev_tick = tick;
  386                 if (delta < 0) {
  387                         delta += timer0_max_count;
  388                         /*
  389                          * Guard against timer0_max_count being wrong.
  390                          * This shouldn't happen in normal operation,
  391                          * but it may happen if set_timer_freq() is
  392                          * traced.
  393                          */
  394                         if (delta < 0)
  395                                 delta = 0;
  396                 }
  397                 ticks_left -= delta;
  398         }
  399 #ifdef DELAYDEBUG
  400         if (state == 1)
  401                 printf(" %d calls to getit() at %d usec each\n",
  402                        getit_calls, (n + 5) / getit_calls);
  403 #endif
  404 }
  405 
  406 static void
  407 sysbeepstop(void *chan)
  408 {
  409         ppi_spkr_off();         /* disable counter2 output to speaker */
  410         timer_spkr_release();
  411         beeping = 0;
  412 }
  413 
  414 int
  415 sysbeep(int pitch, int period)
  416 {
  417         int x = splclock();
  418 
  419         if (timer_spkr_acquire())
  420                 if (!beeping) {
  421                         /* Something else owns it. */
  422                         splx(x);
  423                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  424                 }
  425         mtx_lock_spin(&clock_lock);
  426         spkr_set_pitch(pitch);
  427         mtx_unlock_spin(&clock_lock);
  428         if (!beeping) {
  429                 /* enable counter2 output to speaker */
  430                 ppi_spkr_on();
  431                 beeping = period;
  432                 timeout(sysbeepstop, (void *)NULL, period);
  433         }
  434         splx(x);
  435         return (0);
  436 }
  437 
  438 /*
  439  * RTC support routines
  440  */
  441 
  442 int
  443 rtcin(reg)
  444         int reg;
  445 {
  446         u_char val;
  447 
  448         RTC_LOCK;
  449         outb(IO_RTC, reg);
  450         inb(0x84);
  451         val = inb(IO_RTC + 1);
  452         inb(0x84);
  453         RTC_UNLOCK;
  454         return (val);
  455 }
  456 
  457 void
  458 writertc(int reg, u_char val)
  459 {
  460 
  461         RTC_LOCK;
  462         inb(0x84);
  463         outb(IO_RTC, reg);
  464         inb(0x84);
  465         outb(IO_RTC + 1, val);
  466         inb(0x84);              /* XXX work around wrong order in rtcin() */
  467         RTC_UNLOCK;
  468 }
  469 
  470 static __inline int
  471 readrtc(int port)
  472 {
  473         return(bcd2bin(rtcin(port)));
  474 }
  475 
  476 static u_int
  477 calibrate_clocks(void)
  478 {
  479         u_int count, prev_count, tot_count;
  480         int sec, start_sec, timeout;
  481 
  482         if (bootverbose)
  483                 printf("Calibrating clock(s) ... ");
  484         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  485                 goto fail;
  486         timeout = 100000000;
  487 
  488         /* Read the mc146818A seconds counter. */
  489         for (;;) {
  490                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  491                         sec = rtcin(RTC_SEC);
  492                         break;
  493                 }
  494                 if (--timeout == 0)
  495                         goto fail;
  496         }
  497 
  498         /* Wait for the mC146818A seconds counter to change. */
  499         start_sec = sec;
  500         for (;;) {
  501                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  502                         sec = rtcin(RTC_SEC);
  503                         if (sec != start_sec)
  504                                 break;
  505                 }
  506                 if (--timeout == 0)
  507                         goto fail;
  508         }
  509 
  510         /* Start keeping track of the i8254 counter. */
  511         prev_count = getit();
  512         if (prev_count == 0 || prev_count > timer0_max_count)
  513                 goto fail;
  514         tot_count = 0;
  515 
  516         /*
  517          * Wait for the mc146818A seconds counter to change.  Read the i8254
  518          * counter for each iteration since this is convenient and only
  519          * costs a few usec of inaccuracy. The timing of the final reads
  520          * of the counters almost matches the timing of the initial reads,
  521          * so the main cause of inaccuracy is the varying latency from 
  522          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  523          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  524          * maximum inaccuracy from this cause is < 10 usec on 486's.
  525          */
  526         start_sec = sec;
  527         for (;;) {
  528                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  529                         sec = rtcin(RTC_SEC);
  530                 count = getit();
  531                 if (count == 0 || count > timer0_max_count)
  532                         goto fail;
  533                 if (count > prev_count)
  534                         tot_count += prev_count - (count - timer0_max_count);
  535                 else
  536                         tot_count += prev_count - count;
  537                 prev_count = count;
  538                 if (sec != start_sec)
  539                         break;
  540                 if (--timeout == 0)
  541                         goto fail;
  542         }
  543 
  544         if (bootverbose) {
  545                 printf("i8254 clock: %u Hz\n", tot_count);
  546         }
  547         return (tot_count);
  548 
  549 fail:
  550 #ifdef XBOX
  551         if (arch_i386_is_xbox)
  552                 timer_freq = 1125000; /* gives ~733.34MHz CPU clock */
  553 #endif
  554 
  555         if (bootverbose)
  556                 printf("failed, using default i8254 clock of %u Hz\n",
  557                        timer_freq);
  558         return (timer_freq);
  559 }
  560 
  561 static void
  562 set_timer_freq(u_int freq, int intr_freq)
  563 {
  564         int new_timer0_real_max_count;
  565 
  566         i8254_timecounter.tc_frequency = freq;
  567         mtx_lock_spin(&clock_lock);
  568         timer_freq = freq;
  569         if (using_lapic_timer)
  570                 new_timer0_real_max_count = 0x10000;
  571         else
  572                 new_timer0_real_max_count = TIMER_DIV(intr_freq);
  573         if (new_timer0_real_max_count != timer0_real_max_count) {
  574                 timer0_real_max_count = new_timer0_real_max_count;
  575                 if (timer0_real_max_count == 0x10000)
  576                         timer0_max_count = 0xffff;
  577                 else
  578                         timer0_max_count = timer0_real_max_count;
  579                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  580                 outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
  581                 outb(TIMER_CNTR0, timer0_real_max_count >> 8);
  582         }
  583         mtx_unlock_spin(&clock_lock);
  584 }
  585 
  586 static void
  587 i8254_restore(void)
  588 {
  589 
  590         mtx_lock_spin(&clock_lock);
  591         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  592         outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
  593         outb(TIMER_CNTR0, timer0_real_max_count >> 8);
  594         mtx_unlock_spin(&clock_lock);
  595 }
  596 
  597 static void
  598 rtc_restore(void)
  599 {
  600 
  601         /* Restore all of the RTC's "status" (actually, control) registers. */
  602         /* XXX locking is needed for RTC access. */
  603         writertc(RTC_STATUSB, RTCSB_24HR);
  604         writertc(RTC_STATUSA, rtc_statusa);
  605         writertc(RTC_STATUSB, rtc_statusb);
  606         rtcin(RTC_INTR);
  607 }
  608 
  609 /*
  610  * Restore all the timers non-atomically (XXX: should be atomically).
  611  *
  612  * This function is called from pmtimer_resume() to restore all the timers.
  613  * This should not be necessary, but there are broken laptops that do not
  614  * restore all the timers on resume.
  615  */
  616 void
  617 timer_restore(void)
  618 {
  619 
  620         i8254_restore();                /* restore timer_freq and hz */
  621         rtc_restore();                  /* reenable RTC interrupts */
  622 }
  623 
  624 /*
  625  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  626  * XXX initialization of other timers is unintentionally left blank.
  627  */
  628 void
  629 startrtclock()
  630 {
  631         u_int delta, freq;
  632 
  633         writertc(RTC_STATUSA, rtc_statusa);
  634         writertc(RTC_STATUSB, RTCSB_24HR);
  635 
  636         set_timer_freq(timer_freq, hz);
  637         freq = calibrate_clocks();
  638 #ifdef CLK_CALIBRATION_LOOP
  639         if (bootverbose) {
  640                 printf(
  641                 "Press a key on the console to abort clock calibration\n");
  642                 while (cncheckc() == -1)
  643                         calibrate_clocks();
  644         }
  645 #endif
  646 
  647         /*
  648          * Use the calibrated i8254 frequency if it seems reasonable.
  649          * Otherwise use the default, and don't use the calibrated i586
  650          * frequency.
  651          */
  652         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  653         if (delta < timer_freq / 100) {
  654 #ifndef CLK_USE_I8254_CALIBRATION
  655                 if (bootverbose)
  656                         printf(
  657 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  658                 freq = timer_freq;
  659 #endif
  660                 timer_freq = freq;
  661         } else {
  662                 if (bootverbose)
  663                         printf(
  664                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  665                                freq, timer_freq);
  666         }
  667 
  668         set_timer_freq(timer_freq, hz);
  669         tc_init(&i8254_timecounter);
  670 
  671         init_TSC();
  672 }
  673 
  674 /*
  675  * Initialize the time of day register, based on the time base which is, e.g.
  676  * from a filesystem.
  677  */
  678 void
  679 inittodr(time_t base)
  680 {
  681         unsigned long   sec, days;
  682         int             year, month;
  683         int             y, m, s;
  684         struct timespec ts;
  685 
  686         if (base) {
  687                 s = splclock();
  688                 ts.tv_sec = base;
  689                 ts.tv_nsec = 0;
  690                 tc_setclock(&ts);
  691                 splx(s);
  692         }
  693 
  694         /* Look if we have a RTC present and the time is valid */
  695         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  696                 goto wrong_time;
  697 
  698         /* wait for time update to complete */
  699         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  700         s = splhigh();
  701         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
  702                 splx(s);
  703                 s = splhigh();
  704         }
  705 
  706         days = 0;
  707 #ifdef USE_RTC_CENTURY
  708         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  709 #else
  710         year = readrtc(RTC_YEAR) + 1900;
  711         if (year < 1970)
  712                 year += 100;
  713 #endif
  714         if (year < 1970) {
  715                 splx(s);
  716                 goto wrong_time;
  717         }
  718         month = readrtc(RTC_MONTH);
  719         for (m = 1; m < month; m++)
  720                 days += daysinmonth[m-1];
  721         if ((month > 2) && LEAPYEAR(year))
  722                 days ++;
  723         days += readrtc(RTC_DAY) - 1;
  724         for (y = 1970; y < year; y++)
  725                 days += DAYSPERYEAR + LEAPYEAR(y);
  726         sec = ((( days * 24 +
  727                   readrtc(RTC_HRS)) * 60 +
  728                   readrtc(RTC_MIN)) * 60 +
  729                   readrtc(RTC_SEC));
  730         /* sec now contains the number of seconds, since Jan 1 1970,
  731            in the local time zone */
  732 
  733         sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  734 
  735         y = time_second - sec;
  736         if (y <= -2 || y >= 2) {
  737                 /* badly off, adjust it */
  738                 ts.tv_sec = sec;
  739                 ts.tv_nsec = 0;
  740                 tc_setclock(&ts);
  741         }
  742         splx(s);
  743         return;
  744 
  745 wrong_time:
  746         printf("Invalid time in real time clock.\n");
  747         printf("Check and reset the date immediately!\n");
  748 }
  749 
  750 /*
  751  * Write system time back to RTC
  752  */
  753 void
  754 resettodr()
  755 {
  756         unsigned long   tm;
  757         int             y, m, s;
  758 
  759         if (disable_rtc_set)
  760                 return;
  761 
  762         s = splclock();
  763         tm = time_second;
  764         splx(s);
  765 
  766         /* Disable RTC updates and interrupts. */
  767         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  768 
  769         /* Calculate local time to put in RTC */
  770 
  771         tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  772 
  773         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  774         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  775         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  776 
  777         /* We have now the days since 01-01-1970 in tm */
  778         writertc(RTC_WDAY, (tm + 4) % 7 + 1);           /* Write back Weekday */
  779         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  780              tm >= m;
  781              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  782              tm -= m;
  783 
  784         /* Now we have the years in y and the day-of-the-year in tm */
  785         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  786 #ifdef USE_RTC_CENTURY
  787         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  788 #endif
  789         for (m = 0; ; m++) {
  790                 int ml;
  791 
  792                 ml = daysinmonth[m];
  793                 if (m == 1 && LEAPYEAR(y))
  794                         ml++;
  795                 if (tm < ml)
  796                         break;
  797                 tm -= ml;
  798         }
  799 
  800         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  801         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  802 
  803         /* Reenable RTC updates and interrupts. */
  804         writertc(RTC_STATUSB, rtc_statusb);
  805         rtcin(RTC_INTR);
  806 }
  807 
  808 
  809 /*
  810  * Start both clocks running.
  811  */
  812 void
  813 cpu_initclocks()
  814 {
  815         int diag;
  816 
  817 #ifdef DEV_APIC
  818         using_lapic_timer = lapic_setup_clock();
  819 #endif
  820         /*
  821          * If we aren't using the local APIC timer to drive the kernel
  822          * clocks, setup the interrupt handler for the 8254 timer 0 so
  823          * that it can drive hardclock().  Otherwise, change the 8254
  824          * timecounter to user a simpler algorithm.
  825          */
  826         if (!using_lapic_timer) {
  827                 intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL,
  828                     INTR_TYPE_CLK | INTR_FAST, NULL);
  829                 i8254_intsrc = intr_lookup_source(0);
  830                 if (i8254_intsrc != NULL)
  831                         i8254_pending =
  832                             i8254_intsrc->is_pic->pic_source_pending;
  833         } else {
  834                 i8254_timecounter.tc_get_timecount =
  835                     i8254_simple_get_timecount;
  836                 i8254_timecounter.tc_counter_mask = 0xffff;
  837                 set_timer_freq(timer_freq, hz);
  838         }
  839 
  840         /* Initialize RTC. */
  841         writertc(RTC_STATUSA, rtc_statusa);
  842         writertc(RTC_STATUSB, RTCSB_24HR);
  843 
  844         /*
  845          * If the separate statistics clock hasn't been explicility disabled
  846          * and we aren't already using the local APIC timer to drive the
  847          * kernel clocks, then setup the RTC to periodically interrupt to
  848          * drive statclock() and profclock().
  849          */
  850         if (!statclock_disable && !using_lapic_timer) {
  851                 diag = rtcin(RTC_DIAG);
  852                 if (diag != 0)
  853                         printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
  854 
  855                 /* Setting stathz to nonzero early helps avoid races. */
  856                 stathz = RTC_NOPROFRATE;
  857                 profhz = RTC_PROFRATE;
  858 
  859                 /* Enable periodic interrupts from the RTC. */
  860                 rtc_statusb |= RTCSB_PINTR;
  861                 intr_add_handler("rtc", 8, (driver_intr_t *)rtcintr, NULL,
  862                     INTR_TYPE_CLK | INTR_FAST, NULL);
  863 
  864                 writertc(RTC_STATUSB, rtc_statusb);
  865                 rtcin(RTC_INTR);
  866         }
  867 
  868         init_TSC_tc();
  869 }
  870 
  871 void
  872 cpu_startprofclock(void)
  873 {
  874 
  875         if (using_lapic_timer)
  876                 return;
  877         rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
  878         writertc(RTC_STATUSA, rtc_statusa);
  879         psdiv = pscnt = psratio;
  880 }
  881 
  882 void
  883 cpu_stopprofclock(void)
  884 {
  885 
  886         if (using_lapic_timer)
  887                 return;
  888         rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  889         writertc(RTC_STATUSA, rtc_statusa);
  890         psdiv = pscnt = 1;
  891 }
  892 
  893 static int
  894 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  895 {
  896         int error;
  897         u_int freq;
  898 
  899         /*
  900          * Use `i8254' instead of `timer' in external names because `timer'
  901          * is is too generic.  Should use it everywhere.
  902          */
  903         freq = timer_freq;
  904         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
  905         if (error == 0 && req->newptr != NULL)
  906                 set_timer_freq(freq, hz);
  907         return (error);
  908 }
  909 
  910 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  911     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  912 
  913 static unsigned
  914 i8254_simple_get_timecount(struct timecounter *tc)
  915 {
  916 
  917         return (timer0_max_count - getit());
  918 }
  919 
  920 static unsigned
  921 i8254_get_timecount(struct timecounter *tc)
  922 {
  923         u_int count;
  924         u_int high, low;
  925         u_int eflags;
  926 
  927         eflags = read_eflags();
  928         mtx_lock_spin(&clock_lock);
  929 
  930         /* Select timer0 and latch counter value. */
  931         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  932 
  933         low = inb(TIMER_CNTR0);
  934         high = inb(TIMER_CNTR0);
  935         count = timer0_max_count - ((high << 8) | low);
  936         if (count < i8254_lastcount ||
  937             (!i8254_ticked && (clkintr_pending ||
  938             ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
  939             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  940                 i8254_ticked = 1;
  941                 i8254_offset += timer0_max_count;
  942         }
  943         i8254_lastcount = count;
  944         count += i8254_offset;
  945         mtx_unlock_spin(&clock_lock);
  946         return (count);
  947 }
  948 
  949 #ifdef DEV_ISA
  950 /*
  951  * Attach to the ISA PnP descriptors for the timer and realtime clock.
  952  */
  953 static struct isa_pnp_id attimer_ids[] = {
  954         { 0x0001d041 /* PNP0100 */, "AT timer" },
  955         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
  956         { 0 }
  957 };
  958 
  959 static int
  960 attimer_probe(device_t dev)
  961 {
  962         int result;
  963         
  964         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
  965                 device_quiet(dev);
  966         return(result);
  967 }
  968 
  969 static int
  970 attimer_attach(device_t dev)
  971 {
  972         return(0);
  973 }
  974 
  975 static device_method_t attimer_methods[] = {
  976         /* Device interface */
  977         DEVMETHOD(device_probe,         attimer_probe),
  978         DEVMETHOD(device_attach,        attimer_attach),
  979         DEVMETHOD(device_detach,        bus_generic_detach),
  980         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  981         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
  982         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
  983         { 0, 0 }
  984 };
  985 
  986 static driver_t attimer_driver = {
  987         "attimer",
  988         attimer_methods,
  989         1,              /* no softc */
  990 };
  991 
  992 static devclass_t attimer_devclass;
  993 
  994 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  995 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  996 
  997 #endif /* DEV_ISA */

Cache object: 207e33bc217cecbc470f7dd4a3ef9b8f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.