The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 /*
   43  * inittodr, settodr and support routines written
   44  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   45  *
   46  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   47  */
   48 
   49 #include "opt_apic.h"
   50 #include "opt_clock.h"
   51 #include "opt_isa.h"
   52 #include "opt_mca.h"
   53 #include "opt_xbox.h"
   54 
   55 #include <sys/param.h>
   56 #include <sys/systm.h>
   57 #include <sys/bus.h>
   58 #include <sys/clock.h>
   59 #include <sys/conf.h>
   60 #include <sys/fcntl.h>
   61 #include <sys/lock.h>
   62 #include <sys/kdb.h>
   63 #include <sys/mutex.h>
   64 #include <sys/proc.h>
   65 #include <sys/time.h>
   66 #include <sys/timetc.h>
   67 #include <sys/uio.h>
   68 #include <sys/kernel.h>
   69 #include <sys/limits.h>
   70 #include <sys/module.h>
   71 #include <sys/sched.h>
   72 #include <sys/sysctl.h>
   73 #include <sys/cons.h>
   74 #include <sys/power.h>
   75 
   76 #include <machine/clock.h>
   77 #include <machine/cpu.h>
   78 #include <machine/cputypes.h>
   79 #include <machine/frame.h>
   80 #include <machine/intr_machdep.h>
   81 #include <machine/md_var.h>
   82 #include <machine/psl.h>
   83 #ifdef DEV_APIC
   84 #include <machine/apicvar.h>
   85 #endif
   86 #include <machine/specialreg.h>
   87 #include <machine/ppireg.h>
   88 #include <machine/timerreg.h>
   89 
   90 #include <isa/rtc.h>
   91 #ifdef DEV_ISA
   92 #include <isa/isareg.h>
   93 #include <isa/isavar.h>
   94 #endif
   95 
   96 #ifdef DEV_MCA
   97 #include <i386/bios/mca_machdep.h>
   98 #endif
   99 
  100 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
  101 
  102 int     clkintr_pending;
  103 int     pscnt = 1;
  104 int     psdiv = 1;
  105 int     statclock_disable;
  106 #ifndef TIMER_FREQ
  107 #define TIMER_FREQ   1193182
  108 #endif
  109 u_int   timer_freq = TIMER_FREQ;
  110 int     timer0_max_count;
  111 int     timer0_real_max_count;
  112 #define RTC_LOCK        mtx_lock_spin(&clock_lock)
  113 #define RTC_UNLOCK      mtx_unlock_spin(&clock_lock)
  114 
  115 static  int     beeping = 0;
  116 static  struct mtx clock_lock;
  117 static  struct intsrc *i8254_intsrc;
  118 static  u_int32_t i8254_lastcount;
  119 static  u_int32_t i8254_offset;
  120 static  int     (*i8254_pending)(struct intsrc *);
  121 static  int     i8254_ticked;
  122 static  int     using_lapic_timer;
  123 static  int     rtc_reg = -1;
  124 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  125 static  u_char  rtc_statusb = RTCSB_24HR;
  126 
  127 /* Values for timerX_state: */
  128 #define RELEASED        0
  129 #define RELEASE_PENDING 1
  130 #define ACQUIRED        2
  131 #define ACQUIRE_PENDING 3
  132 
  133 static  u_char  timer2_state;
  134 
  135 static  unsigned i8254_get_timecount(struct timecounter *tc);
  136 static  unsigned i8254_simple_get_timecount(struct timecounter *tc);
  137 static  void    set_timer_freq(u_int freq, int intr_freq);
  138 
  139 static struct timecounter i8254_timecounter = {
  140         i8254_get_timecount,    /* get_timecount */
  141         0,                      /* no poll_pps */
  142         ~0u,                    /* counter_mask */
  143         0,                      /* frequency */
  144         "i8254",                /* name */
  145         0                       /* quality */
  146 };
  147 
  148 static int
  149 clkintr(struct trapframe *frame)
  150 {
  151 
  152         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  153                 mtx_lock_spin(&clock_lock);
  154                 if (i8254_ticked)
  155                         i8254_ticked = 0;
  156                 else {
  157                         i8254_offset += timer0_max_count;
  158                         i8254_lastcount = 0;
  159                 }
  160                 clkintr_pending = 0;
  161                 mtx_unlock_spin(&clock_lock);
  162         }
  163         KASSERT(!using_lapic_timer, ("clk interrupt enabled with lapic timer"));
  164         hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  165 #ifdef DEV_MCA
  166         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  167         if (MCA_system)
  168                 outb(0x61, inb(0x61) | 0x80);
  169 #endif
  170         return (FILTER_HANDLED);
  171 }
  172 
  173 int
  174 acquire_timer2(int mode)
  175 {
  176 
  177         if (timer2_state != RELEASED)
  178                 return (-1);
  179         timer2_state = ACQUIRED;
  180 
  181         /*
  182          * This access to the timer registers is as atomic as possible
  183          * because it is a single instruction.  We could do better if we
  184          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  185          * and this is probably good enough for timer2, so we aren't as
  186          * careful with it as with timer0.
  187          */
  188         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  189 
  190         return (0);
  191 }
  192 
  193 int
  194 release_timer2()
  195 {
  196 
  197         if (timer2_state != ACQUIRED)
  198                 return (-1);
  199         timer2_state = RELEASED;
  200         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  201         return (0);
  202 }
  203 
  204 /*
  205  * This routine receives statistical clock interrupts from the RTC.
  206  * As explained above, these occur at 128 interrupts per second.
  207  * When profiling, we receive interrupts at a rate of 1024 Hz.
  208  *
  209  * This does not actually add as much overhead as it sounds, because
  210  * when the statistical clock is active, the hardclock driver no longer
  211  * needs to keep (inaccurate) statistics on its own.  This decouples
  212  * statistics gathering from scheduling interrupts.
  213  *
  214  * The RTC chip requires that we read status register C (RTC_INTR)
  215  * to acknowledge an interrupt, before it will generate the next one.
  216  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  217  * the clock can tick immediately after the read from RTC_INTR.  In this
  218  * case, the mc146818A interrupt signal will not drop for long enough
  219  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  220  * clock will halt, considerably degrading system performance.  This is
  221  * why we use 'while' rather than a more straightforward 'if' below.
  222  * Stat clock ticks can still be lost, causing minor loss of accuracy
  223  * in the statistics, but the stat clock will no longer stop.
  224  */
  225 static int
  226 rtcintr(struct trapframe *frame)
  227 {
  228 
  229         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  230                 if (profprocs != 0) {
  231                         if (--pscnt == 0)
  232                                 pscnt = psdiv;
  233                         profclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  234                 }
  235                 if (pscnt == psdiv)
  236                         statclock(TRAPF_USERMODE(frame));
  237         }
  238         return (FILTER_HANDLED);
  239 }
  240 
  241 #include "opt_ddb.h"
  242 #ifdef DDB
  243 #include <ddb/ddb.h>
  244 
  245 DB_SHOW_COMMAND(rtc, rtc)
  246 {
  247         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  248                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  249                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  250                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  251 }
  252 #endif /* DDB */
  253 
  254 static int
  255 getit(void)
  256 {
  257         int high, low;
  258 
  259         mtx_lock_spin(&clock_lock);
  260 
  261         /* Select timer0 and latch counter value. */
  262         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  263 
  264         low = inb(TIMER_CNTR0);
  265         high = inb(TIMER_CNTR0);
  266 
  267         mtx_unlock_spin(&clock_lock);
  268         return ((high << 8) | low);
  269 }
  270 
  271 /*
  272  * Wait "n" microseconds.
  273  * Relies on timer 1 counting down from (timer_freq / hz)
  274  * Note: timer had better have been programmed before this is first used!
  275  */
  276 void
  277 DELAY(int n)
  278 {
  279         int delta, prev_tick, tick, ticks_left;
  280 
  281 #ifdef DELAYDEBUG
  282         int getit_calls = 1;
  283         int n1;
  284         static int state = 0;
  285 #endif
  286 
  287         if (tsc_freq != 0 && !tsc_is_broken) {
  288                 uint64_t start, end, now;
  289 
  290                 sched_pin();
  291                 start = rdtsc();
  292                 end = start + (tsc_freq * n) / 1000000;
  293                 do {
  294                         cpu_spinwait();
  295                         now = rdtsc();
  296                 } while (now < end || (now > start && end < start));
  297                 sched_unpin();
  298                 return;
  299         }
  300 #ifdef DELAYDEBUG
  301         if (state == 0) {
  302                 state = 1;
  303                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  304                         DELAY(n1);
  305                 state = 2;
  306         }
  307         if (state == 1)
  308                 printf("DELAY(%d)...", n);
  309 #endif
  310         /*
  311          * Read the counter first, so that the rest of the setup overhead is
  312          * counted.  Guess the initial overhead is 20 usec (on most systems it
  313          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  314          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  315          * multiplications and divisions to scale the count take a while).
  316          *
  317          * However, if ddb is active then use a fake counter since reading
  318          * the i8254 counter involves acquiring a lock.  ddb must not do
  319          * locking for many reasons, but it calls here for at least atkbd
  320          * input.
  321          */
  322 #ifdef KDB
  323         if (kdb_active)
  324                 prev_tick = 1;
  325         else
  326 #endif
  327                 prev_tick = getit();
  328         n -= 0;                 /* XXX actually guess no initial overhead */
  329         /*
  330          * Calculate (n * (timer_freq / 1e6)) without using floating point
  331          * and without any avoidable overflows.
  332          */
  333         if (n <= 0)
  334                 ticks_left = 0;
  335         else if (n < 256)
  336                 /*
  337                  * Use fixed point to avoid a slow division by 1000000.
  338                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  339                  * 2^15 is the first power of 2 that gives exact results
  340                  * for n between 0 and 256.
  341                  */
  342                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  343         else
  344                 /*
  345                  * Don't bother using fixed point, although gcc-2.7.2
  346                  * generates particularly poor code for the long long
  347                  * division, since even the slow way will complete long
  348                  * before the delay is up (unless we're interrupted).
  349                  */
  350                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  351                              / 1000000;
  352 
  353         while (ticks_left > 0) {
  354 #ifdef KDB
  355                 if (kdb_active) {
  356                         inb(0x84);
  357                         tick = prev_tick - 1;
  358                         if (tick <= 0)
  359                                 tick = timer0_max_count;
  360                 } else
  361 #endif
  362                         tick = getit();
  363 #ifdef DELAYDEBUG
  364                 ++getit_calls;
  365 #endif
  366                 delta = prev_tick - tick;
  367                 prev_tick = tick;
  368                 if (delta < 0) {
  369                         delta += timer0_max_count;
  370                         /*
  371                          * Guard against timer0_max_count being wrong.
  372                          * This shouldn't happen in normal operation,
  373                          * but it may happen if set_timer_freq() is
  374                          * traced.
  375                          */
  376                         if (delta < 0)
  377                                 delta = 0;
  378                 }
  379                 ticks_left -= delta;
  380         }
  381 #ifdef DELAYDEBUG
  382         if (state == 1)
  383                 printf(" %d calls to getit() at %d usec each\n",
  384                        getit_calls, (n + 5) / getit_calls);
  385 #endif
  386 }
  387 
  388 static void
  389 sysbeepstop(void *chan)
  390 {
  391         ppi_spkr_off();         /* disable counter2 output to speaker */
  392         timer_spkr_release();
  393         beeping = 0;
  394 }
  395 
  396 int
  397 sysbeep(int pitch, int period)
  398 {
  399         int x = splclock();
  400 
  401         if (timer_spkr_acquire())
  402                 if (!beeping) {
  403                         /* Something else owns it. */
  404                         splx(x);
  405                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  406                 }
  407         mtx_lock_spin(&clock_lock);
  408         spkr_set_pitch(pitch);
  409         mtx_unlock_spin(&clock_lock);
  410         if (!beeping) {
  411                 /* enable counter2 output to speaker */
  412                 ppi_spkr_on();
  413                 beeping = period;
  414                 timeout(sysbeepstop, (void *)NULL, period);
  415         }
  416         splx(x);
  417         return (0);
  418 }
  419 
  420 /*
  421  * RTC support routines
  422  */
  423 
  424 int
  425 rtcin(reg)
  426         int reg;
  427 {
  428         u_char val;
  429 
  430         RTC_LOCK;
  431         if (rtc_reg != reg) {
  432                 inb(0x84);
  433                 outb(IO_RTC, reg);
  434                 rtc_reg = reg;
  435                 inb(0x84);
  436         }
  437         val = inb(IO_RTC + 1);
  438         RTC_UNLOCK;
  439         return (val);
  440 }
  441 
  442 void
  443 writertc(int reg, u_char val)
  444 {
  445 
  446         RTC_LOCK;
  447         if (rtc_reg != reg) {
  448                 inb(0x84);
  449                 outb(IO_RTC, reg);
  450                 rtc_reg = reg;
  451                 inb(0x84);
  452         }
  453         outb(IO_RTC + 1, val);
  454         inb(0x84);
  455         RTC_UNLOCK;
  456 }
  457 
  458 static __inline int
  459 readrtc(int port)
  460 {
  461         return(bcd2bin(rtcin(port)));
  462 }
  463 
  464 static u_int
  465 calibrate_clocks(void)
  466 {
  467         u_int count, prev_count, tot_count;
  468         int sec, start_sec, timeout;
  469 
  470         if (bootverbose)
  471                 printf("Calibrating clock(s) ... ");
  472         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  473                 goto fail;
  474         timeout = 100000000;
  475 
  476         /* Read the mc146818A seconds counter. */
  477         for (;;) {
  478                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  479                         sec = rtcin(RTC_SEC);
  480                         break;
  481                 }
  482                 if (--timeout == 0)
  483                         goto fail;
  484         }
  485 
  486         /* Wait for the mC146818A seconds counter to change. */
  487         start_sec = sec;
  488         for (;;) {
  489                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  490                         sec = rtcin(RTC_SEC);
  491                         if (sec != start_sec)
  492                                 break;
  493                 }
  494                 if (--timeout == 0)
  495                         goto fail;
  496         }
  497 
  498         /* Start keeping track of the i8254 counter. */
  499         prev_count = getit();
  500         if (prev_count == 0 || prev_count > timer0_max_count)
  501                 goto fail;
  502         tot_count = 0;
  503 
  504         /*
  505          * Wait for the mc146818A seconds counter to change.  Read the i8254
  506          * counter for each iteration since this is convenient and only
  507          * costs a few usec of inaccuracy. The timing of the final reads
  508          * of the counters almost matches the timing of the initial reads,
  509          * so the main cause of inaccuracy is the varying latency from 
  510          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  511          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  512          * maximum inaccuracy from this cause is < 10 usec on 486's.
  513          */
  514         start_sec = sec;
  515         for (;;) {
  516                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  517                         sec = rtcin(RTC_SEC);
  518                 count = getit();
  519                 if (count == 0 || count > timer0_max_count)
  520                         goto fail;
  521                 if (count > prev_count)
  522                         tot_count += prev_count - (count - timer0_max_count);
  523                 else
  524                         tot_count += prev_count - count;
  525                 prev_count = count;
  526                 if (sec != start_sec)
  527                         break;
  528                 if (--timeout == 0)
  529                         goto fail;
  530         }
  531 
  532         if (bootverbose) {
  533                 printf("i8254 clock: %u Hz\n", tot_count);
  534         }
  535         return (tot_count);
  536 
  537 fail:
  538         if (bootverbose)
  539                 printf("failed, using default i8254 clock of %u Hz\n",
  540                        timer_freq);
  541         return (timer_freq);
  542 }
  543 
  544 static void
  545 set_timer_freq(u_int freq, int intr_freq)
  546 {
  547         int new_timer0_real_max_count;
  548 
  549         i8254_timecounter.tc_frequency = freq;
  550         mtx_lock_spin(&clock_lock);
  551         timer_freq = freq;
  552         if (using_lapic_timer)
  553                 new_timer0_real_max_count = 0x10000;
  554         else
  555                 new_timer0_real_max_count = TIMER_DIV(intr_freq);
  556         if (new_timer0_real_max_count != timer0_real_max_count) {
  557                 timer0_real_max_count = new_timer0_real_max_count;
  558                 if (timer0_real_max_count == 0x10000)
  559                         timer0_max_count = 0xffff;
  560                 else
  561                         timer0_max_count = timer0_real_max_count;
  562                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  563                 outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
  564                 outb(TIMER_CNTR0, timer0_real_max_count >> 8);
  565         }
  566         mtx_unlock_spin(&clock_lock);
  567 }
  568 
  569 static void
  570 i8254_restore(void)
  571 {
  572 
  573         mtx_lock_spin(&clock_lock);
  574         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  575         outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
  576         outb(TIMER_CNTR0, timer0_real_max_count >> 8);
  577         mtx_unlock_spin(&clock_lock);
  578 }
  579 
  580 static void
  581 rtc_restore(void)
  582 {
  583 
  584         /* Restore all of the RTC's "status" (actually, control) registers. */
  585         /* XXX locking is needed for RTC access. */
  586         rtc_reg = -1;
  587         writertc(RTC_STATUSB, RTCSB_24HR);
  588         writertc(RTC_STATUSA, rtc_statusa);
  589         writertc(RTC_STATUSB, rtc_statusb);
  590         rtcin(RTC_INTR);
  591 }
  592 
  593 /*
  594  * Restore all the timers non-atomically (XXX: should be atomically).
  595  *
  596  * This function is called from pmtimer_resume() to restore all the timers.
  597  * This should not be necessary, but there are broken laptops that do not
  598  * restore all the timers on resume.
  599  */
  600 void
  601 timer_restore(void)
  602 {
  603 
  604         i8254_restore();                /* restore timer_freq and hz */
  605         rtc_restore();                  /* reenable RTC interrupts */
  606 }
  607 
  608 /* This is separate from startrtclock() so that it can be called early. */
  609 void
  610 i8254_init(void)
  611 {
  612 
  613         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
  614         set_timer_freq(timer_freq, hz);
  615 }
  616 
  617 void
  618 startrtclock()
  619 {
  620         u_int delta, freq;
  621 
  622         writertc(RTC_STATUSA, rtc_statusa);
  623         writertc(RTC_STATUSB, RTCSB_24HR);
  624 
  625         freq = calibrate_clocks();
  626 #ifdef CLK_CALIBRATION_LOOP
  627         if (bootverbose) {
  628                 printf(
  629                 "Press a key on the console to abort clock calibration\n");
  630                 while (cncheckc() == -1)
  631                         calibrate_clocks();
  632         }
  633 #endif
  634 
  635         /*
  636          * Use the calibrated i8254 frequency if it seems reasonable.
  637          * Otherwise use the default, and don't use the calibrated i586
  638          * frequency.
  639          */
  640         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  641         if (delta < timer_freq / 100) {
  642 #ifndef CLK_USE_I8254_CALIBRATION
  643                 if (bootverbose)
  644                         printf(
  645 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  646                 freq = timer_freq;
  647 #endif
  648                 timer_freq = freq;
  649         } else {
  650                 if (bootverbose)
  651                         printf(
  652                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  653                                freq, timer_freq);
  654         }
  655 
  656         set_timer_freq(timer_freq, hz);
  657         tc_init(&i8254_timecounter);
  658 
  659         init_TSC();
  660 }
  661 
  662 /*
  663  * Initialize the time of day register, based on the time base which is, e.g.
  664  * from a filesystem.
  665  */
  666 void
  667 inittodr(time_t base)
  668 {
  669         int s;
  670         struct timespec ts;
  671         struct clocktime ct;
  672 
  673         if (base) {
  674                 s = splclock();
  675                 ts.tv_sec = base;
  676                 ts.tv_nsec = 0;
  677                 tc_setclock(&ts);
  678                 splx(s);
  679         }
  680 
  681         /* Look if we have a RTC present and the time is valid */
  682         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
  683                 printf("Invalid time in clock: check and reset the date!\n");
  684                 return;
  685         }
  686 
  687         /* wait for time update to complete */
  688         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  689         s = splhigh();
  690         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
  691                 splx(s);
  692                 s = splhigh();
  693         }
  694         ct.nsec = 0;
  695         ct.sec = readrtc(RTC_SEC);
  696         ct.min = readrtc(RTC_MIN);
  697         ct.hour = readrtc(RTC_HRS);
  698         ct.day = readrtc(RTC_DAY);
  699         ct.dow = readrtc(RTC_WDAY) - 1;
  700         ct.mon = readrtc(RTC_MONTH);
  701         ct.year = readrtc(RTC_YEAR);
  702 #ifdef USE_RTC_CENTURY
  703         ct.year += readrtc(RTC_CENTURY) * 100;
  704 #else
  705         ct.year += 2000;
  706 #endif
  707         /* Set dow = -1 because some clocks don't set it correctly. */
  708         ct.dow = -1;
  709         if (clock_ct_to_ts(&ct, &ts)) {
  710                 printf("Invalid time in clock: check and reset the date!\n");
  711                 return;
  712         }
  713         ts.tv_sec += utc_offset();
  714         tc_setclock(&ts);
  715 }
  716 
  717 /*
  718  * Write system time back to RTC
  719  */
  720 void
  721 resettodr()
  722 {
  723         struct timespec ts;
  724         struct clocktime ct;
  725 
  726         if (disable_rtc_set)
  727                 return;
  728 
  729         getnanotime(&ts);
  730         ts.tv_sec -= utc_offset();
  731         clock_ts_to_ct(&ts, &ct);
  732 
  733         /* Disable RTC updates and interrupts. */
  734         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  735 
  736         writertc(RTC_SEC, bin2bcd(ct.sec));             /* Write back Seconds */
  737         writertc(RTC_MIN, bin2bcd(ct.min));             /* Write back Minutes */
  738         writertc(RTC_HRS, bin2bcd(ct.hour));            /* Write back Hours   */
  739 
  740         writertc(RTC_WDAY, ct.dow + 1);                 /* Write back Weekday */
  741         writertc(RTC_DAY, bin2bcd(ct.day));             /* Write back Day */
  742         writertc(RTC_MONTH, bin2bcd(ct.mon));           /* Write back Month   */
  743         writertc(RTC_YEAR, bin2bcd(ct.year % 100));     /* Write back Year    */
  744 #ifdef USE_RTC_CENTURY
  745         writertc(RTC_CENTURY, bin2bcd(ct.year / 100));  /* ... and Century    */
  746 #endif
  747 
  748         /* Reenable RTC updates and interrupts. */
  749         writertc(RTC_STATUSB, rtc_statusb);
  750         rtcin(RTC_INTR);
  751 }
  752 
  753 
  754 /*
  755  * Start both clocks running.
  756  */
  757 void
  758 cpu_initclocks()
  759 {
  760         int diag;
  761 
  762 #ifdef DEV_APIC
  763         using_lapic_timer = lapic_setup_clock();
  764 #endif
  765         /*
  766          * If we aren't using the local APIC timer to drive the kernel
  767          * clocks, setup the interrupt handler for the 8254 timer 0 so
  768          * that it can drive hardclock().  Otherwise, change the 8254
  769          * timecounter to user a simpler algorithm.
  770          */
  771         if (!using_lapic_timer) {
  772                 intr_add_handler("clk", 0, (driver_filter_t *)clkintr, NULL,
  773                     NULL, INTR_TYPE_CLK, NULL);
  774                 i8254_intsrc = intr_lookup_source(0);
  775                 if (i8254_intsrc != NULL)
  776                         i8254_pending =
  777                             i8254_intsrc->is_pic->pic_source_pending;
  778         } else {
  779                 i8254_timecounter.tc_get_timecount =
  780                     i8254_simple_get_timecount;
  781                 i8254_timecounter.tc_counter_mask = 0xffff;
  782                 set_timer_freq(timer_freq, hz);
  783         }
  784 
  785         /* Initialize RTC. */
  786         writertc(RTC_STATUSA, rtc_statusa);
  787         writertc(RTC_STATUSB, RTCSB_24HR);
  788 
  789         /*
  790          * If the separate statistics clock hasn't been explicility disabled
  791          * and we aren't already using the local APIC timer to drive the
  792          * kernel clocks, then setup the RTC to periodically interrupt to
  793          * drive statclock() and profclock().
  794          */
  795         if (!statclock_disable && !using_lapic_timer) {
  796                 diag = rtcin(RTC_DIAG);
  797                 if (diag != 0)
  798                         printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
  799 
  800                 /* Setting stathz to nonzero early helps avoid races. */
  801                 stathz = RTC_NOPROFRATE;
  802                 profhz = RTC_PROFRATE;
  803 
  804                 /* Enable periodic interrupts from the RTC. */
  805                 rtc_statusb |= RTCSB_PINTR;
  806                 intr_add_handler("rtc", 8, (driver_filter_t *)rtcintr, NULL, NULL,
  807                     INTR_TYPE_CLK, NULL);
  808 
  809                 writertc(RTC_STATUSB, rtc_statusb);
  810                 rtcin(RTC_INTR);
  811         }
  812 
  813         init_TSC_tc();
  814 }
  815 
  816 void
  817 cpu_startprofclock(void)
  818 {
  819 
  820         if (using_lapic_timer)
  821                 return;
  822         rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
  823         writertc(RTC_STATUSA, rtc_statusa);
  824         psdiv = pscnt = psratio;
  825 }
  826 
  827 void
  828 cpu_stopprofclock(void)
  829 {
  830 
  831         if (using_lapic_timer)
  832                 return;
  833         rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  834         writertc(RTC_STATUSA, rtc_statusa);
  835         psdiv = pscnt = 1;
  836 }
  837 
  838 static int
  839 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  840 {
  841         int error;
  842         u_int freq;
  843 
  844         /*
  845          * Use `i8254' instead of `timer' in external names because `timer'
  846          * is is too generic.  Should use it everywhere.
  847          */
  848         freq = timer_freq;
  849         error = sysctl_handle_int(oidp, &freq, 0, req);
  850         if (error == 0 && req->newptr != NULL)
  851                 set_timer_freq(freq, hz);
  852         return (error);
  853 }
  854 
  855 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  856     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  857 
  858 static unsigned
  859 i8254_simple_get_timecount(struct timecounter *tc)
  860 {
  861 
  862         return (timer0_max_count - getit());
  863 }
  864 
  865 static unsigned
  866 i8254_get_timecount(struct timecounter *tc)
  867 {
  868         u_int count;
  869         u_int high, low;
  870         u_int eflags;
  871 
  872         eflags = read_eflags();
  873         mtx_lock_spin(&clock_lock);
  874 
  875         /* Select timer0 and latch counter value. */
  876         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  877 
  878         low = inb(TIMER_CNTR0);
  879         high = inb(TIMER_CNTR0);
  880         count = timer0_max_count - ((high << 8) | low);
  881         if (count < i8254_lastcount ||
  882             (!i8254_ticked && (clkintr_pending ||
  883             ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
  884             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  885                 i8254_ticked = 1;
  886                 i8254_offset += timer0_max_count;
  887         }
  888         i8254_lastcount = count;
  889         count += i8254_offset;
  890         mtx_unlock_spin(&clock_lock);
  891         return (count);
  892 }
  893 
  894 #ifdef DEV_ISA
  895 /*
  896  * Attach to the ISA PnP descriptors for the timer and realtime clock.
  897  */
  898 static struct isa_pnp_id attimer_ids[] = {
  899         { 0x0001d041 /* PNP0100 */, "AT timer" },
  900         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
  901         { 0 }
  902 };
  903 
  904 static int
  905 attimer_probe(device_t dev)
  906 {
  907         int result;
  908         
  909         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
  910                 device_quiet(dev);
  911         return(result);
  912 }
  913 
  914 static int
  915 attimer_attach(device_t dev)
  916 {
  917         return(0);
  918 }
  919 
  920 static device_method_t attimer_methods[] = {
  921         /* Device interface */
  922         DEVMETHOD(device_probe,         attimer_probe),
  923         DEVMETHOD(device_attach,        attimer_attach),
  924         DEVMETHOD(device_detach,        bus_generic_detach),
  925         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  926         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
  927         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
  928         { 0, 0 }
  929 };
  930 
  931 static driver_t attimer_driver = {
  932         "attimer",
  933         attimer_methods,
  934         1,              /* no softc */
  935 };
  936 
  937 static devclass_t attimer_devclass;
  938 
  939 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  940 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  941 
  942 #endif /* DEV_ISA */

Cache object: 114e8b3a63db2b40982a6232d46ebd01


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.