The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/8.0/sys/i386/isa/clock.c 194790 2009-06-23 23:16:37Z mav $");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 #include "opt_apic.h"
   43 #include "opt_clock.h"
   44 #include "opt_kdtrace.h"
   45 #include "opt_isa.h"
   46 #include "opt_mca.h"
   47 #include "opt_xbox.h"
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/lock.h>
   53 #include <sys/kdb.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/timetc.h>
   57 #include <sys/kernel.h>
   58 #include <sys/module.h>
   59 #include <sys/sched.h>
   60 #include <sys/smp.h>
   61 #include <sys/sysctl.h>
   62 
   63 #include <machine/clock.h>
   64 #include <machine/cpu.h>
   65 #include <machine/frame.h>
   66 #include <machine/intr_machdep.h>
   67 #include <machine/md_var.h>
   68 #ifdef DEV_APIC
   69 #include <machine/apicvar.h>
   70 #endif
   71 #include <machine/ppireg.h>
   72 #include <machine/timerreg.h>
   73 #include <machine/smp.h>
   74 
   75 #include <isa/rtc.h>
   76 #ifdef DEV_ISA
   77 #include <isa/isareg.h>
   78 #include <isa/isavar.h>
   79 #endif
   80 
   81 #ifdef DEV_MCA
   82 #include <i386/bios/mca_machdep.h>
   83 #endif
   84 
   85 #ifdef KDTRACE_HOOKS
   86 #include <sys/dtrace_bsd.h>
   87 #endif
   88 
   89 #define TIMER_DIV(x) ((i8254_freq + (x) / 2) / (x))
   90 
   91 int     clkintr_pending;
   92 static int pscnt = 1;
   93 static int psdiv = 1;
   94 #ifndef TIMER_FREQ
   95 #define TIMER_FREQ   1193182
   96 #endif
   97 u_int   i8254_freq = TIMER_FREQ;
   98 TUNABLE_INT("hw.i8254.freq", &i8254_freq);
   99 int     i8254_max_count;
  100 static int i8254_real_max_count;
  101 
  102 struct mtx clock_lock;
  103 static  struct intsrc *i8254_intsrc;
  104 static  u_int32_t i8254_lastcount;
  105 static  u_int32_t i8254_offset;
  106 static  int     (*i8254_pending)(struct intsrc *);
  107 static  int     i8254_ticked;
  108 static  int     using_atrtc_timer;
  109 static  int     using_lapic_timer;
  110 
  111 /* Values for timerX_state: */
  112 #define RELEASED        0
  113 #define RELEASE_PENDING 1
  114 #define ACQUIRED        2
  115 #define ACQUIRE_PENDING 3
  116 
  117 static  u_char  timer2_state;
  118 
  119 static  unsigned i8254_get_timecount(struct timecounter *tc);
  120 static  unsigned i8254_simple_get_timecount(struct timecounter *tc);
  121 static  void    set_i8254_freq(u_int freq, int intr_freq);
  122 
  123 static struct timecounter i8254_timecounter = {
  124         i8254_get_timecount,    /* get_timecount */
  125         0,                      /* no poll_pps */
  126         ~0u,                    /* counter_mask */
  127         0,                      /* frequency */
  128         "i8254",                /* name */
  129         0                       /* quality */
  130 };
  131 
  132 int
  133 hardclockintr(struct trapframe *frame)
  134 {
  135 
  136         if (PCPU_GET(cpuid) == 0)
  137                 hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  138         else
  139                 hardclock_cpu(TRAPF_USERMODE(frame));
  140         return (FILTER_HANDLED);
  141 }
  142 
  143 int
  144 statclockintr(struct trapframe *frame)
  145 {
  146 
  147         profclockintr(frame);
  148         statclock(TRAPF_USERMODE(frame));
  149         return (FILTER_HANDLED);
  150 }
  151 
  152 int
  153 profclockintr(struct trapframe *frame)
  154 {
  155 
  156         if (!using_atrtc_timer)
  157                 hardclockintr(frame);
  158         if (profprocs != 0)
  159                 profclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  160         return (FILTER_HANDLED);
  161 }
  162 
  163 static int
  164 clkintr(struct trapframe *frame)
  165 {
  166 
  167         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  168                 mtx_lock_spin(&clock_lock);
  169                 if (i8254_ticked)
  170                         i8254_ticked = 0;
  171                 else {
  172                         i8254_offset += i8254_max_count;
  173                         i8254_lastcount = 0;
  174                 }
  175                 clkintr_pending = 0;
  176                 mtx_unlock_spin(&clock_lock);
  177         }
  178         KASSERT(!using_lapic_timer, ("clk interrupt enabled with lapic timer"));
  179 
  180 #ifdef KDTRACE_HOOKS
  181         /*
  182          * If the DTrace hooks are configured and a callback function
  183          * has been registered, then call it to process the high speed
  184          * timers.
  185          */
  186         int cpu = PCPU_GET(cpuid);
  187         if (lapic_cyclic_clock_func[cpu] != NULL)
  188                 (*lapic_cyclic_clock_func[cpu])(frame);
  189 #endif
  190 
  191         if (using_atrtc_timer) {
  192 #ifdef SMP
  193                 if (smp_started)
  194                         ipi_all_but_self(IPI_HARDCLOCK);
  195 #endif
  196                 hardclockintr(frame);
  197         } else {
  198                 if (--pscnt <= 0) {
  199                         pscnt = psratio;
  200 #ifdef SMP
  201                         if (smp_started)
  202                                 ipi_all_but_self(IPI_STATCLOCK);
  203 #endif
  204                         statclockintr(frame);
  205                 } else {
  206 #ifdef SMP
  207                         if (smp_started)
  208                                 ipi_all_but_self(IPI_PROFCLOCK);
  209 #endif
  210                         profclockintr(frame);
  211                 }
  212         }
  213 
  214 #ifdef DEV_MCA
  215         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  216         if (MCA_system)
  217                 outb(0x61, inb(0x61) | 0x80);
  218 #endif
  219         return (FILTER_HANDLED);
  220 }
  221 
  222 int
  223 timer_spkr_acquire(void)
  224 {
  225         int mode;
  226 
  227         mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
  228 
  229         if (timer2_state != RELEASED)
  230                 return (-1);
  231         timer2_state = ACQUIRED;
  232 
  233         /*
  234          * This access to the timer registers is as atomic as possible
  235          * because it is a single instruction.  We could do better if we
  236          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  237          * and this is probably good enough for timer2, so we aren't as
  238          * careful with it as with timer0.
  239          */
  240         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  241         ppi_spkr_on();          /* enable counter2 output to speaker */
  242         return (0);
  243 }
  244 
  245 int
  246 timer_spkr_release(void)
  247 {
  248 
  249         if (timer2_state != ACQUIRED)
  250                 return (-1);
  251         timer2_state = RELEASED;
  252         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  253         ppi_spkr_off();         /* disable counter2 output to speaker */
  254         return (0);
  255 }
  256 
  257 void
  258 timer_spkr_setfreq(int freq)
  259 {
  260 
  261         freq = i8254_freq / freq;
  262         mtx_lock_spin(&clock_lock);
  263         outb(TIMER_CNTR2, freq & 0xff);
  264         outb(TIMER_CNTR2, freq >> 8);
  265         mtx_unlock_spin(&clock_lock);
  266 }
  267 
  268 /*
  269  * This routine receives statistical clock interrupts from the RTC.
  270  * As explained above, these occur at 128 interrupts per second.
  271  * When profiling, we receive interrupts at a rate of 1024 Hz.
  272  *
  273  * This does not actually add as much overhead as it sounds, because
  274  * when the statistical clock is active, the hardclock driver no longer
  275  * needs to keep (inaccurate) statistics on its own.  This decouples
  276  * statistics gathering from scheduling interrupts.
  277  *
  278  * The RTC chip requires that we read status register C (RTC_INTR)
  279  * to acknowledge an interrupt, before it will generate the next one.
  280  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  281  * the clock can tick immediately after the read from RTC_INTR.  In this
  282  * case, the mc146818A interrupt signal will not drop for long enough
  283  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  284  * clock will halt, considerably degrading system performance.  This is
  285  * why we use 'while' rather than a more straightforward 'if' below.
  286  * Stat clock ticks can still be lost, causing minor loss of accuracy
  287  * in the statistics, but the stat clock will no longer stop.
  288  */
  289 static int
  290 rtcintr(struct trapframe *frame)
  291 {
  292         int flag = 0;
  293 
  294         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  295                 flag = 1;
  296                 if (--pscnt <= 0) {
  297                         pscnt = psdiv;
  298 #ifdef SMP
  299                         if (smp_started)
  300                                 ipi_all_but_self(IPI_STATCLOCK);
  301 #endif
  302                         statclockintr(frame);
  303                 } else {
  304 #ifdef SMP
  305                         if (smp_started)
  306                                 ipi_all_but_self(IPI_PROFCLOCK);
  307 #endif
  308                         profclockintr(frame);
  309                 }
  310         }
  311         return(flag ? FILTER_HANDLED : FILTER_STRAY);
  312 }
  313 
  314 static int
  315 getit(void)
  316 {
  317         int high, low;
  318 
  319         mtx_lock_spin(&clock_lock);
  320 
  321         /* Select timer0 and latch counter value. */
  322         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  323 
  324         low = inb(TIMER_CNTR0);
  325         high = inb(TIMER_CNTR0);
  326 
  327         mtx_unlock_spin(&clock_lock);
  328         return ((high << 8) | low);
  329 }
  330 
  331 /*
  332  * Wait "n" microseconds.
  333  * Relies on timer 1 counting down from (i8254_freq / hz)
  334  * Note: timer had better have been programmed before this is first used!
  335  */
  336 void
  337 DELAY(int n)
  338 {
  339         int delta, prev_tick, tick, ticks_left;
  340 
  341 #ifdef DELAYDEBUG
  342         int getit_calls = 1;
  343         int n1;
  344         static int state = 0;
  345 #endif
  346 
  347         if (tsc_freq != 0 && !tsc_is_broken) {
  348                 uint64_t start, end, now;
  349 
  350                 sched_pin();
  351                 start = rdtsc();
  352                 end = start + (tsc_freq * n) / 1000000;
  353                 do {
  354                         cpu_spinwait();
  355                         now = rdtsc();
  356                 } while (now < end || (now > start && end < start));
  357                 sched_unpin();
  358                 return;
  359         }
  360 #ifdef DELAYDEBUG
  361         if (state == 0) {
  362                 state = 1;
  363                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  364                         DELAY(n1);
  365                 state = 2;
  366         }
  367         if (state == 1)
  368                 printf("DELAY(%d)...", n);
  369 #endif
  370         /*
  371          * Read the counter first, so that the rest of the setup overhead is
  372          * counted.  Guess the initial overhead is 20 usec (on most systems it
  373          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  374          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  375          * multiplications and divisions to scale the count take a while).
  376          *
  377          * However, if ddb is active then use a fake counter since reading
  378          * the i8254 counter involves acquiring a lock.  ddb must not do
  379          * locking for many reasons, but it calls here for at least atkbd
  380          * input.
  381          */
  382 #ifdef KDB
  383         if (kdb_active)
  384                 prev_tick = 1;
  385         else
  386 #endif
  387                 prev_tick = getit();
  388         n -= 0;                 /* XXX actually guess no initial overhead */
  389         /*
  390          * Calculate (n * (i8254_freq / 1e6)) without using floating point
  391          * and without any avoidable overflows.
  392          */
  393         if (n <= 0)
  394                 ticks_left = 0;
  395         else if (n < 256)
  396                 /*
  397                  * Use fixed point to avoid a slow division by 1000000.
  398                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  399                  * 2^15 is the first power of 2 that gives exact results
  400                  * for n between 0 and 256.
  401                  */
  402                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  403         else
  404                 /*
  405                  * Don't bother using fixed point, although gcc-2.7.2
  406                  * generates particularly poor code for the long long
  407                  * division, since even the slow way will complete long
  408                  * before the delay is up (unless we're interrupted).
  409                  */
  410                 ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
  411                              / 1000000;
  412 
  413         while (ticks_left > 0) {
  414 #ifdef KDB
  415                 if (kdb_active) {
  416                         inb(0x84);
  417                         tick = prev_tick - 1;
  418                         if (tick <= 0)
  419                                 tick = i8254_max_count;
  420                 } else
  421 #endif
  422                         tick = getit();
  423 #ifdef DELAYDEBUG
  424                 ++getit_calls;
  425 #endif
  426                 delta = prev_tick - tick;
  427                 prev_tick = tick;
  428                 if (delta < 0) {
  429                         delta += i8254_max_count;
  430                         /*
  431                          * Guard against i8254_max_count being wrong.
  432                          * This shouldn't happen in normal operation,
  433                          * but it may happen if set_i8254_freq() is
  434                          * traced.
  435                          */
  436                         if (delta < 0)
  437                                 delta = 0;
  438                 }
  439                 ticks_left -= delta;
  440         }
  441 #ifdef DELAYDEBUG
  442         if (state == 1)
  443                 printf(" %d calls to getit() at %d usec each\n",
  444                        getit_calls, (n + 5) / getit_calls);
  445 #endif
  446 }
  447 
  448 static void
  449 set_i8254_freq(u_int freq, int intr_freq)
  450 {
  451         int new_i8254_real_max_count;
  452 
  453         i8254_timecounter.tc_frequency = freq;
  454         mtx_lock_spin(&clock_lock);
  455         i8254_freq = freq;
  456         if (using_lapic_timer)
  457                 new_i8254_real_max_count = 0x10000;
  458         else
  459                 new_i8254_real_max_count = TIMER_DIV(intr_freq);
  460         if (new_i8254_real_max_count != i8254_real_max_count) {
  461                 i8254_real_max_count = new_i8254_real_max_count;
  462                 if (i8254_real_max_count == 0x10000)
  463                         i8254_max_count = 0xffff;
  464                 else
  465                         i8254_max_count = i8254_real_max_count;
  466                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  467                 outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
  468                 outb(TIMER_CNTR0, i8254_real_max_count >> 8);
  469         }
  470         mtx_unlock_spin(&clock_lock);
  471 }
  472 
  473 static void
  474 i8254_restore(void)
  475 {
  476 
  477         mtx_lock_spin(&clock_lock);
  478         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  479         outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
  480         outb(TIMER_CNTR0, i8254_real_max_count >> 8);
  481         mtx_unlock_spin(&clock_lock);
  482 }
  483 
  484 /*
  485  * Restore all the timers non-atomically (XXX: should be atomically).
  486  *
  487  * This function is called from pmtimer_resume() to restore all the timers.
  488  * This should not be necessary, but there are broken laptops that do not
  489  * restore all the timers on resume.
  490  */
  491 void
  492 timer_restore(void)
  493 {
  494 
  495         i8254_restore();                /* restore i8254_freq and hz */
  496         atrtc_restore();                /* reenable RTC interrupts */
  497 }
  498 
  499 /* This is separate from startrtclock() so that it can be called early. */
  500 void
  501 i8254_init(void)
  502 {
  503 
  504         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
  505         set_i8254_freq(i8254_freq, hz);
  506 }
  507 
  508 void
  509 startrtclock()
  510 {
  511 
  512         atrtc_start();
  513 
  514         set_i8254_freq(i8254_freq, hz);
  515         tc_init(&i8254_timecounter);
  516 
  517         init_TSC();
  518 }
  519 
  520 /*
  521  * Start both clocks running.
  522  */
  523 void
  524 cpu_initclocks()
  525 {
  526 
  527 #ifdef DEV_APIC
  528         using_lapic_timer = lapic_setup_clock();
  529 #endif
  530         /*
  531          * If we aren't using the local APIC timer to drive the kernel
  532          * clocks, setup the interrupt handler for the 8254 timer 0 so
  533          * that it can drive hardclock().  Otherwise, change the 8254
  534          * timecounter to user a simpler algorithm.
  535          */
  536         if (!using_lapic_timer) {
  537                 intr_add_handler("clk", 0, (driver_filter_t *)clkintr, NULL,
  538                     NULL, INTR_TYPE_CLK, NULL);
  539                 i8254_intsrc = intr_lookup_source(0);
  540                 if (i8254_intsrc != NULL)
  541                         i8254_pending =
  542                             i8254_intsrc->is_pic->pic_source_pending;
  543         } else {
  544                 i8254_timecounter.tc_get_timecount =
  545                     i8254_simple_get_timecount;
  546                 i8254_timecounter.tc_counter_mask = 0xffff;
  547                 set_i8254_freq(i8254_freq, hz);
  548         }
  549 
  550         /* Initialize RTC. */
  551         atrtc_start();
  552 
  553         /*
  554          * If the separate statistics clock hasn't been explicility disabled
  555          * and we aren't already using the local APIC timer to drive the
  556          * kernel clocks, then setup the RTC to periodically interrupt to
  557          * drive statclock() and profclock().
  558          */
  559         if (!using_lapic_timer) {
  560                 using_atrtc_timer = atrtc_setup_clock();
  561                 if (using_atrtc_timer) {
  562                         /* Enable periodic interrupts from the RTC. */
  563                         intr_add_handler("rtc", 8,
  564                             (driver_filter_t *)rtcintr, NULL, NULL,
  565                             INTR_TYPE_CLK, NULL);
  566                         atrtc_enable_intr();
  567                 } else {
  568                         profhz = hz;
  569                         if (hz < 128)
  570                                 stathz = hz;
  571                         else
  572                                 stathz = hz / (hz / 128);
  573                 }
  574         }
  575 
  576         init_TSC_tc();
  577 }
  578 
  579 void
  580 cpu_startprofclock(void)
  581 {
  582 
  583         if (using_lapic_timer || !using_atrtc_timer)
  584                 return;
  585         atrtc_rate(RTCSA_PROF);
  586         psdiv = pscnt = psratio;
  587 }
  588 
  589 void
  590 cpu_stopprofclock(void)
  591 {
  592 
  593         if (using_lapic_timer || !using_atrtc_timer)
  594                 return;
  595         atrtc_rate(RTCSA_NOPROF);
  596         psdiv = pscnt = 1;
  597 }
  598 
  599 static int
  600 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  601 {
  602         int error;
  603         u_int freq;
  604 
  605         /*
  606          * Use `i8254' instead of `timer' in external names because `timer'
  607          * is is too generic.  Should use it everywhere.
  608          */
  609         freq = i8254_freq;
  610         error = sysctl_handle_int(oidp, &freq, 0, req);
  611         if (error == 0 && req->newptr != NULL)
  612                 set_i8254_freq(freq, hz);
  613         return (error);
  614 }
  615 
  616 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  617     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  618 
  619 static unsigned
  620 i8254_simple_get_timecount(struct timecounter *tc)
  621 {
  622 
  623         return (i8254_max_count - getit());
  624 }
  625 
  626 static unsigned
  627 i8254_get_timecount(struct timecounter *tc)
  628 {
  629         u_int count;
  630         u_int high, low;
  631         u_int eflags;
  632 
  633         eflags = read_eflags();
  634         mtx_lock_spin(&clock_lock);
  635 
  636         /* Select timer0 and latch counter value. */
  637         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  638 
  639         low = inb(TIMER_CNTR0);
  640         high = inb(TIMER_CNTR0);
  641         count = i8254_max_count - ((high << 8) | low);
  642         if (count < i8254_lastcount ||
  643             (!i8254_ticked && (clkintr_pending ||
  644             ((count < 20 || (!(eflags & PSL_I) &&
  645             count < i8254_max_count / 2u)) &&
  646             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  647                 i8254_ticked = 1;
  648                 i8254_offset += i8254_max_count;
  649         }
  650         i8254_lastcount = count;
  651         count += i8254_offset;
  652         mtx_unlock_spin(&clock_lock);
  653         return (count);
  654 }
  655 
  656 #ifdef DEV_ISA
  657 /*
  658  * Attach to the ISA PnP descriptors for the timer
  659  */
  660 static struct isa_pnp_id attimer_ids[] = {
  661         { 0x0001d041 /* PNP0100 */, "AT timer" },
  662         { 0 }
  663 };
  664 
  665 static int
  666 attimer_probe(device_t dev)
  667 {
  668         int result;
  669         
  670         result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
  671         if (result <= 0)
  672                 device_quiet(dev);
  673         return(result);
  674 }
  675 
  676 static int
  677 attimer_attach(device_t dev)
  678 {
  679         return(0);
  680 }
  681 
  682 static device_method_t attimer_methods[] = {
  683         /* Device interface */
  684         DEVMETHOD(device_probe,         attimer_probe),
  685         DEVMETHOD(device_attach,        attimer_attach),
  686         DEVMETHOD(device_detach,        bus_generic_detach),
  687         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  688         DEVMETHOD(device_suspend,       bus_generic_suspend),
  689         DEVMETHOD(device_resume,        bus_generic_resume),
  690         { 0, 0 }
  691 };
  692 
  693 static driver_t attimer_driver = {
  694         "attimer",
  695         attimer_methods,
  696         1,              /* no softc */
  697 };
  698 
  699 static devclass_t attimer_devclass;
  700 
  701 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  702 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  703 
  704 #endif /* DEV_ISA */

Cache object: 001bace05bf69db9641e817b7dd46afb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.