The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/8.1/sys/i386/isa/clock.c 207137 2010-04-24 00:49:19Z attilio $");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 #include "opt_apic.h"
   43 #include "opt_clock.h"
   44 #include "opt_kdtrace.h"
   45 #include "opt_isa.h"
   46 #include "opt_mca.h"
   47 #include "opt_xbox.h"
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bus.h>
   52 #include <sys/lock.h>
   53 #include <sys/kdb.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/timetc.h>
   57 #include <sys/kernel.h>
   58 #include <sys/module.h>
   59 #include <sys/sched.h>
   60 #include <sys/smp.h>
   61 #include <sys/sysctl.h>
   62 
   63 #include <machine/clock.h>
   64 #include <machine/cpu.h>
   65 #include <machine/frame.h>
   66 #include <machine/intr_machdep.h>
   67 #include <machine/md_var.h>
   68 #include <machine/apicvar.h>
   69 #include <machine/ppireg.h>
   70 #include <machine/timerreg.h>
   71 #include <machine/smp.h>
   72 
   73 #include <isa/rtc.h>
   74 #ifdef DEV_ISA
   75 #include <isa/isareg.h>
   76 #include <isa/isavar.h>
   77 #endif
   78 
   79 #ifdef DEV_MCA
   80 #include <i386/bios/mca_machdep.h>
   81 #endif
   82 
   83 #ifdef KDTRACE_HOOKS
   84 #include <sys/dtrace_bsd.h>
   85 #endif
   86 
   87 #define TIMER_DIV(x) ((i8254_freq + (x) / 2) / (x))
   88 
   89 int     clkintr_pending;
   90 static int pscnt = 1;
   91 static int psdiv = 1;
   92 #ifndef TIMER_FREQ
   93 #define TIMER_FREQ   1193182
   94 #endif
   95 u_int   i8254_freq = TIMER_FREQ;
   96 TUNABLE_INT("hw.i8254.freq", &i8254_freq);
   97 int     i8254_max_count;
   98 static int i8254_real_max_count;
   99 
  100 static int lapic_allclocks = 1;
  101 TUNABLE_INT("machdep.lapic_allclocks", &lapic_allclocks);
  102 
  103 struct mtx clock_lock;
  104 static  struct intsrc *i8254_intsrc;
  105 static  u_int32_t i8254_lastcount;
  106 static  u_int32_t i8254_offset;
  107 static  int     (*i8254_pending)(struct intsrc *);
  108 static  int     i8254_ticked;
  109 static  int     using_atrtc_timer;
  110 static  enum lapic_clock using_lapic_timer = LAPIC_CLOCK_NONE;
  111 
  112 /* Values for timerX_state: */
  113 #define RELEASED        0
  114 #define RELEASE_PENDING 1
  115 #define ACQUIRED        2
  116 #define ACQUIRE_PENDING 3
  117 
  118 static  u_char  timer2_state;
  119 
  120 static  unsigned i8254_get_timecount(struct timecounter *tc);
  121 static  unsigned i8254_simple_get_timecount(struct timecounter *tc);
  122 static  void    set_i8254_freq(u_int freq, int intr_freq);
  123 
  124 static struct timecounter i8254_timecounter = {
  125         i8254_get_timecount,    /* get_timecount */
  126         0,                      /* no poll_pps */
  127         ~0u,                    /* counter_mask */
  128         0,                      /* frequency */
  129         "i8254",                /* name */
  130         0                       /* quality */
  131 };
  132 
  133 int
  134 hardclockintr(struct trapframe *frame)
  135 {
  136 
  137         if (PCPU_GET(cpuid) == 0)
  138                 hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  139         else
  140                 hardclock_cpu(TRAPF_USERMODE(frame));
  141         return (FILTER_HANDLED);
  142 }
  143 
  144 int
  145 statclockintr(struct trapframe *frame)
  146 {
  147 
  148         profclockintr(frame);
  149         statclock(TRAPF_USERMODE(frame));
  150         return (FILTER_HANDLED);
  151 }
  152 
  153 int
  154 profclockintr(struct trapframe *frame)
  155 {
  156 
  157         if (!using_atrtc_timer)
  158                 hardclockintr(frame);
  159         if (profprocs != 0)
  160                 profclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  161         return (FILTER_HANDLED);
  162 }
  163 
  164 static int
  165 clkintr(struct trapframe *frame)
  166 {
  167 
  168         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  169                 mtx_lock_spin(&clock_lock);
  170                 if (i8254_ticked)
  171                         i8254_ticked = 0;
  172                 else {
  173                         i8254_offset += i8254_max_count;
  174                         i8254_lastcount = 0;
  175                 }
  176                 clkintr_pending = 0;
  177                 mtx_unlock_spin(&clock_lock);
  178         }
  179         KASSERT(using_lapic_timer == LAPIC_CLOCK_NONE,
  180             ("clk interrupt enabled with lapic timer"));
  181 
  182 #ifdef KDTRACE_HOOKS
  183         /*
  184          * If the DTrace hooks are configured and a callback function
  185          * has been registered, then call it to process the high speed
  186          * timers.
  187          */
  188         int cpu = PCPU_GET(cpuid);
  189         if (lapic_cyclic_clock_func[cpu] != NULL)
  190                 (*lapic_cyclic_clock_func[cpu])(frame);
  191 #endif
  192 
  193         if (using_atrtc_timer) {
  194 #ifdef SMP
  195                 if (smp_started)
  196                         ipi_all_but_self(IPI_HARDCLOCK);
  197 #endif
  198                 hardclockintr(frame);
  199         } else {
  200                 if (--pscnt <= 0) {
  201                         pscnt = psratio;
  202 #ifdef SMP
  203                         if (smp_started)
  204                                 ipi_all_but_self(IPI_STATCLOCK);
  205 #endif
  206                         statclockintr(frame);
  207                 } else {
  208 #ifdef SMP
  209                         if (smp_started)
  210                                 ipi_all_but_self(IPI_PROFCLOCK);
  211 #endif
  212                         profclockintr(frame);
  213                 }
  214         }
  215 
  216 #ifdef DEV_MCA
  217         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  218         if (MCA_system)
  219                 outb(0x61, inb(0x61) | 0x80);
  220 #endif
  221         return (FILTER_HANDLED);
  222 }
  223 
  224 int
  225 timer_spkr_acquire(void)
  226 {
  227         int mode;
  228 
  229         mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
  230 
  231         if (timer2_state != RELEASED)
  232                 return (-1);
  233         timer2_state = ACQUIRED;
  234 
  235         /*
  236          * This access to the timer registers is as atomic as possible
  237          * because it is a single instruction.  We could do better if we
  238          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  239          * and this is probably good enough for timer2, so we aren't as
  240          * careful with it as with timer0.
  241          */
  242         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  243         ppi_spkr_on();          /* enable counter2 output to speaker */
  244         return (0);
  245 }
  246 
  247 int
  248 timer_spkr_release(void)
  249 {
  250 
  251         if (timer2_state != ACQUIRED)
  252                 return (-1);
  253         timer2_state = RELEASED;
  254         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  255         ppi_spkr_off();         /* disable counter2 output to speaker */
  256         return (0);
  257 }
  258 
  259 void
  260 timer_spkr_setfreq(int freq)
  261 {
  262 
  263         freq = i8254_freq / freq;
  264         mtx_lock_spin(&clock_lock);
  265         outb(TIMER_CNTR2, freq & 0xff);
  266         outb(TIMER_CNTR2, freq >> 8);
  267         mtx_unlock_spin(&clock_lock);
  268 }
  269 
  270 /*
  271  * This routine receives statistical clock interrupts from the RTC.
  272  * As explained above, these occur at 128 interrupts per second.
  273  * When profiling, we receive interrupts at a rate of 1024 Hz.
  274  *
  275  * This does not actually add as much overhead as it sounds, because
  276  * when the statistical clock is active, the hardclock driver no longer
  277  * needs to keep (inaccurate) statistics on its own.  This decouples
  278  * statistics gathering from scheduling interrupts.
  279  *
  280  * The RTC chip requires that we read status register C (RTC_INTR)
  281  * to acknowledge an interrupt, before it will generate the next one.
  282  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  283  * the clock can tick immediately after the read from RTC_INTR.  In this
  284  * case, the mc146818A interrupt signal will not drop for long enough
  285  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  286  * clock will halt, considerably degrading system performance.  This is
  287  * why we use 'while' rather than a more straightforward 'if' below.
  288  * Stat clock ticks can still be lost, causing minor loss of accuracy
  289  * in the statistics, but the stat clock will no longer stop.
  290  */
  291 static int
  292 rtcintr(struct trapframe *frame)
  293 {
  294         int flag = 0;
  295 
  296         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  297                 flag = 1;
  298                 if (--pscnt <= 0) {
  299                         pscnt = psdiv;
  300 #ifdef SMP
  301                         if (smp_started)
  302                                 ipi_all_but_self(IPI_STATCLOCK);
  303 #endif
  304                         statclockintr(frame);
  305                 } else {
  306 #ifdef SMP
  307                         if (smp_started)
  308                                 ipi_all_but_self(IPI_PROFCLOCK);
  309 #endif
  310                         profclockintr(frame);
  311                 }
  312         }
  313         return(flag ? FILTER_HANDLED : FILTER_STRAY);
  314 }
  315 
  316 static int
  317 getit(void)
  318 {
  319         int high, low;
  320 
  321         mtx_lock_spin(&clock_lock);
  322 
  323         /* Select timer0 and latch counter value. */
  324         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  325 
  326         low = inb(TIMER_CNTR0);
  327         high = inb(TIMER_CNTR0);
  328 
  329         mtx_unlock_spin(&clock_lock);
  330         return ((high << 8) | low);
  331 }
  332 
  333 /*
  334  * Wait "n" microseconds.
  335  * Relies on timer 1 counting down from (i8254_freq / hz)
  336  * Note: timer had better have been programmed before this is first used!
  337  */
  338 void
  339 DELAY(int n)
  340 {
  341         int delta, prev_tick, tick, ticks_left;
  342 
  343 #ifdef DELAYDEBUG
  344         int getit_calls = 1;
  345         int n1;
  346         static int state = 0;
  347 #endif
  348 
  349         if (tsc_freq != 0 && !tsc_is_broken) {
  350                 uint64_t start, end, now;
  351 
  352                 sched_pin();
  353                 start = rdtsc();
  354                 end = start + (tsc_freq * n) / 1000000;
  355                 do {
  356                         cpu_spinwait();
  357                         now = rdtsc();
  358                 } while (now < end || (now > start && end < start));
  359                 sched_unpin();
  360                 return;
  361         }
  362 #ifdef DELAYDEBUG
  363         if (state == 0) {
  364                 state = 1;
  365                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  366                         DELAY(n1);
  367                 state = 2;
  368         }
  369         if (state == 1)
  370                 printf("DELAY(%d)...", n);
  371 #endif
  372         /*
  373          * Read the counter first, so that the rest of the setup overhead is
  374          * counted.  Guess the initial overhead is 20 usec (on most systems it
  375          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  376          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  377          * multiplications and divisions to scale the count take a while).
  378          *
  379          * However, if ddb is active then use a fake counter since reading
  380          * the i8254 counter involves acquiring a lock.  ddb must not do
  381          * locking for many reasons, but it calls here for at least atkbd
  382          * input.
  383          */
  384 #ifdef KDB
  385         if (kdb_active)
  386                 prev_tick = 1;
  387         else
  388 #endif
  389                 prev_tick = getit();
  390         n -= 0;                 /* XXX actually guess no initial overhead */
  391         /*
  392          * Calculate (n * (i8254_freq / 1e6)) without using floating point
  393          * and without any avoidable overflows.
  394          */
  395         if (n <= 0)
  396                 ticks_left = 0;
  397         else if (n < 256)
  398                 /*
  399                  * Use fixed point to avoid a slow division by 1000000.
  400                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  401                  * 2^15 is the first power of 2 that gives exact results
  402                  * for n between 0 and 256.
  403                  */
  404                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  405         else
  406                 /*
  407                  * Don't bother using fixed point, although gcc-2.7.2
  408                  * generates particularly poor code for the long long
  409                  * division, since even the slow way will complete long
  410                  * before the delay is up (unless we're interrupted).
  411                  */
  412                 ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
  413                              / 1000000;
  414 
  415         while (ticks_left > 0) {
  416 #ifdef KDB
  417                 if (kdb_active) {
  418                         inb(0x84);
  419                         tick = prev_tick - 1;
  420                         if (tick <= 0)
  421                                 tick = i8254_max_count;
  422                 } else
  423 #endif
  424                         tick = getit();
  425 #ifdef DELAYDEBUG
  426                 ++getit_calls;
  427 #endif
  428                 delta = prev_tick - tick;
  429                 prev_tick = tick;
  430                 if (delta < 0) {
  431                         delta += i8254_max_count;
  432                         /*
  433                          * Guard against i8254_max_count being wrong.
  434                          * This shouldn't happen in normal operation,
  435                          * but it may happen if set_i8254_freq() is
  436                          * traced.
  437                          */
  438                         if (delta < 0)
  439                                 delta = 0;
  440                 }
  441                 ticks_left -= delta;
  442         }
  443 #ifdef DELAYDEBUG
  444         if (state == 1)
  445                 printf(" %d calls to getit() at %d usec each\n",
  446                        getit_calls, (n + 5) / getit_calls);
  447 #endif
  448 }
  449 
  450 static void
  451 set_i8254_freq(u_int freq, int intr_freq)
  452 {
  453         int new_i8254_real_max_count;
  454 
  455         i8254_timecounter.tc_frequency = freq;
  456         mtx_lock_spin(&clock_lock);
  457         i8254_freq = freq;
  458         if (using_lapic_timer != LAPIC_CLOCK_NONE)
  459                 new_i8254_real_max_count = 0x10000;
  460         else
  461                 new_i8254_real_max_count = TIMER_DIV(intr_freq);
  462         if (new_i8254_real_max_count != i8254_real_max_count) {
  463                 i8254_real_max_count = new_i8254_real_max_count;
  464                 if (i8254_real_max_count == 0x10000)
  465                         i8254_max_count = 0xffff;
  466                 else
  467                         i8254_max_count = i8254_real_max_count;
  468                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  469                 outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
  470                 outb(TIMER_CNTR0, i8254_real_max_count >> 8);
  471         }
  472         mtx_unlock_spin(&clock_lock);
  473 }
  474 
  475 static void
  476 i8254_restore(void)
  477 {
  478 
  479         mtx_lock_spin(&clock_lock);
  480         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  481         outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
  482         outb(TIMER_CNTR0, i8254_real_max_count >> 8);
  483         mtx_unlock_spin(&clock_lock);
  484 }
  485 
  486 /*
  487  * Restore all the timers non-atomically (XXX: should be atomically).
  488  *
  489  * This function is called from pmtimer_resume() to restore all the timers.
  490  * This should not be necessary, but there are broken laptops that do not
  491  * restore all the timers on resume.
  492  */
  493 void
  494 timer_restore(void)
  495 {
  496 
  497         i8254_restore();                /* restore i8254_freq and hz */
  498         atrtc_restore();                /* reenable RTC interrupts */
  499 }
  500 
  501 /* This is separate from startrtclock() so that it can be called early. */
  502 void
  503 i8254_init(void)
  504 {
  505 
  506         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
  507         set_i8254_freq(i8254_freq, hz);
  508 }
  509 
  510 void
  511 startrtclock()
  512 {
  513 
  514         atrtc_start();
  515 
  516         set_i8254_freq(i8254_freq, hz);
  517         tc_init(&i8254_timecounter);
  518 
  519         init_TSC();
  520 }
  521 
  522 /*
  523  * Start both clocks running.
  524  */
  525 void
  526 cpu_initclocks()
  527 {
  528 #ifdef DEV_APIC
  529         enum lapic_clock tlsca;
  530 #endif
  531         int tasc;
  532 
  533         /* Initialize RTC. */
  534         atrtc_start();
  535         tasc = atrtc_setup_clock();
  536 
  537         /*
  538          * If the atrtc successfully initialized and the users didn't force
  539          * otherwise use the LAPIC in order to cater hardclock only, otherwise
  540          * take in charge all the clock sources.
  541          */
  542 #ifdef DEV_APIC
  543         tlsca = (lapic_allclocks == 0 && tasc != 0) ? LAPIC_CLOCK_HARDCLOCK :
  544             LAPIC_CLOCK_ALL;
  545         using_lapic_timer = lapic_setup_clock(tlsca);
  546 #endif
  547         /*
  548          * If we aren't using the local APIC timer to drive the kernel
  549          * clocks, setup the interrupt handler for the 8254 timer 0 so
  550          * that it can drive hardclock().  Otherwise, change the 8254
  551          * timecounter to user a simpler algorithm.
  552          */
  553         if (using_lapic_timer == LAPIC_CLOCK_NONE) {
  554                 intr_add_handler("clk", 0, (driver_filter_t *)clkintr, NULL,
  555                     NULL, INTR_TYPE_CLK, NULL);
  556                 i8254_intsrc = intr_lookup_source(0);
  557                 if (i8254_intsrc != NULL)
  558                         i8254_pending =
  559                             i8254_intsrc->is_pic->pic_source_pending;
  560         } else {
  561                 i8254_timecounter.tc_get_timecount =
  562                     i8254_simple_get_timecount;
  563                 i8254_timecounter.tc_counter_mask = 0xffff;
  564                 set_i8254_freq(i8254_freq, hz);
  565         }
  566 
  567         /*
  568          * If the separate statistics clock hasn't been explicility disabled
  569          * and we aren't already using the local APIC timer to drive the
  570          * kernel clocks, then setup the RTC to periodically interrupt to
  571          * drive statclock() and profclock().
  572          */
  573         if (using_lapic_timer != LAPIC_CLOCK_ALL) {
  574                 using_atrtc_timer = tasc; 
  575                 if (using_atrtc_timer) {
  576                         /* Enable periodic interrupts from the RTC. */
  577                         intr_add_handler("rtc", 8,
  578                             (driver_filter_t *)rtcintr, NULL, NULL,
  579                             INTR_TYPE_CLK, NULL);
  580                         atrtc_enable_intr();
  581                 } else {
  582                         profhz = hz;
  583                         if (hz < 128)
  584                                 stathz = hz;
  585                         else
  586                                 stathz = hz / (hz / 128);
  587                 }
  588         }
  589 
  590         init_TSC_tc();
  591 }
  592 
  593 void
  594 cpu_startprofclock(void)
  595 {
  596 
  597         if (using_lapic_timer == LAPIC_CLOCK_ALL || !using_atrtc_timer)
  598                 return;
  599         atrtc_rate(RTCSA_PROF);
  600         psdiv = pscnt = psratio;
  601 }
  602 
  603 void
  604 cpu_stopprofclock(void)
  605 {
  606 
  607         if (using_lapic_timer == LAPIC_CLOCK_ALL || !using_atrtc_timer)
  608                 return;
  609         atrtc_rate(RTCSA_NOPROF);
  610         psdiv = pscnt = 1;
  611 }
  612 
  613 static int
  614 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  615 {
  616         int error;
  617         u_int freq;
  618 
  619         /*
  620          * Use `i8254' instead of `timer' in external names because `timer'
  621          * is is too generic.  Should use it everywhere.
  622          */
  623         freq = i8254_freq;
  624         error = sysctl_handle_int(oidp, &freq, 0, req);
  625         if (error == 0 && req->newptr != NULL)
  626                 set_i8254_freq(freq, hz);
  627         return (error);
  628 }
  629 
  630 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  631     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  632 
  633 static unsigned
  634 i8254_simple_get_timecount(struct timecounter *tc)
  635 {
  636 
  637         return (i8254_max_count - getit());
  638 }
  639 
  640 static unsigned
  641 i8254_get_timecount(struct timecounter *tc)
  642 {
  643         u_int count;
  644         u_int high, low;
  645         u_int eflags;
  646 
  647         eflags = read_eflags();
  648         mtx_lock_spin(&clock_lock);
  649 
  650         /* Select timer0 and latch counter value. */
  651         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  652 
  653         low = inb(TIMER_CNTR0);
  654         high = inb(TIMER_CNTR0);
  655         count = i8254_max_count - ((high << 8) | low);
  656         if (count < i8254_lastcount ||
  657             (!i8254_ticked && (clkintr_pending ||
  658             ((count < 20 || (!(eflags & PSL_I) &&
  659             count < i8254_max_count / 2u)) &&
  660             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  661                 i8254_ticked = 1;
  662                 i8254_offset += i8254_max_count;
  663         }
  664         i8254_lastcount = count;
  665         count += i8254_offset;
  666         mtx_unlock_spin(&clock_lock);
  667         return (count);
  668 }
  669 
  670 #ifdef DEV_ISA
  671 /*
  672  * Attach to the ISA PnP descriptors for the timer
  673  */
  674 static struct isa_pnp_id attimer_ids[] = {
  675         { 0x0001d041 /* PNP0100 */, "AT timer" },
  676         { 0 }
  677 };
  678 
  679 static int
  680 attimer_probe(device_t dev)
  681 {
  682         int result;
  683         
  684         result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
  685         if (result <= 0)
  686                 device_quiet(dev);
  687         return(result);
  688 }
  689 
  690 static int
  691 attimer_attach(device_t dev)
  692 {
  693         return(0);
  694 }
  695 
  696 static device_method_t attimer_methods[] = {
  697         /* Device interface */
  698         DEVMETHOD(device_probe,         attimer_probe),
  699         DEVMETHOD(device_attach,        attimer_attach),
  700         DEVMETHOD(device_detach,        bus_generic_detach),
  701         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  702         DEVMETHOD(device_suspend,       bus_generic_suspend),
  703         DEVMETHOD(device_resume,        bus_generic_resume),
  704         { 0, 0 }
  705 };
  706 
  707 static driver_t attimer_driver = {
  708         "attimer",
  709         attimer_methods,
  710         1,              /* no softc */
  711 };
  712 
  713 static devclass_t attimer_devclass;
  714 
  715 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  716 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  717 
  718 #endif /* DEV_ISA */

Cache object: c252a2f8aea416f497bd774f7d4196bc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.