The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   37  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.72.2.5 1999/09/05 08:12:28 peter Exp $
   38  */
   39 
   40 /*
   41  * Routines to handle clock hardware.
   42  */
   43 
   44 /*
   45  * inittodr, settodr and support routines written
   46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   47  *
   48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   49  */
   50 
   51 #include "opt_clock.h"
   52 #include "opt_cpu.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/time.h>
   57 #include <sys/kernel.h>
   58 #include <sys/sysctl.h>
   59 
   60 #include <machine/clock.h>
   61 #ifdef CLK_CALIBRATION_LOOP
   62 #include <machine/cons.h>
   63 #endif
   64 #include <machine/cpu.h>
   65 #include <machine/frame.h>
   66 
   67 #include <i386/isa/icu.h>
   68 #include <i386/isa/isa.h>
   69 #include <i386/isa/isa_device.h>
   70 #include <i386/isa/rtc.h>
   71 #include <i386/isa/timerreg.h>
   72 
   73 /*
   74  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
   75  * can use a simple formula for leap years.
   76  */
   77 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
   78 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
   79 
   80 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
   81 
   82 /*
   83  * Time in timer cycles that it takes for microtime() to disable interrupts
   84  * and latch the count.  microtime() currently uses "cli; outb ..." so it
   85  * normally takes less than 2 timer cycles.  Add a few for cache misses.
   86  * Add a few more to allow for latency in bogus calls to microtime() with
   87  * interrupts already disabled.
   88  */
   89 #define TIMER0_LATCH_COUNT      20
   90 
   91 /*
   92  * Maximum frequency that we are willing to allow for timer0.  Must be
   93  * low enough to guarantee that the timer interrupt handler returns
   94  * before the next timer interrupt.  Must result in a lower TIMER_DIV
   95  * value than TIMER0_LATCH_COUNT so that we don't have to worry about
   96  * underflow in the calculation of timer0_overflow_threshold.
   97  */
   98 #define TIMER0_MAX_FREQ         20000
   99 
  100 int     adjkerntz;              /* local offset from GMT in seconds */
  101 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  102 u_int   idelayed;
  103 #if defined(I586_CPU) || defined(I686_CPU)
  104 u_int   i586_ctr_bias;
  105 u_int   i586_ctr_comultiplier;
  106 u_int   i586_ctr_freq;
  107 u_int   i586_ctr_multiplier;
  108 #endif
  109 int     statclock_disable;
  110 u_int   stat_imask = SWI_CLOCK_MASK;
  111 #ifdef TIMER_FREQ
  112 u_int   timer_freq = TIMER_FREQ;
  113 #else
  114 u_int   timer_freq = 1193182;
  115 #endif
  116 int     timer0_max_count;
  117 u_int   timer0_overflow_threshold;
  118 u_int   timer0_prescaler_count;
  119 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  120 
  121 static  int     beeping = 0;
  122 static  u_int   clk_imask = HWI_MASK | SWI_MASK;
  123 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  124 static  u_int   hardclock_max_count;
  125 /*
  126  * XXX new_function and timer_func should not handle clockframes, but
  127  * timer_func currently needs to hold hardclock to handle the
  128  * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
  129  * to switch between clkintr() and a slightly different timerintr().
  130  */
  131 static  void    (*new_function) __P((struct clockframe *frame));
  132 static  u_int   new_rate;
  133 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  134 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
  135 
  136 /* Values for timerX_state: */
  137 #define RELEASED        0
  138 #define RELEASE_PENDING 1
  139 #define ACQUIRED        2
  140 #define ACQUIRE_PENDING 3
  141 
  142 static  u_char  timer0_state;
  143 static  u_char  timer2_state;
  144 static  void    (*timer_func) __P((struct clockframe *frame)) = hardclock;
  145 
  146 #if defined(I586_CPU) || defined(I686_CPU)
  147 static  void    set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
  148 #endif
  149 static  void    set_timer_freq(u_int freq, int intr_freq);
  150 
  151 static void
  152 clkintr(struct clockframe frame)
  153 {
  154         timer_func(&frame);
  155         switch (timer0_state) {
  156 
  157         case RELEASED:
  158                 setdelayed();
  159                 break;
  160 
  161         case ACQUIRED:
  162                 if ((timer0_prescaler_count += timer0_max_count)
  163                     >= hardclock_max_count) {
  164                         hardclock(&frame);
  165                         setdelayed();
  166                         timer0_prescaler_count -= hardclock_max_count;
  167                 }
  168                 break;
  169 
  170         case ACQUIRE_PENDING:
  171                 setdelayed();
  172                 timer0_max_count = TIMER_DIV(new_rate);
  173                 timer0_overflow_threshold =
  174                         timer0_max_count - TIMER0_LATCH_COUNT;
  175                 disable_intr();
  176                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  177                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  178                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  179                 enable_intr();
  180                 timer0_prescaler_count = 0;
  181                 timer_func = new_function;
  182                 timer0_state = ACQUIRED;
  183                 break;
  184 
  185         case RELEASE_PENDING:
  186                 if ((timer0_prescaler_count += timer0_max_count)
  187                     >= hardclock_max_count) {
  188                         hardclock(&frame);
  189                         setdelayed();
  190                         timer0_max_count = hardclock_max_count;
  191                         timer0_overflow_threshold =
  192                                 timer0_max_count - TIMER0_LATCH_COUNT;
  193                         disable_intr();
  194                         outb(TIMER_MODE,
  195                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  196                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  197                         outb(TIMER_CNTR0, timer0_max_count >> 8);
  198                         enable_intr();
  199                         /*
  200                          * See microtime.s for this magic.
  201                          */
  202                         time.tv_usec += (27465 *
  203                                 (timer0_prescaler_count - hardclock_max_count))
  204                                 >> 15;
  205                         if (time.tv_usec >= 1000000)
  206                                 time.tv_usec -= 1000000;
  207                         timer0_prescaler_count = 0;
  208                         timer_func = hardclock;
  209                         timer0_state = RELEASED;
  210                 }
  211                 break;
  212         }
  213 }
  214 
  215 /*
  216  * The acquire and release functions must be called at ipl >= splclock().
  217  */
  218 int
  219 acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
  220 {
  221         static int old_rate;
  222 
  223         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
  224                 return (-1);
  225         switch (timer0_state) {
  226 
  227         case RELEASED:
  228                 timer0_state = ACQUIRE_PENDING;
  229                 break;
  230 
  231         case RELEASE_PENDING:
  232                 if (rate != old_rate)
  233                         return (-1);
  234                 /*
  235                  * The timer has been released recently, but is being
  236                  * re-acquired before the release completed.  In this
  237                  * case, we simply reclaim it as if it had not been
  238                  * released at all.
  239                  */
  240                 timer0_state = ACQUIRED;
  241                 break;
  242 
  243         default:
  244                 return (-1);    /* busy */
  245         }
  246         new_function = function;
  247         old_rate = new_rate = rate;
  248         return (0);
  249 }
  250 
  251 int
  252 acquire_timer2(int mode)
  253 {
  254 
  255         if (timer2_state != RELEASED)
  256                 return (-1);
  257         timer2_state = ACQUIRED;
  258 
  259         /*
  260          * This access to the timer registers is as atomic as possible
  261          * because it is a single instruction.  We could do better if we
  262          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  263          * and this is probably good enough for timer2, so we aren't as
  264          * careful with it as with timer0.
  265          */
  266         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  267 
  268         return (0);
  269 }
  270 
  271 int
  272 release_timer0()
  273 {
  274         switch (timer0_state) {
  275 
  276         case ACQUIRED:
  277                 timer0_state = RELEASE_PENDING;
  278                 break;
  279 
  280         case ACQUIRE_PENDING:
  281                 /* Nothing happened yet, release quickly. */
  282                 timer0_state = RELEASED;
  283                 break;
  284 
  285         default:
  286                 return (-1);
  287         }
  288         return (0);
  289 }
  290 
  291 int
  292 release_timer2()
  293 {
  294 
  295         if (timer2_state != ACQUIRED)
  296                 return (-1);
  297         timer2_state = RELEASED;
  298         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  299         return (0);
  300 }
  301 
  302 /*
  303  * This routine receives statistical clock interrupts from the RTC.
  304  * As explained above, these occur at 128 interrupts per second.
  305  * When profiling, we receive interrupts at a rate of 1024 Hz.
  306  *
  307  * This does not actually add as much overhead as it sounds, because
  308  * when the statistical clock is active, the hardclock driver no longer
  309  * needs to keep (inaccurate) statistics on its own.  This decouples
  310  * statistics gathering from scheduling interrupts.
  311  *
  312  * The RTC chip requires that we read status register C (RTC_INTR)
  313  * to acknowledge an interrupt, before it will generate the next one.
  314  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  315  * the clock can tick immediately after the read from RTC_INTR.  In this
  316  * case, the mc146818A interrupt signal will not drop for long enough
  317  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  318  * clock will halt, considerably degrading system performance.  This is
  319  * why we use 'while' rather than a more straightforward 'if' below.
  320  * Stat clock ticks can still be lost, causing minor loss of accuracy
  321  * in the statistics, but the stat clock will no longer stop.
  322  */
  323 static void
  324 rtcintr(struct clockframe frame)
  325 {
  326         while (rtcin(RTC_INTR) & RTCIR_PERIOD)
  327                 statclock(&frame);
  328 }
  329 
  330 #include "opt_ddb.h"
  331 #ifdef DDB
  332 #include <ddb/ddb.h>
  333 
  334 DB_SHOW_COMMAND(rtc, rtc)
  335 {
  336         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  337                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  338                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  339                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  340 }
  341 #endif /* DDB */
  342 
  343 static int
  344 getit(void)
  345 {
  346         u_long ef;
  347         int high, low;
  348 
  349         ef = read_eflags();
  350         disable_intr();
  351 
  352         /* Select timer0 and latch counter value. */
  353         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  354 
  355         low = inb(TIMER_CNTR0);
  356         high = inb(TIMER_CNTR0);
  357 
  358         write_eflags(ef);
  359         return ((high << 8) | low);
  360 }
  361 
  362 /*
  363  * Wait "n" microseconds.
  364  * Relies on timer 1 counting down from (timer_freq / hz)
  365  * Note: timer had better have been programmed before this is first used!
  366  */
  367 void
  368 DELAY(int n)
  369 {
  370         int delta, prev_tick, tick, ticks_left;
  371 
  372 #ifdef DELAYDEBUG
  373         int getit_calls = 1;
  374         int n1;
  375         static int state = 0;
  376 
  377         if (state == 0) {
  378                 state = 1;
  379                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  380                         DELAY(n1);
  381                 state = 2;
  382         }
  383         if (state == 1)
  384                 printf("DELAY(%d)...", n);
  385 #endif
  386         /*
  387          * Guard against the timer being uninitialized if we are called
  388          * early for console i/o.
  389          */
  390         if (timer0_max_count == 0)
  391                 set_timer_freq(timer_freq, hz);
  392 
  393         /*
  394          * Read the counter first, so that the rest of the setup overhead is
  395          * counted.  Guess the initial overhead is 20 usec (on most systems it
  396          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  397          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  398          * multiplications and divisions to scale the count take a while).
  399          */
  400         prev_tick = getit();
  401         n -= 0;                 /* XXX actually guess no initial overhead */
  402         /*
  403          * Calculate (n * (timer_freq / 1e6)) without using floating point
  404          * and without any avoidable overflows.
  405          */
  406         if (n <= 0)
  407                 ticks_left = 0;
  408         else if (n < 256)
  409                 /*
  410                  * Use fixed point to avoid a slow division by 1000000.
  411                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  412                  * 2^15 is the first power of 2 that gives exact results
  413                  * for n between 0 and 256.
  414                  */
  415                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  416         else
  417                 /*
  418                  * Don't bother using fixed point, although gcc-2.7.2
  419                  * generates particularly poor code for the long long
  420                  * division, since even the slow way will complete long
  421                  * before the delay is up (unless we're interrupted).
  422                  */
  423                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  424                              / 1000000;
  425 
  426         while (ticks_left > 0) {
  427                 tick = getit();
  428 #ifdef DELAYDEBUG
  429                 ++getit_calls;
  430 #endif
  431                 delta = prev_tick - tick;
  432                 prev_tick = tick;
  433                 if (delta < 0) {
  434                         delta += timer0_max_count;
  435                         /*
  436                          * Guard against timer0_max_count being wrong.
  437                          * This shouldn't happen in normal operation,
  438                          * but it may happen if set_timer_freq() is
  439                          * traced.
  440                          */
  441                         if (delta < 0)
  442                                 delta = 0;
  443                 }
  444                 ticks_left -= delta;
  445         }
  446 #ifdef DELAYDEBUG
  447         if (state == 1)
  448                 printf(" %d calls to getit() at %d usec each\n",
  449                        getit_calls, (n + 5) / getit_calls);
  450 #endif
  451 }
  452 
  453 static void
  454 sysbeepstop(void *chan)
  455 {
  456         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
  457         release_timer2();
  458         beeping = 0;
  459 }
  460 
  461 int
  462 sysbeep(int pitch, int period)
  463 {
  464         int x = splclock();
  465 
  466         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
  467                 if (!beeping) {
  468                         /* Something else owns it. */
  469                         splx(x);
  470                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  471                 }
  472         disable_intr();
  473         outb(TIMER_CNTR2, pitch);
  474         outb(TIMER_CNTR2, (pitch>>8));
  475         enable_intr();
  476         if (!beeping) {
  477                 /* enable counter2 output to speaker */
  478                 outb(IO_PPI, inb(IO_PPI) | 3);
  479                 beeping = period;
  480                 timeout(sysbeepstop, (void *)NULL, period);
  481         }
  482         splx(x);
  483         return (0);
  484 }
  485 
  486 /*
  487  * RTC support routines
  488  */
  489 
  490 int
  491 rtcin(reg)
  492         int reg;
  493 {
  494         u_char val;
  495 
  496         outb(IO_RTC, reg);
  497         inb(0x84);
  498         val = inb(IO_RTC + 1);
  499         inb(0x84);
  500         return (val);
  501 }
  502 
  503 static __inline void
  504 writertc(u_char reg, u_char val)
  505 {
  506         outb(IO_RTC, reg);
  507         outb(IO_RTC + 1, val);
  508 }
  509 
  510 static __inline int
  511 readrtc(int port)
  512 {
  513         return(bcd2bin(rtcin(port)));
  514 }
  515 
  516 static u_int
  517 calibrate_clocks(void)
  518 {
  519         u_int count, prev_count, tot_count;
  520         int sec, start_sec, timeout;
  521 
  522         if (bootverbose)
  523                 printf("Calibrating clock(s) ... ");
  524         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  525                 goto fail;
  526         timeout = 100000000;
  527 
  528         /* Read the mc146818A seconds counter. */
  529         for (;;) {
  530                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  531                         sec = rtcin(RTC_SEC);
  532                         break;
  533                 }
  534                 if (--timeout == 0)
  535                         goto fail;
  536         }
  537 
  538         /* Wait for the mC146818A seconds counter to change. */
  539         start_sec = sec;
  540         for (;;) {
  541                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  542                         sec = rtcin(RTC_SEC);
  543                         if (sec != start_sec)
  544                                 break;
  545                 }
  546                 if (--timeout == 0)
  547                         goto fail;
  548         }
  549 
  550         /* Start keeping track of the i8254 counter. */
  551         prev_count = getit();
  552         if (prev_count == 0 || prev_count > timer0_max_count)
  553                 goto fail;
  554         tot_count = 0;
  555 
  556 #if defined(I586_CPU) || defined(I686_CPU)
  557         if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
  558                 wrmsr(0x10, 0LL);       /* XXX 0x10 is the MSR for the TSC */
  559 #endif
  560 
  561         /*
  562          * Wait for the mc146818A seconds counter to change.  Read the i8254
  563          * counter for each iteration since this is convenient and only
  564          * costs a few usec of inaccuracy. The timing of the final reads
  565          * of the counters almost matches the timing of the initial reads,
  566          * so the main cause of inaccuracy is the varying latency from 
  567          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  568          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  569          * maximum inaccuracy from this cause is < 10 usec on 486's.
  570          */
  571         start_sec = sec;
  572         for (;;) {
  573                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  574                         sec = rtcin(RTC_SEC);
  575                 count = getit();
  576                 if (count == 0 || count > timer0_max_count)
  577                         goto fail;
  578                 if (count > prev_count)
  579                         tot_count += prev_count - (count - timer0_max_count);
  580                 else
  581                         tot_count += prev_count - count;
  582                 prev_count = count;
  583                 if (sec != start_sec)
  584                         break;
  585                 if (--timeout == 0)
  586                         goto fail;
  587         }
  588 
  589 #if defined(I586_CPU) || defined(I686_CPU)
  590         /*
  591          * Read the cpu cycle counter.  The timing considerations are
  592          * similar to those for the i8254 clock.
  593          */
  594         if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
  595                 set_i586_ctr_freq((u_int)rdtsc(), tot_count);
  596                 if (bootverbose)
  597                         printf("i586 clock: %u Hz, ", i586_ctr_freq);
  598         }
  599 #endif
  600 
  601         if (bootverbose)
  602                 printf("i8254 clock: %u Hz\n", tot_count);
  603         return (tot_count);
  604 
  605 fail:
  606         if (bootverbose)
  607                 printf("failed, using default i8254 clock of %u Hz\n",
  608                        timer_freq);
  609         return (timer_freq);
  610 }
  611 
  612 static void
  613 set_timer_freq(u_int freq, int intr_freq)
  614 {
  615         u_long ef;
  616 
  617         ef = read_eflags();
  618         disable_intr();
  619         timer_freq = freq;
  620         timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
  621         timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
  622         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  623         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  624         outb(TIMER_CNTR0, timer0_max_count >> 8);
  625         write_eflags(ef);
  626 }
  627 
  628 /*
  629  * Initialize 8253 timer 0 early so that it can be used in DELAY().
  630  * XXX initialization of other timers is unintentionally left blank.
  631  */
  632 void
  633 startrtclock()
  634 {
  635         u_int delta, freq;
  636 
  637         writertc(RTC_STATUSA, rtc_statusa);
  638         writertc(RTC_STATUSB, RTCSB_24HR);
  639 
  640         set_timer_freq(timer_freq, hz);
  641         freq = calibrate_clocks();
  642 #ifdef CLK_CALIBRATION_LOOP
  643         if (bootverbose) {
  644                 printf(
  645                 "Press a key on the console to abort clock calibration\n");
  646                 while (cncheckc() == -1)
  647                         calibrate_clocks();
  648         }
  649 #endif
  650 
  651         /*
  652          * Use the calibrated i8254 frequency if it seems reasonable.
  653          * Otherwise use the default, and don't use the calibrated i586
  654          * frequency.
  655          */
  656         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  657         if (delta < timer_freq / 100) {
  658 #ifndef CLK_USE_I8254_CALIBRATION
  659                 if (bootverbose)
  660                         printf(
  661 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  662                 freq = timer_freq;
  663 #endif
  664                 timer_freq = freq;
  665         } else {
  666                 if (bootverbose)
  667                         printf(
  668                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  669                                freq, timer_freq);
  670 #if defined(I586_CPU) || defined(I686_CPU)
  671                 i586_ctr_freq = 0;
  672 #endif
  673         }
  674 
  675         set_timer_freq(timer_freq, hz);
  676 
  677 #if defined(I586_CPU) || defined(I686_CPU)
  678 #ifndef CLK_USE_I586_CALIBRATION
  679         if (i586_ctr_freq != 0) {
  680                 if (bootverbose)
  681                         printf(
  682 "CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
  683                 i586_ctr_freq = 0;
  684         }
  685 #endif
  686         if (i586_ctr_freq == 0 &&
  687             (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
  688                 /*
  689                  * Calibration of the i586 clock relative to the mc146818A
  690                  * clock failed.  Do a less accurate calibration relative
  691                  * to the i8254 clock.
  692                  */
  693                 wrmsr(0x10, 0LL);       /* XXX */
  694                 DELAY(1000000);
  695                 set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
  696 #ifdef CLK_USE_I586_CALIBRATION
  697                 if (bootverbose)
  698                         printf("i586 clock: %u Hz\n", i586_ctr_freq);
  699 #endif
  700         }
  701 #endif
  702 }
  703 
  704 /*
  705  * Initialize the time of day register, based on the time base which is, e.g.
  706  * from a filesystem.
  707  */
  708 void
  709 inittodr(time_t base)
  710 {
  711         unsigned long   sec, days;
  712         int             yd;
  713         int             year, month;
  714         int             y, m, s;
  715 
  716         s = splclock();
  717         time.tv_sec  = base;
  718         time.tv_usec = 0;
  719         splx(s);
  720 
  721         /* Look if we have a RTC present and the time is valid */
  722         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  723                 goto wrong_time;
  724 
  725         /* wait for time update to complete */
  726         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  727         while (rtcin(RTC_STATUSA) & RTCSA_TUP);
  728 
  729         days = 0;
  730 #ifdef USE_RTC_CENTURY
  731         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  732 #else
  733         year = readrtc(RTC_YEAR) + 1900;
  734         if (year < 1970)
  735                 year += 100;
  736 #endif
  737         if (year < 1970)
  738                 goto wrong_time;
  739         month = readrtc(RTC_MONTH);
  740         for (m = 1; m < month; m++)
  741                 days += daysinmonth[m-1];
  742         if ((month > 2) && LEAPYEAR(year))
  743                 days ++;
  744         days += readrtc(RTC_DAY) - 1;
  745         yd = days;
  746         for (y = 1970; y < year; y++)
  747                 days += DAYSPERYEAR + LEAPYEAR(y);
  748         sec = ((( days * 24 +
  749                   readrtc(RTC_HRS)) * 60 +
  750                   readrtc(RTC_MIN)) * 60 +
  751                   readrtc(RTC_SEC));
  752         /* sec now contains the number of seconds, since Jan 1 1970,
  753            in the local time zone */
  754 
  755         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  756 
  757         s = splclock();
  758         time.tv_sec = sec;
  759         splx(s);
  760         return;
  761 
  762 wrong_time:
  763         printf("Invalid time in real time clock.\n");
  764         printf("Check and reset the date immediately!\n");
  765 }
  766 
  767 /*
  768  * Write system time back to RTC
  769  */
  770 void
  771 resettodr()
  772 {
  773         unsigned long   tm;
  774         int             y, m, s;
  775 
  776         if (disable_rtc_set)
  777                 return;
  778 
  779         s = splclock();
  780         tm = time.tv_sec;
  781         splx(s);
  782 
  783         /* Disable RTC updates and interrupts. */
  784         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  785 
  786         /* Calculate local time to put in RTC */
  787 
  788         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  789 
  790         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  791         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  792         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  793 
  794         /* We have now the days since 01-01-1970 in tm */
  795         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
  796         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  797              tm >= m;
  798              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  799              tm -= m;
  800 
  801         /* Now we have the years in y and the day-of-the-year in tm */
  802         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  803 #ifdef USE_RTC_CENTURY
  804         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  805 #endif
  806         for (m = 0; ; m++) {
  807                 int ml;
  808 
  809                 ml = daysinmonth[m];
  810                 if (m == 1 && LEAPYEAR(y))
  811                         ml++;
  812                 if (tm < ml)
  813                         break;
  814                 tm -= ml;
  815         }
  816 
  817         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  818         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  819 
  820         /* Reenable RTC updates and interrupts. */
  821         writertc(RTC_STATUSB, rtc_statusb);
  822 }
  823 
  824 /*
  825  * Start both clocks running.
  826  */
  827 void
  828 cpu_initclocks()
  829 {
  830         int diag;
  831 
  832         if (statclock_disable) {
  833                 /*
  834                  * The stat interrupt mask is different without the
  835                  * statistics clock.  Also, don't set the interrupt
  836                  * flag which would normally cause the RTC to generate
  837                  * interrupts.
  838                  */
  839                 stat_imask = HWI_MASK | SWI_MASK;
  840                 rtc_statusb = RTCSB_24HR;
  841         } else {
  842                 /* Setting stathz to nonzero early helps avoid races. */
  843                 stathz = RTC_NOPROFRATE;
  844                 profhz = RTC_PROFRATE;
  845         }
  846 
  847         /* Finish initializing 8253 timer 0. */
  848         register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
  849                       /* XXX */ (inthand2_t *)clkintr, &clk_imask,
  850                       /* unit */ 0);
  851         INTREN(IRQ0);
  852 #if defined(I586_CPU) || defined(I686_CPU)
  853         /*
  854          * Finish setting up anti-jitter measures.
  855          */
  856         if (i586_ctr_freq != 0)
  857                 i586_ctr_bias = rdtsc();
  858 #endif
  859 
  860         /* Initialize RTC. */
  861         writertc(RTC_STATUSA, rtc_statusa);
  862         writertc(RTC_STATUSB, RTCSB_24HR);
  863 
  864         /* Don't bother enabling the statistics clock. */
  865         if (statclock_disable)
  866                 return;
  867         diag = rtcin(RTC_DIAG);
  868         if (diag != 0)
  869                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
  870         register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
  871                       /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
  872                       /* unit */ 0);
  873         INTREN(IRQ8);
  874         writertc(RTC_STATUSB, rtc_statusb);
  875 }
  876 
  877 void
  878 setstatclockrate(int newhz)
  879 {
  880         if (newhz == RTC_PROFRATE)
  881                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
  882         else
  883                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  884         writertc(RTC_STATUSA, rtc_statusa);
  885 }
  886 
  887 static int
  888 sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
  889 {
  890         int error;
  891         u_int freq;
  892 
  893         /*
  894          * Use `i8254' instead of `timer' in external names because `timer'
  895          * is is too generic.  Should use it everywhere.
  896          */
  897         freq = timer_freq;
  898         error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
  899         if (error == 0 && req->newptr != NULL) {
  900                 if (timer0_state != 0)
  901                         return (EBUSY); /* too much trouble to handle */
  902                 set_timer_freq(freq, hz);
  903 #if defined(I586_CPU) || defined(I686_CPU)
  904                 set_i586_ctr_freq(i586_ctr_freq, timer_freq);
  905 #endif
  906         }
  907         return (error);
  908 }
  909 
  910 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  911             0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
  912 
  913 #if defined(I586_CPU) || defined(I686_CPU)
  914 static void
  915 set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
  916 {
  917         u_int comultiplier, multiplier;
  918         u_long ef;
  919 
  920         if (i586_freq == 0) {
  921                 i586_ctr_freq = i586_freq;
  922                 return;
  923         }
  924         comultiplier = ((unsigned long long)i586_freq
  925                         << I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
  926         multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
  927         ef = read_eflags();
  928         disable_intr();
  929         i586_ctr_freq = i586_freq;
  930         i586_ctr_comultiplier = comultiplier;
  931         i586_ctr_multiplier = multiplier;
  932         write_eflags(ef);
  933 }
  934 
  935 static int
  936 sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
  937 {
  938         int error;
  939         u_int freq;
  940 
  941         if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
  942                 return (EOPNOTSUPP);
  943         freq = i586_ctr_freq;
  944         error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
  945         if (error == 0 && req->newptr != NULL)
  946                 set_i586_ctr_freq(freq, timer_freq);
  947         return (error);
  948 }
  949 
  950 SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
  951             0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
  952 #endif /* defined(I586_CPU) || defined(I686_CPU) */

Cache object: 3f7bd126770300cef9e7daf8b6d39cbc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.