The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/if_le.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1994 Matt Thomas (thomas@lkg.dec.com)
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. The name of the author may not be used to endorse or promote products
   11  *    derived from this software without specific prior written permission
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   23  */
   24 
   25 #include <sys/cdefs.h>
   26 __FBSDID("$FreeBSD: releng/5.2/sys/i386/isa/if_le.c 122057 2003-11-04 14:02:13Z nyan $");
   27 
   28 /*
   29  * DEC EtherWORKS 2 Ethernet Controllers
   30  * DEC EtherWORKS 3 Ethernet Controllers
   31  *
   32  * Written by Matt Thomas
   33  * BPF support code stolen directly from if_ec.c
   34  *
   35  *   This driver supports the DEPCA, DE100, DE101, DE200, DE201,
   36  *   DE2002, DE203, DE204, DE205, and DE422 cards.
   37  */
   38 
   39 #include "le.h"
   40 #include "opt_inet.h"
   41 #include "opt_ipx.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/kernel.h>
   46 #include <sys/mbuf.h>
   47 #include <sys/socket.h>
   48 #include <sys/sockio.h>
   49 #include <sys/malloc.h>
   50 #include <sys/bus.h>
   51 
   52 #include <net/ethernet.h>
   53 #include <net/if.h>
   54 #include <net/if_types.h>
   55 #include <net/if_dl.h>
   56 
   57 #include <netinet/in.h>
   58 #include <netinet/if_ether.h>
   59 
   60 #include <machine/frame.h>
   61 
   62 #include <i386/isa/isa_device.h>
   63 #include <i386/isa/icu.h>
   64 
   65 #include <vm/vm.h>
   66 #include <vm/pmap.h>
   67 
   68 #include <net/bpf.h>
   69 
   70 #ifndef COMPAT_OLDISA
   71 #error "The le device requires the old isa compatibility shims"
   72 #endif
   73 
   74 /* Forward declarations */
   75 typedef struct le_softc le_softc_t;
   76 typedef struct le_board le_board_t;
   77 
   78 typedef u_short le_mcbits_t;
   79 #define LE_MC_NBPW_LOG2         4
   80 #define LE_MC_NBPW              (1 << LE_MC_NBPW_LOG2)
   81 
   82 #if !defined(LE_NOLEMAC)
   83 /*
   84  * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   85  *
   86  * Start of DEC EtherWORKS III (LEMAC) dependent structures
   87  *
   88  */
   89 #include <i386/isa/ic/lemac.h>          /* Include LEMAC definitions */
   90 
   91 static int lemac_probe(le_softc_t *sc, const le_board_t *bd, int *msize);
   92 
   93 struct le_lemac_info {
   94     u_int lemac__lastpage;              /* last 2K page */
   95     u_int lemac__memmode;               /* Are we in 2K, 32K, or 64K mode */
   96     u_int lemac__membase;               /* Physical address of start of RAM */
   97     u_int lemac__txctl;                 /* Transmit Control Byte */
   98     u_int lemac__txmax;                 /* Maximum # of outstanding transmits */
   99     le_mcbits_t lemac__mctbl[LEMAC_MCTBL_SIZE/sizeof(le_mcbits_t)];
  100                                         /* local copy of multicast table */
  101     u_char lemac__eeprom[LEMAC_EEP_SIZE]; /* local copy eeprom */
  102     char lemac__prodname[LEMAC_EEP_PRDNMSZ+1]; /* prodname name */
  103 #define lemac_lastpage          le_un.un_lemac.lemac__lastpage
  104 #define lemac_memmode           le_un.un_lemac.lemac__memmode
  105 #define lemac_membase           le_un.un_lemac.lemac__membase
  106 #define lemac_txctl             le_un.un_lemac.lemac__txctl
  107 #define lemac_txmax             le_un.un_lemac.lemac__txmax
  108 #define lemac_mctbl             le_un.un_lemac.lemac__mctbl
  109 #define lemac_eeprom            le_un.un_lemac.lemac__eeprom
  110 #define lemac_prodname          le_un.un_lemac.lemac__prodname
  111 };
  112 #endif /* !defined(LE_NOLEMAC) */
  113 
  114 #if !defined(LE_NOLANCE)
  115 /*
  116  * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  117  *
  118  * Start of DEC EtherWORKS II (LANCE) dependent structures
  119  *
  120  */
  121 
  122 #include <i386/isa/ic/am7990.h>
  123 
  124 #ifndef LN_DOSTATS
  125 #define LN_DOSTATS      1
  126 #endif
  127 
  128 static int depca_probe(le_softc_t *sc, const le_board_t *bd, int *msize);
  129 
  130 typedef struct lance_descinfo lance_descinfo_t;
  131 typedef struct lance_ring lance_ring_t;
  132 
  133 typedef unsigned lance_addr_t;
  134 
  135 struct lance_descinfo {
  136     caddr_t di_addr;                    /* address of descriptor */
  137     lance_addr_t di_bufaddr;            /* LANCE address of buffer owned by descriptor */
  138     unsigned di_buflen;                 /* size of buffer owned by descriptor */
  139     struct mbuf *di_mbuf;               /* mbuf being transmitted/received */
  140 };
  141 
  142 struct lance_ring {
  143     lance_descinfo_t *ri_first;         /* Pointer to first descriptor in ring */
  144     lance_descinfo_t *ri_last;          /* Pointer to last + 1 descriptor in ring */
  145     lance_descinfo_t *ri_nextin;        /* Pointer to next one to be given to HOST */
  146     lance_descinfo_t *ri_nextout;       /* Pointer to next one to be given to LANCE */
  147     unsigned ri_max;                    /* Size of Ring - 1 */
  148     unsigned ri_free;                   /* Number of free rings entires (owned by HOST) */
  149     lance_addr_t ri_heap;                       /* Start of RAM for this ring */
  150     lance_addr_t ri_heapend;            /* End + 1 of RAM for this ring */
  151     lance_addr_t ri_outptr;                     /* Pointer to first output byte */
  152     unsigned ri_outsize;                /* Space remaining for output */
  153 };
  154 
  155 struct le_lance_info {
  156     unsigned lance__csr1;               /* LANCE Address of init block (low 16) */
  157     unsigned lance__csr2;               /* LANCE Address of init block (high 8) */
  158     unsigned lance__csr3;               /* Copy of CSR3 */
  159     unsigned lance__rap;                /* IO Port Offset of RAP */
  160     unsigned lance__rdp;                /* IO Port Offset of RDP */
  161     unsigned lance__ramoffset;          /* Offset to valid LANCE RAM */
  162     unsigned lance__ramsize;            /* Amount of RAM shared by LANCE */
  163     unsigned lance__rxbufsize;          /* Size of a receive buffer */
  164     ln_initb_t lance__initb;            /* local copy of LANCE initblock */
  165     ln_initb_t *lance__raminitb;        /* copy to board's LANCE initblock (debugging) */
  166     ln_desc_t *lance__ramdesc;          /* copy to board's LANCE descriptors (debugging) */
  167     lance_ring_t lance__rxinfo;         /* Receive ring information */
  168     lance_ring_t lance__txinfo;         /* Transmit ring information */
  169 #define lance_csr1              le_un.un_lance.lance__csr1
  170 #define lance_csr2              le_un.un_lance.lance__csr2
  171 #define lance_csr3              le_un.un_lance.lance__csr3
  172 #define lance_rap               le_un.un_lance.lance__rap
  173 #define lance_rdp               le_un.un_lance.lance__rdp
  174 #define lance_ramoffset         le_un.un_lance.lance__ramoffset
  175 #define lance_ramsize           le_un.un_lance.lance__ramsize
  176 #define lance_rxbufsize         le_un.un_lance.lance__rxbufsize
  177 #define lance_initb             le_un.un_lance.lance__initb
  178 #define lance_raminitb          le_un.un_lance.lance__raminitb
  179 #define lance_ramdesc           le_un.un_lance.lance__ramdesc
  180 #define lance_rxinfo            le_un.un_lance.lance__rxinfo
  181 #define lance_txinfo            le_un.un_lance.lance__txinfo
  182 };
  183 #endif /* !defined(LE_NOLANCE) */
  184 
  185 /*
  186  * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  187  *
  188  * Start of Common Code
  189  *
  190  */
  191 
  192 static void (*le_intrvec[NLE])(le_softc_t *sc);
  193 
  194 /*
  195  * Ethernet status, per interface.
  196  */
  197 struct le_softc {
  198     struct arpcom le_ac;                /* Common Ethernet/ARP Structure */
  199     int le_unit;                        /* Unit number */
  200     void (*if_init)(void *);/* Interface init routine */
  201     void (*if_reset)(le_softc_t *);/* Interface reset routine */
  202     caddr_t le_membase;                 /* Starting memory address (virtual) */
  203     unsigned le_iobase;                 /* Starting I/O base address */
  204     unsigned le_irq;                    /* Interrupt Request Value */
  205     unsigned le_flags;                  /* local copy of if_flags */
  206 #define LE_BRDCSTONLY   0x01000000      /* If only broadcast is enabled */
  207     u_int le_mcmask;                    /* bit mask for CRC-32 for multicast hash */
  208     le_mcbits_t *le_mctbl;              /* pointer to multicast table */
  209     const char *le_prodname;            /* product name DE20x-xx */
  210     u_char le_hwaddr[6];                /* local copy of hwaddr */
  211     union {
  212 #if !defined(LE_NOLEMAC)
  213         struct le_lemac_info un_lemac;  /* LEMAC specific information */
  214 #endif
  215 #if !defined(LE_NOLANCE)
  216         struct le_lance_info un_lance;  /* Am7990 specific information */
  217 #endif
  218     } le_un;
  219 };
  220 #define le_if           le_ac.ac_if
  221 
  222 
  223 static int le_probe(struct isa_device *dvp);
  224 static int le_attach(struct isa_device *dvp);
  225 static ointhand2_t le_intr;
  226 static int le_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
  227 static void le_input(le_softc_t *sc, caddr_t seg1, size_t total_len,
  228                      size_t len2, caddr_t seg2);
  229 static void le_multi_filter(le_softc_t *sc);
  230 static void le_multi_op(le_softc_t *sc, const u_char *mca, int oper_flg);
  231 static int le_read_macaddr(le_softc_t *sc, int ioreg, int skippat);
  232 
  233 #define LE_CRC32_POLY           0xEDB88320UL    /* CRC-32 Poly -- Little Endian */
  234 
  235 struct le_board {
  236     int (*bd_probe)(le_softc_t *sc, const le_board_t *bd, int *msize);
  237 };
  238 
  239 
  240 static le_softc_t le_softc[NLE];
  241 
  242 static const le_board_t le_boards[] = {
  243 #if !defined(LE_NOLEMAC)
  244     { lemac_probe },                    /* DE20[345] */
  245 #endif
  246 #if !defined(LE_NOLANCE)
  247     { depca_probe },                    /* DE{20[012],422} */
  248 #endif
  249     { NULL }                            /* Must Be Last! */
  250 };
  251 
  252 /*
  253  * This tells the autoconf code how to set us up.
  254  */
  255 struct isa_driver ledriver = {
  256         INTR_TYPE_NET,
  257         le_probe,
  258         le_attach,
  259         "le",
  260 };
  261 COMPAT_ISA_DRIVER(le, ledriver);
  262 
  263 static unsigned le_intrs[NLE];
  264 
  265 #define LE_ADDREQUAL(a1, a2) \
  266         (((u_short *)a1)[0] == ((u_short *)a2)[0] \
  267          || ((u_short *)a1)[1] == ((u_short *)a2)[1] \
  268          || ((u_short *)a1)[2] == ((u_short *)a2)[2])
  269 #define LE_ADDRBRDCST(a1) \
  270         (((u_short *)a1)[0] == 0xFFFFU \
  271          || ((u_short *)a1)[1] == 0xFFFFU \
  272          || ((u_short *)a1)[2] == 0xFFFFU)
  273 
  274 #define LE_INL(sc, reg) \
  275 ({ u_int data; \
  276         __asm __volatile("inl %1, %0": "=a" (data): "d" ((u_short)((sc)->le_iobase + (reg)))); \
  277         data; })
  278 
  279 
  280 #define LE_OUTL(sc, reg, data) \
  281         ({__asm __volatile("outl %0, %1"::"a" ((u_int)(data)), "d" ((u_short)((sc)->le_iobase + (reg))));})
  282 
  283 #define LE_INW(sc, reg) \
  284 ({ u_short data; \
  285         __asm __volatile("inw %1, %0": "=a" (data): "d" ((u_short)((sc)->le_iobase + (reg)))); \
  286         data; })
  287 
  288 
  289 #define LE_OUTW(sc, reg, data) \
  290         ({__asm __volatile("outw %0, %1"::"a" ((u_short)(data)), "d" ((u_short)((sc)->le_iobase + (reg))));})
  291 
  292 #define LE_INB(sc, reg) \
  293 ({ u_char data; \
  294         __asm __volatile("inb %1, %0": "=a" (data): "d" ((u_short)((sc)->le_iobase + (reg)))); \
  295         data; })
  296 
  297 
  298 #define LE_OUTB(sc, reg, data) \
  299         ({__asm __volatile("outb %0, %1"::"a" ((u_char)(data)), "d" ((u_short)((sc)->le_iobase + (reg))));})
  300 
  301 #define MEMCPY(to, from, len)           bcopy(from, to, len)
  302 #define MEMSET(where, what, howmuch)    bzero(where, howmuch)
  303 #define MEMCMP(l, r, len)               bcmp(l, r, len)
  304 
  305 
  306 static int
  307 le_probe(
  308     struct isa_device *dvp)
  309 {
  310     le_softc_t *sc = &le_softc[dvp->id_unit];
  311     const le_board_t *bd;
  312     int iospace;
  313 
  314     if (dvp->id_unit >= NLE) {
  315         printf("%s%d not configured -- too many devices\n",
  316                ledriver.name, dvp->id_unit);
  317         return 0;
  318     }
  319 
  320     sc->le_iobase = dvp->id_iobase;
  321     sc->le_membase = (u_char *) dvp->id_maddr;
  322     sc->le_irq = dvp->id_irq;
  323     sc->le_unit = dvp->id_unit;
  324 
  325     /*
  326      * Find and Initialize board..
  327      */
  328 
  329     sc->le_flags &= ~(IFF_UP|IFF_ALLMULTI);
  330 
  331     for (bd = le_boards; bd->bd_probe != NULL; bd++) {
  332         if ((iospace = (*bd->bd_probe)(sc, bd, &dvp->id_msize)) != 0) {
  333             return iospace;
  334         }
  335     }
  336 
  337     return 0;
  338 }
  339 
  340 static int
  341 le_attach(
  342     struct isa_device *dvp)
  343 {
  344     le_softc_t *sc = &le_softc[dvp->id_unit];
  345     struct ifnet *ifp = &sc->le_if;
  346 
  347     dvp->id_ointr = le_intr;
  348     ifp->if_softc = sc;
  349     if_initname(ifp, ledriver.name, dvp->id_unit);
  350     ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  351     ifp->if_ioctl = le_ioctl;
  352     ifp->if_init = sc->if_init;
  353     ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
  354 
  355     if_printf(ifp, "%s ethernet address %6D\n",
  356         sc->le_prodname,
  357         sc->le_ac.ac_enaddr, ":");
  358 
  359     ether_ifattach(ifp, sc->le_ac.ac_enaddr);
  360 
  361     return 1;
  362 }
  363 
  364 static void
  365 le_intr(
  366     int unit)
  367 {
  368     int s = splimp();
  369 
  370     le_intrs[unit]++;
  371     (*le_intrvec[unit])(&le_softc[unit]);
  372 
  373     splx(s);
  374 }
  375 
  376 #define LE_XTRA         0
  377 
  378 static void
  379 le_input(
  380     le_softc_t *sc,
  381     caddr_t seg1,
  382     size_t total_len,
  383     size_t len1,
  384     caddr_t seg2)
  385 {
  386     struct ifnet *ifp = &sc->le_if;
  387     struct mbuf *m;
  388 
  389     MGETHDR(m, M_DONTWAIT, MT_DATA);
  390     if (m == NULL) {
  391         ifp->if_ierrors++;
  392         return;
  393     }
  394     m->m_pkthdr.len = total_len;
  395     m->m_pkthdr.rcvif = ifp;
  396     if (total_len + LE_XTRA > MHLEN /* >= MINCLSIZE */) {
  397         MCLGET(m, M_DONTWAIT);
  398         if ((m->m_flags & M_EXT) == 0) {
  399             m_free(m);
  400             ifp->if_ierrors++;
  401             return;
  402         }
  403     } else if (total_len + LE_XTRA > MHLEN && MINCLSIZE == (MHLEN+MLEN)) {
  404         MGET(m->m_next, M_DONTWAIT, MT_DATA);
  405         if (m->m_next == NULL) {
  406             m_free(m);
  407             ifp->if_ierrors++;
  408             return;
  409         }
  410         m->m_next->m_len = total_len - MHLEN - LE_XTRA;
  411         len1 = total_len = MHLEN - LE_XTRA;
  412         MEMCPY(mtod(m->m_next, caddr_t), &seg1[MHLEN-LE_XTRA], m->m_next->m_len);
  413     } else if (total_len + LE_XTRA > MHLEN) {
  414         panic("le_input: pkt of unknown length");
  415     }
  416     m->m_data += LE_XTRA;
  417     m->m_len = total_len;
  418     MEMCPY(mtod(m, caddr_t), seg1, len1);
  419     if (seg2 != NULL)
  420         MEMCPY(mtod(m, caddr_t) + len1, seg2, total_len - len1);
  421 
  422     (*ifp->if_input)(ifp, m);
  423 }
  424 
  425 static int
  426 le_ioctl(
  427     struct ifnet *ifp,
  428     u_long cmd,
  429     caddr_t data)
  430 {
  431     le_softc_t *sc = ifp->if_softc;
  432     int s, error = 0;
  433 
  434     if ((sc->le_flags & IFF_UP) == 0)
  435         return EIO;
  436 
  437     s = splimp();
  438 
  439     switch (cmd) {
  440         case SIOCSIFFLAGS: {
  441             sc->if_init(sc);
  442             break;
  443         }
  444 
  445         case SIOCADDMULTI:
  446         case SIOCDELMULTI:
  447             /*
  448              * Update multicast listeners
  449              */
  450                 sc->if_init(sc);
  451                 error = 0;
  452                 break;
  453 
  454         default: {
  455             error = ether_ioctl(ifp, cmd, data);
  456             break;
  457         }
  458     }
  459 
  460     splx(s);
  461     return error;
  462 }
  463 
  464 /*
  465  *  This is the standard method of reading the DEC Address ROMS.
  466  *  I don't understand it but it does work.
  467  */
  468 static int
  469 le_read_macaddr(
  470     le_softc_t *sc,
  471     int ioreg,
  472     int skippat)
  473 {
  474     int cksum, rom_cksum;
  475 
  476     if (!skippat) {
  477         int idx, idx2, found, octet;
  478         static u_char testpat[] = { 0xFF, 0, 0x55, 0xAA, 0xFF, 0, 0x55, 0xAA };
  479         idx2 = found = 0;
  480 
  481         for (idx = 0; idx < 32; idx++) {
  482             octet = LE_INB(sc, ioreg);
  483 
  484             if (octet == testpat[idx2]) {
  485                 if (++idx2 == sizeof testpat) {
  486                     ++found;
  487                     break;
  488                 }
  489             } else {
  490                 idx2 = 0;
  491             }
  492         }
  493 
  494         if (!found)
  495             return -1;
  496     }
  497 
  498     cksum = 0;
  499     sc->le_hwaddr[0] = LE_INB(sc, ioreg);
  500     sc->le_hwaddr[1] = LE_INB(sc, ioreg);
  501 
  502     cksum = *(u_short *) &sc->le_hwaddr[0];
  503 
  504     sc->le_hwaddr[2] = LE_INB(sc, ioreg);
  505     sc->le_hwaddr[3] = LE_INB(sc, ioreg);
  506     cksum *= 2;
  507     if (cksum > 65535) cksum -= 65535;
  508     cksum += *(u_short *) &sc->le_hwaddr[2];
  509     if (cksum > 65535) cksum -= 65535;
  510 
  511     sc->le_hwaddr[4] = LE_INB(sc, ioreg);
  512     sc->le_hwaddr[5] = LE_INB(sc, ioreg);
  513     cksum *= 2;
  514     if (cksum > 65535) cksum -= 65535;
  515     cksum += *(u_short *) &sc->le_hwaddr[4];
  516     if (cksum >= 65535) cksum -= 65535;
  517 
  518     rom_cksum = LE_INB(sc, ioreg);
  519     rom_cksum |= LE_INB(sc, ioreg) << 8;
  520 
  521     if (cksum != rom_cksum)
  522         return -1;
  523     return 0;
  524 }
  525 
  526 static void
  527 le_multi_filter(
  528     le_softc_t *sc)
  529 {
  530     struct ifmultiaddr *ifma;
  531 
  532     MEMSET(sc->le_mctbl, 0, (sc->le_mcmask + 1) / 8);
  533 
  534     if (sc->le_if.if_flags & IFF_ALLMULTI) {
  535         sc->le_flags |= IFF_MULTICAST|IFF_ALLMULTI;
  536         return;
  537     }
  538     sc->le_flags &= ~IFF_MULTICAST;
  539     /* if (interface has had an address assigned) { */
  540         le_multi_op(sc, sc->le_if.if_broadcastaddr, TRUE);
  541         sc->le_flags |= LE_BRDCSTONLY|IFF_MULTICAST;
  542     /* } */
  543 
  544     sc->le_flags |= IFF_MULTICAST;
  545 
  546     TAILQ_FOREACH(ifma, &sc->le_ac.ac_if.if_multiaddrs, ifma_link) {
  547             if (ifma->ifma_addr->sa_family != AF_LINK)
  548                     continue;
  549 
  550             le_multi_op(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 1);
  551             sc->le_flags &= ~LE_BRDCSTONLY;
  552     }
  553 }
  554 
  555 static void
  556 le_multi_op(
  557     le_softc_t *sc,
  558     const u_char *mca,
  559     int enable)
  560 {
  561     u_int idx, bit, data, crc = 0xFFFFFFFFUL;
  562 
  563 #ifdef __alpha
  564     for (data = *(__unaligned u_long *) mca, bit = 0; bit < 48; bit++, data >>=
  565 1)
  566         crc = (crc >> 1) ^ (((crc ^ data) & 1) ? LE_CRC32_POLY : 0);
  567 #else
  568     for (idx = 0; idx < 6; idx++)
  569         for (data = *mca++, bit = 0; bit < 8; bit++, data >>= 1)
  570             crc = (crc >> 1) ^ (((crc ^ data) & 1) ? LE_CRC32_POLY : 0);
  571 #endif
  572     /*
  573      * The following two line convert the N bit index into a longword index
  574      * and a longword mask.
  575      */
  576     crc &= sc->le_mcmask;
  577     bit = 1 << (crc & (LE_MC_NBPW -1));
  578     idx = crc >> (LE_MC_NBPW_LOG2);
  579 
  580     /*
  581      * Set or clear hash filter bit in our table.
  582      */
  583     if (enable) {
  584         sc->le_mctbl[idx] |= bit;               /* Set Bit */
  585     } else {
  586         sc->le_mctbl[idx] &= ~bit;              /* Clear Bit */
  587     }
  588 }
  589 
  590 #if !defined(LE_NOLEMAC)
  591 /*
  592  * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  593  *
  594  * Start of DEC EtherWORKS III (LEMAC) dependent code
  595  *
  596  */
  597 
  598 #define LEMAC_INTR_ENABLE(sc) \
  599         LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) | LEMAC_IC_ALL)
  600 
  601 #define LEMAC_INTR_DISABLE(sc) \
  602         LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) & ~LEMAC_IC_ALL)
  603 
  604 #define LEMAC_64K_MODE(mbase)   (((mbase) >= 0x0A) && ((mbase) <= 0x0F))
  605 #define LEMAC_32K_MODE(mbase)   (((mbase) >= 0x14) && ((mbase) <= 0x1F))
  606 #define LEMAC_2K_MODE(mbase)    ( (mbase) >= 0x40)
  607 
  608 static void lemac_init(void *);
  609 static void lemac_start(struct ifnet *ifp);
  610 static void lemac_reset(le_softc_t *sc);
  611 static void lemac_intr(le_softc_t *sc);
  612 static void lemac_rne_intr(le_softc_t *sc);
  613 static void lemac_tne_intr(le_softc_t *sc);
  614 static void lemac_txd_intr(le_softc_t *sc, unsigned cs_value);
  615 static void lemac_rxd_intr(le_softc_t *sc, unsigned cs_value);
  616 static int  lemac_read_eeprom(le_softc_t *sc);
  617 static void lemac_init_adapmem(le_softc_t *sc);
  618 
  619 #define LE_MCBITS_ALL_1S        ((le_mcbits_t)~(le_mcbits_t)0)
  620 
  621 static const le_mcbits_t lemac_allmulti_mctbl[16] =  {
  622     LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
  623     LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
  624     LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
  625     LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
  626 };
  627 /*
  628  * An IRQ mapping table.  Less space than switch statement.
  629  */
  630 static const int lemac_irqs[] = { IRQ5, IRQ10, IRQ11, IRQ15 };
  631 
  632 /*
  633  * Some tuning/monitoring variables.
  634  */
  635 static unsigned lemac_deftxmax = 16;    /* see lemac_max above */
  636 static unsigned lemac_txnospc = 0;      /* total # of tranmit starvations */
  637 
  638 static unsigned lemac_tne_intrs = 0;    /* total # of tranmit done intrs */
  639 static unsigned lemac_rne_intrs = 0;    /* total # of receive done intrs */
  640 static unsigned lemac_txd_intrs = 0;    /* total # of tranmit error intrs */
  641 static unsigned lemac_rxd_intrs = 0;    /* total # of receive error intrs */
  642 
  643 
  644 static int
  645 lemac_probe(
  646     le_softc_t *sc,
  647     const le_board_t *bd,
  648     int *msize)
  649 {
  650     int irq, portval;
  651 
  652     LE_OUTB(sc, LEMAC_REG_IOP, LEMAC_IOP_EEINIT);
  653     DELAY(LEMAC_EEP_DELAY);
  654 
  655     /*
  656      *  Read Ethernet address if card is present.
  657      */
  658     if (le_read_macaddr(sc, LEMAC_REG_APD, 0) < 0)
  659         return 0;
  660 
  661     MEMCPY(sc->le_ac.ac_enaddr, sc->le_hwaddr, 6);
  662     /*
  663      *  Clear interrupts and set IRQ.
  664      */
  665 
  666     portval = LE_INB(sc, LEMAC_REG_IC) & LEMAC_IC_IRQMSK;
  667     irq = lemac_irqs[portval >> 5];
  668     LE_OUTB(sc, LEMAC_REG_IC, portval);
  669 
  670     /*
  671      *  Make sure settings match.
  672      */
  673 
  674     if (irq != sc->le_irq) {
  675         if_printf(&sc->le_if,
  676             "lemac configuration error: expected IRQ 0x%x actual 0x%x\n",
  677             sc->le_irq, irq);
  678         return 0;
  679     }
  680 
  681     /*
  682      * Try to reset the unit
  683      */
  684     sc->if_init = lemac_init;
  685     sc->le_if.if_start = lemac_start;
  686     sc->if_reset = lemac_reset;
  687     sc->lemac_memmode = 2;
  688     sc->if_reset(sc);
  689     if ((sc->le_flags & IFF_UP) == 0)
  690         return 0;
  691 
  692     /*
  693      *  Check for correct memory base configuration.
  694      */
  695     if (vtophys(sc->le_membase) != sc->lemac_membase) {
  696         if_printf(&sc->le_if,
  697             "lemac configuration error: expected iomem 0x%x actual 0x%x\n",
  698             vtophys(sc->le_membase), sc->lemac_membase);
  699         return 0;
  700     }
  701 
  702     sc->le_prodname = sc->lemac_prodname;
  703     sc->le_mctbl = sc->lemac_mctbl;
  704     sc->le_mcmask = (1 << LEMAC_MCTBL_BITS) - 1;
  705     sc->lemac_txmax = lemac_deftxmax;
  706     *msize = 2048;
  707     le_intrvec[sc->le_unit] = lemac_intr;
  708 
  709     return LEMAC_IOSPACE;
  710 }
  711 
  712 /*
  713  * Do a hard reset of the board;
  714  */
  715 static void
  716 lemac_reset(
  717     le_softc_t *sc)
  718 {
  719     int portval, cksum;
  720 
  721     /*
  722      * Initialize board..
  723      */
  724 
  725     sc->le_flags &= IFF_UP;
  726     sc->le_if.if_flags &= ~IFF_OACTIVE;
  727     LEMAC_INTR_DISABLE(sc);
  728 
  729     LE_OUTB(sc, LEMAC_REG_IOP, LEMAC_IOP_EEINIT);
  730     DELAY(LEMAC_EEP_DELAY);
  731 
  732     /* Disable Interrupts */
  733     /* LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) & ICR_IRQ_SEL); */
  734 
  735     /*
  736      * Read EEPROM information.  NOTE - the placement of this function
  737      * is important because functions hereafter may rely on information
  738      * read from the EEPROM.
  739      */
  740     if ((cksum = lemac_read_eeprom(sc)) != LEMAC_EEP_CKSUM) {
  741         if_printf(&sc->le_if, "reset: EEPROM checksum failed (0x%x)\n", cksum);
  742         return;
  743     }
  744 
  745     /*
  746      *  Force to 2K mode if not already configured.
  747      */
  748 
  749     portval = LE_INB(sc, LEMAC_REG_MBR);
  750     if (!LEMAC_2K_MODE(portval)) {
  751         if (LEMAC_64K_MODE(portval)) {
  752             portval = (((portval * 2) & 0xF) << 4);
  753             sc->lemac_memmode = 64;
  754         } else if (LEMAC_32K_MODE(portval)) {
  755             portval = ((portval & 0xF) << 4);
  756             sc->lemac_memmode = 32;
  757         }
  758         LE_OUTB(sc, LEMAC_REG_MBR, portval);
  759     }
  760     sc->lemac_membase = portval * (2 * 1024) + (512 * 1024);
  761 
  762     /*
  763      *  Initialize Free Memory Queue, Init mcast table with broadcast.
  764      */
  765 
  766     lemac_init_adapmem(sc);
  767     sc->le_flags |= IFF_UP;
  768     return;
  769 }
  770 
  771 static void
  772 lemac_init(void *xsc)
  773 {
  774     le_softc_t *sc;
  775     int s;
  776 
  777     sc = (le_softc_t *)xsc;
  778 
  779     if ((sc->le_flags & IFF_UP) == 0)
  780         return;
  781 
  782     s = splimp();
  783 
  784     /*
  785      * If the interface has the up flag
  786      */
  787     if (sc->le_if.if_flags & IFF_UP) {
  788         int saved_cs = LE_INB(sc, LEMAC_REG_CS);
  789         LE_OUTB(sc, LEMAC_REG_CS, saved_cs | (LEMAC_CS_TXD | LEMAC_CS_RXD));
  790         LE_OUTB(sc, LEMAC_REG_PA0, sc->le_ac.ac_enaddr[0]);
  791         LE_OUTB(sc, LEMAC_REG_PA1, sc->le_ac.ac_enaddr[1]);
  792         LE_OUTB(sc, LEMAC_REG_PA2, sc->le_ac.ac_enaddr[2]);
  793         LE_OUTB(sc, LEMAC_REG_PA3, sc->le_ac.ac_enaddr[3]);
  794         LE_OUTB(sc, LEMAC_REG_PA4, sc->le_ac.ac_enaddr[4]);
  795         LE_OUTB(sc, LEMAC_REG_PA5, sc->le_ac.ac_enaddr[5]);
  796 
  797         LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) | LEMAC_IC_IE);
  798 
  799         if (sc->le_if.if_flags & IFF_PROMISC) {
  800             LE_OUTB(sc, LEMAC_REG_CS, LEMAC_CS_MCE | LEMAC_CS_PME);
  801         } else {
  802             LEMAC_INTR_DISABLE(sc);
  803             le_multi_filter(sc);
  804             LE_OUTB(sc, LEMAC_REG_MPN, 0);
  805             if ((sc->le_flags | sc->le_if.if_flags) & IFF_ALLMULTI) {
  806                 MEMCPY(&sc->le_membase[LEMAC_MCTBL_OFF], lemac_allmulti_mctbl, sizeof(lemac_allmulti_mctbl));
  807             } else {
  808                 MEMCPY(&sc->le_membase[LEMAC_MCTBL_OFF], sc->lemac_mctbl, sizeof(sc->lemac_mctbl));
  809             }
  810             LE_OUTB(sc, LEMAC_REG_CS, LEMAC_CS_MCE);
  811         }
  812 
  813         LE_OUTB(sc, LEMAC_REG_CTL, LE_INB(sc, LEMAC_REG_CTL) ^ LEMAC_CTL_LED);
  814 
  815         LEMAC_INTR_ENABLE(sc);
  816         sc->le_if.if_flags |= IFF_RUNNING;
  817     } else {
  818         LE_OUTB(sc, LEMAC_REG_CS, LEMAC_CS_RXD|LEMAC_CS_TXD);
  819 
  820         LEMAC_INTR_DISABLE(sc);
  821         sc->le_if.if_flags &= ~IFF_RUNNING;
  822     }
  823     splx(s);
  824 }
  825 
  826 /*
  827  * What to do upon receipt of an interrupt.
  828  */
  829 static void
  830 lemac_intr(
  831     le_softc_t *sc)
  832 {
  833     int cs_value;
  834 
  835     LEMAC_INTR_DISABLE(sc);     /* Mask interrupts */
  836 
  837     /*
  838      * Determine cause of interrupt.  Receive events take
  839      * priority over Transmit.
  840      */
  841 
  842     cs_value = LE_INB(sc, LEMAC_REG_CS);
  843 
  844     /*
  845      * Check for Receive Queue not being empty.
  846      * Check for Transmit Done Queue not being empty.
  847      */
  848 
  849     if (cs_value & LEMAC_CS_RNE)
  850         lemac_rne_intr(sc);
  851     if (cs_value & LEMAC_CS_TNE)
  852         lemac_tne_intr(sc);
  853 
  854     /*
  855      * Check for Transmitter Disabled.
  856      * Check for Receiver Disabled.
  857      */
  858 
  859     if (cs_value & LEMAC_CS_TXD)
  860         lemac_txd_intr(sc, cs_value);
  861     if (cs_value & LEMAC_CS_RXD)
  862         lemac_rxd_intr(sc, cs_value);
  863 
  864     /*
  865      * Toggle LED and unmask interrupts.
  866      */
  867 
  868     LE_OUTB(sc, LEMAC_REG_CTL, LE_INB(sc, LEMAC_REG_CTL) ^ LEMAC_CTL_LED);
  869     LEMAC_INTR_ENABLE(sc);              /* Unmask interrupts */
  870 }
  871 
  872 static void
  873 lemac_rne_intr(
  874     le_softc_t *sc)
  875 {
  876     int rxcount, rxlen, rxpg;
  877     u_char *rxptr;
  878 
  879     lemac_rne_intrs++;
  880     rxcount = LE_INB(sc, LEMAC_REG_RQC);
  881     while (rxcount--) {
  882         rxpg = LE_INB(sc, LEMAC_REG_RQ);
  883         LE_OUTB(sc, LEMAC_REG_MPN, rxpg);
  884 
  885         rxptr = sc->le_membase;
  886         sc->le_if.if_ipackets++;
  887         if (*rxptr & LEMAC_RX_OK) {
  888 
  889             /*
  890              * Get receive length - subtract out checksum.
  891              */
  892 
  893             rxlen = ((*(u_int *)rxptr >> 8) & 0x7FF) - 4;
  894             le_input(sc, rxptr + sizeof(u_int), rxlen, rxlen, NULL);
  895         } else { /* end if (*rxptr & LEMAC_RX_OK) */
  896             sc->le_if.if_ierrors++;
  897         }
  898         LE_OUTB(sc, LEMAC_REG_FMQ, rxpg);  /* Return this page to Free Memory Queue */
  899     }  /* end while (recv_count--) */
  900 
  901     return;
  902 }
  903 
  904 static void
  905 lemac_rxd_intr(
  906     le_softc_t *sc,
  907     unsigned cs_value)
  908 {
  909     /*
  910      * Handle CS_RXD (Receiver disabled) here.
  911      *
  912      * Check Free Memory Queue Count. If not equal to zero
  913      * then just turn Receiver back on. If it is equal to
  914      * zero then check to see if transmitter is disabled.
  915      * Process transmit TXD loop once more.  If all else
  916      * fails then do software init (0xC0 to EEPROM Init)
  917      * and rebuild Free Memory Queue.
  918      */
  919 
  920     lemac_rxd_intrs++;
  921 
  922     /*
  923      *  Re-enable Receiver.
  924      */
  925 
  926     cs_value &= ~LEMAC_CS_RXD;
  927     LE_OUTB(sc, LEMAC_REG_CS, cs_value);
  928 
  929     if (LE_INB(sc, LEMAC_REG_FMC) > 0)
  930         return;
  931 
  932     if (cs_value & LEMAC_CS_TXD)
  933         lemac_txd_intr(sc, cs_value);
  934 
  935     if ((LE_INB(sc, LEMAC_REG_CS) & LEMAC_CS_RXD) == 0)
  936         return;
  937 
  938     if_printf(&sc->le_if, "fatal RXD error, attempting recovery\n");
  939 
  940     sc->if_reset(sc);
  941     if (sc->le_flags & IFF_UP) {
  942         lemac_init(sc);
  943         return;
  944     }
  945 
  946     /*
  947      *  Error during initializion.  Mark card as disabled.
  948      */
  949     if_printf(&sc->le_if, "recovery failed -- board disabled\n");
  950     return;
  951 }
  952 
  953 static void
  954 lemac_start(
  955     struct ifnet *ifp)
  956 {
  957     le_softc_t *sc = (le_softc_t *) ifp;
  958     struct ifqueue *ifq = &ifp->if_snd;
  959 
  960     if ((ifp->if_flags & IFF_RUNNING) == 0)
  961         return;
  962 
  963     LEMAC_INTR_DISABLE(sc);
  964 
  965     while (ifq->ifq_head != NULL) {
  966         struct mbuf  *m;
  967         int tx_pg;
  968         u_int txhdr, txoff;
  969 
  970         if (LE_INB(sc, LEMAC_REG_TQC) >= sc->lemac_txmax) {
  971             ifp->if_flags |= IFF_OACTIVE;
  972             break;
  973         }
  974 
  975         tx_pg = LE_INB(sc, LEMAC_REG_FMQ);      /* get free memory page */
  976         /*
  977          * Check for good transmit page.
  978          */
  979         if (tx_pg == 0 || tx_pg > sc->lemac_lastpage) {
  980             lemac_txnospc++;
  981             ifp->if_flags |= IFF_OACTIVE;
  982             break;
  983         }
  984 
  985         IF_DEQUEUE(ifq, m);
  986         LE_OUTB(sc, LEMAC_REG_MPN, tx_pg);      /* Shift 2K window. */
  987 
  988         /*
  989          * The first four bytes of each transmit buffer are for
  990          * control information.  The first byte is the control
  991          * byte, then the length (why not word aligned?), then
  992          * the off to the buffer.
  993          */
  994 
  995         txoff = (mtod(m, u_int) & (sizeof(u_long) - 1)) + LEMAC_TX_HDRSZ;
  996         txhdr = sc->lemac_txctl | (m->m_pkthdr.len << 8) | (txoff << 24);
  997         *(u_int *) sc->le_membase = txhdr;
  998 
  999         /*
 1000          * Copy the packet to the board
 1001          */
 1002 
 1003         m_copydata(m, 0, m->m_pkthdr.len, sc->le_membase + txoff);
 1004 
 1005         LE_OUTB(sc, LEMAC_REG_TQ, tx_pg);       /* tell chip to transmit this packet */
 1006 
 1007         BPF_MTAP(&sc->le_if, m);
 1008 
 1009         m_freem(m);                     /* free the mbuf */
 1010     }
 1011     LEMAC_INTR_ENABLE(sc);
 1012 }
 1013 
 1014 static void
 1015 lemac_tne_intr(
 1016     le_softc_t *sc)
 1017 {
 1018     int txsts, txcount = LE_INB(sc, LEMAC_REG_TDC);
 1019 
 1020     lemac_tne_intrs++;
 1021     while (txcount--) {
 1022         txsts = LE_INB(sc, LEMAC_REG_TDQ);
 1023         sc->le_if.if_opackets++;                /* another one done */
 1024         if ((txsts & LEMAC_TDQ_COL) != LEMAC_TDQ_NOCOL)
 1025             sc->le_if.if_collisions++;
 1026     }
 1027     sc->le_if.if_flags &= ~IFF_OACTIVE;
 1028     lemac_start(&sc->le_if);
 1029 }
 1030 
 1031 static void
 1032 lemac_txd_intr(
 1033     le_softc_t *sc,
 1034     unsigned cs_value)
 1035 {
 1036     /*
 1037      * Read transmit status, remove transmit buffer from
 1038      * transmit queue and place on free memory queue,
 1039      * then reset transmitter.
 1040      * Increment appropriate counters.
 1041      */
 1042 
 1043     lemac_txd_intrs++;
 1044     sc->le_if.if_oerrors++;
 1045     if (LE_INB(sc, LEMAC_REG_TS) & LEMAC_TS_ECL)
 1046         sc->le_if.if_collisions++;
 1047     sc->le_if.if_flags &= ~IFF_OACTIVE;
 1048 
 1049     LE_OUTB(sc, LEMAC_REG_FMQ, LE_INB(sc, LEMAC_REG_TQ));
 1050                                 /* Get Page number and write it back out */
 1051 
 1052     LE_OUTB(sc, LEMAC_REG_CS, cs_value & ~LEMAC_CS_TXD);
 1053                                 /* Turn back on transmitter */
 1054     return;
 1055 }
 1056 
 1057 static int
 1058 lemac_read_eeprom(
 1059     le_softc_t *sc)
 1060 {
 1061     int word_off, cksum;
 1062 
 1063     u_char *ep;
 1064 
 1065     cksum = 0;
 1066     ep = sc->lemac_eeprom;
 1067     for (word_off = 0; word_off < LEMAC_EEP_SIZE / 2; word_off++) {
 1068         LE_OUTB(sc, LEMAC_REG_PI1, word_off);
 1069         LE_OUTB(sc, LEMAC_REG_IOP, LEMAC_IOP_EEREAD);
 1070 
 1071         DELAY(LEMAC_EEP_DELAY);
 1072 
 1073         *ep = LE_INB(sc, LEMAC_REG_EE1);        cksum += *ep++;
 1074         *ep = LE_INB(sc, LEMAC_REG_EE2);        cksum += *ep++;
 1075     }
 1076 
 1077     /*
 1078      *  Set up Transmit Control Byte for use later during transmit.
 1079      */
 1080 
 1081     sc->lemac_txctl |= LEMAC_TX_FLAGS;
 1082 
 1083     if ((sc->lemac_eeprom[LEMAC_EEP_SWFLAGS] & LEMAC_EEP_SW_SQE) == 0)
 1084         sc->lemac_txctl &= ~LEMAC_TX_SQE;
 1085 
 1086     if (sc->lemac_eeprom[LEMAC_EEP_SWFLAGS] & LEMAC_EEP_SW_LAB)
 1087         sc->lemac_txctl |= LEMAC_TX_LAB;
 1088 
 1089     MEMCPY(sc->lemac_prodname, &sc->lemac_eeprom[LEMAC_EEP_PRDNM], LEMAC_EEP_PRDNMSZ);
 1090     sc->lemac_prodname[LEMAC_EEP_PRDNMSZ] = '\0';
 1091 
 1092     return cksum % 256;
 1093 }
 1094 
 1095 static void
 1096 lemac_init_adapmem(
 1097     le_softc_t *sc)
 1098 {
 1099     int pg, conf;
 1100 
 1101     conf = LE_INB(sc, LEMAC_REG_CNF);
 1102 
 1103     if ((sc->lemac_eeprom[LEMAC_EEP_SETUP] & LEMAC_EEP_ST_DRAM) == 0) {
 1104         sc->lemac_lastpage = 63;
 1105         conf &= ~LEMAC_CNF_DRAM;
 1106     } else {
 1107         sc->lemac_lastpage = 127;
 1108         conf |= LEMAC_CNF_DRAM;
 1109     }
 1110 
 1111     LE_OUTB(sc, LEMAC_REG_CNF, conf);
 1112 
 1113     for (pg = 1; pg <= sc->lemac_lastpage; pg++)
 1114         LE_OUTB(sc, LEMAC_REG_FMQ, pg);
 1115 
 1116     return;
 1117 }
 1118 #endif /* !defined(LE_NOLEMAC) */
 1119 
 1120 #if !defined(LE_NOLANCE)
 1121 /*
 1122  * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1123  *
 1124  * Start of DEPCA (DE200/DE201/DE202/DE422 etal) support.
 1125  *
 1126  */
 1127 static void depca_intr(le_softc_t *sc);
 1128 static int  lance_init_adapmem(le_softc_t *sc);
 1129 static int  lance_init_ring(le_softc_t *sc, ln_ring_t *rp, lance_ring_t *ri,
 1130                             unsigned ndescs, unsigned bufoffset,
 1131                             unsigned descoffset);
 1132 static void lance_init(void *);
 1133 static void lance_reset(le_softc_t *sc);
 1134 static void lance_intr(le_softc_t *sc);
 1135 static int  lance_rx_intr(le_softc_t *sc);
 1136 static void lance_start(struct ifnet *ifp);
 1137 static int  lance_tx_intr(le_softc_t *sc);
 1138 
 1139 #define LN_BUFSIZE              /* 380 */ 304   /* 1520 / 4 */
 1140 #define LN_TXDESC_RATIO         2048
 1141 #define LN_DESC_MAX             128
 1142 
 1143 #if LN_DOSTATS
 1144 static struct {
 1145     unsigned lance_rx_misses;
 1146     unsigned lance_rx_badcrc;
 1147     unsigned lance_rx_badalign;
 1148     unsigned lance_rx_badframe;
 1149     unsigned lance_rx_buferror;
 1150     unsigned lance_tx_deferred;
 1151     unsigned lance_tx_single_collisions;
 1152     unsigned lance_tx_multiple_collisions;
 1153     unsigned lance_tx_excessive_collisions;
 1154     unsigned lance_tx_late_collisions;
 1155 
 1156     unsigned lance_memory_errors;
 1157     unsigned lance_inits;
 1158     unsigned lance_tx_intrs;
 1159     unsigned lance_tx_nospc[2];
 1160     unsigned lance_tx_drains[2];
 1161     unsigned lance_tx_orphaned;
 1162     unsigned lance_tx_adoptions;
 1163     unsigned lance_tx_emptied;
 1164     unsigned lance_tx_deftxint;
 1165     unsigned lance_tx_buferror;
 1166     unsigned lance_high_txoutptr;
 1167     unsigned lance_low_txheapsize;
 1168     unsigned lance_low_txfree;
 1169     unsigned lance_tx_intr_hidescs;
 1170     /* unsigned lance_tx_intr_descs[LN_DESC_MAX]; */
 1171 
 1172     unsigned lance_rx_intrs;
 1173     unsigned lance_rx_badsop;
 1174     unsigned lance_rx_contig;
 1175     unsigned lance_rx_noncontig;
 1176     unsigned lance_rx_intr_hidescs;
 1177     unsigned lance_rx_ndescs[4096 / LN_BUFSIZE];
 1178     /* unsigned lance_rx_intr_descs[LN_DESC_MAX]; */
 1179 } lance_stats;
 1180 
 1181 #define LN_STAT(stat)   (lance_stats.lance_ ## stat)
 1182 #define LN_MINSTAT(stat, val)   (LN_STAT(stat > (val)) ? LN_STAT(stat = (val)) : 0)
 1183 #define LN_MAXSTAT(stat, val)   (LN_STAT(stat < (val)) ? LN_STAT(stat = (val)) : 0)
 1184 
 1185 #else
 1186 #define LN_STAT(stat)   0
 1187 #define LN_MINSTAT(stat, val)   0
 1188 #define LN_MAXSTAT(stat, val)   0
 1189 #endif
 1190 
 1191 #define LN_SELCSR(sc, csrno)            (LE_OUTW(sc, sc->lance_rap, csrno))
 1192 #define LN_INQCSR(sc)                   (LE_INW(sc, sc->lance_rap))
 1193 
 1194 #define LN_WRCSR(sc, val)               (LE_OUTW(sc, sc->lance_rdp, val))
 1195 #define LN_RDCSR(sc)                    (LE_INW(sc, sc->lance_rdp))
 1196 
 1197 
 1198 #define LN_ZERO(sc, vaddr, len)         bzero(vaddr, len)
 1199 #define LN_COPYTO(sc, from, to, len)    bcopy(from, to, len)
 1200 
 1201 #define LN_SETFLAG(sc, vaddr, val) \
 1202         (((volatile u_char *) vaddr)[3] = (val))
 1203 
 1204 #define LN_PUTDESC(sc, desc, vaddr) \
 1205         (((volatile u_short *) vaddr)[0] = ((u_short *) desc)[0], \
 1206          ((volatile u_short *) vaddr)[2] = ((u_short *) desc)[2], \
 1207          ((volatile u_short *) vaddr)[1] = ((u_short *) desc)[1])
 1208 
 1209 /*
 1210  * Only get the descriptor flags and length/status.  All else
 1211  * read-only.
 1212  */
 1213 #define LN_GETDESC(sc, desc, vaddr) \
 1214         (((u_short *) desc)[1] = ((volatile u_short *) vaddr)[1], \
 1215          ((u_short *) desc)[3] = ((volatile u_short *) vaddr)[3])
 1216 
 1217 
 1218 /*
 1219  *  These definitions are specific to the DEC "DEPCA-style" NICs.
 1220  *      (DEPCA, DE10x, DE20[012], DE422)
 1221  *
 1222  */
 1223 #define DEPCA_REG_NICSR         0               /* (RW;16) NI Control / Status */
 1224 #define DEPCA_REG_RDP           4               /* (RW:16) LANCE RDP (data) register */
 1225 #define DEPCA_REG_RAP           6               /* (RW:16) LANCE RAP (address) register */
 1226 #define DEPCA_REG_ADDRROM       12              /* (R : 8) DEPCA Ethernet Address ROM */
 1227 #define DEPCA_IOSPACE           16              /* DEPCAs use 16 bytes of IO space */
 1228 
 1229 #define DEPCA_NICSR_LED         0x0001          /* Light the LED on the back of the DEPCA */
 1230 #define DEPCA_NICSR_ENABINTR    0x0002          /* Enable Interrupts */
 1231 #define DEPCA_NICSR_MASKINTR    0x0004          /* Mask Interrupts */
 1232 #define DEPCA_NICSR_AAC         0x0008          /* Address Counter Clear */
 1233 #define DEPCA_NICSR_REMOTEBOOT  0x0010          /* Remote Boot Enabled (ignored) */
 1234 #define DEPCA_NICSR_32KRAM      0x0020          /* DEPCA LANCE RAM size 64K (C) / 32K (S) */
 1235 #define DEPCA_NICSR_LOW32K      0x0040          /* Bank Select (A15 = !This Bit) */
 1236 #define DEPCA_NICSR_SHE         0x0080          /* Shared RAM Enabled (ie hide ROM) */
 1237 #define DEPCA_NICSR_BOOTTMO     0x0100          /* Remote Boot Timeout (ignored) */
 1238 
 1239 #define DEPCA_RDNICSR(sc)       (LE_INW(sc, DEPCA_REG_NICSR))
 1240 #define DEPCA_WRNICSR(sc, val)  (LE_OUTW(sc, DEPCA_REG_NICSR, val))
 1241 
 1242 #define DEPCA_IDSTR_OFFSET      0xC006          /* ID String Offset */
 1243 
 1244 #define DEPCA_REG_EISAID        0x80
 1245 #define DEPCA_EISAID_MASK       0xf0ffffff
 1246 #define DEPCA_EISAID_DE422      0x2042A310
 1247 
 1248 typedef enum {
 1249     DEPCA_CLASSIC,
 1250     DEPCA_DE100, DEPCA_DE101,
 1251     DEPCA_EE100,
 1252     DEPCA_DE200, DEPCA_DE201, DEPCA_DE202,
 1253     DEPCA_DE422,
 1254     DEPCA_UNKNOWN
 1255 } depca_t;
 1256 
 1257 static const char *depca_signatures[] = {
 1258     "DEPCA",
 1259     "DE100", "DE101",
 1260     "EE100",
 1261     "DE200", "DE201", "DE202",
 1262     "DE422",
 1263     NULL
 1264 };
 1265 
 1266 static int
 1267 depca_probe(
 1268     le_softc_t *sc,
 1269     const le_board_t *bd,
 1270     int *msize)
 1271 {
 1272     unsigned nicsr, idx, idstr_offset = DEPCA_IDSTR_OFFSET;
 1273 
 1274     /*
 1275      *  Find out how memory we are dealing with.  Adjust
 1276      *  the ID string offset approriately if we are at
 1277      *  32K.  Make sure the ROM is enabled.
 1278      */
 1279     nicsr = DEPCA_RDNICSR(sc);
 1280     nicsr &= ~(DEPCA_NICSR_SHE|DEPCA_NICSR_LED|DEPCA_NICSR_ENABINTR);
 1281 
 1282     if (nicsr & DEPCA_NICSR_32KRAM) {
 1283         /*
 1284          * Make we are going to read the upper
 1285          * 32K so we do read the ROM.
 1286          */
 1287         sc->lance_ramsize = 32 * 1024;
 1288         nicsr &= ~DEPCA_NICSR_LOW32K;
 1289         sc->lance_ramoffset = 32 * 1024;
 1290         idstr_offset -= sc->lance_ramsize;
 1291     } else {
 1292         sc->lance_ramsize = 64 * 1024;
 1293         sc->lance_ramoffset = 0;
 1294     }
 1295     DEPCA_WRNICSR(sc, nicsr);
 1296 
 1297     sc->le_prodname = NULL;
 1298     for (idx = 0; depca_signatures[idx] != NULL; idx++) {
 1299         if (bcmp(depca_signatures[idx], sc->le_membase + idstr_offset, 5) == 0) {
 1300             sc->le_prodname = depca_signatures[idx];
 1301             break;
 1302         }
 1303     }
 1304 
 1305     if (sc->le_prodname == NULL) {
 1306         /*
 1307          * Try to get the EISA device if it's a DE422.
 1308          */
 1309         if (sc->le_iobase > 0x1000 && (sc->le_iobase & 0x0F00) == 0x0C00
 1310             && (LE_INL(sc, DEPCA_REG_EISAID) & DEPCA_EISAID_MASK)
 1311              == DEPCA_EISAID_DE422) {
 1312             sc->le_prodname = "DE422";
 1313         } else {
 1314             return 0;
 1315         }
 1316     }
 1317     if (idx == DEPCA_CLASSIC)
 1318         sc->lance_ramsize -= 16384;     /* Can't use the ROM area on a DEPCA */
 1319 
 1320     /*
 1321      * Try to read the address ROM.
 1322      *   Stop the LANCE, reset the Address ROM Counter (AAC),
 1323      *   read the NICSR to "clock" in the reset, and then
 1324      *   re-enable the Address ROM Counter.  Now read the
 1325      *   address ROM.
 1326      */
 1327     sc->lance_rdp = DEPCA_REG_RDP;
 1328     sc->lance_rap = DEPCA_REG_RAP;
 1329     sc->lance_csr3 = LN_CSR3_ALE;
 1330     sc->le_mctbl = sc->lance_initb.ln_multi_mask;
 1331     sc->le_mcmask = LN_MC_MASK;
 1332     LN_SELCSR(sc, LN_CSR0);
 1333     LN_WRCSR(sc, LN_CSR0_STOP);
 1334 
 1335     if (idx < DEPCA_DE200) {
 1336         DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) & ~DEPCA_NICSR_AAC);
 1337         DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) | DEPCA_NICSR_AAC);
 1338     }
 1339 
 1340     if (le_read_macaddr(sc, DEPCA_REG_ADDRROM, idx == DEPCA_CLASSIC) < 0)
 1341         return 0;
 1342 
 1343     MEMCPY(sc->le_ac.ac_enaddr, sc->le_hwaddr, 6);
 1344     /*
 1345      * Renable shared RAM.
 1346      */
 1347     DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) | DEPCA_NICSR_SHE);
 1348 
 1349     le_intrvec[sc->le_unit] = depca_intr;
 1350     if (!lance_init_adapmem(sc))
 1351         return 0;
 1352 
 1353     sc->if_reset = lance_reset;
 1354     sc->if_init = lance_init;
 1355     sc->le_if.if_start = lance_start;
 1356     DEPCA_WRNICSR(sc, DEPCA_NICSR_SHE | DEPCA_NICSR_ENABINTR);
 1357     sc->if_reset(sc);
 1358 
 1359     LN_STAT(low_txfree = sc->lance_txinfo.ri_max);
 1360     LN_STAT(low_txheapsize = 0xFFFFFFFF);
 1361     *msize = sc->lance_ramsize;
 1362     return DEPCA_IOSPACE;
 1363 }
 1364 
 1365 static void
 1366 depca_intr(
 1367     le_softc_t *sc)
 1368 {
 1369     DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) ^ DEPCA_NICSR_LED);
 1370     lance_intr(sc);
 1371 }
 1372 
 1373 /*
 1374  * Here's as good a place to describe our paritioning of the
 1375  * LANCE shared RAM space.  (NOTE: this driver does not yet support
 1376  * the concept of a LANCE being able to DMA).
 1377  *
 1378  * First is the 24 (00:23) bytes for LANCE Initialization Block
 1379  * Next are the recieve descriptors.  The number is calculated from
 1380  * how many LN_BUFSIZE buffers we can allocate (this number must
 1381  * be a power of 2).  Next are the transmit descriptors.  The amount
 1382  * of transmit descriptors is derived from the size of the RAM
 1383  * divided by 1K.  Now come the receive buffers (one for each receive
 1384  * descriptor).  Finally is the transmit heap.  (no fixed buffers are
 1385  * allocated so as to make the most use of the limited space).
 1386  */
 1387 static int
 1388 lance_init_adapmem(
 1389     le_softc_t *sc)
 1390 {
 1391     lance_addr_t rxbufoffset;
 1392     lance_addr_t rxdescoffset, txdescoffset;
 1393     unsigned rxdescs, txdescs;
 1394 
 1395     /*
 1396      * First calculate how many descriptors we heap.
 1397      * Note this assumes the ramsize is a power of two.
 1398      */
 1399     sc->lance_rxbufsize = LN_BUFSIZE;
 1400     rxdescs = 1;
 1401     while (rxdescs * sc->lance_rxbufsize < sc->lance_ramsize)
 1402         rxdescs *= 2;
 1403     rxdescs /= 2;
 1404     if (rxdescs > LN_DESC_MAX) {
 1405         sc->lance_rxbufsize *= rxdescs / LN_DESC_MAX;
 1406         rxdescs = LN_DESC_MAX;
 1407     }
 1408     txdescs = sc->lance_ramsize / LN_TXDESC_RATIO;
 1409     if (txdescs > LN_DESC_MAX)
 1410         txdescs = LN_DESC_MAX;
 1411 
 1412     /*
 1413      * Now calculate where everything goes in memory
 1414      */
 1415     rxdescoffset = sizeof(ln_initb_t);
 1416     txdescoffset = rxdescoffset + sizeof(ln_desc_t) * rxdescs;
 1417     rxbufoffset  = txdescoffset + sizeof(ln_desc_t) * txdescs;
 1418 
 1419     sc->le_mctbl = (le_mcbits_t *) sc->lance_initb.ln_multi_mask;
 1420     /*
 1421      * Remember these for debugging.
 1422      */
 1423     sc->lance_raminitb = (ln_initb_t *) sc->le_membase;
 1424     sc->lance_ramdesc = (ln_desc_t *) (sc->le_membase + rxdescoffset);
 1425 
 1426     /*
 1427      * Initialize the rings.
 1428      */
 1429     if (!lance_init_ring(sc, &sc->lance_initb.ln_rxring, &sc->lance_rxinfo,
 1430                    rxdescs, rxbufoffset, rxdescoffset))
 1431         return 0;
 1432     sc->lance_rxinfo.ri_heap = rxbufoffset;
 1433     sc->lance_rxinfo.ri_heapend = rxbufoffset + sc->lance_rxbufsize * rxdescs;
 1434 
 1435     if (!lance_init_ring(sc, &sc->lance_initb.ln_txring, &sc->lance_txinfo,
 1436                    txdescs, 0, txdescoffset))
 1437         return 0;
 1438     sc->lance_txinfo.ri_heap = sc->lance_rxinfo.ri_heapend;
 1439     sc->lance_txinfo.ri_heapend = sc->lance_ramsize;
 1440 
 1441     /*
 1442      * Set CSR1 and CSR2 to the address of the init block (which
 1443      * for us is always 0.
 1444      */
 1445     sc->lance_csr1 = LN_ADDR_LO(0 + sc->lance_ramoffset);
 1446     sc->lance_csr2 = LN_ADDR_HI(0 + sc->lance_ramoffset);
 1447     return 1;
 1448 }
 1449 
 1450 static int
 1451 lance_init_ring(
 1452     le_softc_t *sc,
 1453     ln_ring_t *rp,
 1454     lance_ring_t *ri,
 1455     unsigned ndescs,
 1456     lance_addr_t bufoffset,
 1457     lance_addr_t descoffset)
 1458 {
 1459     lance_descinfo_t *di;
 1460 
 1461     /*
 1462      * Initialize the ring pointer in the LANCE InitBlock
 1463      */
 1464     rp->r_addr_lo = LN_ADDR_LO(descoffset + sc->lance_ramoffset);
 1465     rp->r_addr_hi = LN_ADDR_HI(descoffset + sc->lance_ramoffset);
 1466     rp->r_log2_size = ffs(ndescs) - 1;
 1467 
 1468     /*
 1469      * Allocate the ring entry descriptors and initialize
 1470      * our ring information data structure.  All these are
 1471      * our copies and do not live in the LANCE RAM.
 1472      */
 1473     ri->ri_first = (lance_descinfo_t *) malloc(ndescs * sizeof(*di), M_DEVBUF, M_NOWAIT);
 1474     if (ri->ri_first == NULL) {
 1475         printf("lance_init_ring: malloc(%d) failed\n", ndescs * sizeof(*di));
 1476         return 0;
 1477     }
 1478     ri->ri_free = ri->ri_max = ndescs;
 1479     ri->ri_last = ri->ri_first + ri->ri_max;
 1480     for (di = ri->ri_first; di < ri->ri_last; di++) {
 1481         di->di_addr = sc->le_membase + descoffset;
 1482         di->di_mbuf = NULL;
 1483         if (bufoffset) {
 1484             di->di_bufaddr = bufoffset;
 1485             di->di_buflen = sc->lance_rxbufsize;
 1486             bufoffset += sc->lance_rxbufsize;
 1487         }
 1488         descoffset += sizeof(ln_desc_t);
 1489     }
 1490     return 1;
 1491 }
 1492 
 1493 static void
 1494 lance_dumpcsrs(
 1495     le_softc_t *sc,
 1496     const char *id)
 1497 {
 1498     if_printf(&sc->le_if, "%s: nicsr=%04x", id, DEPCA_RDNICSR(sc));
 1499     LN_SELCSR(sc, LN_CSR0); printf(" csr0=%04x", LN_RDCSR(sc));
 1500     LN_SELCSR(sc, LN_CSR1); printf(" csr1=%04x", LN_RDCSR(sc));
 1501     LN_SELCSR(sc, LN_CSR2); printf(" csr2=%04x", LN_RDCSR(sc));
 1502     LN_SELCSR(sc, LN_CSR3); printf(" csr3=%04x\n", LN_RDCSR(sc));
 1503     LN_SELCSR(sc, LN_CSR0);
 1504 }
 1505 
 1506 static void
 1507 lance_reset(
 1508     le_softc_t *sc)
 1509 {
 1510     register int cnt, csr;
 1511 
 1512     /* lance_dumpcsrs(sc, "lance_reset: start"); */
 1513 
 1514     LN_WRCSR(sc, LN_RDCSR(sc) & ~LN_CSR0_ENABINTR);
 1515     LN_WRCSR(sc, LN_CSR0_STOP);
 1516     DELAY(100);
 1517 
 1518     sc->le_flags &= ~IFF_UP;
 1519     sc->le_if.if_flags &= ~(IFF_UP|IFF_RUNNING);
 1520 
 1521     le_multi_filter(sc);                /* initialize the multicast table */
 1522     if ((sc->le_flags | sc->le_if.if_flags) & IFF_ALLMULTI) {
 1523         sc->lance_initb.ln_multi_mask[0] = 0xFFFFU;
 1524         sc->lance_initb.ln_multi_mask[1] = 0xFFFFU;
 1525         sc->lance_initb.ln_multi_mask[2] = 0xFFFFU;
 1526         sc->lance_initb.ln_multi_mask[3] = 0xFFFFU;
 1527     }
 1528     sc->lance_initb.ln_physaddr[0] = ((u_short *) sc->le_ac.ac_enaddr)[0];
 1529     sc->lance_initb.ln_physaddr[1] = ((u_short *) sc->le_ac.ac_enaddr)[1];
 1530     sc->lance_initb.ln_physaddr[2] = ((u_short *) sc->le_ac.ac_enaddr)[2];
 1531     if (sc->le_if.if_flags & IFF_PROMISC) {
 1532         sc->lance_initb.ln_mode |= LN_MODE_PROMISC;
 1533     } else {
 1534         sc->lance_initb.ln_mode &= ~LN_MODE_PROMISC;
 1535     }
 1536     /*
 1537      * We force the init block to be at the start
 1538      * of the LANCE's RAM buffer.
 1539      */
 1540     LN_COPYTO(sc, &sc->lance_initb, sc->le_membase, sizeof(sc->lance_initb));
 1541     LN_SELCSR(sc, LN_CSR1); LN_WRCSR(sc, sc->lance_csr1);
 1542     LN_SELCSR(sc, LN_CSR2); LN_WRCSR(sc, sc->lance_csr2);
 1543     LN_SELCSR(sc, LN_CSR3); LN_WRCSR(sc, sc->lance_csr3);
 1544 
 1545     /* lance_dumpcsrs(sc, "lance_reset: preinit"); */
 1546 
 1547     /*
 1548      * clear INITDONE and INIT the chip
 1549      */
 1550     LN_SELCSR(sc, LN_CSR0);
 1551     LN_WRCSR(sc, LN_CSR0_INIT|LN_CSR0_INITDONE);
 1552 
 1553     csr = 0;
 1554     cnt = 100;
 1555     while (cnt-- > 0) {
 1556         if (((csr = LN_RDCSR(sc)) & LN_CSR0_INITDONE) != 0)
 1557             break;
 1558         DELAY(10000);
 1559     }
 1560 
 1561     if ((csr & LN_CSR0_INITDONE) == 0) {    /* make sure we got out okay */
 1562         lance_dumpcsrs(sc, "lance_reset: reset failure");
 1563     } else {
 1564         /* lance_dumpcsrs(sc, "lance_reset: end"); */
 1565         sc->le_if.if_flags |= IFF_UP;
 1566         sc->le_flags |= IFF_UP;
 1567     }
 1568 }
 1569 
 1570 static void
 1571 lance_init(void *xsc)
 1572 {
 1573     le_softc_t *sc;
 1574     lance_ring_t *ri;
 1575     lance_descinfo_t *di;
 1576     ln_desc_t desc;
 1577 
 1578     sc = (le_softc_t *)xsc;
 1579 
 1580     LN_STAT(inits++);
 1581     if (sc->le_if.if_flags & IFF_RUNNING) {
 1582         sc->if_reset(sc);
 1583         lance_tx_intr(sc);
 1584         /*
 1585          * If we were running, requeue any pending transmits.
 1586          */
 1587         ri = &sc->lance_txinfo;
 1588         di = ri->ri_nextout;
 1589         while (ri->ri_free < ri->ri_max) {
 1590             if (--di == ri->ri_first)
 1591                 di = ri->ri_nextout - 1;
 1592             if (di->di_mbuf == NULL)
 1593                 break;
 1594             IF_PREPEND(&sc->le_if.if_snd, di->di_mbuf);
 1595             di->di_mbuf = NULL;
 1596             ri->ri_free++;
 1597         }
 1598     } else {
 1599         sc->if_reset(sc);
 1600     }
 1601 
 1602     /*
 1603      * Reset the transmit ring.  Make sure we own all the buffers.
 1604      * Also reset the transmit heap.
 1605      */
 1606     sc->le_if.if_flags &= ~IFF_OACTIVE;
 1607     ri = &sc->lance_txinfo;
 1608     for (di = ri->ri_first; di < ri->ri_last; di++) {
 1609         if (di->di_mbuf != NULL) {
 1610             m_freem(di->di_mbuf);
 1611             di->di_mbuf = NULL;
 1612         }
 1613         desc.d_flag = 0;
 1614         desc.d_addr_lo = LN_ADDR_LO(ri->ri_heap + sc->lance_ramoffset);
 1615         desc.d_addr_hi = LN_ADDR_HI(ri->ri_heap + sc->lance_ramoffset);
 1616         desc.d_buflen = 0;
 1617         LN_PUTDESC(sc, &desc, di->di_addr);
 1618     }
 1619     ri->ri_nextin = ri->ri_nextout = ri->ri_first;
 1620     ri->ri_free = ri->ri_max;
 1621     ri->ri_outptr = ri->ri_heap;
 1622     ri->ri_outsize = ri->ri_heapend - ri->ri_heap;
 1623 
 1624     ri = &sc->lance_rxinfo;
 1625     desc.d_flag = LN_DFLAG_OWNER;
 1626     desc.d_buflen = 0 - sc->lance_rxbufsize;
 1627     for (di = ri->ri_first; di < ri->ri_last; di++) {
 1628         desc.d_addr_lo = LN_ADDR_LO(di->di_bufaddr + sc->lance_ramoffset);
 1629         desc.d_addr_hi = LN_ADDR_HI(di->di_bufaddr + sc->lance_ramoffset);
 1630         LN_PUTDESC(sc, &desc, di->di_addr);
 1631     }
 1632     ri->ri_nextin = ri->ri_nextout = ri->ri_first;
 1633     ri->ri_outptr = ri->ri_heap;
 1634     ri->ri_outsize = ri->ri_heapend - ri->ri_heap;
 1635     ri->ri_free = 0;
 1636 
 1637     if (sc->le_if.if_flags & IFF_UP) {
 1638         sc->le_if.if_flags |= IFF_RUNNING;
 1639         LN_WRCSR(sc, LN_CSR0_START|LN_CSR0_INITDONE|LN_CSR0_ENABINTR);
 1640         /* lance_dumpcsrs(sc, "lance_init: up"); */
 1641         lance_start(&sc->le_if);
 1642     } else {
 1643         /* lance_dumpcsrs(sc, "lance_init: down"); */
 1644         sc->le_if.if_flags &= ~IFF_RUNNING;
 1645     }
 1646 }
 1647 
 1648 static void
 1649 lance_intr(
 1650     le_softc_t *sc)
 1651 {
 1652     unsigned oldcsr;
 1653 
 1654     oldcsr = LN_RDCSR(sc);
 1655     oldcsr &= ~LN_CSR0_ENABINTR;
 1656     LN_WRCSR(sc, oldcsr);
 1657     LN_WRCSR(sc, LN_CSR0_ENABINTR);
 1658 
 1659     if (oldcsr & LN_CSR0_ERRSUM) {
 1660         if (oldcsr & LN_CSR0_MISS) {
 1661             /*
 1662              *  LN_CSR0_MISS is signaled when the LANCE receiver
 1663              *  loses a packet because it doesn't own a receive
 1664              *  descriptor. Rev. D LANCE chips, which are no
 1665              *  longer used, require a chip reset as described
 1666              *  below.
 1667              */
 1668             LN_STAT(rx_misses++);
 1669         }
 1670         if (oldcsr & LN_CSR0_MEMERROR) {
 1671             LN_STAT(memory_errors++);
 1672             if (oldcsr & (LN_CSR0_RXON|LN_CSR0_TXON)) {
 1673                 lance_init(sc);
 1674                 return;
 1675             }
 1676         }
 1677     }
 1678 
 1679     if ((oldcsr & LN_CSR0_RXINT) && lance_rx_intr(sc)) {
 1680         lance_init(sc);
 1681         return;
 1682     }
 1683 
 1684     if (oldcsr & LN_CSR0_TXINT) {
 1685         if (lance_tx_intr(sc))
 1686             lance_start(&sc->le_if);
 1687     }
 1688 
 1689     if (oldcsr == (LN_CSR0_PENDINTR|LN_CSR0_RXON|LN_CSR0_TXON))
 1690         if_printf(&sc->le_if, "lance_intr: stray interrupt\n");
 1691 }
 1692 
 1693 static int
 1694 lance_rx_intr(
 1695     le_softc_t *sc)
 1696 {
 1697     lance_ring_t *ri = &sc->lance_rxinfo;
 1698     lance_descinfo_t *eop;
 1699     ln_desc_t desc;
 1700     int ndescs, total_len, rxdescs;
 1701 
 1702     LN_STAT(rx_intrs++);
 1703 
 1704     for (rxdescs = 0;;) {
 1705         /*
 1706          * Now to try to find the end of this packet chain.
 1707          */
 1708         for (ndescs = 1, eop = ri->ri_nextin;; ndescs++) {
 1709             /*
 1710              * If we don't own this descriptor, the packet ain't
 1711              * all here so return because we are done.
 1712              */
 1713             LN_GETDESC(sc, &desc, eop->di_addr);
 1714             if (desc.d_flag & LN_DFLAG_OWNER)
 1715                 return 0;
 1716             /*
 1717              * In case we have missed a packet and gotten the
 1718              * LANCE confused, make sure we are pointing at the
 1719              * start of a packet. If we aren't, something is really
 1720              * strange so reinit the LANCE.
 1721              */
 1722             if (desc.d_flag & LN_DFLAG_RxBUFERROR) {
 1723                 LN_STAT(rx_buferror++);
 1724                 return 1;
 1725             }
 1726             if ((desc.d_flag & LN_DFLAG_SOP) && eop != ri->ri_nextin) {
 1727                 LN_STAT(rx_badsop++);
 1728                 return 1;
 1729             }
 1730             if (desc.d_flag & LN_DFLAG_EOP)
 1731                 break;
 1732             if (++eop == ri->ri_last)
 1733                 eop = ri->ri_first;
 1734         }
 1735 
 1736         total_len = (desc.d_status & LN_DSTS_RxLENMASK) - 4;
 1737         if ((desc.d_flag & LN_DFLAG_RxERRSUM) == 0) {
 1738             /*
 1739              * Valid Packet -- If the SOP is less than or equal to the EOP
 1740              * or the length is less than the receive buffer size, then the
 1741              * packet is contiguous in memory and can be copied in one shot.
 1742              * Otherwise we need to copy two segments to get the entire
 1743              * packet.
 1744              */
 1745             if (ri->ri_nextin <= eop || total_len <= ri->ri_heapend - ri->ri_nextin->di_bufaddr) {
 1746                 le_input(sc, sc->le_membase + ri->ri_nextin->di_bufaddr,
 1747                          total_len, total_len, NULL);
 1748                 LN_STAT(rx_contig++);
 1749             } else {
 1750                 le_input(sc, sc->le_membase + ri->ri_nextin->di_bufaddr,
 1751                          total_len,
 1752                          ri->ri_heapend - ri->ri_nextin->di_bufaddr,
 1753                          sc->le_membase + ri->ri_first->di_bufaddr);
 1754                 LN_STAT(rx_noncontig++);
 1755             }
 1756         } else {
 1757             /*
 1758              * If the packet is bad, increment the
 1759              * counters.
 1760              */
 1761             sc->le_if.if_ierrors++;
 1762             if (desc.d_flag & LN_DFLAG_RxBADCRC)
 1763                 LN_STAT(rx_badcrc++);
 1764             if (desc.d_flag & LN_DFLAG_RxOVERFLOW)
 1765                 LN_STAT(rx_badalign++);
 1766             if (desc.d_flag & LN_DFLAG_RxFRAMING)
 1767                 LN_STAT(rx_badframe++);
 1768         }
 1769         sc->le_if.if_ipackets++;
 1770         LN_STAT(rx_ndescs[ndescs-1]++);
 1771         rxdescs += ndescs;
 1772         while (ndescs-- > 0) {
 1773             LN_SETFLAG(sc, ri->ri_nextin->di_addr, LN_DFLAG_OWNER);
 1774             if (++ri->ri_nextin == ri->ri_last)
 1775                 ri->ri_nextin = ri->ri_first;
 1776         }
 1777     }
 1778     /* LN_STAT(rx_intr_descs[rxdescs]++); */
 1779     LN_MAXSTAT(rx_intr_hidescs, rxdescs);
 1780 
 1781     return 0;
 1782 }
 1783 
 1784 static void
 1785 lance_start(
 1786     struct ifnet *ifp)
 1787 {
 1788     le_softc_t *sc = (le_softc_t *) ifp;
 1789     struct ifqueue *ifq = &ifp->if_snd;
 1790     lance_ring_t *ri = &sc->lance_txinfo;
 1791     lance_descinfo_t *di;
 1792     ln_desc_t desc;
 1793     unsigned len, slop;
 1794     struct mbuf *m, *m0;
 1795     caddr_t bp;
 1796 
 1797     if ((ifp->if_flags & IFF_RUNNING) == 0)
 1798         return;
 1799 
 1800     for (;;) {
 1801         IF_DEQUEUE(ifq, m);
 1802         if (m == NULL)
 1803             break;
 1804 
 1805         /*
 1806          * Make the packet meets the minimum size for Ethernet.
 1807          * The slop is so that we also use an even number of longwards.
 1808          */
 1809         len = ETHERMIN + sizeof(struct ether_header);
 1810         if (m->m_pkthdr.len > len)
 1811             len = m->m_pkthdr.len;
 1812 
 1813         slop = (8 - len) & 3;
 1814         /*
 1815          * If there are no free ring entries (there must be always
 1816          * one owned by the host), or there's not enough space for
 1817          * this packet, or this packet would wrap around the end
 1818          * of LANCE RAM then wait for the transmits to empty for
 1819          * space and ring entries to become available.
 1820          */
 1821         if (ri->ri_free == 1 || len + slop > ri->ri_outsize) {
 1822             /*
 1823              * Try to see if we can free up anything off the transit ring.
 1824              */
 1825             if (lance_tx_intr(sc) > 0) {
 1826                 LN_STAT(tx_drains[0]++);
 1827                 IF_PREPEND(ifq, m);
 1828                 continue;
 1829             }
 1830             LN_STAT(tx_nospc[0]++);
 1831             break;
 1832         }
 1833 
 1834         if (len + slop > ri->ri_heapend - ri->ri_outptr) {
 1835             /*
 1836              * Since the packet won't fit in the end of the transmit
 1837              * heap, see if there is space at the beginning of the transmit
 1838              * heap.  If not, try again when there is space.
 1839              */
 1840             LN_STAT(tx_orphaned++);
 1841             slop += ri->ri_heapend - ri->ri_outptr;
 1842             if (len + slop > ri->ri_outsize) {
 1843                 LN_STAT(tx_nospc[1]++);
 1844                 break;
 1845             }
 1846             /*
 1847              * Point to the beginning of the heap
 1848              */
 1849             ri->ri_outptr = ri->ri_heap;
 1850             LN_STAT(tx_adoptions++);
 1851         }
 1852 
 1853         /*
 1854          * Initialize the descriptor (saving the buffer address,
 1855          * buffer length, and mbuf) and write the packet out
 1856          * to the board.
 1857          */
 1858         di = ri->ri_nextout;
 1859         di->di_bufaddr = ri->ri_outptr;
 1860         di->di_buflen = len + slop;
 1861         di->di_mbuf = m;
 1862         bp = sc->le_membase + di->di_bufaddr;
 1863         for (m0 = m; m0 != NULL; m0 = m0->m_next) {
 1864             LN_COPYTO(sc, mtod(m0, caddr_t), bp, m0->m_len);
 1865             bp += m0->m_len;
 1866         }
 1867         /*
 1868          * Zero out the remainder if needed (< ETHERMIN).
 1869          */
 1870         if (m->m_pkthdr.len < len)
 1871             LN_ZERO(sc, bp, len - m->m_pkthdr.len);
 1872 
 1873         /*
 1874          * Finally, copy out the descriptor and tell the
 1875          * LANCE to transmit!.
 1876          */
 1877         desc.d_buflen = 0 - len;
 1878         desc.d_addr_lo = LN_ADDR_LO(di->di_bufaddr + sc->lance_ramoffset);
 1879         desc.d_addr_hi = LN_ADDR_HI(di->di_bufaddr + sc->lance_ramoffset);
 1880         desc.d_flag = LN_DFLAG_SOP|LN_DFLAG_EOP|LN_DFLAG_OWNER;
 1881         LN_PUTDESC(sc, &desc, di->di_addr);
 1882         LN_WRCSR(sc, LN_CSR0_TXDEMAND|LN_CSR0_ENABINTR);
 1883 
 1884         /*
 1885          * Do our bookkeeping with our transmit heap.
 1886          * (if we wrap, point back to the beginning).
 1887          */
 1888         ri->ri_outptr += di->di_buflen;
 1889         ri->ri_outsize -= di->di_buflen;
 1890         LN_MAXSTAT(high_txoutptr, ri->ri_outptr);
 1891         LN_MINSTAT(low_txheapsize, ri->ri_outsize);
 1892 
 1893         if (ri->ri_outptr == ri->ri_heapend)
 1894             ri->ri_outptr = ri->ri_heap;
 1895 
 1896         ri->ri_free--;
 1897         if (++ri->ri_nextout == ri->ri_last)
 1898             ri->ri_nextout = ri->ri_first;
 1899         LN_MINSTAT(low_txfree, ri->ri_free);
 1900     }
 1901     if (m != NULL) {
 1902         ifp->if_flags |= IFF_OACTIVE;
 1903         IF_PREPEND(ifq, m);
 1904     }
 1905 }
 1906 
 1907 static int
 1908 lance_tx_intr(
 1909     le_softc_t *sc)
 1910 {
 1911     lance_ring_t *ri = &sc->lance_txinfo;
 1912     unsigned xmits;
 1913 
 1914     LN_STAT(tx_intrs++);
 1915     for (xmits = 0; ri->ri_free < ri->ri_max; ) {
 1916         ln_desc_t desc;
 1917 
 1918         LN_GETDESC(sc, &desc, ri->ri_nextin->di_addr);
 1919         if (desc.d_flag & LN_DFLAG_OWNER)
 1920             break;
 1921 
 1922         if (desc.d_flag & (LN_DFLAG_TxONECOLL|LN_DFLAG_TxMULTCOLL))
 1923             sc->le_if.if_collisions++;
 1924         if (desc.d_flag & LN_DFLAG_TxDEFERRED)
 1925             LN_STAT(tx_deferred++);
 1926         if (desc.d_flag & LN_DFLAG_TxONECOLL)
 1927             LN_STAT(tx_single_collisions++);
 1928         if (desc.d_flag & LN_DFLAG_TxMULTCOLL)
 1929             LN_STAT(tx_multiple_collisions++);
 1930 
 1931         if (desc.d_flag & LN_DFLAG_TxERRSUM) {
 1932             if (desc.d_status & (LN_DSTS_TxUNDERFLOW|LN_DSTS_TxBUFERROR|
 1933                                  LN_DSTS_TxEXCCOLL|LN_DSTS_TxLATECOLL)) {
 1934                 if (desc.d_status & LN_DSTS_TxEXCCOLL) {
 1935                     unsigned tdr;
 1936                     LN_STAT(tx_excessive_collisions++);
 1937                     if ((tdr = (desc.d_status & LN_DSTS_TxTDRMASK)) > 0) {
 1938                         tdr *= 100;
 1939                         if_printf(&sc->le_if, "lance: warning: excessive collisions: TDR %dns (%d-%dm)\n",
 1940                                tdr, (tdr*99)/1000, (tdr*117)/1000);
 1941                     }
 1942                 }
 1943                 if (desc.d_status & LN_DSTS_TxBUFERROR)
 1944                     LN_STAT(tx_buferror++);
 1945                 sc->le_if.if_oerrors++;
 1946                 if ((desc.d_status & LN_DSTS_TxLATECOLL) == 0) {
 1947                     lance_init(sc);
 1948                     return 0;
 1949                 } else {
 1950                     LN_STAT(tx_late_collisions++);
 1951                 }
 1952             }
 1953         }
 1954         m_freem(ri->ri_nextin->di_mbuf);
 1955         ri->ri_nextin->di_mbuf = NULL;
 1956         sc->le_if.if_opackets++;
 1957         ri->ri_free++;
 1958         ri->ri_outsize += ri->ri_nextin->di_buflen;
 1959         if (++ri->ri_nextin == ri->ri_last)
 1960             ri->ri_nextin = ri->ri_first;
 1961         sc->le_if.if_flags &= ~IFF_OACTIVE;
 1962         xmits++;
 1963     }
 1964     if (ri->ri_free == ri->ri_max)
 1965         LN_STAT(tx_emptied++);
 1966     /* LN_STAT(tx_intr_descs[xmits]++); */
 1967     LN_MAXSTAT(tx_intr_hidescs, xmits);
 1968     return xmits;
 1969 }
 1970 #endif /* !defined(LE_NOLANCE) */

Cache object: 969119429eea676e207d642782bfe56e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.