The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/istallion.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*****************************************************************************/
    2 
    3 /*
    4  * istallion.c  -- stallion intelligent multiport serial driver.
    5  *
    6  * Copyright (c) 1994-1996 Greg Ungerer (gerg@stallion.oz.au).
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by Greg Ungerer.
   20  * 4. Neither the name of the author nor the names of any co-contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/5.2/sys/i386/isa/istallion.c 122352 2003-11-09 09:17:26Z tanimura $");
   39 
   40 /*****************************************************************************/
   41 
   42 #include "opt_compat.h"
   43 #include "opt_tty.h"
   44 
   45 #define TTYDEFCHARS     1
   46 
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/kernel.h>
   50 #include <sys/malloc.h>
   51 #include <sys/tty.h>
   52 #include <sys/conf.h>
   53 #include <sys/fcntl.h>
   54 #include <sys/uio.h>
   55 #include <sys/bus.h>
   56 #include <vm/vm.h>
   57 #include <vm/pmap.h>
   58 #include <i386/isa/isa_device.h>
   59 #include <machine/cdk.h>
   60 #include <machine/comstats.h>
   61 
   62 #ifndef COMPAT_OLDISA
   63 #error "The stli device requires the old isa compatibility shims"
   64 #endif
   65 
   66 /*****************************************************************************/
   67 
   68 /*
   69  *      Define the version level of the kernel - so we can compile in the
   70  *      appropriate bits of code. By default this will compile for a 2.1
   71  *      level kernel.
   72  */
   73 #define VFREEBSD        220
   74 
   75 #if VFREEBSD >= 220
   76 #define STATIC          static
   77 #else
   78 #define STATIC
   79 #endif
   80 
   81 /*****************************************************************************/
   82 
   83 /*
   84  *      Define different board types. Not all of the following board types
   85  *      are supported by this driver. But I will use the standard "assigned"
   86  *      board numbers. Currently supported boards are abbreviated as:
   87  *      ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
   88  *      STAL = Stallion.
   89  */
   90 #define BRD_UNKNOWN     0
   91 #define BRD_STALLION    1
   92 #define BRD_BRUMBY4     2
   93 #define BRD_ONBOARD2    3
   94 #define BRD_ONBOARD     4
   95 #define BRD_BRUMBY8     5
   96 #define BRD_BRUMBY16    6
   97 #define BRD_ONBOARDE    7
   98 #define BRD_ONBOARD32   9
   99 #define BRD_ONBOARD2_32 10
  100 #define BRD_ONBOARDRS   11
  101 #define BRD_EASYIO      20
  102 #define BRD_ECH         21
  103 #define BRD_ECHMC       22
  104 #define BRD_ECP         23
  105 #define BRD_ECPE        24
  106 #define BRD_ECPMC       25
  107 #define BRD_ECHPCI      26
  108 
  109 #define BRD_BRUMBY      BRD_BRUMBY4
  110 
  111 /*****************************************************************************/
  112 
  113 /*
  114  *      Define important driver limitations.
  115  */
  116 #define STL_MAXBRDS             8
  117 #define STL_MAXPANELS           4
  118 #define STL_PORTSPERPANEL       16
  119 #define STL_PORTSPERBRD         64
  120 
  121 #define STL_MAXCHANS            STL_PORTSPERBRD
  122 
  123 
  124 /*
  125  *      Define the important minor number break down bits. These have been
  126  *      chosen to be "compatible" with the standard sio driver minor numbers.
  127  *      Extra high bits are used to distinguish between boards and also for
  128  *      really high port numbers (> 32).
  129  */
  130 #define STL_CALLOUTDEV  0x80
  131 #define STL_CTRLLOCK    0x40
  132 #define STL_CTRLINIT    0x20
  133 #define STL_CTRLDEV     (STL_CTRLLOCK | STL_CTRLINIT)
  134 
  135 #define STL_MEMDEV      0x07000000
  136 
  137 #define STL_DEFSPEED    TTYDEF_SPEED
  138 #define STL_DEFCFLAG    (CS8 | CREAD | HUPCL)
  139 
  140 /*****************************************************************************/
  141 
  142 /*
  143  *      Define our local driver identity first. Set up stuff to deal with
  144  *      all the local structures required by a serial tty driver.
  145  */
  146 static char             stli_drvname[] = "stli";
  147 static char const       stli_longdrvname[] = "Stallion Multiport Serial Driver";
  148 static char const       stli_drvversion[] = "1.0.0";
  149 
  150 static int      stli_nrbrds = 0;
  151 static int      stli_doingtimeout = 0;
  152 
  153 static char     *__file__ = /*__FILE__*/ "istallion.c";
  154 
  155 /*
  156  *      Define some macros to use to class define boards.
  157  */
  158 #define BRD_ISA         0x1
  159 #define BRD_EISA        0x2
  160 #define BRD_MCA         0x4
  161 #define BRD_PCI         0x8
  162 
  163 static unsigned char    stli_stliprobed[STL_MAXBRDS];
  164 
  165 /*****************************************************************************/
  166 
  167 /*
  168  *      Define a set of structures to hold all the board/panel/port info
  169  *      for our ports. These will be dynamically allocated as required at
  170  *      driver initialization time.
  171  */
  172 
  173 /*
  174  *      Port and board structures to hold status info about each object.
  175  *      The board structure contains pointers to structures for each port
  176  *      connected to it. Panels are not distinguished here, since
  177  *      communication with the slave board will always be on a per port
  178  *      basis.
  179  */
  180 typedef struct {
  181         struct tty      tty;
  182         int             portnr;
  183         int             panelnr;
  184         int             brdnr;
  185         int             ioaddr;
  186         int             callout;
  187         int             devnr;
  188         int             dtrwait;
  189         int             dotimestamp;
  190         int             waitopens;
  191         int             hotchar;
  192         int             rc;
  193         int             argsize;
  194         void            *argp;
  195         unsigned int    state;
  196         unsigned int    sigs;
  197         struct termios  initintios;
  198         struct termios  initouttios;
  199         struct termios  lockintios;
  200         struct termios  lockouttios;
  201         struct timeval  timestamp;
  202         asysigs_t       asig;
  203         unsigned long   addr;
  204         unsigned long   rxlost;
  205         unsigned long   rxoffset;
  206         unsigned long   txoffset;
  207         unsigned long   pflag;
  208         unsigned int    rxsize;
  209         unsigned int    txsize;
  210         unsigned char   reqidx;
  211         unsigned char   reqbit;
  212         unsigned char   portidx;
  213         unsigned char   portbit;
  214 } stliport_t;
  215 
  216 /*
  217  *      Use a structure of function pointers to do board level operations.
  218  *      These include, enable/disable, paging shared memory, interrupting, etc.
  219  */
  220 typedef struct stlibrd {
  221         int             brdnr;
  222         int             brdtype;
  223         int             unitid;
  224         int             state;
  225         int             nrpanels;
  226         int             nrports;
  227         int             nrdevs;
  228         unsigned int    iobase;
  229         unsigned long   paddr;
  230         void            *vaddr;
  231         int             memsize;
  232         int             pagesize;
  233         int             hostoffset;
  234         int             slaveoffset;
  235         int             bitsize;
  236         int             confbits;
  237         void            (*init)(struct stlibrd *brdp);
  238         void            (*enable)(struct stlibrd *brdp);
  239         void            (*reenable)(struct stlibrd *brdp);
  240         void            (*disable)(struct stlibrd *brdp);
  241         void            (*intr)(struct stlibrd *brdp);
  242         void            (*reset)(struct stlibrd *brdp);
  243         char            *(*getmemptr)(struct stlibrd *brdp,
  244                                 unsigned long offset, int line);
  245         int             panels[STL_MAXPANELS];
  246         int             panelids[STL_MAXPANELS];
  247         stliport_t      *ports[STL_PORTSPERBRD];
  248 } stlibrd_t;
  249 
  250 static stlibrd_t        *stli_brds[STL_MAXBRDS];
  251 
  252 static int              stli_shared = 0;
  253 
  254 /*
  255  *      Keep a local char buffer for processing chars into the LD. We
  256  *      do this to avoid copying from the boards shared memory one char
  257  *      at a time.
  258  */
  259 static int              stli_rxtmplen;
  260 static stliport_t       *stli_rxtmpport;
  261 static char             stli_rxtmpbuf[TTYHOG];
  262 
  263 /*
  264  *      Define global stats structures. Not used often, and can be re-used
  265  *      for each stats call.
  266  */
  267 static comstats_t       stli_comstats;
  268 static combrd_t         stli_brdstats;
  269 static asystats_t       stli_cdkstats;
  270 
  271 /*
  272  *      Per board state flags. Used with the state field of the board struct.
  273  *      Not really much here... All we need to do is keep track of whether
  274  *      the board has been detected, and whether it is actully running a slave
  275  *      or not.
  276  */
  277 #define BST_FOUND       0x1
  278 #define BST_STARTED     0x2
  279 
  280 /*
  281  *      Define the set of port state flags. These are marked for internal
  282  *      state purposes only, usually to do with the state of communications
  283  *      with the slave. They need to be updated atomically.
  284  */
  285 #define ST_INITIALIZING 0x1
  286 #define ST_INITIALIZED  0x2
  287 #define ST_OPENING      0x4
  288 #define ST_CLOSING      0x8
  289 #define ST_CMDING       0x10
  290 #define ST_RXING        0x20
  291 #define ST_TXBUSY       0x40
  292 #define ST_DOFLUSHRX    0x80
  293 #define ST_DOFLUSHTX    0x100
  294 #define ST_DOSIGS       0x200
  295 #define ST_GETSIGS      0x400
  296 #define ST_DTRWAIT      0x800
  297 
  298 /*
  299  *      Define an array of board names as printable strings. Handy for
  300  *      referencing boards when printing trace and stuff.
  301  */
  302 static char     *stli_brdnames[] = {
  303         "Unknown",
  304         "Stallion",
  305         "Brumby",
  306         "ONboard-MC",
  307         "ONboard",
  308         "Brumby",
  309         "Brumby",
  310         "ONboard-EI",
  311         (char *) NULL,
  312         "ONboard",
  313         "ONboard-MC",
  314         "ONboard-MC",
  315         (char *) NULL,
  316         (char *) NULL,
  317         (char *) NULL,
  318         (char *) NULL,
  319         (char *) NULL,
  320         (char *) NULL,
  321         (char *) NULL,
  322         (char *) NULL,
  323         "EasyIO",
  324         "EC8/32-AT",
  325         "EC8/32-MC",
  326         "EC8/64-AT",
  327         "EC8/64-EI",
  328         "EC8/64-MC",
  329         "EC8/32-PCI",
  330 };
  331 
  332 /*****************************************************************************/
  333 
  334 /*
  335  *      Hardware configuration info for ECP boards. These defines apply
  336  *      to the directly accessible io ports of the ECP. There is a set of
  337  *      defines for each ECP board type, ISA, EISA and MCA.
  338  */
  339 #define ECP_IOSIZE      4
  340 #define ECP_MEMSIZE     (128 * 1024)
  341 #define ECP_ATPAGESIZE  (4 * 1024)
  342 #define ECP_EIPAGESIZE  (64 * 1024)
  343 #define ECP_MCPAGESIZE  (4 * 1024)
  344 
  345 #define STL_EISAID      0x8c4e
  346 
  347 /*
  348  *      Important defines for the ISA class of ECP board.
  349  */
  350 #define ECP_ATIREG      0
  351 #define ECP_ATCONFR     1
  352 #define ECP_ATMEMAR     2
  353 #define ECP_ATMEMPR     3
  354 #define ECP_ATSTOP      0x1
  355 #define ECP_ATINTENAB   0x10
  356 #define ECP_ATENABLE    0x20
  357 #define ECP_ATDISABLE   0x00
  358 #define ECP_ATADDRMASK  0x3f000
  359 #define ECP_ATADDRSHFT  12
  360 
  361 /*
  362  *      Important defines for the EISA class of ECP board.
  363  */
  364 #define ECP_EIIREG      0
  365 #define ECP_EIMEMARL    1
  366 #define ECP_EICONFR     2
  367 #define ECP_EIMEMARH    3
  368 #define ECP_EIENABLE    0x1
  369 #define ECP_EIDISABLE   0x0
  370 #define ECP_EISTOP      0x4
  371 #define ECP_EIEDGE      0x00
  372 #define ECP_EILEVEL     0x80
  373 #define ECP_EIADDRMASKL 0x00ff0000
  374 #define ECP_EIADDRSHFTL 16
  375 #define ECP_EIADDRMASKH 0xff000000
  376 #define ECP_EIADDRSHFTH 24
  377 #define ECP_EIBRDENAB   0xc84
  378 
  379 #define ECP_EISAID      0x4
  380 
  381 /*
  382  *      Important defines for the Micro-channel class of ECP board.
  383  *      (It has a lot in common with the ISA boards.)
  384  */
  385 #define ECP_MCIREG      0
  386 #define ECP_MCCONFR     1
  387 #define ECP_MCSTOP      0x20
  388 #define ECP_MCENABLE    0x80
  389 #define ECP_MCDISABLE   0x00
  390 
  391 /*
  392  *      Hardware configuration info for ONboard and Brumby boards. These
  393  *      defines apply to the directly accessible io ports of these boards.
  394  */
  395 #define ONB_IOSIZE      16
  396 #define ONB_MEMSIZE     (64 * 1024)
  397 #define ONB_ATPAGESIZE  (64 * 1024)
  398 #define ONB_MCPAGESIZE  (64 * 1024)
  399 #define ONB_EIMEMSIZE   (128 * 1024)
  400 #define ONB_EIPAGESIZE  (64 * 1024)
  401 
  402 /*
  403  *      Important defines for the ISA class of ONboard board.
  404  */
  405 #define ONB_ATIREG      0
  406 #define ONB_ATMEMAR     1
  407 #define ONB_ATCONFR     2
  408 #define ONB_ATSTOP      0x4
  409 #define ONB_ATENABLE    0x01
  410 #define ONB_ATDISABLE   0x00
  411 #define ONB_ATADDRMASK  0xff0000
  412 #define ONB_ATADDRSHFT  16
  413 
  414 #define ONB_HIMEMENAB   0x02
  415 
  416 /*
  417  *      Important defines for the EISA class of ONboard board.
  418  */
  419 #define ONB_EIIREG      0
  420 #define ONB_EIMEMARL    1
  421 #define ONB_EICONFR     2
  422 #define ONB_EIMEMARH    3
  423 #define ONB_EIENABLE    0x1
  424 #define ONB_EIDISABLE   0x0
  425 #define ONB_EISTOP      0x4
  426 #define ONB_EIEDGE      0x00
  427 #define ONB_EILEVEL     0x80
  428 #define ONB_EIADDRMASKL 0x00ff0000
  429 #define ONB_EIADDRSHFTL 16
  430 #define ONB_EIADDRMASKH 0xff000000
  431 #define ONB_EIADDRSHFTH 24
  432 #define ONB_EIBRDENAB   0xc84
  433 
  434 #define ONB_EISAID      0x1
  435 
  436 /*
  437  *      Important defines for the Brumby boards. They are pretty simple,
  438  *      there is not much that is programmably configurable.
  439  */
  440 #define BBY_IOSIZE      16
  441 #define BBY_MEMSIZE     (64 * 1024)
  442 #define BBY_PAGESIZE    (16 * 1024)
  443 
  444 #define BBY_ATIREG      0
  445 #define BBY_ATCONFR     1
  446 #define BBY_ATSTOP      0x4
  447 
  448 /*
  449  *      Important defines for the Stallion boards. They are pretty simple,
  450  *      there is not much that is programmably configurable.
  451  */
  452 #define STAL_IOSIZE     16
  453 #define STAL_MEMSIZE    (64 * 1024)
  454 #define STAL_PAGESIZE   (64 * 1024)
  455 
  456 /*
  457  *      Define the set of status register values for EasyConnection panels.
  458  *      The signature will return with the status value for each panel. From
  459  *      this we can determine what is attached to the board - before we have
  460  *      actually down loaded any code to it.
  461  */
  462 #define ECH_PNLSTATUS   2
  463 #define ECH_PNL16PORT   0x20
  464 #define ECH_PNLIDMASK   0x07
  465 #define ECH_PNLINTRPEND 0x80
  466 
  467 /*
  468  *      Define some macros to do things to the board. Even those these boards
  469  *      are somewhat related there is often significantly different ways of
  470  *      doing some operation on it (like enable, paging, reset, etc). So each
  471  *      board class has a set of functions which do the commonly required
  472  *      operations. The macros below basically just call these functions,
  473  *      generally checking for a NULL function - which means that the board
  474  *      needs nothing done to it to achieve this operation!
  475  */
  476 #define EBRDINIT(brdp)                                  \
  477         if (brdp->init != NULL)                         \
  478                 (* brdp->init)(brdp)
  479 
  480 #define EBRDENABLE(brdp)                                \
  481         if (brdp->enable != NULL)                       \
  482                 (* brdp->enable)(brdp);
  483 
  484 #define EBRDDISABLE(brdp)                               \
  485         if (brdp->disable != NULL)                      \
  486                 (* brdp->disable)(brdp);
  487 
  488 #define EBRDINTR(brdp)                                  \
  489         if (brdp->intr != NULL)                         \
  490                 (* brdp->intr)(brdp);
  491 
  492 #define EBRDRESET(brdp)                                 \
  493         if (brdp->reset != NULL)                        \
  494                 (* brdp->reset)(brdp);
  495 
  496 #define EBRDGETMEMPTR(brdp,offset)                      \
  497         (* brdp->getmemptr)(brdp, offset, __LINE__)
  498 
  499 /*
  500  *      Define the maximal baud rate.
  501  */
  502 #define STL_MAXBAUD     230400
  503 
  504 /*****************************************************************************/
  505 
  506 /*
  507  *      Define macros to extract a brd and port number from a minor number.
  508  *      This uses the extended minor number range in the upper 2 bytes of
  509  *      the device number. This gives us plenty of minor numbers to play
  510  *      with...
  511  */
  512 #define MKDEV2BRD(m)    ((minor(m) & 0x00700000) >> 20)
  513 #define MKDEV2PORT(m)   ((minor(m) & 0x1f) | ((minor(m) & 0x00010000) >> 11))
  514 
  515 /*
  516  *      Define some handy local macros...
  517  */
  518 #ifndef MIN
  519 #define MIN(a,b)        (((a) <= (b)) ? (a) : (b))
  520 #endif
  521 
  522 /*****************************************************************************/
  523 
  524 /*
  525  *      Declare all those functions in this driver!  First up is the set of
  526  *      externally visible functions.
  527  */
  528 static int      stliprobe(struct isa_device *idp);
  529 static int      stliattach(struct isa_device *idp);
  530 
  531 STATIC  d_open_t        stliopen;
  532 STATIC  d_close_t       stliclose;
  533 STATIC  d_read_t        stliread;
  534 STATIC  d_write_t       stliwrite;
  535 STATIC  d_ioctl_t       stliioctl;
  536 
  537 /*
  538  *      Internal function prototypes.
  539  */
  540 static stliport_t *stli_dev2port(dev_t dev);
  541 static int      stli_isaprobe(struct isa_device *idp);
  542 static int      stli_eisaprobe(struct isa_device *idp);
  543 static int      stli_mcaprobe(struct isa_device *idp);
  544 static int      stli_brdinit(stlibrd_t *brdp);
  545 static int      stli_brdattach(stlibrd_t *brdp);
  546 static int      stli_initecp(stlibrd_t *brdp);
  547 static int      stli_initonb(stlibrd_t *brdp);
  548 static int      stli_initports(stlibrd_t *brdp);
  549 static int      stli_startbrd(stlibrd_t *brdp);
  550 static void     stli_poll(void *arg);
  551 static __inline void    stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
  552 static __inline int     stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
  553 static __inline void    stli_dodelaycmd(stliport_t *portp,
  554                                         volatile cdkctrl_t *cp);
  555 static void     stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
  556 static long     stli_mktiocm(unsigned long sigvalue);
  557 static void     stli_rxprocess(stlibrd_t *brdp, stliport_t *portp);
  558 static void     stli_flush(stliport_t *portp, int flag);
  559 static void     stli_start(struct tty *tp);
  560 static void     stli_stop(struct tty *tp, int rw);
  561 static int      stli_param(struct tty *tp, struct termios *tiosp);
  562 static void     stli_ttyoptim(stliport_t *portp, struct termios *tiosp);
  563 static void     stli_dtrwakeup(void *arg);
  564 static int      stli_initopen(stliport_t *portp);
  565 static int      stli_shutdownclose(stliport_t *portp);
  566 static int      stli_rawopen(stlibrd_t *brdp, stliport_t *portp,
  567                         unsigned long arg, int wait);
  568 static int      stli_rawclose(stlibrd_t *brdp, stliport_t *portp,
  569                         unsigned long arg, int wait);
  570 static int      stli_cmdwait(stlibrd_t *brdp, stliport_t *portp,
  571                         unsigned long cmd, void *arg, int size, int copyback);
  572 static void     stli_sendcmd(stlibrd_t *brdp, stliport_t *portp,
  573                         unsigned long cmd, void *arg, int size, int copyback);
  574 static void     stli_mkasyport(stliport_t *portp, asyport_t *pp,
  575                         struct termios *tiosp);
  576 static int      stli_memrw(dev_t dev, struct uio *uiop, int flag);
  577 static int      stli_memioctl(dev_t dev, unsigned long cmd, caddr_t data,
  578                         int flag, struct thread *td);
  579 static int      stli_getbrdstats(caddr_t data);
  580 static int      stli_getportstats(stliport_t *portp, caddr_t data);
  581 static int      stli_clrportstats(stliport_t *portp, caddr_t data);
  582 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
  583 
  584 static void     stli_ecpinit(stlibrd_t *brdp);
  585 static void     stli_ecpenable(stlibrd_t *brdp);
  586 static void     stli_ecpdisable(stlibrd_t *brdp);
  587 static void     stli_ecpreset(stlibrd_t *brdp);
  588 static char     *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset,
  589                         int line);
  590 static void     stli_ecpintr(stlibrd_t *brdp);
  591 static void     stli_ecpeiinit(stlibrd_t *brdp);
  592 static void     stli_ecpeienable(stlibrd_t *brdp);
  593 static void     stli_ecpeidisable(stlibrd_t *brdp);
  594 static void     stli_ecpeireset(stlibrd_t *brdp);
  595 static char     *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset,
  596                         int line);
  597 static void     stli_ecpmcenable(stlibrd_t *brdp);
  598 static void     stli_ecpmcdisable(stlibrd_t *brdp);
  599 static void     stli_ecpmcreset(stlibrd_t *brdp);
  600 static char     *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset,
  601                         int line);
  602 
  603 static void     stli_onbinit(stlibrd_t *brdp);
  604 static void     stli_onbenable(stlibrd_t *brdp);
  605 static void     stli_onbdisable(stlibrd_t *brdp);
  606 static void     stli_onbreset(stlibrd_t *brdp);
  607 static char     *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset,
  608                         int line);
  609 static void     stli_onbeinit(stlibrd_t *brdp);
  610 static void     stli_onbeenable(stlibrd_t *brdp);
  611 static void     stli_onbedisable(stlibrd_t *brdp);
  612 static void     stli_onbereset(stlibrd_t *brdp);
  613 static char     *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset,
  614                         int line);
  615 static void     stli_bbyinit(stlibrd_t *brdp);
  616 static void     stli_bbyreset(stlibrd_t *brdp);
  617 static char     *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset,
  618                         int line);
  619 static void     stli_stalinit(stlibrd_t *brdp);
  620 static void     stli_stalreset(stlibrd_t *brdp);
  621 static char     *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset,
  622                         int line);
  623 
  624 /*****************************************************************************/
  625 
  626 /*
  627  *      Declare the driver isa structure.
  628  */
  629 struct isa_driver       stlidriver = {
  630         INTR_TYPE_TTY,
  631         stliprobe,
  632         stliattach,
  633         stli_drvname
  634 };
  635 COMPAT_ISA_DRIVER(stli, stlidriver);
  636 
  637 /*****************************************************************************/
  638 
  639 #if VFREEBSD >= 220
  640 
  641 /*
  642  *      FreeBSD-2.2+ kernel linkage.
  643  */
  644 
  645 #define CDEV_MAJOR      75
  646 static struct cdevsw stli_cdevsw = {
  647         .d_open =       stliopen,
  648         .d_close =      stliclose,
  649         .d_read =       stliread,
  650         .d_write =      stliwrite,
  651         .d_ioctl =      stliioctl,
  652         .d_poll =       ttypoll,
  653         .d_name =       stli_drvname,
  654         .d_maj =        CDEV_MAJOR,
  655         .d_flags =      D_TTY,
  656         .d_kqfilter =   ttykqfilter,
  657 };
  658 
  659 #endif
  660 
  661 /*****************************************************************************/
  662 
  663 static stlibrd_t *stli_brdalloc(void)
  664 {
  665         stlibrd_t       *brdp;
  666 
  667         brdp = (stlibrd_t *) malloc(sizeof(stlibrd_t), M_TTYS, M_NOWAIT|M_ZERO);
  668         if (brdp == (stlibrd_t *) NULL) {
  669                 printf("STALLION: failed to allocate memory (size=%d)\n",
  670                         sizeof(stlibrd_t));
  671                 return((stlibrd_t *) NULL);
  672         }
  673         return(brdp);
  674 }
  675 
  676 /*****************************************************************************/
  677 
  678 /*
  679  *      Find an available internal board number (unit number). The problem
  680  *      is that the same unit numbers can be assigned to different class
  681  *      boards - but we only want to maintain one setup board structures.
  682  */
  683 
  684 static int stli_findfreeunit(void)
  685 {
  686         int     i;
  687 
  688         for (i = 0; (i < STL_MAXBRDS); i++)
  689                 if (stli_brds[i] == (stlibrd_t *) NULL)
  690                         break;
  691         return((i >= STL_MAXBRDS) ? -1 : i);
  692 }
  693 
  694 /*****************************************************************************/
  695 
  696 /*
  697  *      Try and determine the ISA board type. Hopefully the board
  698  *      configuration entry will help us out, using the flags field.
  699  *      If not, we may ne be able to determine the board type...
  700  */
  701 
  702 static int stli_isaprobe(struct isa_device *idp)
  703 {
  704         int     btype;
  705 
  706 #if DEBUG
  707         printf("stli_isaprobe(idp=%x): unit=%d iobase=%x flags=%x\n",
  708                 (int) idp, idp->id_unit, idp->id_iobase, idp->id_flags);
  709 #endif
  710 
  711         switch (idp->id_flags) {
  712         case BRD_STALLION:
  713         case BRD_BRUMBY4:
  714         case BRD_BRUMBY8:
  715         case BRD_BRUMBY16:
  716         case BRD_ONBOARD:
  717         case BRD_ONBOARD32:
  718         case BRD_ECP:
  719                 btype = idp->id_flags;
  720                 break;
  721         default:
  722                 btype = 0;
  723                 break;
  724         }
  725         return(btype);
  726 }
  727 
  728 /*****************************************************************************/
  729 
  730 /*
  731  *      Probe for an EISA board type. We should be able to read the EISA ID,
  732  *      that will tell us if a board is present or not...
  733  */
  734 
  735 static int stli_eisaprobe(struct isa_device *idp)
  736 {
  737         int     btype, eid;
  738 
  739 #if DEBUG
  740         printf("stli_eisaprobe(idp=%x): unit=%d iobase=%x flags=%x\n",
  741                 (int) idp, idp->id_unit, idp->id_iobase, idp->id_flags);
  742 #endif
  743 
  744 /*
  745  *      Firstly check if this is an EISA system. Do this by probing for
  746  *      the system board EISA ID. If this is not an EISA system then
  747  *      don't bother going any further!
  748  */
  749         outb(0xc80, 0xff);
  750         if (inb(0xc80) == 0xff)
  751                 return(0);
  752 
  753 /*
  754  *      Try and read the EISA ID from the board at specified address.
  755  *      If one is present it will tell us the board type as well.
  756  */
  757         outb((idp->id_iobase + 0xc80), 0xff);
  758         eid = inb(idp->id_iobase + 0xc80);
  759         eid |= inb(idp->id_iobase + 0xc81) << 8;
  760         if (eid != STL_EISAID)
  761                 return(0);
  762 
  763         btype = 0;
  764         eid = inb(idp->id_iobase + 0xc82);
  765         if (eid == ECP_EISAID)
  766                 btype = BRD_ECPE;
  767         else if (eid == ONB_EISAID)
  768                 btype = BRD_ONBOARDE;
  769 
  770         outb((idp->id_iobase + 0xc84), 0x1);
  771         return(btype);
  772 }
  773 
  774 /*****************************************************************************/
  775 
  776 /*
  777  *      Probe for an MCA board type. Not really sure how to do this yet,
  778  *      so for now just use the supplied flag specifier as board type...
  779  */
  780 
  781 static int stli_mcaprobe(struct isa_device *idp)
  782 {
  783         int     btype;
  784 
  785 #if DEBUG
  786         printf("stli_mcaprobe(idp=%x): unit=%d iobase=%x flags=%x\n",
  787                 (int) idp, idp->id_unit, idp->id_iobase, idp->id_flags);
  788 #endif
  789 
  790         switch (idp->id_flags) {
  791         case BRD_ONBOARD2:
  792         case BRD_ONBOARD2_32:
  793         case BRD_ONBOARDRS:
  794         case BRD_ECHMC:
  795         case BRD_ECPMC:
  796                 btype = idp->id_flags;
  797                 break;
  798         default:
  799                 btype = 0;
  800                 break;
  801         }
  802         return(0);
  803 }
  804 
  805 /*****************************************************************************/
  806 
  807 /*
  808  *      Probe for a board. This is involved, since we need to enable the
  809  *      shared memory region to see if the board is really there or not...
  810  */
  811 
  812 static int stliprobe(struct isa_device *idp)
  813 {
  814         stlibrd_t       *brdp;
  815         int             btype, bclass;
  816 
  817 #if DEBUG
  818         printf("stliprobe(idp=%x): unit=%d iobase=%x flags=%x\n", (int) idp,
  819                 idp->id_unit, idp->id_iobase, idp->id_flags);
  820 #endif
  821 
  822         if (idp->id_unit > STL_MAXBRDS)
  823                 return(0);
  824 
  825 /*
  826  *      First up determine what bus type of board we might be dealing
  827  *      with. It is easy to separate out the ISA from the EISA and MCA
  828  *      boards, based on their IO addresses. We may not be able to tell
  829  *      the EISA and MCA apart on IO address alone...
  830  */
  831         bclass = 0;
  832         if ((idp->id_iobase > 0) && (idp->id_iobase < 0x400)) {
  833                 bclass |= BRD_ISA;
  834         } else {
  835                 /* ONboard2 range */
  836                 if ((idp->id_iobase >= 0x700) && (idp->id_iobase < 0x900))
  837                         bclass |= BRD_MCA;
  838                 /* EC-MCA ranges */
  839                 if ((idp->id_iobase >= 0x7000) && (idp->id_iobase < 0x7400))
  840                         bclass |= BRD_MCA;
  841                 if ((idp->id_iobase >= 0x8000) && (idp->id_iobase < 0xc000))
  842                         bclass |= BRD_MCA;
  843                 /* EISA board range */
  844                 if ((idp->id_iobase & ~0xf000) == 0)
  845                         bclass |= BRD_EISA;
  846         }
  847 
  848         if ((bclass == 0) || (idp->id_iobase == 0))
  849                 return(0);
  850 
  851 /*
  852  *      Based on the board bus type, try and figure out what it might be...
  853  */
  854         btype = 0;
  855         if (bclass & BRD_ISA)
  856                 btype = stli_isaprobe(idp);
  857         if ((btype == 0) && (bclass & BRD_EISA))
  858                 btype = stli_eisaprobe(idp);
  859         if ((btype == 0) && (bclass & BRD_MCA))
  860                 btype = stli_mcaprobe(idp);
  861         if (btype == 0)
  862                 return(0);
  863 
  864 /*
  865  *      Go ahead and try probing for the shared memory region now.
  866  *      This way we will really know if the board is here...
  867  */
  868         if ((brdp = stli_brdalloc()) == (stlibrd_t *) NULL)
  869                 return(0);
  870 
  871         brdp->brdnr = stli_findfreeunit();
  872         brdp->brdtype = btype;
  873         brdp->unitid = idp->id_unit;
  874         brdp->iobase = idp->id_iobase;
  875         brdp->vaddr = idp->id_maddr;
  876         brdp->paddr = vtophys(idp->id_maddr);
  877 
  878 #if DEBUG
  879         printf("%s(%d): btype=%x unit=%d brd=%d io=%x mem=%lx(%p)\n",
  880                 __file__, __LINE__, btype, brdp->unitid, brdp->brdnr,
  881                 brdp->iobase, brdp->paddr, (void *) brdp->vaddr);
  882 #endif
  883 
  884         stli_stliprobed[idp->id_unit] = brdp->brdnr;
  885         stli_brdinit(brdp);
  886         if ((brdp->state & BST_FOUND) == 0) {
  887                 stli_brds[brdp->brdnr] = (stlibrd_t *) NULL;
  888                 return(0);
  889         }
  890         stli_nrbrds++;
  891         return(1);
  892 }
  893 
  894 /*****************************************************************************/
  895 
  896 /*
  897  *      Allocate resources for and initialize a board.
  898  */
  899 
  900 static int stliattach(struct isa_device *idp)
  901 {
  902         stlibrd_t       *brdp;
  903         int             brdnr;
  904 
  905 #if DEBUG
  906         printf("stliattach(idp=%p): unit=%d iobase=%x\n", (void *) idp,
  907                 idp->id_unit, idp->id_iobase);
  908 #endif
  909 
  910         brdnr = stli_stliprobed[idp->id_unit];
  911         brdp = stli_brds[brdnr];
  912         if (brdp == (stlibrd_t *) NULL)
  913                 return(0);
  914         if (brdp->state & BST_FOUND)
  915                 stli_brdattach(brdp);
  916         if (0) {
  917                 make_dev(&stli_cdevsw, 0, 0, 0, 0, "istallion_is_broken");
  918         }
  919         return(1);
  920 }
  921 
  922 
  923 /*****************************************************************************/
  924 
  925 STATIC int stliopen(dev_t dev, int flag, int mode, struct thread *td)
  926 {
  927         struct tty      *tp;
  928         stliport_t      *portp;
  929         int             error, callout, x;
  930 
  931 #if DEBUG
  932         printf("stliopen(dev=%x,flag=%x,mode=%x,p=%x)\n", (int) dev, flag,
  933                 mode, (int) td);
  934 #endif
  935 
  936 /*
  937  *      Firstly check if the supplied device number is a valid device.
  938  */
  939         if (minor(dev) & STL_MEMDEV)
  940                 return(0);
  941 
  942         portp = stli_dev2port(dev);
  943         if (portp == (stliport_t *) NULL)
  944                 return(ENXIO);
  945         tp = &portp->tty;
  946         dev->si_tty = tp;
  947         callout = minor(dev) & STL_CALLOUTDEV;
  948         error = 0;
  949 
  950         x = spltty();
  951 
  952 stliopen_restart:
  953 /*
  954  *      Wait here for the DTR drop timeout period to expire.
  955  */
  956         while (portp->state & ST_DTRWAIT) {
  957                 error = tsleep(&portp->dtrwait, (TTIPRI | PCATCH),
  958                         "stlidtr", 0);
  959                 if (error)
  960                         goto stliopen_end;
  961         }
  962 
  963 /*
  964  *      If the port is in its raw hardware initialization phase, then
  965  *      hold up here 'till it is done.
  966  */
  967         while (portp->state & (ST_INITIALIZING | ST_CLOSING)) {
  968                 error = tsleep(&portp->state, (TTIPRI | PCATCH),
  969                         "stliraw", 0);
  970                 if (error)
  971                         goto stliopen_end;
  972         }
  973 
  974 /*
  975  *      We have a valid device, so now we check if it is already open.
  976  *      If not then initialize the port hardware and set up the tty
  977  *      struct as required.
  978  */
  979         if ((tp->t_state & TS_ISOPEN) == 0) {
  980                 tp->t_oproc = stli_start;
  981                 tp->t_param = stli_param;
  982                 tp->t_stop = stli_stop;
  983                 tp->t_dev = dev;
  984                 tp->t_termios = callout ? portp->initouttios :
  985                         portp->initintios;
  986                 stli_initopen(portp);
  987                 wakeup(&portp->state);
  988                 if ((portp->sigs & TIOCM_CD) || callout)
  989                         (*linesw[tp->t_line].l_modem)(tp, 1);
  990         } else {
  991                 if (callout) {
  992                         if (portp->callout == 0) {
  993                                 error = EBUSY;
  994                                 goto stliopen_end;
  995                         }
  996                 } else {
  997                         if (portp->callout != 0) {
  998                                 if (flag & O_NONBLOCK) {
  999                                         error = EBUSY;
 1000                                         goto stliopen_end;
 1001                                 }
 1002                                 error = tsleep(&portp->callout,
 1003                                         (TTIPRI | PCATCH), "stlicall", 0);
 1004                                 if (error)
 1005                                         goto stliopen_end;
 1006                                 goto stliopen_restart;
 1007                         }
 1008                 }
 1009                 if ((tp->t_state & TS_XCLUDE) &&
 1010                     suser(td)) {
 1011                         error = EBUSY;
 1012                         goto stliopen_end;
 1013                 }
 1014         }
 1015 
 1016 /*
 1017  *      If this port is not the callout device and we do not have carrier
 1018  *      then we need to sleep, waiting for it to be asserted.
 1019  */
 1020         if (((tp->t_state & TS_CARR_ON) == 0) && !callout &&
 1021                         ((tp->t_cflag & CLOCAL) == 0) &&
 1022                         ((flag & O_NONBLOCK) == 0)) {
 1023                 portp->waitopens++;
 1024                 error = tsleep(TSA_CARR_ON(tp), (TTIPRI | PCATCH), "stlidcd",0);
 1025                 portp->waitopens--;
 1026                 if (error)
 1027                         goto stliopen_end;
 1028                 goto stliopen_restart;
 1029         }
 1030 
 1031 /*
 1032  *      Open the line discipline.
 1033  */
 1034         error = (*linesw[tp->t_line].l_open)(dev, tp);
 1035         stli_ttyoptim(portp, &tp->t_termios);
 1036         if ((tp->t_state & TS_ISOPEN) && callout)
 1037                 portp->callout = 1;
 1038 
 1039 /*
 1040  *      If for any reason we get to here and the port is not actually
 1041  *      open then close of the physical hardware - no point leaving it
 1042  *      active when the open failed...
 1043  */
 1044 stliopen_end:
 1045         splx(x);
 1046         if (((tp->t_state & TS_ISOPEN) == 0) && (portp->waitopens == 0))
 1047                 stli_shutdownclose(portp);
 1048 
 1049         return(error);
 1050 }
 1051 
 1052 /*****************************************************************************/
 1053 
 1054 STATIC int stliclose(dev_t dev, int flag, int mode, struct thread *td)
 1055 {
 1056         struct tty      *tp;
 1057         stliport_t      *portp;
 1058         int             x;
 1059 
 1060 #if DEBUG
 1061         printf("stliclose(dev=%s,flag=%x,mode=%x,p=%p)\n",
 1062                 devtoname(dev), flag, mode, (void *) td);
 1063 #endif
 1064 
 1065         if (minor(dev) & STL_MEMDEV)
 1066                 return(0);
 1067 
 1068         portp = stli_dev2port(dev);
 1069         if (portp == (stliport_t *) NULL)
 1070                 return(ENXIO);
 1071         tp = &portp->tty;
 1072 
 1073         x = spltty();
 1074         (*linesw[tp->t_line].l_close)(tp, flag);
 1075         stli_ttyoptim(portp, &tp->t_termios);
 1076         stli_shutdownclose(portp);
 1077         ttyclose(tp);
 1078         splx(x);
 1079         return(0);
 1080 }
 1081 
 1082 
 1083 STATIC int stliread(dev_t dev, struct uio *uiop, int flag)
 1084 {
 1085 
 1086 #if DEBUG
 1087         printf("stliread(dev=%s,uiop=%p,flag=%x)\n", devtoname(dev),
 1088                 (void *) uiop, flag);
 1089 #endif
 1090 
 1091         if (minor(dev) & STL_MEMDEV)
 1092                 return(stli_memrw(dev, uiop, flag));
 1093         else
 1094                 return(ttyread(dev, uiop, flag));
 1095 }
 1096 
 1097 /*****************************************************************************/
 1098 
 1099 #if VFREEBSD >= 220
 1100 
 1101 STATIC void stli_stop(struct tty *tp, int rw)
 1102 {
 1103 #if DEBUG
 1104         printf("stli_stop(tp=%x,rw=%x)\n", (int) tp, rw);
 1105 #endif
 1106 
 1107         stli_flush((stliport_t *) tp, rw);
 1108 }
 1109 
 1110 #else
 1111 
 1112 STATIC int stlistop(struct tty *tp, int rw)
 1113 {
 1114 #if DEBUG
 1115         printf("stlistop(tp=%x,rw=%x)\n", (int) tp, rw);
 1116 #endif
 1117 
 1118         stli_flush((stliport_t *) tp, rw);
 1119         return(0);
 1120 }
 1121 
 1122 #endif
 1123 
 1124 /*****************************************************************************/
 1125 
 1126 STATIC int stliwrite(dev_t dev, struct uio *uiop, int flag)
 1127 {
 1128 #if DEBUG
 1129         printf("stliwrite(dev=%s,uiop=%p,flag=%x)\n", devtoname(dev),
 1130                 (void *) uiop, flag);
 1131 #endif
 1132 
 1133         if (minor(dev) & STL_MEMDEV)
 1134                 return(stli_memrw(dev, uiop, flag));
 1135         else
 1136                 return(ttywrite(dev, uiop, flag));
 1137 }
 1138 
 1139 /*****************************************************************************/
 1140 
 1141 STATIC int stliioctl(dev_t dev, unsigned long cmd, caddr_t data, int flag,
 1142                      struct thread *td)
 1143 {
 1144         struct termios  *newtios, *localtios;
 1145         struct tty      *tp;
 1146         stlibrd_t       *brdp;
 1147         stliport_t      *portp;
 1148         long            arg;
 1149         int             error, i, x;
 1150 
 1151 #if DEBUG
 1152         printf("stliioctl(dev=%s,cmd=%lx,data=%p,flag=%x,p=%p)\n",
 1153                 devtoname(dev), cmd, (void *) data, flag, (void *) td);
 1154 #endif
 1155 
 1156         if (minor(dev) & STL_MEMDEV)
 1157                 return(stli_memioctl(dev, cmd, data, flag, td));
 1158 
 1159         portp = stli_dev2port(dev);
 1160         if (portp == (stliport_t *) NULL)
 1161                 return(ENODEV);
 1162         if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
 1163                 return(ENODEV);
 1164         tp = &portp->tty;
 1165         error = 0;
 1166         
 1167 /*
 1168  *      First up handle ioctls on the control devices.
 1169  */
 1170         if (minor(dev) & STL_CTRLDEV) {
 1171                 if ((minor(dev) & STL_CTRLDEV) == STL_CTRLINIT)
 1172                         localtios = (minor(dev) & STL_CALLOUTDEV) ?
 1173                                 &portp->initouttios : &portp->initintios;
 1174                 else if ((minor(dev) & STL_CTRLDEV) == STL_CTRLLOCK)
 1175                         localtios = (minor(dev) & STL_CALLOUTDEV) ?
 1176                                 &portp->lockouttios : &portp->lockintios;
 1177                 else
 1178                         return(ENODEV);
 1179 
 1180                 switch (cmd) {
 1181                 case TIOCSETA:
 1182                         if ((error = suser(td)) == 0)
 1183                                 *localtios = *((struct termios *) data);
 1184                         break;
 1185                 case TIOCGETA:
 1186                         *((struct termios *) data) = *localtios;
 1187                         break;
 1188                 case TIOCGETD:
 1189                         *((int *) data) = TTYDISC;
 1190                         break;
 1191                 case TIOCGWINSZ:
 1192                         bzero(data, sizeof(struct winsize));
 1193                         break;
 1194                 default:
 1195                         error = ENOTTY;
 1196                         break;
 1197                 }
 1198                 return(error);
 1199         }
 1200 
 1201 /*
 1202  *      Deal with 4.3 compatibility issues if we have too...
 1203  */
 1204 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
 1205         if (1) {
 1206                 struct termios  tios;
 1207                 unsigned long   oldcmd;
 1208 
 1209                 tios = tp->t_termios;
 1210                 oldcmd = cmd;
 1211                 if ((error = ttsetcompat(tp, &cmd, data, &tios)))
 1212                         return(error);
 1213                 if (cmd != oldcmd)
 1214                         data = (caddr_t) &tios;
 1215         }
 1216 #endif
 1217 
 1218 /*
 1219  *      Carry out some pre-cmd processing work first...
 1220  *      Hmmm, not so sure we want this, disable for now...
 1221  */
 1222         if ((cmd == TIOCSETA) || (cmd == TIOCSETAW) || (cmd == TIOCSETAF)) {
 1223                 newtios = (struct termios *) data;
 1224                 localtios = (minor(dev) & STL_CALLOUTDEV) ? &portp->lockouttios :
 1225                          &portp->lockintios;
 1226 
 1227                 newtios->c_iflag = (tp->t_iflag & localtios->c_iflag) |
 1228                         (newtios->c_iflag & ~localtios->c_iflag);
 1229                 newtios->c_oflag = (tp->t_oflag & localtios->c_oflag) |
 1230                         (newtios->c_oflag & ~localtios->c_oflag);
 1231                 newtios->c_cflag = (tp->t_cflag & localtios->c_cflag) |
 1232                         (newtios->c_cflag & ~localtios->c_cflag);
 1233                 newtios->c_lflag = (tp->t_lflag & localtios->c_lflag) |
 1234                         (newtios->c_lflag & ~localtios->c_lflag);
 1235                 for (i = 0; (i < NCCS); i++) {
 1236                         if (localtios->c_cc[i] != 0)
 1237                                 newtios->c_cc[i] = tp->t_cc[i];
 1238                 }
 1239                 if (localtios->c_ispeed != 0)
 1240                         newtios->c_ispeed = tp->t_ispeed;
 1241                 if (localtios->c_ospeed != 0)
 1242                         newtios->c_ospeed = tp->t_ospeed;
 1243         }
 1244 
 1245 /*
 1246  *      Call the line discipline and the common command processing to
 1247  *      process this command (if they can).
 1248  */
 1249         error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, td);
 1250         if (error != ENOIOCTL)
 1251                 return(error);
 1252 
 1253         x = spltty();
 1254         error = ttioctl(tp, cmd, data, flag);
 1255         stli_ttyoptim(portp, &tp->t_termios);
 1256         if (error != ENOIOCTL) {
 1257                 splx(x);
 1258                 return(error);
 1259         }
 1260 
 1261         error = 0;
 1262 
 1263 /*
 1264  *      Process local commands here. These are all commands that only we
 1265  *      can take care of (they all rely on actually doing something special
 1266  *      to the actual hardware).
 1267  */
 1268         switch (cmd) {
 1269         case TIOCSBRK:
 1270                 arg = BREAKON;
 1271                 error = stli_cmdwait(brdp, portp, A_BREAK, &arg,
 1272                         sizeof(unsigned long), 0);
 1273                 break;
 1274         case TIOCCBRK:
 1275                 arg = BREAKOFF;
 1276                 error = stli_cmdwait(brdp, portp, A_BREAK, &arg,
 1277                         sizeof(unsigned long), 0);
 1278                 break;
 1279         case TIOCSDTR:
 1280                 stli_mkasysigs(&portp->asig, 1, -1);
 1281                 error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 1282                         sizeof(asysigs_t), 0);
 1283                 break;
 1284         case TIOCCDTR:
 1285                 stli_mkasysigs(&portp->asig, 0, -1);
 1286                 error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 1287                         sizeof(asysigs_t), 0);
 1288                 break;
 1289         case TIOCMSET:
 1290                 i = *((int *) data);
 1291                 stli_mkasysigs(&portp->asig, ((i & TIOCM_DTR) ? 1 : 0),
 1292                         ((i & TIOCM_RTS) ? 1 : 0));
 1293                 error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 1294                         sizeof(asysigs_t), 0);
 1295                 break;
 1296         case TIOCMBIS:
 1297                 i = *((int *) data);
 1298                 stli_mkasysigs(&portp->asig, ((i & TIOCM_DTR) ? 1 : -1),
 1299                         ((i & TIOCM_RTS) ? 1 : -1));
 1300                 error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 1301                         sizeof(asysigs_t), 0);
 1302                 break;
 1303         case TIOCMBIC:
 1304                 i = *((int *) data);
 1305                 stli_mkasysigs(&portp->asig, ((i & TIOCM_DTR) ? 0 : -1),
 1306                         ((i & TIOCM_RTS) ? 0 : -1));
 1307                 error = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 1308                         sizeof(asysigs_t), 0);
 1309                 break;
 1310         case TIOCMGET:
 1311                 if ((error = stli_cmdwait(brdp, portp, A_GETSIGNALS,
 1312                                 &portp->asig, sizeof(asysigs_t), 1)) < 0)
 1313                         break;
 1314                 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
 1315                 *((int *) data) = (portp->sigs | TIOCM_LE);
 1316                 break;
 1317         case TIOCMSDTRWAIT:
 1318                 if ((error = suser(td)) == 0)
 1319                         portp->dtrwait = *((int *) data) * hz / 100;
 1320                 break;
 1321         case TIOCMGDTRWAIT:
 1322                 *((int *) data) = portp->dtrwait * 100 / hz;
 1323                 break;
 1324         case TIOCTIMESTAMP:
 1325                 portp->dotimestamp = 1;
 1326                 *((struct timeval *) data) = portp->timestamp;
 1327                 break;
 1328         default:
 1329                 error = ENOTTY;
 1330                 break;
 1331         }
 1332         splx(x);
 1333 
 1334         return(error);
 1335 }
 1336 
 1337 /*****************************************************************************/
 1338 
 1339 /*
 1340  *      Convert the specified minor device number into a port struct
 1341  *      pointer. Return NULL if the device number is not a valid port.
 1342  */
 1343 
 1344 STATIC stliport_t *stli_dev2port(dev_t dev)
 1345 {
 1346         stlibrd_t       *brdp;
 1347 
 1348         brdp = stli_brds[MKDEV2BRD(dev)];
 1349         if (brdp == (stlibrd_t *) NULL)
 1350                 return((stliport_t *) NULL);
 1351         if ((brdp->state & BST_STARTED) == 0)
 1352                 return((stliport_t *) NULL);
 1353         return(brdp->ports[MKDEV2PORT(dev)]);
 1354 }
 1355 
 1356 /*****************************************************************************/
 1357 
 1358 /*
 1359  *      Carry out first open operations on a port. This involves a number of
 1360  *      commands to be sent to the slave. We need to open the port, set the
 1361  *      notification events, set the initial port settings, get and set the
 1362  *      initial signal values. We sleep and wait in between each one. But
 1363  *      this still all happens pretty quickly.
 1364  */
 1365 
 1366 static int stli_initopen(stliport_t *portp)
 1367 {
 1368         stlibrd_t       *brdp;
 1369         asynotify_t     nt;
 1370         asyport_t       aport;
 1371         int             rc;
 1372 
 1373 #if DEBUG
 1374         printf("stli_initopen(portp=%x)\n", (int) portp);
 1375 #endif
 1376 
 1377         if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
 1378                 return(ENXIO);
 1379         if (portp->state & ST_INITIALIZED)
 1380                 return(0);
 1381         portp->state |= ST_INITIALIZED;
 1382 
 1383         if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
 1384                 return(rc);
 1385 
 1386         bzero(&nt, sizeof(asynotify_t));
 1387         nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
 1388         nt.signal = SG_DCD;
 1389         if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
 1390             sizeof(asynotify_t), 0)) < 0)
 1391                 return(rc);
 1392 
 1393         stli_mkasyport(portp, &aport, &portp->tty.t_termios);
 1394         if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
 1395             sizeof(asyport_t), 0)) < 0)
 1396                 return(rc);
 1397 
 1398         portp->state |= ST_GETSIGS;
 1399         if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
 1400             sizeof(asysigs_t), 1)) < 0)
 1401                 return(rc);
 1402         if (portp->state & ST_GETSIGS) {
 1403                 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
 1404                 portp->state &= ~ST_GETSIGS;
 1405         }
 1406 
 1407         stli_mkasysigs(&portp->asig, 1, 1);
 1408         if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 1409             sizeof(asysigs_t), 0)) < 0)
 1410                 return(rc);
 1411 
 1412         return(0);
 1413 }
 1414 
 1415 /*****************************************************************************/
 1416 
 1417 /*
 1418  *      Shutdown the hardware of a port.
 1419  */
 1420 
 1421 static int stli_shutdownclose(stliport_t *portp)
 1422 {
 1423         stlibrd_t       *brdp;
 1424         struct tty      *tp;
 1425         int             x;
 1426 
 1427 #if DEBUG
 1428         printf("stli_shutdownclose(portp=%p): brdnr=%d panelnr=%d portnr=%d\n",
 1429                 (void *) portp, portp->brdnr, portp->panelnr, portp->portnr);
 1430 #endif
 1431 
 1432         if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
 1433                 return(ENXIO);
 1434 
 1435         tp = &portp->tty;
 1436         stli_rawclose(brdp, portp, 0, 0);
 1437         stli_flush(portp, (FWRITE | FREAD));
 1438         if (tp->t_cflag & HUPCL) {
 1439                 x = spltty();
 1440                 stli_mkasysigs(&portp->asig, 0, 0);
 1441                 if (portp->state & ST_CMDING) {
 1442                         portp->state |= ST_DOSIGS;
 1443                 } else {
 1444                         stli_sendcmd(brdp, portp, A_SETSIGNALS,
 1445                                 &portp->asig, sizeof(asysigs_t), 0);
 1446                 }
 1447                 splx(x);
 1448                 if (portp->dtrwait != 0) {
 1449                         portp->state |= ST_DTRWAIT;
 1450                         timeout(stli_dtrwakeup, portp, portp->dtrwait);
 1451                 }
 1452         }
 1453         portp->callout = 0;
 1454         portp->state &= ~ST_INITIALIZED;
 1455         wakeup(&portp->callout);
 1456         wakeup(TSA_CARR_ON(tp));
 1457         return(0);
 1458 }
 1459 
 1460 /*****************************************************************************/
 1461 
 1462 /*
 1463  *      Clear the DTR waiting flag, and wake up any sleepers waiting for
 1464  *      DTR wait period to finish.
 1465  */
 1466 
 1467 static void stli_dtrwakeup(void *arg)
 1468 {
 1469         stliport_t      *portp;
 1470 
 1471         portp = (stliport_t *) arg;
 1472         portp->state &= ~ST_DTRWAIT;
 1473         wakeup(&portp->dtrwait);
 1474 }
 1475 
 1476 /*****************************************************************************/
 1477 
 1478 /*
 1479  *      Send an open message to the slave. This will sleep waiting for the
 1480  *      acknowledgement, so must have user context. We need to co-ordinate
 1481  *      with close events here, since we don't want open and close events
 1482  *      to overlap.
 1483  */
 1484 
 1485 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
 1486 {
 1487         volatile cdkhdr_t       *hdrp;
 1488         volatile cdkctrl_t      *cp;
 1489         volatile unsigned char  *bits;
 1490         int                     rc, x;
 1491 
 1492 #if DEBUG
 1493         printf("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n", (int) brdp,
 1494                 (int) portp, (int) arg, wait);
 1495 #endif
 1496 
 1497         x = spltty();
 1498 
 1499 /*
 1500  *      Slave is already closing this port. This can happen if a hangup
 1501  *      occurs on this port. So we must wait until it is complete. The
 1502  *      order of opens and closes may not be preserved across shared
 1503  *      memory, so we must wait until it is complete.
 1504  */
 1505         while (portp->state & ST_CLOSING) {
 1506                 rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
 1507                 if (rc) {
 1508                         splx(x);
 1509                         return(rc);
 1510                 }
 1511         }
 1512 
 1513 /*
 1514  *      Everything is ready now, so write the open message into shared
 1515  *      memory. Once the message is in set the service bits to say that
 1516  *      this port wants service.
 1517  */
 1518         EBRDENABLE(brdp);
 1519         cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
 1520         cp->openarg = arg;
 1521         cp->open = 1;
 1522         hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 1523         bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
 1524                 portp->portidx;
 1525         *bits |= portp->portbit;
 1526         EBRDDISABLE(brdp);
 1527 
 1528         if (wait == 0) {
 1529                 splx(x);
 1530                 return(0);
 1531         }
 1532 
 1533 /*
 1534  *      Slave is in action, so now we must wait for the open acknowledgment
 1535  *      to come back.
 1536  */
 1537         rc = 0;
 1538         portp->state |= ST_OPENING;
 1539         while (portp->state & ST_OPENING) {
 1540                 rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
 1541                 if (rc) {
 1542                         splx(x);
 1543                         return(rc);
 1544                 }
 1545         }
 1546         splx(x);
 1547 
 1548         if ((rc == 0) && (portp->rc != 0))
 1549                 rc = EIO;
 1550         return(rc);
 1551 }
 1552 
 1553 /*****************************************************************************/
 1554 
 1555 /*
 1556  *      Send a close message to the slave. Normally this will sleep waiting
 1557  *      for the acknowledgement, but if wait parameter is 0 it will not. If
 1558  *      wait is true then must have user context (to sleep).
 1559  */
 1560 
 1561 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
 1562 {
 1563         volatile cdkhdr_t       *hdrp;
 1564         volatile cdkctrl_t      *cp;
 1565         volatile unsigned char  *bits;
 1566         int                     rc, x;
 1567 
 1568 #if DEBUG
 1569         printf("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n", (int) brdp,
 1570                 (int) portp, (int) arg, wait);
 1571 #endif
 1572 
 1573         x = spltty();
 1574 
 1575 /*
 1576  *      Slave is already closing this port. This can happen if a hangup
 1577  *      occurs on this port.
 1578  */
 1579         if (wait) {
 1580                 while (portp->state & ST_CLOSING) {
 1581                         rc = tsleep(&portp->state, (TTIPRI | PCATCH),
 1582                                 "stliraw", 0);
 1583                         if (rc) {
 1584                                 splx(x);
 1585                                 return(rc);
 1586                         }
 1587                 }
 1588         }
 1589 
 1590 /*
 1591  *      Write the close command into shared memory.
 1592  */
 1593         EBRDENABLE(brdp);
 1594         cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
 1595         cp->closearg = arg;
 1596         cp->close = 1;
 1597         hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 1598         bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
 1599                 portp->portidx;
 1600         *bits |= portp->portbit;
 1601         EBRDDISABLE(brdp);
 1602 
 1603         portp->state |= ST_CLOSING;
 1604         if (wait == 0) {
 1605                 splx(x);
 1606                 return(0);
 1607         }
 1608 
 1609 /*
 1610  *      Slave is in action, so now we must wait for the open acknowledgment
 1611  *      to come back.
 1612  */
 1613         rc = 0;
 1614         while (portp->state & ST_CLOSING) {
 1615                 rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
 1616                 if (rc) {
 1617                         splx(x);
 1618                         return(rc);
 1619                 }
 1620         }
 1621         splx(x);
 1622 
 1623         if ((rc == 0) && (portp->rc != 0))
 1624                 rc = EIO;
 1625         return(rc);
 1626 }
 1627 
 1628 /*****************************************************************************/
 1629 
 1630 /*
 1631  *      Send a command to the slave and wait for the response. This must
 1632  *      have user context (it sleeps). This routine is generic in that it
 1633  *      can send any type of command. Its purpose is to wait for that command
 1634  *      to complete (as opposed to initiating the command then returning).
 1635  */
 1636 
 1637 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
 1638 {
 1639         int     rc, x;
 1640 
 1641 #if DEBUG
 1642         printf("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
 1643                 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
 1644                 (int) arg, size, copyback);
 1645 #endif
 1646 
 1647         x = spltty();
 1648         while (portp->state & ST_CMDING) {
 1649                 rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
 1650                 if (rc) {
 1651                         splx(x);
 1652                         return(rc);
 1653                 }
 1654         }
 1655 
 1656         stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
 1657 
 1658         while (portp->state & ST_CMDING) {
 1659                 rc = tsleep(&portp->state, (TTIPRI | PCATCH), "stliraw", 0);
 1660                 if (rc) {
 1661                         splx(x);
 1662                         return(rc);
 1663                 }
 1664         }
 1665         splx(x);
 1666 
 1667         if (portp->rc != 0)
 1668                 return(EIO);
 1669         return(0);
 1670 }
 1671 
 1672 /*****************************************************************************/
 1673 
 1674 /*
 1675  *      Start (or continue) the transfer of TX data on this port. If the
 1676  *      port is not currently busy then load up the interrupt ring queue
 1677  *      buffer and kick of the transmitter. If the port is running low on
 1678  *      TX data then refill the ring queue. This routine is also used to
 1679  *      activate input flow control!
 1680  */
 1681 
 1682 static void stli_start(struct tty *tp)
 1683 {
 1684         volatile cdkasy_t       *ap;
 1685         volatile cdkhdr_t       *hdrp;
 1686         volatile unsigned char  *bits;
 1687         unsigned char           *shbuf;
 1688         stliport_t              *portp;
 1689         stlibrd_t               *brdp;
 1690         unsigned int            len, stlen, head, tail, size;
 1691         int                     count, x;
 1692 
 1693         portp = (stliport_t *) tp;
 1694 
 1695 #if DEBUG
 1696         printf("stli_start(tp=%x): brdnr=%d portnr=%d\n", (int) tp, 
 1697                 portp->brdnr, portp->portnr);
 1698 #endif
 1699 
 1700         x = spltty();
 1701 
 1702 #if VFREEBSD == 205
 1703 /*
 1704  *      Check if the output cooked clist buffers are near empty, wake up
 1705  *      the line discipline to fill it up.
 1706  */
 1707         if (tp->t_outq.c_cc <= tp->t_lowat) {
 1708                 if (tp->t_state & TS_ASLEEP) {
 1709                         tp->t_state &= ~TS_ASLEEP;
 1710                         wakeup(&tp->t_outq);
 1711                 }
 1712                 selwakeuppri(&tp->t_wsel, TTOPRI);
 1713         }
 1714 #endif
 1715 
 1716         if (tp->t_state & (TS_TIMEOUT | TS_TTSTOP)) {
 1717                 splx(x);
 1718                 return;
 1719         }
 1720 
 1721 /*
 1722  *      Copy data from the clists into the interrupt ring queue. This will
 1723  *      require at most 2 copys... What we do is calculate how many chars
 1724  *      can fit into the ring queue, and how many can fit in 1 copy. If after
 1725  *      the first copy there is still more room then do the second copy. 
 1726  */
 1727         if (tp->t_outq.c_cc != 0) {
 1728                 brdp = stli_brds[portp->brdnr];
 1729                 if (brdp == (stlibrd_t *) NULL) {
 1730                         splx(x);
 1731                         return;
 1732                 }
 1733 
 1734                 EBRDENABLE(brdp);
 1735                 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
 1736                 head = (unsigned int) ap->txq.head;
 1737                 tail = (unsigned int) ap->txq.tail;
 1738                 if (tail != ((unsigned int) ap->txq.tail))
 1739                         tail = (unsigned int) ap->txq.tail;
 1740                 size = portp->txsize;
 1741                 if (head >= tail) {
 1742                         len = size - (head - tail) - 1;
 1743                         stlen = size - head;
 1744                 } else {
 1745                         len = tail - head - 1;
 1746                         stlen = len;
 1747                 }
 1748 
 1749                 count = 0;
 1750                 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
 1751 
 1752                 if (len > 0) {
 1753                         stlen = MIN(len, stlen);
 1754                         count = q_to_b(&tp->t_outq, (shbuf + head), stlen);
 1755                         len -= count;
 1756                         head += count;
 1757                         if (head >= size) {
 1758                                 head = 0;
 1759                                 if (len > 0) {
 1760                                         stlen = q_to_b(&tp->t_outq, shbuf, len);
 1761                                         head += stlen;
 1762                                         count += stlen;
 1763                                 }
 1764                         }
 1765                 }
 1766 
 1767                 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
 1768                 ap->txq.head = head;
 1769                 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 1770                 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
 1771                         portp->portidx;
 1772                 *bits |= portp->portbit;
 1773                 portp->state |= ST_TXBUSY;
 1774                 tp->t_state |= TS_BUSY;
 1775 
 1776                 EBRDDISABLE(brdp);
 1777         }
 1778 
 1779 #if VFREEBSD != 205
 1780 /*
 1781  *      Do any writer wakeups.
 1782  */
 1783         ttwwakeup(tp);
 1784 #endif
 1785 
 1786         splx(x);
 1787 }
 1788 
 1789 /*****************************************************************************/
 1790 
 1791 /*
 1792  *      Send a new port configuration to the slave.
 1793  */
 1794 
 1795 static int stli_param(struct tty *tp, struct termios *tiosp)
 1796 {
 1797         stlibrd_t       *brdp;
 1798         stliport_t      *portp;
 1799         asyport_t       aport;
 1800         int             x, rc;
 1801 
 1802         portp = (stliport_t *) tp;
 1803         if ((brdp = stli_brds[portp->brdnr]) == (stlibrd_t *) NULL)
 1804                 return(ENXIO);
 1805 
 1806         x = spltty();
 1807         stli_mkasyport(portp, &aport, tiosp);
 1808         /* can we sleep here? */
 1809         rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
 1810         stli_ttyoptim(portp, tiosp);
 1811         splx(x);
 1812         return(rc);
 1813 }
 1814 
 1815 /*****************************************************************************/
 1816 
 1817 /*
 1818  *      Flush characters from the lower buffer. We may not have user context
 1819  *      so we cannot sleep waiting for it to complete. Also we need to check
 1820  *      if there is chars for this port in the TX cook buffer, and flush them
 1821  *      as well.
 1822  */
 1823 
 1824 static void stli_flush(stliport_t *portp, int flag)
 1825 {
 1826         stlibrd_t       *brdp;
 1827         unsigned long   ftype;
 1828         int             x;
 1829 
 1830 #if DEBUG
 1831         printf("stli_flush(portp=%x,flag=%x)\n", (int) portp, flag);
 1832 #endif
 1833 
 1834         if (portp == (stliport_t *) NULL)
 1835                 return;
 1836         if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
 1837                 return;
 1838         brdp = stli_brds[portp->brdnr];
 1839         if (brdp == (stlibrd_t *) NULL)
 1840                 return;
 1841 
 1842         x = spltty();
 1843         if (portp->state & ST_CMDING) {
 1844                 portp->state |= (flag & FWRITE) ? ST_DOFLUSHTX : 0;
 1845                 portp->state |= (flag & FREAD) ? ST_DOFLUSHRX : 0;
 1846         } else {
 1847                 ftype = (flag & FWRITE) ? FLUSHTX : 0;
 1848                 ftype |= (flag & FREAD) ? FLUSHRX : 0;
 1849                 portp->state &= ~(ST_DOFLUSHTX | ST_DOFLUSHRX);
 1850                 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
 1851                         sizeof(unsigned long), 0);
 1852         }
 1853         if ((flag & FREAD) && (stli_rxtmpport == portp))
 1854                 stli_rxtmplen = 0;
 1855         splx(x);
 1856 }
 1857 
 1858 /*****************************************************************************/
 1859 
 1860 /*
 1861  *      Generic send command routine. This will send a message to the slave,
 1862  *      of the specified type with the specified argument. Must be very
 1863  *      carefull of data that will be copied out from shared memory -
 1864  *      containing command results. The command completion is all done from
 1865  *      a poll routine that does not have user coontext. Therefore you cannot
 1866  *      copy back directly into user space, or to the kernel stack of a
 1867  *      process. This routine does not sleep, so can be called from anywhere,
 1868  *      and must be called with interrupt locks set.
 1869  */
 1870 
 1871 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
 1872 {
 1873         volatile cdkhdr_t       *hdrp;
 1874         volatile cdkctrl_t      *cp;
 1875         volatile unsigned char  *bits;
 1876 
 1877 #if DEBUG
 1878         printf("stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
 1879                 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
 1880                 (int) arg, size, copyback);
 1881 #endif
 1882 
 1883         if (portp->state & ST_CMDING) {
 1884                 printf("STALLION: command already busy, cmd=%x!\n", (int) cmd);
 1885                 return;
 1886         }
 1887 
 1888         EBRDENABLE(brdp);
 1889         cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
 1890         if (size > 0) {
 1891                 bcopy(arg, (void *) &(cp->args[0]), size);
 1892                 if (copyback) {
 1893                         portp->argp = arg;
 1894                         portp->argsize = size;
 1895                 }
 1896         }
 1897         cp->status = 0;
 1898         cp->cmd = cmd;
 1899         hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 1900         bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
 1901                 portp->portidx;
 1902         *bits |= portp->portbit;
 1903         portp->state |= ST_CMDING;
 1904         EBRDDISABLE(brdp);
 1905 }
 1906 
 1907 /*****************************************************************************/
 1908 
 1909 /*
 1910  *      Read data from shared memory. This assumes that the shared memory
 1911  *      is enabled and that interrupts are off. Basically we just empty out
 1912  *      the shared memory buffer into the tty buffer. Must be carefull to
 1913  *      handle the case where we fill up the tty buffer, but still have
 1914  *      more chars to unload.
 1915  */
 1916 
 1917 static void stli_rxprocess(stlibrd_t *brdp, stliport_t *portp)
 1918 {
 1919         volatile cdkasyrq_t     *rp;
 1920         volatile char           *shbuf;
 1921         struct tty              *tp;
 1922         unsigned int            head, tail, size;
 1923         unsigned int            len, stlen, i;
 1924         int                     ch;
 1925 
 1926 #if DEBUG
 1927         printf("stli_rxprocess(brdp=%x,portp=%d)\n", (int) brdp, (int) portp);
 1928 #endif
 1929 
 1930         tp = &portp->tty;
 1931         if ((tp->t_state & TS_ISOPEN) == 0) {
 1932                 stli_flush(portp, FREAD);
 1933                 return;
 1934         }
 1935         if (tp->t_state & TS_TBLOCK)
 1936                 return;
 1937 
 1938         rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
 1939         head = (unsigned int) rp->head;
 1940         if (head != ((unsigned int) rp->head))
 1941                 head = (unsigned int) rp->head;
 1942         tail = (unsigned int) rp->tail;
 1943         size = portp->rxsize;
 1944         if (head >= tail) {
 1945                 len = head - tail;
 1946                 stlen = len;
 1947         } else {
 1948                 len = size - (tail - head);
 1949                 stlen = size - tail;
 1950         }
 1951 
 1952         if (len == 0)
 1953                 return;
 1954 
 1955         shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
 1956 
 1957 /*
 1958  *      If we can bypass normal LD processing then just copy direct
 1959  *      from board shared memory into the tty buffers.
 1960  */
 1961         if (tp->t_state & TS_CAN_BYPASS_L_RINT) {
 1962                 if (((tp->t_rawq.c_cc + len) >= TTYHOG) &&
 1963                     ((tp->t_cflag & CRTS_IFLOW) || (tp->t_iflag & IXOFF)) &&
 1964                     ((tp->t_state & TS_TBLOCK) == 0)) {
 1965                         ch = TTYHOG - tp->t_rawq.c_cc - 1;
 1966                         len = (ch > 0) ? ch : 0;
 1967                         stlen = MIN(stlen, len);
 1968                         tp->t_state |= TS_TBLOCK;
 1969                 }
 1970                 i = b_to_q((char *) (shbuf + tail), stlen, &tp->t_rawq);
 1971                 tail += stlen;
 1972                 len -= stlen;
 1973                 if (tail >= size) {
 1974                         tail = 0;
 1975                         i += b_to_q((char *) shbuf, len, &tp->t_rawq);
 1976                         tail += len;
 1977                 }
 1978                 portp->rxlost += i;
 1979                 ttwakeup(tp);
 1980                 rp = &((volatile cdkasy_t *)
 1981                         EBRDGETMEMPTR(brdp, portp->addr))->rxq;
 1982                 rp->tail = tail;
 1983 
 1984         } else {
 1985 /*
 1986  *              Copy the data from board shared memory into a local
 1987  *              memory buffer. Then feed them from here into the LD.
 1988  *              We don't want to go into board shared memory one char
 1989  *              at a time, it is too slow...
 1990  */
 1991                 if (len > TTYHOG) {
 1992                         len = TTYHOG - 1;
 1993                         stlen = min(len, stlen);
 1994                 }
 1995                 stli_rxtmpport = portp;
 1996                 stli_rxtmplen = len;
 1997                 bcopy((char *) (shbuf + tail), &stli_rxtmpbuf[0], stlen);
 1998                 len -= stlen;
 1999                 if (len > 0)
 2000                         bcopy((char *) shbuf, &stli_rxtmpbuf[stlen], len);
 2001                 
 2002                 for (i = 0; (i < stli_rxtmplen); i++) {
 2003                         ch = (unsigned char) stli_rxtmpbuf[i];
 2004                         (*linesw[tp->t_line].l_rint)(ch, tp);
 2005                 }
 2006                 EBRDENABLE(brdp);
 2007                 rp = &((volatile cdkasy_t *)
 2008                         EBRDGETMEMPTR(brdp, portp->addr))->rxq;
 2009                 if (stli_rxtmplen == 0) {
 2010                         head = (unsigned int) rp->head;
 2011                         if (head != ((unsigned int) rp->head))
 2012                                 head = (unsigned int) rp->head;
 2013                         tail = head;
 2014                 } else {
 2015                         tail += i;
 2016                         if (tail >= size)
 2017                                 tail -= size;
 2018                 }
 2019                 rp->tail = tail;
 2020                 stli_rxtmpport = (stliport_t *) NULL;
 2021                 stli_rxtmplen = 0;
 2022         }
 2023 
 2024         portp->state |= ST_RXING;
 2025 }
 2026 
 2027 /*****************************************************************************/
 2028 
 2029 /*
 2030  *      Set up and carry out any delayed commands. There is only a small set
 2031  *      of slave commands that can be done "off-level". So it is not too
 2032  *      difficult to deal with them as a special case here.
 2033  */
 2034 
 2035 static __inline void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
 2036 {
 2037         int     cmd;
 2038 
 2039         if (portp->state & ST_DOSIGS) {
 2040                 if ((portp->state & ST_DOFLUSHTX) &&
 2041                     (portp->state & ST_DOFLUSHRX))
 2042                         cmd = A_SETSIGNALSF;
 2043                 else if (portp->state & ST_DOFLUSHTX)
 2044                         cmd = A_SETSIGNALSFTX;
 2045                 else if (portp->state & ST_DOFLUSHRX)
 2046                         cmd = A_SETSIGNALSFRX;
 2047                 else
 2048                         cmd = A_SETSIGNALS;
 2049                 portp->state &= ~(ST_DOFLUSHTX | ST_DOFLUSHRX | ST_DOSIGS);
 2050                 bcopy((void *) &portp->asig, (void *) &(cp->args[0]),
 2051                         sizeof(asysigs_t));
 2052                 cp->status = 0;
 2053                 cp->cmd = cmd;
 2054                 portp->state |= ST_CMDING;
 2055         } else if ((portp->state & ST_DOFLUSHTX) ||
 2056             (portp->state & ST_DOFLUSHRX)) {
 2057                 cmd = ((portp->state & ST_DOFLUSHTX) ? FLUSHTX : 0);
 2058                 cmd |= ((portp->state & ST_DOFLUSHRX) ? FLUSHRX : 0);
 2059                 portp->state &= ~(ST_DOFLUSHTX | ST_DOFLUSHRX);
 2060                 bcopy((void *) &cmd, (void *) &(cp->args[0]), sizeof(int));
 2061                 cp->status = 0;
 2062                 cp->cmd = A_FLUSH;
 2063                 portp->state |= ST_CMDING;
 2064         }
 2065 }
 2066 
 2067 /*****************************************************************************/
 2068 
 2069 /*
 2070  *      Host command service checking. This handles commands or messages
 2071  *      coming from the slave to the host. Must have board shared memory
 2072  *      enabled and interrupts off when called. Notice that by servicing the
 2073  *      read data last we don't need to change the shared memory pointer
 2074  *      during processing (which is a slow IO operation).
 2075  *      Return value indicates if this port is still awaiting actions from
 2076  *      the slave (like open, command, or even TX data being sent). If 0
 2077  *      then port is still busy, otherwise the port request bit flag is
 2078  *      returned.
 2079  */
 2080 
 2081 static __inline int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
 2082 {
 2083         volatile cdkasy_t       *ap;
 2084         volatile cdkctrl_t      *cp;
 2085         asynotify_t             nt;
 2086         unsigned long           oldsigs;
 2087         unsigned int            head, tail;
 2088         int                     rc, donerx;
 2089 
 2090 #if DEBUG
 2091         printf("stli_hostcmd(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
 2092 #endif
 2093 
 2094         ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
 2095         cp = &ap->ctrl;
 2096 
 2097 /*
 2098  *      Check if we are waiting for an open completion message.
 2099  */
 2100         if (portp->state & ST_OPENING) {
 2101                 rc = (int) cp->openarg;
 2102                 if ((cp->open == 0) && (rc != 0)) {
 2103                         if (rc > 0)
 2104                                 rc--;
 2105                         cp->openarg = 0;
 2106                         portp->rc = rc;
 2107                         portp->state &= ~ST_OPENING;
 2108                         wakeup(&portp->state);
 2109                 }
 2110         }
 2111 
 2112 /*
 2113  *      Check if we are waiting for a close completion message.
 2114  */
 2115         if (portp->state & ST_CLOSING) {
 2116                 rc = (int) cp->closearg;
 2117                 if ((cp->close == 0) && (rc != 0)) {
 2118                         if (rc > 0)
 2119                                 rc--;
 2120                         cp->closearg = 0;
 2121                         portp->rc = rc;
 2122                         portp->state &= ~ST_CLOSING;
 2123                         wakeup(&portp->state);
 2124                 }
 2125         }
 2126 
 2127 /*
 2128  *      Check if we are waiting for a command completion message. We may
 2129  *      need to copy out the command results associated with this command.
 2130  */
 2131         if (portp->state & ST_CMDING) {
 2132                 rc = cp->status;
 2133                 if ((cp->cmd == 0) && (rc != 0)) {
 2134                         if (rc > 0)
 2135                                 rc--;
 2136                         if (portp->argp != (void *) NULL) {
 2137                                 bcopy((void *) &(cp->args[0]), portp->argp,
 2138                                         portp->argsize);
 2139                                 portp->argp = (void *) NULL;
 2140                         }
 2141                         cp->status = 0;
 2142                         portp->rc = rc;
 2143                         portp->state &= ~ST_CMDING;
 2144                         stli_dodelaycmd(portp, cp);
 2145                         wakeup(&portp->state);
 2146                 }
 2147         }
 2148 
 2149 /*
 2150  *      Check for any notification messages ready. This includes lots of
 2151  *      different types of events - RX chars ready, RX break received,
 2152  *      TX data low or empty in the slave, modem signals changed state.
 2153  *      Must be extremely carefull if we call to the LD, it may call
 2154  *      other routines of ours that will disable the memory...
 2155  *      Something else we need to be carefull of is race conditions on
 2156  *      marking the TX as empty...
 2157  */
 2158         donerx = 0;
 2159 
 2160         if (ap->notify) {
 2161                 struct tty      *tp;
 2162 
 2163                 nt = ap->changed;
 2164                 ap->notify = 0;
 2165                 tp = &portp->tty;
 2166 
 2167                 if (nt.signal & SG_DCD) {
 2168                         oldsigs = portp->sigs;
 2169                         portp->sigs = stli_mktiocm(nt.sigvalue);
 2170                         portp->state &= ~ST_GETSIGS;
 2171                         (*linesw[tp->t_line].l_modem)(tp,
 2172                                 (portp->sigs & TIOCM_CD));
 2173                         EBRDENABLE(brdp);
 2174                 }
 2175                 if (nt.data & DT_RXBUSY) {
 2176                         donerx++;
 2177                         stli_rxprocess(brdp, portp);
 2178                 }
 2179                 if (nt.data & DT_RXBREAK) {
 2180                         (*linesw[tp->t_line].l_rint)(TTY_BI, tp);
 2181                         EBRDENABLE(brdp);
 2182                 }
 2183                 if (nt.data & DT_TXEMPTY) {
 2184                         ap = (volatile cdkasy_t *)
 2185                                 EBRDGETMEMPTR(brdp, portp->addr);
 2186                         head = (unsigned int) ap->txq.head;
 2187                         tail = (unsigned int) ap->txq.tail;
 2188                         if (tail != ((unsigned int) ap->txq.tail))
 2189                                 tail = (unsigned int) ap->txq.tail;
 2190                         head = (head >= tail) ? (head - tail) :
 2191                                 portp->txsize - (tail - head);
 2192                         if (head == 0) {
 2193                                 portp->state &= ~ST_TXBUSY;
 2194                                 tp->t_state &= ~TS_BUSY;
 2195                         }
 2196                 }
 2197                 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
 2198                         (*linesw[tp->t_line].l_start)(tp);
 2199                         EBRDENABLE(brdp);
 2200                 }
 2201         }
 2202 
 2203 /*
 2204  *      It might seem odd that we are checking for more RX chars here.
 2205  *      But, we need to handle the case where the tty buffer was previously
 2206  *      filled, but we had more characters to pass up. The slave will not
 2207  *      send any more RX notify messages until the RX buffer has been emptied.
 2208  *      But it will leave the service bits on (since the buffer is not empty).
 2209  *      So from here we can try to process more RX chars.
 2210  */
 2211         if ((!donerx) && (portp->state & ST_RXING)) {
 2212                 portp->state &= ~ST_RXING;
 2213                 stli_rxprocess(brdp, portp);
 2214         }
 2215 
 2216         return((portp->state & (ST_OPENING | ST_CLOSING | ST_CMDING |
 2217                 ST_TXBUSY | ST_RXING)) ? 0 : 1);
 2218 }
 2219 
 2220 /*****************************************************************************/
 2221 
 2222 /*
 2223  *      Service all ports on a particular board. Assumes that the boards
 2224  *      shared memory is enabled, and that the page pointer is pointed
 2225  *      at the cdk header structure.
 2226  */
 2227 
 2228 static __inline void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
 2229 {
 2230         stliport_t      *portp;
 2231         unsigned char   hostbits[(STL_MAXCHANS / 8) + 1];
 2232         unsigned char   slavebits[(STL_MAXCHANS / 8) + 1];
 2233         unsigned char   *slavep;
 2234         int             bitpos, bitat, bitsize;
 2235         int             channr, nrdevs, slavebitchange;
 2236 
 2237         bitsize = brdp->bitsize;
 2238         nrdevs = brdp->nrdevs;
 2239 
 2240 /*
 2241  *      Check if slave wants any service. Basically we try to do as
 2242  *      little work as possible here. There are 2 levels of service
 2243  *      bits. So if there is nothing to do we bail early. We check
 2244  *      8 service bits at a time in the inner loop, so we can bypass
 2245  *      the lot if none of them want service.
 2246  */
 2247         bcopy((((unsigned char *) hdrp) + brdp->hostoffset), &hostbits[0],
 2248                 bitsize);
 2249 
 2250         bzero(&slavebits[0], bitsize);
 2251         slavebitchange = 0;
 2252 
 2253         for (bitpos = 0; (bitpos < bitsize); bitpos++) {
 2254                 if (hostbits[bitpos] == 0)
 2255                         continue;
 2256                 channr = bitpos * 8;
 2257                 bitat = 0x1;
 2258                 for (; (channr < nrdevs); channr++, bitat <<=1) {
 2259                         if (hostbits[bitpos] & bitat) {
 2260                                 portp = brdp->ports[(channr - 1)];
 2261                                 if (stli_hostcmd(brdp, portp)) {
 2262                                         slavebitchange++;
 2263                                         slavebits[bitpos] |= bitat;
 2264                                 }
 2265                         }
 2266                 }
 2267         }
 2268 
 2269 /*
 2270  *      If any of the ports are no longer busy then update them in the
 2271  *      slave request bits. We need to do this after, since a host port
 2272  *      service may initiate more slave requests...
 2273  */
 2274         if (slavebitchange) {
 2275                 hdrp = (volatile cdkhdr_t *)
 2276                         EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 2277                 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
 2278                 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
 2279                         if (slavebits[bitpos])
 2280                                 slavep[bitpos] &= ~slavebits[bitpos];
 2281                 }
 2282         }
 2283 }
 2284 
 2285 /*****************************************************************************/
 2286 
 2287 /*
 2288  *      Driver poll routine. This routine polls the boards in use and passes
 2289  *      messages back up to host when neccesary. This is actually very
 2290  *      CPU efficient, since we will always have the kernel poll clock, it
 2291  *      adds only a few cycles when idle (since board service can be
 2292  *      determined very easily), but when loaded generates no interrupts
 2293  *      (with their expensive associated context change).
 2294  */
 2295 
 2296 static void stli_poll(void *arg)
 2297 {
 2298         volatile cdkhdr_t       *hdrp;
 2299         stlibrd_t               *brdp;
 2300         int                     brdnr, x;
 2301 
 2302         x = spltty();
 2303 
 2304 /*
 2305  *      Check each board and do any servicing required.
 2306  */
 2307         for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
 2308                 brdp = stli_brds[brdnr];
 2309                 if (brdp == (stlibrd_t *) NULL)
 2310                         continue;
 2311                 if ((brdp->state & BST_STARTED) == 0)
 2312                         continue;
 2313 
 2314                 EBRDENABLE(brdp);
 2315                 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 2316                 if (hdrp->hostreq)
 2317                         stli_brdpoll(brdp, hdrp);
 2318                 EBRDDISABLE(brdp);
 2319         }
 2320         splx(x);
 2321 
 2322         timeout(stli_poll, 0, 1);
 2323 }
 2324 
 2325 /*****************************************************************************/
 2326 
 2327 /*
 2328  *      Translate the termios settings into the port setting structure of
 2329  *      the slave.
 2330  */
 2331 
 2332 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
 2333 {
 2334 #if DEBUG
 2335         printf("stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n", (int) portp,
 2336                 (int) pp, (int) tiosp);
 2337 #endif
 2338 
 2339         bzero(pp, sizeof(asyport_t));
 2340 
 2341 /*
 2342  *      Start of by setting the baud, char size, parity and stop bit info.
 2343  */
 2344         if (tiosp->c_ispeed == 0)
 2345                 tiosp->c_ispeed = tiosp->c_ospeed;
 2346         if ((tiosp->c_ospeed < 0) || (tiosp->c_ospeed > STL_MAXBAUD))
 2347                 tiosp->c_ospeed = STL_MAXBAUD;
 2348         pp->baudout = tiosp->c_ospeed;
 2349         pp->baudin = pp->baudout;
 2350 
 2351         switch (tiosp->c_cflag & CSIZE) {
 2352         case CS5:
 2353                 pp->csize = 5;
 2354                 break;
 2355         case CS6:
 2356                 pp->csize = 6;
 2357                 break;
 2358         case CS7:
 2359                 pp->csize = 7;
 2360                 break;
 2361         default:
 2362                 pp->csize = 8;
 2363                 break;
 2364         }
 2365 
 2366         if (tiosp->c_cflag & CSTOPB)
 2367                 pp->stopbs = PT_STOP2;
 2368         else
 2369                 pp->stopbs = PT_STOP1;
 2370 
 2371         if (tiosp->c_cflag & PARENB) {
 2372                 if (tiosp->c_cflag & PARODD)
 2373                         pp->parity = PT_ODDPARITY;
 2374                 else
 2375                         pp->parity = PT_EVENPARITY;
 2376         } else {
 2377                 pp->parity = PT_NOPARITY;
 2378         }
 2379 
 2380         if (tiosp->c_iflag & ISTRIP)
 2381                 pp->iflag |= FI_ISTRIP;
 2382 
 2383 /*
 2384  *      Set up any flow control options enabled.
 2385  */
 2386         if (tiosp->c_iflag & IXON) {
 2387                 pp->flow |= F_IXON;
 2388                 if (tiosp->c_iflag & IXANY)
 2389                         pp->flow |= F_IXANY;
 2390         }
 2391         if (tiosp->c_iflag & IXOFF)
 2392                 pp->flow |= F_IXOFF;
 2393         if (tiosp->c_cflag & CCTS_OFLOW)
 2394                 pp->flow |= F_CTSFLOW;
 2395         if (tiosp->c_cflag & CRTS_IFLOW)
 2396                 pp->flow |= F_RTSFLOW;
 2397 
 2398         pp->startin = tiosp->c_cc[VSTART];
 2399         pp->stopin = tiosp->c_cc[VSTOP];
 2400         pp->startout = tiosp->c_cc[VSTART];
 2401         pp->stopout = tiosp->c_cc[VSTOP];
 2402 
 2403 /*
 2404  *      Set up the RX char marking mask with those RX error types we must
 2405  *      catch. We can get the slave to help us out a little here, it will
 2406  *      ignore parity errors and breaks for us, and mark parity errors in
 2407  *      the data stream.
 2408  */
 2409         if (tiosp->c_iflag & IGNPAR)
 2410                 pp->iflag |= FI_IGNRXERRS;
 2411         if (tiosp->c_iflag & IGNBRK)
 2412                 pp->iflag |= FI_IGNBREAK;
 2413         if (tiosp->c_iflag & (INPCK | PARMRK))
 2414                 pp->iflag |= FI_1MARKRXERRS;
 2415 
 2416 /*
 2417  *      Transfer any persistent flags into the asyport structure.
 2418  */
 2419         pp->pflag = portp->pflag;
 2420 }
 2421 
 2422 /*****************************************************************************/
 2423 
 2424 /*
 2425  *      Construct a slave signals structure for setting the DTR and RTS
 2426  *      signals as specified.
 2427  */
 2428 
 2429 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
 2430 {
 2431 #if DEBUG
 2432         printf("stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n", (int) sp, dtr, rts);
 2433 #endif
 2434 
 2435         bzero(sp, sizeof(asysigs_t));
 2436         if (dtr >= 0) {
 2437                 sp->signal |= SG_DTR;
 2438                 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
 2439         }
 2440         if (rts >= 0) {
 2441                 sp->signal |= SG_RTS;
 2442                 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
 2443         }
 2444 }
 2445 
 2446 /*****************************************************************************/
 2447 
 2448 /*
 2449  *      Convert the signals returned from the slave into a local TIOCM type
 2450  *      signals value. We keep them localy in TIOCM format.
 2451  */
 2452 
 2453 static long stli_mktiocm(unsigned long sigvalue)
 2454 {
 2455         long    tiocm;
 2456 
 2457 #if DEBUG
 2458         printf("stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
 2459 #endif
 2460 
 2461         tiocm = 0;
 2462         tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
 2463         tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
 2464         tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
 2465         tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
 2466         tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
 2467         tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
 2468         return(tiocm);
 2469 }
 2470 
 2471 /*****************************************************************************/
 2472 
 2473 /*
 2474  *      Enable l_rint processing bypass mode if tty modes allow it.
 2475  */
 2476 
 2477 static void stli_ttyoptim(stliport_t *portp, struct termios *tiosp)
 2478 {
 2479         struct tty      *tp;
 2480 
 2481         tp = &portp->tty;
 2482         if (((tiosp->c_iflag & (ICRNL | IGNCR | IMAXBEL | INLCR)) == 0) &&
 2483             (((tiosp->c_iflag & BRKINT) == 0) || (tiosp->c_iflag & IGNBRK)) &&
 2484             (((tiosp->c_iflag & PARMRK) == 0) ||
 2485                 ((tiosp->c_iflag & (IGNPAR | IGNBRK)) == (IGNPAR | IGNBRK))) &&
 2486             ((tiosp->c_lflag & (ECHO | ICANON | IEXTEN | ISIG | PENDIN)) ==0) &&
 2487             (linesw[tp->t_line].l_rint == ttyinput))
 2488                 tp->t_state |= TS_CAN_BYPASS_L_RINT;
 2489         else
 2490                 tp->t_state &= ~TS_CAN_BYPASS_L_RINT;
 2491         portp->hotchar = linesw[tp->t_line].l_hotchar;
 2492 }
 2493 
 2494 /*****************************************************************************/
 2495 
 2496 /*
 2497  *      All panels and ports actually attached have been worked out. All
 2498  *      we need to do here is set up the appropriate per port data structures.
 2499  */
 2500 
 2501 static int stli_initports(stlibrd_t *brdp)
 2502 {
 2503         stliport_t      *portp;
 2504         int             i, panelnr, panelport;
 2505 
 2506 #if DEBUG
 2507         printf("stli_initports(brdp=%x)\n", (int) brdp);
 2508 #endif
 2509 
 2510         for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
 2511                 portp = (stliport_t *) malloc(sizeof(stliport_t), M_TTYS,
 2512                         M_NOWAIT | M_ZERO);
 2513                 if (portp == (stliport_t *) NULL) {
 2514                         printf("STALLION: failed to allocate port structure\n");
 2515                         continue;
 2516                 }
 2517 
 2518                 portp->portnr = i;
 2519                 portp->brdnr = brdp->brdnr;
 2520                 portp->panelnr = panelnr;
 2521                 portp->initintios.c_ispeed = STL_DEFSPEED;
 2522                 portp->initintios.c_ospeed = STL_DEFSPEED;
 2523                 portp->initintios.c_cflag = STL_DEFCFLAG;
 2524                 portp->initintios.c_iflag = 0;
 2525                 portp->initintios.c_oflag = 0;
 2526                 portp->initintios.c_lflag = 0;
 2527                 bcopy(&ttydefchars[0], &portp->initintios.c_cc[0],
 2528                         sizeof(portp->initintios.c_cc));
 2529                 portp->initouttios = portp->initintios;
 2530                 portp->dtrwait = 3 * hz;
 2531 
 2532                 panelport++;
 2533                 if (panelport >= brdp->panels[panelnr]) {
 2534                         panelport = 0;
 2535                         panelnr++;
 2536                 }
 2537                 brdp->ports[i] = portp;
 2538         }
 2539 
 2540         return(0);
 2541 }
 2542 
 2543 /*****************************************************************************/
 2544 
 2545 /*
 2546  *      All the following routines are board specific hardware operations.
 2547  */
 2548 
 2549 static void stli_ecpinit(stlibrd_t *brdp)
 2550 {
 2551         unsigned long   memconf;
 2552 
 2553 #if DEBUG
 2554         printf("stli_ecpinit(brdp=%d)\n", (int) brdp);
 2555 #endif
 2556 
 2557         outb((brdp->iobase + ECP_ATCONFR), ECP_ATSTOP);
 2558         DELAY(10);
 2559         outb((brdp->iobase + ECP_ATCONFR), ECP_ATDISABLE);
 2560         DELAY(100);
 2561 
 2562         memconf = (brdp->paddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
 2563         outb((brdp->iobase + ECP_ATMEMAR), memconf);
 2564 }
 2565 
 2566 /*****************************************************************************/
 2567 
 2568 static void stli_ecpenable(stlibrd_t *brdp)
 2569 {       
 2570 #if DEBUG
 2571         printf("stli_ecpenable(brdp=%x)\n", (int) brdp);
 2572 #endif
 2573         outb((brdp->iobase + ECP_ATCONFR), ECP_ATENABLE);
 2574 }
 2575 
 2576 /*****************************************************************************/
 2577 
 2578 static void stli_ecpdisable(stlibrd_t *brdp)
 2579 {       
 2580 #if DEBUG
 2581         printf("stli_ecpdisable(brdp=%x)\n", (int) brdp);
 2582 #endif
 2583         outb((brdp->iobase + ECP_ATCONFR), ECP_ATDISABLE);
 2584 }
 2585 
 2586 /*****************************************************************************/
 2587 
 2588 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 2589 {       
 2590         void            *ptr;
 2591         unsigned char   val;
 2592 
 2593 #if DEBUG
 2594         printf("stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
 2595                 (int) offset);
 2596 #endif
 2597 
 2598         if (offset > brdp->memsize) {
 2599                 printf("STALLION: shared memory pointer=%x out of range at "
 2600                         "line=%d(%d), brd=%d\n", (int) offset, line,
 2601                         __LINE__, brdp->brdnr);
 2602                 ptr = 0;
 2603                 val = 0;
 2604         } else {
 2605                 ptr = (char *) brdp->vaddr + (offset % ECP_ATPAGESIZE);
 2606                 val = (unsigned char) (offset / ECP_ATPAGESIZE);
 2607         }
 2608         outb((brdp->iobase + ECP_ATMEMPR), val);
 2609         return(ptr);
 2610 }
 2611 
 2612 /*****************************************************************************/
 2613 
 2614 static void stli_ecpreset(stlibrd_t *brdp)
 2615 {       
 2616 #if DEBUG
 2617         printf("stli_ecpreset(brdp=%x)\n", (int) brdp);
 2618 #endif
 2619 
 2620         outb((brdp->iobase + ECP_ATCONFR), ECP_ATSTOP);
 2621         DELAY(10);
 2622         outb((brdp->iobase + ECP_ATCONFR), ECP_ATDISABLE);
 2623         DELAY(500);
 2624 }
 2625 
 2626 /*****************************************************************************/
 2627 
 2628 static void stli_ecpintr(stlibrd_t *brdp)
 2629 {       
 2630 #if DEBUG
 2631         printf("stli_ecpintr(brdp=%x)\n", (int) brdp);
 2632 #endif
 2633         outb(brdp->iobase, 0x1);
 2634 }
 2635 
 2636 /*****************************************************************************/
 2637 
 2638 /*
 2639  *      The following set of functions act on ECP EISA boards.
 2640  */
 2641 
 2642 static void stli_ecpeiinit(stlibrd_t *brdp)
 2643 {
 2644         unsigned long   memconf;
 2645 
 2646 #if DEBUG
 2647         printf("stli_ecpeiinit(brdp=%x)\n", (int) brdp);
 2648 #endif
 2649 
 2650         outb((brdp->iobase + ECP_EIBRDENAB), 0x1);
 2651         outb((brdp->iobase + ECP_EICONFR), ECP_EISTOP);
 2652         DELAY(10);
 2653         outb((brdp->iobase + ECP_EICONFR), ECP_EIDISABLE);
 2654         DELAY(500);
 2655 
 2656         memconf = (brdp->paddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
 2657         outb((brdp->iobase + ECP_EIMEMARL), memconf);
 2658         memconf = (brdp->paddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
 2659         outb((brdp->iobase + ECP_EIMEMARH), memconf);
 2660 }
 2661 
 2662 /*****************************************************************************/
 2663 
 2664 static void stli_ecpeienable(stlibrd_t *brdp)
 2665 {       
 2666         outb((brdp->iobase + ECP_EICONFR), ECP_EIENABLE);
 2667 }
 2668 
 2669 /*****************************************************************************/
 2670 
 2671 static void stli_ecpeidisable(stlibrd_t *brdp)
 2672 {       
 2673         outb((brdp->iobase + ECP_EICONFR), ECP_EIDISABLE);
 2674 }
 2675 
 2676 /*****************************************************************************/
 2677 
 2678 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 2679 {       
 2680         void            *ptr;
 2681         unsigned char   val;
 2682 
 2683 #if DEBUG
 2684         printf("stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
 2685                 (int) brdp, (int) offset, line);
 2686 #endif
 2687 
 2688         if (offset > brdp->memsize) {
 2689                 printf("STALLION: shared memory pointer=%x out of range at "
 2690                         "line=%d(%d), brd=%d\n", (int) offset, line,
 2691                         __LINE__, brdp->brdnr);
 2692                 ptr = 0;
 2693                 val = 0;
 2694         } else {
 2695                 ptr = (char *) brdp->vaddr + (offset % ECP_EIPAGESIZE);
 2696                 if (offset < ECP_EIPAGESIZE)
 2697                         val = ECP_EIENABLE;
 2698                 else
 2699                         val = ECP_EIENABLE | 0x40;
 2700         }
 2701         outb((brdp->iobase + ECP_EICONFR), val);
 2702         return(ptr);
 2703 }
 2704 
 2705 /*****************************************************************************/
 2706 
 2707 static void stli_ecpeireset(stlibrd_t *brdp)
 2708 {       
 2709         outb((brdp->iobase + ECP_EICONFR), ECP_EISTOP);
 2710         DELAY(10);
 2711         outb((brdp->iobase + ECP_EICONFR), ECP_EIDISABLE);
 2712         DELAY(500);
 2713 }
 2714 
 2715 /*****************************************************************************/
 2716 
 2717 /*
 2718  *      The following set of functions act on ECP MCA boards.
 2719  */
 2720 
 2721 static void stli_ecpmcenable(stlibrd_t *brdp)
 2722 {       
 2723         outb((brdp->iobase + ECP_MCCONFR), ECP_MCENABLE);
 2724 }
 2725 
 2726 /*****************************************************************************/
 2727 
 2728 static void stli_ecpmcdisable(stlibrd_t *brdp)
 2729 {       
 2730         outb((brdp->iobase + ECP_MCCONFR), ECP_MCDISABLE);
 2731 }
 2732 
 2733 /*****************************************************************************/
 2734 
 2735 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 2736 {       
 2737         void            *ptr;
 2738         unsigned char   val;
 2739 
 2740         if (offset > brdp->memsize) {
 2741                 printf("STALLION: shared memory pointer=%x out of range at "
 2742                         "line=%d(%d), brd=%d\n", (int) offset, line,
 2743                         __LINE__, brdp->brdnr);
 2744                 ptr = 0;
 2745                 val = 0;
 2746         } else {
 2747                 ptr = (char *) brdp->vaddr + (offset % ECP_MCPAGESIZE);
 2748                 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
 2749         }
 2750         outb((brdp->iobase + ECP_MCCONFR), val);
 2751         return(ptr);
 2752 }
 2753 
 2754 /*****************************************************************************/
 2755 
 2756 static void stli_ecpmcreset(stlibrd_t *brdp)
 2757 {       
 2758         outb((brdp->iobase + ECP_MCCONFR), ECP_MCSTOP);
 2759         DELAY(10);
 2760         outb((brdp->iobase + ECP_MCCONFR), ECP_MCDISABLE);
 2761         DELAY(500);
 2762 }
 2763 
 2764 /*****************************************************************************/
 2765 
 2766 /*
 2767  *      The following routines act on ONboards.
 2768  */
 2769 
 2770 static void stli_onbinit(stlibrd_t *brdp)
 2771 {
 2772         unsigned long   memconf;
 2773         int             i;
 2774 
 2775 #if DEBUG
 2776         printf("stli_onbinit(brdp=%d)\n", (int) brdp);
 2777 #endif
 2778 
 2779         outb((brdp->iobase + ONB_ATCONFR), ONB_ATSTOP);
 2780         DELAY(10);
 2781         outb((brdp->iobase + ONB_ATCONFR), ONB_ATDISABLE);
 2782         for (i = 0; (i < 1000); i++)
 2783                 DELAY(1000);
 2784 
 2785         memconf = (brdp->paddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
 2786         outb((brdp->iobase + ONB_ATMEMAR), memconf);
 2787         outb(brdp->iobase, 0x1);
 2788         DELAY(1000);
 2789 }
 2790 
 2791 /*****************************************************************************/
 2792 
 2793 static void stli_onbenable(stlibrd_t *brdp)
 2794 {       
 2795 #if DEBUG
 2796         printf("stli_onbenable(brdp=%x)\n", (int) brdp);
 2797 #endif
 2798         outb((brdp->iobase + ONB_ATCONFR), (ONB_ATENABLE | brdp->confbits));
 2799 }
 2800 
 2801 /*****************************************************************************/
 2802 
 2803 static void stli_onbdisable(stlibrd_t *brdp)
 2804 {       
 2805 #if DEBUG
 2806         printf("stli_onbdisable(brdp=%x)\n", (int) brdp);
 2807 #endif
 2808         outb((brdp->iobase + ONB_ATCONFR), (ONB_ATDISABLE | brdp->confbits));
 2809 }
 2810 
 2811 /*****************************************************************************/
 2812 
 2813 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 2814 {       
 2815         void    *ptr;
 2816 
 2817 #if DEBUG
 2818         printf("stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
 2819                 (int) offset);
 2820 #endif
 2821 
 2822         if (offset > brdp->memsize) {
 2823                 printf("STALLION: shared memory pointer=%x out of range at "
 2824                         "line=%d(%d), brd=%d\n", (int) offset, line,
 2825                         __LINE__, brdp->brdnr);
 2826                 ptr = 0;
 2827         } else {
 2828                 ptr = (char *) brdp->vaddr + (offset % ONB_ATPAGESIZE);
 2829         }
 2830         return(ptr);
 2831 }
 2832 
 2833 /*****************************************************************************/
 2834 
 2835 static void stli_onbreset(stlibrd_t *brdp)
 2836 {       
 2837         int     i;
 2838 
 2839 #if DEBUG
 2840         printf("stli_onbreset(brdp=%x)\n", (int) brdp);
 2841 #endif
 2842 
 2843         outb((brdp->iobase + ONB_ATCONFR), ONB_ATSTOP);
 2844         DELAY(10);
 2845         outb((brdp->iobase + ONB_ATCONFR), ONB_ATDISABLE);
 2846         for (i = 0; (i < 1000); i++)
 2847                 DELAY(1000);
 2848 }
 2849 
 2850 /*****************************************************************************/
 2851 
 2852 /*
 2853  *      The following routines act on ONboard EISA.
 2854  */
 2855 
 2856 static void stli_onbeinit(stlibrd_t *brdp)
 2857 {
 2858         unsigned long   memconf;
 2859         int             i;
 2860 
 2861 #if DEBUG
 2862         printf("stli_onbeinit(brdp=%d)\n", (int) brdp);
 2863 #endif
 2864 
 2865         outb((brdp->iobase + ONB_EIBRDENAB), 0x1);
 2866         outb((brdp->iobase + ONB_EICONFR), ONB_EISTOP);
 2867         DELAY(10);
 2868         outb((brdp->iobase + ONB_EICONFR), ONB_EIDISABLE);
 2869         for (i = 0; (i < 1000); i++)
 2870                 DELAY(1000);
 2871 
 2872         memconf = (brdp->paddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
 2873         outb((brdp->iobase + ONB_EIMEMARL), memconf);
 2874         memconf = (brdp->paddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
 2875         outb((brdp->iobase + ONB_EIMEMARH), memconf);
 2876         outb(brdp->iobase, 0x1);
 2877         DELAY(1000);
 2878 }
 2879 
 2880 /*****************************************************************************/
 2881 
 2882 static void stli_onbeenable(stlibrd_t *brdp)
 2883 {       
 2884 #if DEBUG
 2885         printf("stli_onbeenable(brdp=%x)\n", (int) brdp);
 2886 #endif
 2887         outb((brdp->iobase + ONB_EICONFR), ONB_EIENABLE);
 2888 }
 2889 
 2890 /*****************************************************************************/
 2891 
 2892 static void stli_onbedisable(stlibrd_t *brdp)
 2893 {       
 2894 #if DEBUG
 2895         printf("stli_onbedisable(brdp=%x)\n", (int) brdp);
 2896 #endif
 2897         outb((brdp->iobase + ONB_EICONFR), ONB_EIDISABLE);
 2898 }
 2899 
 2900 /*****************************************************************************/
 2901 
 2902 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 2903 {       
 2904         void            *ptr;
 2905         unsigned char   val;
 2906 
 2907 #if DEBUG
 2908         printf("stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n", (int) brdp,
 2909                 (int) offset, line);
 2910 #endif
 2911 
 2912         if (offset > brdp->memsize) {
 2913                 printf("STALLION: shared memory pointer=%x out of range at "
 2914                         "line=%d(%d), brd=%d\n", (int) offset, line,
 2915                         __LINE__, brdp->brdnr);
 2916                 ptr = 0;
 2917                 val = 0;
 2918         } else {
 2919                 ptr = (char *) brdp->vaddr + (offset % ONB_EIPAGESIZE);
 2920                 if (offset < ONB_EIPAGESIZE)
 2921                         val = ONB_EIENABLE;
 2922                 else
 2923                         val = ONB_EIENABLE | 0x40;
 2924         }
 2925         outb((brdp->iobase + ONB_EICONFR), val);
 2926         return(ptr);
 2927 }
 2928 
 2929 /*****************************************************************************/
 2930 
 2931 static void stli_onbereset(stlibrd_t *brdp)
 2932 {       
 2933         int     i;
 2934 
 2935 #if DEBUG
 2936         printf("stli_onbereset(brdp=%x)\n", (int) brdp);
 2937 #endif
 2938 
 2939         outb((brdp->iobase + ONB_EICONFR), ONB_EISTOP);
 2940         DELAY(10);
 2941         outb((brdp->iobase + ONB_EICONFR), ONB_EIDISABLE);
 2942         for (i = 0; (i < 1000); i++)
 2943                 DELAY(1000);
 2944 }
 2945 
 2946 /*****************************************************************************/
 2947 
 2948 /*
 2949  *      The following routines act on Brumby boards.
 2950  */
 2951 
 2952 static void stli_bbyinit(stlibrd_t *brdp)
 2953 {
 2954         int     i;
 2955 
 2956 #if DEBUG
 2957         printf("stli_bbyinit(brdp=%d)\n", (int) brdp);
 2958 #endif
 2959 
 2960         outb((brdp->iobase + BBY_ATCONFR), BBY_ATSTOP);
 2961         DELAY(10);
 2962         outb((brdp->iobase + BBY_ATCONFR), 0);
 2963         for (i = 0; (i < 1000); i++)
 2964                 DELAY(1000);
 2965         outb(brdp->iobase, 0x1);
 2966         DELAY(1000);
 2967 }
 2968 
 2969 /*****************************************************************************/
 2970 
 2971 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 2972 {       
 2973         void            *ptr;
 2974         unsigned char   val;
 2975 
 2976 #if DEBUG
 2977         printf("stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
 2978                 (int) offset);
 2979 #endif
 2980 
 2981         if (offset > brdp->memsize) {
 2982                 printf("STALLION: shared memory pointer=%x out of range at "
 2983                         "line=%d(%d), brd=%d\n", (int) offset, line,
 2984                         __LINE__, brdp->brdnr);
 2985                 ptr = 0;
 2986                 val = 0;
 2987         } else {
 2988                 ptr = (char *) brdp->vaddr + (offset % BBY_PAGESIZE);
 2989                 val = (unsigned char) (offset / BBY_PAGESIZE);
 2990         }
 2991         outb((brdp->iobase + BBY_ATCONFR), val);
 2992         return(ptr);
 2993 }
 2994 
 2995 /*****************************************************************************/
 2996 
 2997 static void stli_bbyreset(stlibrd_t *brdp)
 2998 {       
 2999         int     i;
 3000 
 3001 #if DEBUG
 3002         printf("stli_bbyreset(brdp=%x)\n", (int) brdp);
 3003 #endif
 3004 
 3005         outb((brdp->iobase + BBY_ATCONFR), BBY_ATSTOP);
 3006         DELAY(10);
 3007         outb((brdp->iobase + BBY_ATCONFR), 0);
 3008         for (i = 0; (i < 1000); i++)
 3009                 DELAY(1000);
 3010 }
 3011 
 3012 /*****************************************************************************/
 3013 
 3014 /*
 3015  *      The following routines act on original old Stallion boards.
 3016  */
 3017 
 3018 static void stli_stalinit(stlibrd_t *brdp)
 3019 {
 3020         int     i;
 3021 
 3022 #if DEBUG
 3023         printf("stli_stalinit(brdp=%d)\n", (int) brdp);
 3024 #endif
 3025 
 3026         outb(brdp->iobase, 0x1);
 3027         for (i = 0; (i < 1000); i++)
 3028                 DELAY(1000);
 3029 }
 3030 
 3031 /*****************************************************************************/
 3032 
 3033 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
 3034 {       
 3035         void    *ptr;
 3036 
 3037 #if DEBUG
 3038         printf("stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
 3039                 (int) offset);
 3040 #endif
 3041 
 3042         if (offset > brdp->memsize) {
 3043                 printf("STALLION: shared memory pointer=%x out of range at "
 3044                         "line=%d(%d), brd=%d\n", (int) offset, line,
 3045                         __LINE__, brdp->brdnr);
 3046                 ptr = 0;
 3047         } else {
 3048                 ptr = (char *) brdp->vaddr + (offset % STAL_PAGESIZE);
 3049         }
 3050         return(ptr);
 3051 }
 3052 
 3053 /*****************************************************************************/
 3054 
 3055 static void stli_stalreset(stlibrd_t *brdp)
 3056 {       
 3057         volatile unsigned long  *vecp;
 3058         int                     i;
 3059 
 3060 #if DEBUG
 3061         printf("stli_stalreset(brdp=%x)\n", (int) brdp);
 3062 #endif
 3063 
 3064         vecp = (volatile unsigned long *) ((char *) brdp->vaddr + 0x30);
 3065         *vecp = 0xffff0000;
 3066         outb(brdp->iobase, 0);
 3067         for (i = 0; (i < 1000); i++)
 3068                 DELAY(1000);
 3069 }
 3070 
 3071 /*****************************************************************************/
 3072 
 3073 /*
 3074  *      Try to find an ECP board and initialize it. This handles only ECP
 3075  *      board types.
 3076  */
 3077 
 3078 static int stli_initecp(stlibrd_t *brdp)
 3079 {
 3080         cdkecpsig_t     sig;
 3081         cdkecpsig_t     *sigsp;
 3082         unsigned int    status, nxtid;
 3083         int             panelnr;
 3084 
 3085 #if DEBUG
 3086         printf("stli_initecp(brdp=%x)\n", (int) brdp);
 3087 #endif
 3088 
 3089 /*
 3090  *      Do a basic sanity check on the IO and memory addresses.
 3091  */
 3092         if ((brdp->iobase == 0) || (brdp->paddr == 0))
 3093                 return(EINVAL);
 3094 
 3095 /*
 3096  *      Based on the specific board type setup the common vars to access
 3097  *      and enable shared memory. Set all board specific information now
 3098  *      as well.
 3099  */
 3100         switch (brdp->brdtype) {
 3101         case BRD_ECP:
 3102                 brdp->memsize = ECP_MEMSIZE;
 3103                 brdp->pagesize = ECP_ATPAGESIZE;
 3104                 brdp->init = stli_ecpinit;
 3105                 brdp->enable = stli_ecpenable;
 3106                 brdp->reenable = stli_ecpenable;
 3107                 brdp->disable = stli_ecpdisable;
 3108                 brdp->getmemptr = stli_ecpgetmemptr;
 3109                 brdp->intr = stli_ecpintr;
 3110                 brdp->reset = stli_ecpreset;
 3111                 break;
 3112 
 3113         case BRD_ECPE:
 3114                 brdp->memsize = ECP_MEMSIZE;
 3115                 brdp->pagesize = ECP_EIPAGESIZE;
 3116                 brdp->init = stli_ecpeiinit;
 3117                 brdp->enable = stli_ecpeienable;
 3118                 brdp->reenable = stli_ecpeienable;
 3119                 brdp->disable = stli_ecpeidisable;
 3120                 brdp->getmemptr = stli_ecpeigetmemptr;
 3121                 brdp->intr = stli_ecpintr;
 3122                 brdp->reset = stli_ecpeireset;
 3123                 break;
 3124 
 3125         case BRD_ECPMC:
 3126                 brdp->memsize = ECP_MEMSIZE;
 3127                 brdp->pagesize = ECP_MCPAGESIZE;
 3128                 brdp->init = NULL;
 3129                 brdp->enable = stli_ecpmcenable;
 3130                 brdp->reenable = stli_ecpmcenable;
 3131                 brdp->disable = stli_ecpmcdisable;
 3132                 brdp->getmemptr = stli_ecpmcgetmemptr;
 3133                 brdp->intr = stli_ecpintr;
 3134                 brdp->reset = stli_ecpmcreset;
 3135                 break;
 3136 
 3137         default:
 3138                 return(EINVAL);
 3139         }
 3140 
 3141 /*
 3142  *      The per-board operations structure is all setup, so now lets go
 3143  *      and get the board operational. Firstly initialize board configuration
 3144  *      registers.
 3145  */
 3146         EBRDINIT(brdp);
 3147 
 3148 /*
 3149  *      Now that all specific code is set up, enable the shared memory and
 3150  *      look for the a signature area that will tell us exactly what board
 3151  *      this is, and what it is connected to it.
 3152  */
 3153         EBRDENABLE(brdp);
 3154         sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
 3155         bcopy(sigsp, &sig, sizeof(cdkecpsig_t));
 3156         EBRDDISABLE(brdp);
 3157 
 3158 #if 0
 3159         printf("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
 3160                 __file__, __LINE__, (int) sig.magic, sig.romver,
 3161                 sig.panelid[0], (int) sig.panelid[1], (int) sig.panelid[2],
 3162                 (int) sig.panelid[3], (int) sig.panelid[4],
 3163                 (int) sig.panelid[5], (int) sig.panelid[6],
 3164                 (int) sig.panelid[7]);
 3165 #endif
 3166 
 3167         if (sig.magic != ECP_MAGIC)
 3168                 return(ENXIO);
 3169 
 3170 /*
 3171  *      Scan through the signature looking at the panels connected to the
 3172  *      board. Calculate the total number of ports as we go.
 3173  */
 3174         for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
 3175                 status = sig.panelid[nxtid];
 3176                 if ((status & ECH_PNLIDMASK) != nxtid)
 3177                         break;
 3178                 brdp->panelids[panelnr] = status;
 3179                 if (status & ECH_PNL16PORT) {
 3180                         brdp->panels[panelnr] = 16;
 3181                         brdp->nrports += 16;
 3182                         nxtid += 2;
 3183                 } else {
 3184                         brdp->panels[panelnr] = 8;
 3185                         brdp->nrports += 8;
 3186                         nxtid++;
 3187                 }
 3188                 brdp->nrpanels++;
 3189         }
 3190 
 3191         brdp->state |= BST_FOUND;
 3192         return(0);
 3193 }
 3194 
 3195 /*****************************************************************************/
 3196 
 3197 /*
 3198  *      Try to find an ONboard, Brumby or Stallion board and initialize it.
 3199  *      This handles only these board types.
 3200  */
 3201 
 3202 static int stli_initonb(stlibrd_t *brdp)
 3203 {
 3204         cdkonbsig_t     sig;
 3205         cdkonbsig_t     *sigsp;
 3206         int             i;
 3207 
 3208 #if DEBUG
 3209         printf("stli_initonb(brdp=%x)\n", (int) brdp);
 3210 #endif
 3211 
 3212 /*
 3213  *      Do a basic sanity check on the IO and memory addresses.
 3214  */
 3215         if ((brdp->iobase == 0) || (brdp->paddr == 0))
 3216                 return(EINVAL);
 3217 
 3218 /*
 3219  *      Based on the specific board type setup the common vars to access
 3220  *      and enable shared memory. Set all board specific information now
 3221  *      as well.
 3222  */
 3223         switch (brdp->brdtype) {
 3224         case BRD_ONBOARD:
 3225         case BRD_ONBOARD32:
 3226         case BRD_ONBOARD2:
 3227         case BRD_ONBOARD2_32:
 3228         case BRD_ONBOARDRS:
 3229                 brdp->memsize = ONB_MEMSIZE;
 3230                 brdp->pagesize = ONB_ATPAGESIZE;
 3231                 brdp->init = stli_onbinit;
 3232                 brdp->enable = stli_onbenable;
 3233                 brdp->reenable = stli_onbenable;
 3234                 brdp->disable = stli_onbdisable;
 3235                 brdp->getmemptr = stli_onbgetmemptr;
 3236                 brdp->intr = stli_ecpintr;
 3237                 brdp->reset = stli_onbreset;
 3238                 brdp->confbits = (brdp->paddr > 0x100000) ? ONB_HIMEMENAB : 0;
 3239                 break;
 3240 
 3241         case BRD_ONBOARDE:
 3242                 brdp->memsize = ONB_EIMEMSIZE;
 3243                 brdp->pagesize = ONB_EIPAGESIZE;
 3244                 brdp->init = stli_onbeinit;
 3245                 brdp->enable = stli_onbeenable;
 3246                 brdp->reenable = stli_onbeenable;
 3247                 brdp->disable = stli_onbedisable;
 3248                 brdp->getmemptr = stli_onbegetmemptr;
 3249                 brdp->intr = stli_ecpintr;
 3250                 brdp->reset = stli_onbereset;
 3251                 break;
 3252 
 3253         case BRD_BRUMBY4:
 3254         case BRD_BRUMBY8:
 3255         case BRD_BRUMBY16:
 3256                 brdp->memsize = BBY_MEMSIZE;
 3257                 brdp->pagesize = BBY_PAGESIZE;
 3258                 brdp->init = stli_bbyinit;
 3259                 brdp->enable = NULL;
 3260                 brdp->reenable = NULL;
 3261                 brdp->disable = NULL;
 3262                 brdp->getmemptr = stli_bbygetmemptr;
 3263                 brdp->intr = stli_ecpintr;
 3264                 brdp->reset = stli_bbyreset;
 3265                 break;
 3266 
 3267         case BRD_STALLION:
 3268                 brdp->memsize = STAL_MEMSIZE;
 3269                 brdp->pagesize = STAL_PAGESIZE;
 3270                 brdp->init = stli_stalinit;
 3271                 brdp->enable = NULL;
 3272                 brdp->reenable = NULL;
 3273                 brdp->disable = NULL;
 3274                 brdp->getmemptr = stli_stalgetmemptr;
 3275                 brdp->intr = stli_ecpintr;
 3276                 brdp->reset = stli_stalreset;
 3277                 break;
 3278 
 3279         default:
 3280                 return(EINVAL);
 3281         }
 3282 
 3283 /*
 3284  *      The per-board operations structure is all setup, so now lets go
 3285  *      and get the board operational. Firstly initialize board configuration
 3286  *      registers.
 3287  */
 3288         EBRDINIT(brdp);
 3289 
 3290 /*
 3291  *      Now that all specific code is set up, enable the shared memory and
 3292  *      look for the a signature area that will tell us exactly what board
 3293  *      this is, and how many ports.
 3294  */
 3295         EBRDENABLE(brdp);
 3296         sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
 3297         bcopy(sigsp, &sig, sizeof(cdkonbsig_t));
 3298         EBRDDISABLE(brdp);
 3299 
 3300 #if 0
 3301         printf("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
 3302                 __file__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
 3303                 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
 3304 #endif
 3305 
 3306         if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
 3307             (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
 3308                 return(ENXIO);
 3309 
 3310 /*
 3311  *      Scan through the signature alive mask and calculate how many ports
 3312  *      there are on this board.
 3313  */
 3314         brdp->nrpanels = 1;
 3315         if (sig.amask1) {
 3316                 brdp->nrports = 32;
 3317         } else {
 3318                 for (i = 0; (i < 16); i++) {
 3319                         if (((sig.amask0 << i) & 0x8000) == 0)
 3320                                 break;
 3321                 }
 3322                 brdp->nrports = i;
 3323         }
 3324         brdp->panels[0] = brdp->nrports;
 3325 
 3326         brdp->state |= BST_FOUND;
 3327         return(0);
 3328 }
 3329 
 3330 /*****************************************************************************/
 3331 
 3332 /*
 3333  *      Start up a running board. This routine is only called after the
 3334  *      code has been down loaded to the board and is operational. It will
 3335  *      read in the memory map, and get the show on the road...
 3336  */
 3337 
 3338 static int stli_startbrd(stlibrd_t *brdp)
 3339 {
 3340         volatile cdkhdr_t       *hdrp;
 3341         volatile cdkmem_t       *memp;
 3342         volatile cdkasy_t       *ap;
 3343         stliport_t              *portp;
 3344         int                     portnr, nrdevs, i, rc, x;
 3345 
 3346 #if DEBUG
 3347         printf("stli_startbrd(brdp=%x)\n", (int) brdp);
 3348 #endif
 3349 
 3350         rc = 0;
 3351 
 3352         x = spltty();
 3353         EBRDENABLE(brdp);
 3354         hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
 3355         nrdevs = hdrp->nrdevs;
 3356 
 3357 #if 0
 3358         printf("%s(%d): CDK version %d.%d.%d --> nrdevs=%d memp=%x hostp=%x "
 3359                 "slavep=%x\n", __file__, __LINE__, hdrp->ver_release,
 3360                 hdrp->ver_modification, hdrp->ver_fix, nrdevs,
 3361                 (int) hdrp->memp, (int) hdrp->hostp, (int) hdrp->slavep);
 3362 #endif
 3363 
 3364         if (nrdevs < (brdp->nrports + 1)) {
 3365                 printf("STALLION: slave failed to allocate memory for all "
 3366                         "devices, devices=%d\n", nrdevs);
 3367                 brdp->nrports = nrdevs - 1;
 3368         }
 3369         brdp->nrdevs = nrdevs;
 3370         brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
 3371         brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
 3372         brdp->bitsize = (nrdevs + 7) / 8;
 3373         memp = (volatile cdkmem_t *) (void *) (uintptr_t) hdrp->memp;
 3374         if (((uintptr_t) (void *) memp) > brdp->memsize) {
 3375                 printf("STALLION: corrupted shared memory region?\n");
 3376                 rc = EIO;
 3377                 goto stli_donestartup;
 3378         }
 3379         memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp,
 3380                                                    (uintptr_t) (void *) memp);
 3381         if (memp->dtype != TYP_ASYNCTRL) {
 3382                 printf("STALLION: no slave control device found\n");
 3383                 rc = EIO;
 3384                 goto stli_donestartup;
 3385         }
 3386         memp++;
 3387 
 3388 /*
 3389  *      Cycle through memory allocation of each port. We are guaranteed to
 3390  *      have all ports inside the first page of slave window, so no need to
 3391  *      change pages while reading memory map.
 3392  */
 3393         for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
 3394                 if (memp->dtype != TYP_ASYNC)
 3395                         break;
 3396                 portp = brdp->ports[portnr];
 3397                 if (portp == (stliport_t *) NULL)
 3398                         break;
 3399                 portp->devnr = i;
 3400                 portp->addr = memp->offset;
 3401                 portp->reqidx = (unsigned char) (i * 8 / nrdevs);
 3402                 portp->reqbit = (unsigned char) (0x1 << portp->reqidx);
 3403                 portp->portidx = (unsigned char) (i / 8);
 3404                 portp->portbit = (unsigned char) (0x1 << (i % 8));
 3405         }
 3406 
 3407         hdrp->slavereq = 0xff;
 3408 
 3409 /*
 3410  *      For each port setup a local copy of the RX and TX buffer offsets
 3411  *      and sizes. We do this separate from the above, because we need to
 3412  *      move the shared memory page...
 3413  */
 3414         for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
 3415                 portp = brdp->ports[portnr];
 3416                 if (portp == (stliport_t *) NULL)
 3417                         break;
 3418                 if (portp->addr == 0)
 3419                         break;
 3420                 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
 3421                 if (ap != (volatile cdkasy_t *) NULL) {
 3422                         portp->rxsize = ap->rxq.size;
 3423                         portp->txsize = ap->txq.size;
 3424                         portp->rxoffset = ap->rxq.offset;
 3425                         portp->txoffset = ap->txq.offset;
 3426                 }
 3427         }
 3428 
 3429 stli_donestartup:
 3430         EBRDDISABLE(brdp);
 3431         splx(x);
 3432 
 3433         if (rc == 0)
 3434                 brdp->state |= BST_STARTED;
 3435 
 3436         if (stli_doingtimeout == 0) {
 3437                 timeout(stli_poll, 0, 1);
 3438                 stli_doingtimeout++;
 3439         }
 3440 
 3441         return(rc);
 3442 }
 3443 
 3444 /*****************************************************************************/
 3445 
 3446 /*
 3447  *      Probe and initialize the specified board.
 3448  */
 3449 
 3450 static int stli_brdinit(stlibrd_t *brdp)
 3451 {
 3452 #if DEBUG
 3453         printf("stli_brdinit(brdp=%x)\n", (int) brdp);
 3454 #endif
 3455 
 3456         stli_brds[brdp->brdnr] = brdp;
 3457 
 3458         switch (brdp->brdtype) {
 3459         case BRD_ECP:
 3460         case BRD_ECPE:
 3461         case BRD_ECPMC:
 3462                 stli_initecp(brdp);
 3463                 break;
 3464         case BRD_ONBOARD:
 3465         case BRD_ONBOARDE:
 3466         case BRD_ONBOARD2:
 3467         case BRD_ONBOARD32:
 3468         case BRD_ONBOARD2_32:
 3469         case BRD_ONBOARDRS:
 3470         case BRD_BRUMBY4:
 3471         case BRD_BRUMBY8:
 3472         case BRD_BRUMBY16:
 3473         case BRD_STALLION:
 3474                 stli_initonb(brdp);
 3475                 break;
 3476         case BRD_EASYIO:
 3477         case BRD_ECH:
 3478         case BRD_ECHMC:
 3479         case BRD_ECHPCI:
 3480                 printf("STALLION: %s board type not supported in this driver\n",
 3481                         stli_brdnames[brdp->brdtype]);
 3482                 return(ENODEV);
 3483         default:
 3484                 printf("STALLION: unit=%d is unknown board type=%d\n",
 3485                         brdp->brdnr, brdp->brdtype);
 3486                 return(ENODEV);
 3487         }
 3488         return(0);
 3489 }
 3490 
 3491 /*****************************************************************************/
 3492 
 3493 /*
 3494  *      Finish off the remaining initialization for a board.
 3495  */
 3496 
 3497 static int stli_brdattach(stlibrd_t *brdp)
 3498 {
 3499 #if DEBUG
 3500         printf("stli_brdattach(brdp=%x)\n", (int) brdp);
 3501 #endif
 3502 
 3503 #if 0
 3504         if ((brdp->state & BST_FOUND) == 0) {
 3505                 printf("STALLION: %s board not found, unit=%d io=%x mem=%x\n",
 3506                         stli_brdnames[brdp->brdtype], brdp->brdnr,
 3507                         brdp->iobase, (int) brdp->paddr);
 3508                 return(ENXIO);
 3509         }
 3510 #endif
 3511 
 3512         stli_initports(brdp);
 3513         printf("stli%d: %s (driver version %s), unit=%d nrpanels=%d "
 3514                 "nrports=%d\n", brdp->unitid, stli_brdnames[brdp->brdtype],
 3515                 stli_drvversion, brdp->brdnr, brdp->nrpanels, brdp->nrports);
 3516         return(0);
 3517 }
 3518 
 3519 /*****************************************************************************/
 3520 
 3521 /*
 3522  *      Check for possible shared memory sharing between boards.
 3523  *      FIX: need to start this optimization somewhere...
 3524  */
 3525 
 3526 #ifdef notdef
 3527 static int stli_chksharemem()
 3528 {
 3529         stlibrd_t       *brdp, *nxtbrdp;
 3530         int             i, j;
 3531 
 3532 #if DEBUG
 3533         printf("stli_chksharemem()\n");
 3534 #endif
 3535 
 3536 /*
 3537  *      All found boards are initialized. Now for a little optimization, if
 3538  *      no boards are sharing the "shared memory" regions then we can just
 3539  *      leave them all enabled. This is in fact the usual case.
 3540  */
 3541         stli_shared = 0;
 3542         if (stli_nrbrds > 1) {
 3543                 for (i = 0; (i < stli_nrbrds); i++) {
 3544                         brdp = stli_brds[i];
 3545                         if (brdp == (stlibrd_t *) NULL)
 3546                                 continue;
 3547                         for (j = i + 1; (j < stli_nrbrds); j++) {
 3548                                 nxtbrdp = stli_brds[j];
 3549                                 if (nxtbrdp == (stlibrd_t *) NULL)
 3550                                         continue;
 3551                                 if ((brdp->paddr >= nxtbrdp->paddr) &&
 3552                                     (brdp->paddr <= (nxtbrdp->paddr +
 3553                                     nxtbrdp->memsize - 1))) {
 3554                                         stli_shared++;
 3555                                         break;
 3556                                 }
 3557                         }
 3558                 }
 3559         }
 3560 
 3561         if (stli_shared == 0) {
 3562                 for (i = 0; (i < stli_nrbrds); i++) {
 3563                         brdp = stli_brds[i];
 3564                         if (brdp == (stlibrd_t *) NULL)
 3565                                 continue;
 3566                         if (brdp->state & BST_FOUND) {
 3567                                 EBRDENABLE(brdp);
 3568                                 brdp->enable = NULL;
 3569                                 brdp->disable = NULL;
 3570                         }
 3571                 }
 3572         }
 3573 
 3574         return(0);
 3575 }
 3576 #endif /* notdef */
 3577 
 3578 /*****************************************************************************/
 3579 
 3580 /*
 3581  *      Return the board stats structure to user app.
 3582  */
 3583 
 3584 static int stli_getbrdstats(caddr_t data)
 3585 {
 3586         stlibrd_t       *brdp;
 3587         int             i;
 3588 
 3589 #if DEBUG
 3590         printf("stli_getbrdstats(data=%p)\n", (void *) data);
 3591 #endif
 3592 
 3593         stli_brdstats = *((combrd_t *) data);
 3594         if (stli_brdstats.brd >= STL_MAXBRDS)
 3595                 return(-ENODEV);
 3596         brdp = stli_brds[stli_brdstats.brd];
 3597         if (brdp == (stlibrd_t *) NULL)
 3598                 return(-ENODEV);
 3599 
 3600         bzero(&stli_brdstats, sizeof(combrd_t));
 3601         stli_brdstats.brd = brdp->brdnr;
 3602         stli_brdstats.type = brdp->brdtype;
 3603         stli_brdstats.hwid = 0;
 3604         stli_brdstats.state = brdp->state;
 3605         stli_brdstats.ioaddr = brdp->iobase;
 3606         stli_brdstats.memaddr = brdp->paddr;
 3607         stli_brdstats.nrpanels = brdp->nrpanels;
 3608         stli_brdstats.nrports = brdp->nrports;
 3609         for (i = 0; (i < brdp->nrpanels); i++) {
 3610                 stli_brdstats.panels[i].panel = i;
 3611                 stli_brdstats.panels[i].hwid = brdp->panelids[i];
 3612                 stli_brdstats.panels[i].nrports = brdp->panels[i];
 3613         }
 3614 
 3615         *((combrd_t *) data) = stli_brdstats;
 3616         return(0);
 3617 }
 3618 
 3619 /*****************************************************************************/
 3620 
 3621 /*
 3622  *      Resolve the referenced port number into a port struct pointer.
 3623  */
 3624 
 3625 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
 3626 {
 3627         stlibrd_t       *brdp;
 3628         int             i;
 3629 
 3630         if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
 3631                 return((stliport_t *) NULL);
 3632         brdp = stli_brds[brdnr];
 3633         if (brdp == (stlibrd_t *) NULL)
 3634                 return((stliport_t *) NULL);
 3635         for (i = 0; (i < panelnr); i++)
 3636                 portnr += brdp->panels[i];
 3637         if ((portnr < 0) || (portnr >= brdp->nrports))
 3638                 return((stliport_t *) NULL);
 3639         return(brdp->ports[portnr]);
 3640 }
 3641 
 3642 /*****************************************************************************/
 3643 
 3644 /*
 3645  *      Return the port stats structure to user app. A NULL port struct
 3646  *      pointer passed in means that we need to find out from the app
 3647  *      what port to get stats for (used through board control device).
 3648  */
 3649 
 3650 static int stli_getportstats(stliport_t *portp, caddr_t data)
 3651 {
 3652         stlibrd_t       *brdp;
 3653         int             rc;
 3654 
 3655         if (portp == (stliport_t *) NULL) {
 3656                 stli_comstats = *((comstats_t *) data);
 3657                 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
 3658                         stli_comstats.port);
 3659                 if (portp == (stliport_t *) NULL)
 3660                         return(-ENODEV);
 3661         }
 3662 
 3663         brdp = stli_brds[portp->brdnr];
 3664         if (brdp == (stlibrd_t *) NULL)
 3665                 return(-ENODEV);
 3666 
 3667         if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS, &stli_cdkstats,
 3668                         sizeof(asystats_t), 1)) < 0)
 3669                 return(rc);
 3670 
 3671         stli_comstats.brd = portp->brdnr;
 3672         stli_comstats.panel = portp->panelnr;
 3673         stli_comstats.port = portp->portnr;
 3674         stli_comstats.state = portp->state;
 3675         /*stli_comstats.flags = portp->flags;*/
 3676         stli_comstats.ttystate = portp->tty.t_state;
 3677         stli_comstats.cflags = portp->tty.t_cflag;
 3678         stli_comstats.iflags = portp->tty.t_iflag;
 3679         stli_comstats.oflags = portp->tty.t_oflag;
 3680         stli_comstats.lflags = portp->tty.t_lflag;
 3681 
 3682         stli_comstats.txtotal = stli_cdkstats.txchars;
 3683         stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
 3684         stli_comstats.txbuffered = stli_cdkstats.txringq;
 3685         stli_comstats.rxbuffered = stli_cdkstats.rxringq;
 3686         stli_comstats.rxoverrun = stli_cdkstats.overruns;
 3687         stli_comstats.rxparity = stli_cdkstats.parity;
 3688         stli_comstats.rxframing = stli_cdkstats.framing;
 3689         stli_comstats.rxlost = stli_cdkstats.ringover + portp->rxlost;
 3690         stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
 3691         stli_comstats.txbreaks = stli_cdkstats.txbreaks;
 3692         stli_comstats.txxon = stli_cdkstats.txstart;
 3693         stli_comstats.txxoff = stli_cdkstats.txstop;
 3694         stli_comstats.rxxon = stli_cdkstats.rxstart;
 3695         stli_comstats.rxxoff = stli_cdkstats.rxstop;
 3696         stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
 3697         stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
 3698         stli_comstats.modem = stli_cdkstats.dcdcnt;
 3699         stli_comstats.hwid = stli_cdkstats.hwid;
 3700         stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
 3701 
 3702         *((comstats_t *) data) = stli_comstats;;
 3703         return(0);
 3704 }
 3705 
 3706 /*****************************************************************************/
 3707 
 3708 /*
 3709  *      Clear the port stats structure. We also return it zeroed out...
 3710  */
 3711 
 3712 static int stli_clrportstats(stliport_t *portp, caddr_t data)
 3713 {
 3714         stlibrd_t       *brdp;
 3715         int             rc;
 3716 
 3717         if (portp == (stliport_t *) NULL) {
 3718                 stli_comstats = *((comstats_t *) data);
 3719                 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
 3720                         stli_comstats.port);
 3721                 if (portp == (stliport_t *) NULL)
 3722                         return(-ENODEV);
 3723         }
 3724 
 3725         brdp = stli_brds[portp->brdnr];
 3726         if (brdp == (stlibrd_t *) NULL)
 3727                 return(-ENODEV);
 3728 
 3729         if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, 0, 0, 0)) < 0)
 3730                 return(rc);
 3731 
 3732         portp->rxlost = 0;
 3733         bzero(&stli_comstats, sizeof(comstats_t));
 3734         stli_comstats.brd = portp->brdnr;
 3735         stli_comstats.panel = portp->panelnr;
 3736         stli_comstats.port = portp->portnr;
 3737 
 3738         *((comstats_t *) data) = stli_comstats;;
 3739         return(0);
 3740 }
 3741 
 3742 /*****************************************************************************/
 3743 
 3744 /*
 3745  *      Code to handle a "staliomem" read and write operations. This device
 3746  *      is the contents of the board shared memory. It is used for down
 3747  *      loading the slave image (and debugging :-)
 3748  */
 3749 
 3750 STATIC int stli_memrw(dev_t dev, struct uio *uiop, int flag)
 3751 {
 3752         stlibrd_t       *brdp;
 3753         void            *memptr;
 3754         int             brdnr, size, n, error, x;
 3755 
 3756 #if DEBUG
 3757         printf("stli_memrw(dev=%x,uiop=%x,flag=%x)\n", (int) dev,
 3758                 (int) uiop, flag);
 3759 #endif
 3760 
 3761         brdnr = minor(dev) & 0x7;
 3762         brdp = stli_brds[brdnr];
 3763         if (brdp == (stlibrd_t *) NULL)
 3764                 return(ENODEV);
 3765         if (brdp->state == 0)
 3766                 return(ENODEV);
 3767 
 3768         if (uiop->uio_offset >= brdp->memsize)
 3769                 return(0);
 3770 
 3771         error = 0;
 3772         size = brdp->memsize - uiop->uio_offset;
 3773 
 3774         x = spltty();
 3775         EBRDENABLE(brdp);
 3776         while (size > 0) {
 3777                 memptr = (void *) EBRDGETMEMPTR(brdp, uiop->uio_offset);
 3778                 n = MIN(size, (brdp->pagesize -
 3779                         (((unsigned long) uiop->uio_offset) % brdp->pagesize)));
 3780                 error = uiomove(memptr, n, uiop);
 3781                 if ((uiop->uio_resid == 0) || error)
 3782                         break;
 3783         }
 3784         EBRDDISABLE(brdp);
 3785         splx(x);
 3786 
 3787         return(error);
 3788 }
 3789 
 3790 /*****************************************************************************/
 3791 
 3792 /*
 3793  *      The "staliomem" device is also required to do some special operations
 3794  *      on the board. We need to be able to send an interrupt to the board,
 3795  *      reset it, and start/stop it.
 3796  */
 3797 
 3798 static int stli_memioctl(dev_t dev, unsigned long cmd, caddr_t data, int flag,
 3799                          struct thread *td)
 3800 {
 3801         stlibrd_t       *brdp;
 3802         int             brdnr, rc;
 3803 
 3804 #if DEBUG
 3805         printf("stli_memioctl(dev=%s,cmd=%lx,data=%p,flag=%x)\n",
 3806                 devtoname(dev), cmd, (void *) data, flag);
 3807 #endif
 3808 
 3809         brdnr = minor(dev) & 0x7;
 3810         brdp = stli_brds[brdnr];
 3811         if (brdp == (stlibrd_t *) NULL)
 3812                 return(ENODEV);
 3813         if (brdp->state == 0)
 3814                 return(ENODEV);
 3815 
 3816         rc = 0;
 3817 
 3818         switch (cmd) {
 3819         case STL_BINTR:
 3820                 EBRDINTR(brdp);
 3821                 break;
 3822         case STL_BSTART:
 3823                 rc = stli_startbrd(brdp);
 3824                 break;
 3825         case STL_BSTOP:
 3826                 brdp->state &= ~BST_STARTED;
 3827                 break;
 3828         case STL_BRESET:
 3829                 brdp->state &= ~BST_STARTED;
 3830                 EBRDRESET(brdp);
 3831                 if (stli_shared == 0) {
 3832                         if (brdp->reenable != NULL)
 3833                                 (* brdp->reenable)(brdp);
 3834                 }
 3835                 break;
 3836         case COM_GETPORTSTATS:
 3837                 rc = stli_getportstats((stliport_t *) NULL, data);
 3838                 break;
 3839         case COM_CLRPORTSTATS:
 3840                 rc = stli_clrportstats((stliport_t *) NULL, data);
 3841                 break;
 3842         case COM_GETBRDSTATS:
 3843                 rc = stli_getbrdstats(data);
 3844                 break;
 3845         default:
 3846                 rc = ENOTTY;
 3847                 break;
 3848         }
 3849 
 3850         return(rc);
 3851 }
 3852 
 3853 /*****************************************************************************/

Cache object: c237133a6384c1c8c021782ae5a70c8e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.