The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/10.2/sys/i386/isa/npx.c 280046 2015-03-15 18:42:19Z kib $");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 #include <vm/uma.h>
   59 
   60 #include <machine/asmacros.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/frame.h>
   63 #include <machine/md_var.h>
   64 #include <machine/pcb.h>
   65 #include <machine/psl.h>
   66 #include <machine/resource.h>
   67 #include <machine/specialreg.h>
   68 #include <machine/segments.h>
   69 #include <machine/ucontext.h>
   70 
   71 #include <machine/intr_machdep.h>
   72 #ifdef XEN
   73 #include <xen/xen-os.h>
   74 #include <xen/hypervisor.h>
   75 #endif
   76 
   77 #ifdef DEV_ISA
   78 #include <isa/isavar.h>
   79 #endif
   80 
   81 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
   82 #define CPU_ENABLE_SSE
   83 #endif
   84 
   85 /*
   86  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   87  */
   88 
   89 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   90 
   91 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   92 #define fnclex()                __asm __volatile("fnclex")
   93 #define fninit()                __asm __volatile("fninit")
   94 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   95 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   96 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   97 #define fp_divide_by_0()        __asm __volatile( \
   98                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   99 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
  100 #ifdef CPU_ENABLE_SSE
  101 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
  102 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
  103 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
  104 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
  105 
  106 static __inline void
  107 xrstor(char *addr, uint64_t mask)
  108 {
  109         uint32_t low, hi;
  110 
  111         low = mask;
  112         hi = mask >> 32;
  113         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
  114 }
  115 
  116 static __inline void
  117 xsave(char *addr, uint64_t mask)
  118 {
  119         uint32_t low, hi;
  120 
  121         low = mask;
  122         hi = mask >> 32;
  123         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  124             "memory");
  125 }
  126 
  127 static __inline void
  128 xsaveopt(char *addr, uint64_t mask)
  129 {
  130         uint32_t low, hi;
  131 
  132         low = mask;
  133         hi = mask >> 32;
  134         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  135             "memory");
  136 }
  137 #endif
  138 #else   /* !(__GNUCLIKE_ASM && !lint) */
  139 
  140 void    fldcw(u_short cw);
  141 void    fnclex(void);
  142 void    fninit(void);
  143 void    fnsave(caddr_t addr);
  144 void    fnstcw(caddr_t addr);
  145 void    fnstsw(caddr_t addr);
  146 void    fp_divide_by_0(void);
  147 void    frstor(caddr_t addr);
  148 #ifdef CPU_ENABLE_SSE
  149 void    fxsave(caddr_t addr);
  150 void    fxrstor(caddr_t addr);
  151 void    ldmxcsr(u_int csr);
  152 void    stmxcsr(u_int *csr);
  153 void    xrstor(char *addr, uint64_t mask);
  154 void    xsave(char *addr, uint64_t mask);
  155 void    xsaveopt(char *addr, uint64_t mask);
  156 #endif
  157 
  158 #endif  /* __GNUCLIKE_ASM && !lint */
  159 
  160 #ifdef XEN
  161 #define start_emulating()       (HYPERVISOR_fpu_taskswitch(1))
  162 #define stop_emulating()        (HYPERVISOR_fpu_taskswitch(0))
  163 #else
  164 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  165 #define stop_emulating()        clts()
  166 #endif
  167 
  168 #ifdef CPU_ENABLE_SSE
  169 #define GET_FPU_CW(thread) \
  170         (cpu_fxsr ? \
  171                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  172                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  173 #define GET_FPU_SW(thread) \
  174         (cpu_fxsr ? \
  175                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  176                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  177 #define SET_FPU_CW(savefpu, value) do { \
  178         if (cpu_fxsr) \
  179                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  180         else \
  181                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  182 } while (0)
  183 #else /* CPU_ENABLE_SSE */
  184 #define GET_FPU_CW(thread) \
  185         (thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  186 #define GET_FPU_SW(thread) \
  187         (thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  188 #define SET_FPU_CW(savefpu, value) \
  189         (savefpu)->sv_87.sv_env.en_cw = (value)
  190 #endif /* CPU_ENABLE_SSE */
  191 
  192 #ifdef CPU_ENABLE_SSE
  193 CTASSERT(sizeof(union savefpu) == 512);
  194 CTASSERT(sizeof(struct xstate_hdr) == 64);
  195 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  196 
  197 /*
  198  * This requirement is to make it easier for asm code to calculate
  199  * offset of the fpu save area from the pcb address. FPU save area
  200  * must be 64-byte aligned.
  201  */
  202 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  203 
  204 /*
  205  * Ensure the copy of XCR0 saved in a core is contained in the padding
  206  * area.
  207  */
  208 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
  209     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
  210 
  211 static  void    fpu_clean_state(void);
  212 #endif
  213 
  214 static  void    fpusave(union savefpu *);
  215 static  void    fpurstor(union savefpu *);
  216 
  217 int     hw_float;
  218 
  219 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  220     &hw_float, 0, "Floating point instructions executed in hardware");
  221 
  222 #ifdef CPU_ENABLE_SSE
  223 int use_xsave;
  224 uint64_t xsave_mask;
  225 #endif
  226 static  uma_zone_t fpu_save_area_zone;
  227 static  union savefpu *npx_initialstate;
  228 
  229 #ifdef CPU_ENABLE_SSE
  230 struct xsave_area_elm_descr {
  231         u_int   offset;
  232         u_int   size;
  233 } *xsave_area_desc;
  234 
  235 static int use_xsaveopt;
  236 #endif
  237 
  238 static  volatile u_int          npx_traps_while_probing;
  239 
  240 alias_for_inthand_t probetrap;
  241 __asm("                                                         \n\
  242         .text                                                   \n\
  243         .p2align 2,0x90                                         \n\
  244         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  245 " __XSTRING(CNAME(probetrap)) ":                                \n\
  246         ss                                                      \n\
  247         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  248         fnclex                                                  \n\
  249         iret                                                    \n\
  250 ");
  251 
  252 /*
  253  * Determine if an FPU is present and how to use it.
  254  */
  255 static int
  256 npx_probe(void)
  257 {
  258         struct gate_descriptor save_idt_npxtrap;
  259         u_short control, status;
  260 
  261         /*
  262          * Modern CPUs all have an FPU that uses the INT16 interface
  263          * and provide a simple way to verify that, so handle the
  264          * common case right away.
  265          */
  266         if (cpu_feature & CPUID_FPU) {
  267                 hw_float = 1;
  268                 return (1);
  269         }
  270 
  271         save_idt_npxtrap = idt[IDT_MF];
  272         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  273             GSEL(GCODE_SEL, SEL_KPL));
  274 
  275         /*
  276          * Don't trap while we're probing.
  277          */
  278         stop_emulating();
  279 
  280         /*
  281          * Finish resetting the coprocessor, if any.  If there is an error
  282          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  283          * it OK.  Bogus halts have never been observed, but we enabled
  284          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  285          */
  286         fninit();
  287 
  288         /*
  289          * Don't use fwait here because it might hang.
  290          * Don't use fnop here because it usually hangs if there is no FPU.
  291          */
  292         DELAY(1000);            /* wait for any IRQ13 */
  293 #ifdef DIAGNOSTIC
  294         if (npx_traps_while_probing != 0)
  295                 printf("fninit caused %u bogus npx trap(s)\n",
  296                        npx_traps_while_probing);
  297 #endif
  298         /*
  299          * Check for a status of mostly zero.
  300          */
  301         status = 0x5a5a;
  302         fnstsw(&status);
  303         if ((status & 0xb8ff) == 0) {
  304                 /*
  305                  * Good, now check for a proper control word.
  306                  */
  307                 control = 0x5a5a;
  308                 fnstcw(&control);
  309                 if ((control & 0x1f3f) == 0x033f) {
  310                         /*
  311                          * We have an npx, now divide by 0 to see if exception
  312                          * 16 works.
  313                          */
  314                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  315                         fldcw(control);
  316 #ifdef FPU_ERROR_BROKEN
  317                         /*
  318                          * FPU error signal doesn't work on some CPU
  319                          * accelerator board.
  320                          */
  321                         hw_float = 1;
  322                         return (1);
  323 #endif
  324                         npx_traps_while_probing = 0;
  325                         fp_divide_by_0();
  326                         if (npx_traps_while_probing != 0) {
  327                                 /*
  328                                  * Good, exception 16 works.
  329                                  */
  330                                 hw_float = 1;
  331                                 goto cleanup;
  332                         }
  333                         printf(
  334         "FPU does not use exception 16 for error reporting\n");
  335                         goto cleanup;
  336                 }
  337         }
  338 
  339         /*
  340          * Probe failed.  Floating point simply won't work.
  341          * Notify user and disable FPU/MMX/SSE instruction execution.
  342          */
  343         printf("WARNING: no FPU!\n");
  344         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  345             "n" (CR0_EM | CR0_MP) : "ax");
  346 
  347 cleanup:
  348         idt[IDT_MF] = save_idt_npxtrap;
  349         return (hw_float);
  350 }
  351 
  352 #ifdef CPU_ENABLE_SSE
  353 /*
  354  * Enable XSAVE if supported and allowed by user.
  355  * Calculate the xsave_mask.
  356  */
  357 static void
  358 npxinit_bsp1(void)
  359 {
  360         u_int cp[4];
  361         uint64_t xsave_mask_user;
  362 
  363         if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
  364                 use_xsave = 1;
  365                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  366         }
  367         if (!use_xsave)
  368                 return;
  369 
  370         cpuid_count(0xd, 0x0, cp);
  371         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  372         if ((cp[0] & xsave_mask) != xsave_mask)
  373                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  374         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  375         xsave_mask_user = xsave_mask;
  376         TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
  377         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  378         xsave_mask &= xsave_mask_user;
  379         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  380                 xsave_mask &= ~XFEATURE_AVX512;
  381         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  382                 xsave_mask &= ~XFEATURE_MPX;
  383 
  384         cpuid_count(0xd, 0x1, cp);
  385         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
  386                 use_xsaveopt = 1;
  387 }
  388 #endif
  389 /*
  390 
  391  * Calculate the fpu save area size.
  392  */
  393 static void
  394 npxinit_bsp2(void)
  395 {
  396 #ifdef CPU_ENABLE_SSE
  397         u_int cp[4];
  398 
  399         if (use_xsave) {
  400                 cpuid_count(0xd, 0x0, cp);
  401                 cpu_max_ext_state_size = cp[1];
  402 
  403                 /*
  404                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  405                  */
  406                 do_cpuid(1, cp);
  407                 cpu_feature2 = cp[2];
  408         } else
  409 #endif
  410                 cpu_max_ext_state_size = sizeof(union savefpu);
  411 }
  412 
  413 /*
  414  * Initialize floating point unit.
  415  */
  416 void
  417 npxinit(bool bsp)
  418 {
  419         static union savefpu dummy;
  420         register_t saveintr;
  421 #ifdef CPU_ENABLE_SSE
  422         u_int mxcsr;
  423 #endif
  424         u_short control;
  425 
  426         if (bsp) {
  427                 if (!npx_probe())
  428                         return;
  429 #ifdef CPU_ENABLE_SSE
  430                 npxinit_bsp1();
  431 #endif
  432         }
  433 
  434 #ifdef CPU_ENABLE_SSE
  435         if (use_xsave) {
  436                 load_cr4(rcr4() | CR4_XSAVE);
  437                 load_xcr(XCR0, xsave_mask);
  438         }
  439 #endif
  440 
  441         /*
  442          * XCR0 shall be set up before CPU can report the save area size.
  443          */
  444         if (bsp)
  445                 npxinit_bsp2();
  446         
  447         /*
  448          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  449          * fnsave to throw away any junk in the fpu.  fpusave() initializes
  450          * the fpu.
  451          *
  452          * It is too early for critical_enter() to work on AP.
  453          */
  454         saveintr = intr_disable();
  455         stop_emulating();
  456 #ifdef CPU_ENABLE_SSE
  457         if (cpu_fxsr)
  458                 fninit();
  459         else
  460 #endif
  461                 fnsave(&dummy);
  462         control = __INITIAL_NPXCW__;
  463         fldcw(control);
  464 #ifdef CPU_ENABLE_SSE
  465         if (cpu_fxsr) {
  466                 mxcsr = __INITIAL_MXCSR__;
  467                 ldmxcsr(mxcsr);
  468         }
  469 #endif
  470         start_emulating();
  471         intr_restore(saveintr);
  472 }
  473 
  474 /*
  475  * On the boot CPU we generate a clean state that is used to
  476  * initialize the floating point unit when it is first used by a
  477  * process.
  478  */
  479 static void
  480 npxinitstate(void *arg __unused)
  481 {
  482         register_t saveintr;
  483 #ifdef CPU_ENABLE_SSE
  484         int cp[4], i, max_ext_n;
  485 #endif
  486 
  487         if (!hw_float)
  488                 return;
  489 
  490         npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  491             M_WAITOK | M_ZERO);
  492         saveintr = intr_disable();
  493         stop_emulating();
  494 
  495         fpusave(npx_initialstate);
  496 #ifdef CPU_ENABLE_SSE
  497         if (cpu_fxsr) {
  498                 if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
  499                         cpu_mxcsr_mask = 
  500                             npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
  501                 else
  502                         cpu_mxcsr_mask = 0xFFBF;
  503 
  504                 /*
  505                  * The fninit instruction does not modify XMM
  506                  * registers.  The fpusave call dumped the garbage
  507                  * contained in the registers after reset to the
  508                  * initial state saved.  Clear XMM registers file
  509                  * image to make the startup program state and signal
  510                  * handler XMM register content predictable.
  511                  */
  512                 bzero(npx_initialstate->sv_xmm.sv_fp,
  513                     sizeof(npx_initialstate->sv_xmm.sv_fp));
  514                 bzero(npx_initialstate->sv_xmm.sv_xmm,
  515                     sizeof(npx_initialstate->sv_xmm.sv_xmm));
  516         } else
  517 #endif
  518                 bzero(npx_initialstate->sv_87.sv_ac,
  519                     sizeof(npx_initialstate->sv_87.sv_ac));
  520 
  521 #ifdef CPU_ENABLE_SSE
  522         /*
  523          * Create a table describing the layout of the CPU Extended
  524          * Save Area.
  525          */
  526         if (use_xsave) {
  527                 if (xsave_mask >> 32 != 0)
  528                         max_ext_n = fls(xsave_mask >> 32) + 32;
  529                 else
  530                         max_ext_n = fls(xsave_mask);
  531                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  532                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  533                 /* x87 state */
  534                 xsave_area_desc[0].offset = 0;
  535                 xsave_area_desc[0].size = 160;
  536                 /* XMM */
  537                 xsave_area_desc[1].offset = 160;
  538                 xsave_area_desc[1].size = 288 - 160;
  539 
  540                 for (i = 2; i < max_ext_n; i++) {
  541                         cpuid_count(0xd, i, cp);
  542                         xsave_area_desc[i].offset = cp[1];
  543                         xsave_area_desc[i].size = cp[0];
  544                 }
  545         }
  546 #endif
  547 
  548         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  549             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  550             XSAVE_AREA_ALIGN - 1, 0);
  551 
  552         start_emulating();
  553         intr_restore(saveintr);
  554 }
  555 SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
  556 
  557 /*
  558  * Free coprocessor (if we have it).
  559  */
  560 void
  561 npxexit(td)
  562         struct thread *td;
  563 {
  564 
  565         critical_enter();
  566         if (curthread == PCPU_GET(fpcurthread)) {
  567                 stop_emulating();
  568                 fpusave(curpcb->pcb_save);
  569                 start_emulating();
  570                 PCPU_SET(fpcurthread, NULL);
  571         }
  572         critical_exit();
  573 #ifdef NPX_DEBUG
  574         if (hw_float) {
  575                 u_int   masked_exceptions;
  576 
  577                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  578                 /*
  579                  * Log exceptions that would have trapped with the old
  580                  * control word (overflow, divide by 0, and invalid operand).
  581                  */
  582                 if (masked_exceptions & 0x0d)
  583                         log(LOG_ERR,
  584         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  585                             td->td_proc->p_pid, td->td_proc->p_comm,
  586                             masked_exceptions);
  587         }
  588 #endif
  589 }
  590 
  591 int
  592 npxformat()
  593 {
  594 
  595         if (!hw_float)
  596                 return (_MC_FPFMT_NODEV);
  597 #ifdef  CPU_ENABLE_SSE
  598         if (cpu_fxsr)
  599                 return (_MC_FPFMT_XMM);
  600 #endif
  601         return (_MC_FPFMT_387);
  602 }
  603 
  604 /* 
  605  * The following mechanism is used to ensure that the FPE_... value
  606  * that is passed as a trapcode to the signal handler of the user
  607  * process does not have more than one bit set.
  608  * 
  609  * Multiple bits may be set if the user process modifies the control
  610  * word while a status word bit is already set.  While this is a sign
  611  * of bad coding, we have no choise than to narrow them down to one
  612  * bit, since we must not send a trapcode that is not exactly one of
  613  * the FPE_ macros.
  614  *
  615  * The mechanism has a static table with 127 entries.  Each combination
  616  * of the 7 FPU status word exception bits directly translates to a
  617  * position in this table, where a single FPE_... value is stored.
  618  * This FPE_... value stored there is considered the "most important"
  619  * of the exception bits and will be sent as the signal code.  The
  620  * precedence of the bits is based upon Intel Document "Numerical
  621  * Applications", Chapter "Special Computational Situations".
  622  *
  623  * The macro to choose one of these values does these steps: 1) Throw
  624  * away status word bits that cannot be masked.  2) Throw away the bits
  625  * currently masked in the control word, assuming the user isn't
  626  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  627  * fault) if it is set, which cannot be masked but must be presered.
  628  * 4) Use the remaining bits to point into the trapcode table.
  629  *
  630  * The 6 maskable bits in order of their preference, as stated in the
  631  * above referenced Intel manual:
  632  * 1  Invalid operation (FP_X_INV)
  633  * 1a   Stack underflow
  634  * 1b   Stack overflow
  635  * 1c   Operand of unsupported format
  636  * 1d   SNaN operand.
  637  * 2  QNaN operand (not an exception, irrelavant here)
  638  * 3  Any other invalid-operation not mentioned above or zero divide
  639  *      (FP_X_INV, FP_X_DZ)
  640  * 4  Denormal operand (FP_X_DNML)
  641  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  642  * 6  Inexact result (FP_X_IMP) 
  643  */
  644 static char fpetable[128] = {
  645         0,
  646         FPE_FLTINV,     /*  1 - INV */
  647         FPE_FLTUND,     /*  2 - DNML */
  648         FPE_FLTINV,     /*  3 - INV | DNML */
  649         FPE_FLTDIV,     /*  4 - DZ */
  650         FPE_FLTINV,     /*  5 - INV | DZ */
  651         FPE_FLTDIV,     /*  6 - DNML | DZ */
  652         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  653         FPE_FLTOVF,     /*  8 - OFL */
  654         FPE_FLTINV,     /*  9 - INV | OFL */
  655         FPE_FLTUND,     /*  A - DNML | OFL */
  656         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  657         FPE_FLTDIV,     /*  C - DZ | OFL */
  658         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  659         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  660         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  661         FPE_FLTUND,     /* 10 - UFL */
  662         FPE_FLTINV,     /* 11 - INV | UFL */
  663         FPE_FLTUND,     /* 12 - DNML | UFL */
  664         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  665         FPE_FLTDIV,     /* 14 - DZ | UFL */
  666         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  667         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  668         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  669         FPE_FLTOVF,     /* 18 - OFL | UFL */
  670         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  671         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  672         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  673         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  674         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  675         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  676         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  677         FPE_FLTRES,     /* 20 - IMP */
  678         FPE_FLTINV,     /* 21 - INV | IMP */
  679         FPE_FLTUND,     /* 22 - DNML | IMP */
  680         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  681         FPE_FLTDIV,     /* 24 - DZ | IMP */
  682         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  683         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  684         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  685         FPE_FLTOVF,     /* 28 - OFL | IMP */
  686         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  687         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  688         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  689         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  690         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  691         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  692         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  693         FPE_FLTUND,     /* 30 - UFL | IMP */
  694         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  695         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  696         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  697         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  698         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  699         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  700         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  701         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  702         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  703         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  704         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  705         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  706         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  707         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  708         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  709         FPE_FLTSUB,     /* 40 - STK */
  710         FPE_FLTSUB,     /* 41 - INV | STK */
  711         FPE_FLTUND,     /* 42 - DNML | STK */
  712         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  713         FPE_FLTDIV,     /* 44 - DZ | STK */
  714         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  715         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  716         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  717         FPE_FLTOVF,     /* 48 - OFL | STK */
  718         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  719         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  720         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  721         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  722         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  723         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  724         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  725         FPE_FLTUND,     /* 50 - UFL | STK */
  726         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  727         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  728         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  729         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  730         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  731         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  732         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  733         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  734         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  735         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  736         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  737         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  738         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  739         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  740         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  741         FPE_FLTRES,     /* 60 - IMP | STK */
  742         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  743         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  744         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  745         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  746         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  747         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  748         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  749         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  750         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  751         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  752         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  753         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  754         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  755         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  756         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  757         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  758         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  759         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  760         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  761         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  762         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  763         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  764         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  765         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  766         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  767         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  768         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  769         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  770         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  771         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  772         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  773 };
  774 
  775 /*
  776  * Read the FP status and control words, then generate si_code value
  777  * for SIGFPE.  The error code chosen will be one of the
  778  * FPE_... macros.  It will be sent as the second argument to old
  779  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  780  * argument) to SA_SIGINFO signal handlers.
  781  *
  782  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  783  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  784  * usermode code which understands the FPU hardware enough to enable
  785  * the exceptions, can also handle clearing the exception state in the
  786  * handler.  The only consequence of not clearing the exception is the
  787  * rethrow of the SIGFPE on return from the signal handler and
  788  * reexecution of the corresponding instruction.
  789  *
  790  * For XMM traps, the exceptions were never cleared.
  791  */
  792 int
  793 npxtrap_x87(void)
  794 {
  795         u_short control, status;
  796 
  797         if (!hw_float) {
  798                 printf(
  799         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  800                        PCPU_GET(fpcurthread), curthread, hw_float);
  801                 panic("npxtrap from nowhere");
  802         }
  803         critical_enter();
  804 
  805         /*
  806          * Interrupt handling (for another interrupt) may have pushed the
  807          * state to memory.  Fetch the relevant parts of the state from
  808          * wherever they are.
  809          */
  810         if (PCPU_GET(fpcurthread) != curthread) {
  811                 control = GET_FPU_CW(curthread);
  812                 status = GET_FPU_SW(curthread);
  813         } else {
  814                 fnstcw(&control);
  815                 fnstsw(&status);
  816         }
  817         critical_exit();
  818         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  819 }
  820 
  821 #ifdef CPU_ENABLE_SSE
  822 int
  823 npxtrap_sse(void)
  824 {
  825         u_int mxcsr;
  826 
  827         if (!hw_float) {
  828                 printf(
  829         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  830                        PCPU_GET(fpcurthread), curthread, hw_float);
  831                 panic("npxtrap from nowhere");
  832         }
  833         critical_enter();
  834         if (PCPU_GET(fpcurthread) != curthread)
  835                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  836         else
  837                 stmxcsr(&mxcsr);
  838         critical_exit();
  839         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  840 }
  841 #endif
  842 
  843 /*
  844  * Implement device not available (DNA) exception
  845  *
  846  * It would be better to switch FP context here (if curthread != fpcurthread)
  847  * and not necessarily for every context switch, but it is too hard to
  848  * access foreign pcb's.
  849  */
  850 
  851 static int err_count = 0;
  852 
  853 int
  854 npxdna(void)
  855 {
  856 
  857         if (!hw_float)
  858                 return (0);
  859         critical_enter();
  860         if (PCPU_GET(fpcurthread) == curthread) {
  861                 printf("npxdna: fpcurthread == curthread %d times\n",
  862                     ++err_count);
  863                 stop_emulating();
  864                 critical_exit();
  865                 return (1);
  866         }
  867         if (PCPU_GET(fpcurthread) != NULL) {
  868                 printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  869                        PCPU_GET(fpcurthread),
  870                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  871                        curthread, curthread->td_proc->p_pid);
  872                 panic("npxdna");
  873         }
  874         stop_emulating();
  875         /*
  876          * Record new context early in case frstor causes a trap.
  877          */
  878         PCPU_SET(fpcurthread, curthread);
  879 
  880 #ifdef CPU_ENABLE_SSE
  881         if (cpu_fxsr)
  882                 fpu_clean_state();
  883 #endif
  884 
  885         if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  886                 /*
  887                  * This is the first time this thread has used the FPU or
  888                  * the PCB doesn't contain a clean FPU state.  Explicitly
  889                  * load an initial state.
  890                  *
  891                  * We prefer to restore the state from the actual save
  892                  * area in PCB instead of directly loading from
  893                  * npx_initialstate, to ignite the XSAVEOPT
  894                  * tracking engine.
  895                  */
  896                 bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
  897                 fpurstor(curpcb->pcb_save);
  898                 if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  899                         fldcw(curpcb->pcb_initial_npxcw);
  900                 curpcb->pcb_flags |= PCB_NPXINITDONE;
  901                 if (PCB_USER_FPU(curpcb))
  902                         curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
  903         } else {
  904                 fpurstor(curpcb->pcb_save);
  905         }
  906         critical_exit();
  907 
  908         return (1);
  909 }
  910 
  911 /*
  912  * Wrapper for fpusave() called from context switch routines.
  913  *
  914  * npxsave() must be called with interrupts disabled, so that it clears
  915  * fpcurthread atomically with saving the state.  We require callers to do the
  916  * disabling, since most callers need to disable interrupts anyway to call
  917  * npxsave() atomically with checking fpcurthread.
  918  */
  919 void
  920 npxsave(addr)
  921         union savefpu *addr;
  922 {
  923 
  924         stop_emulating();
  925 #ifdef CPU_ENABLE_SSE
  926         if (use_xsaveopt)
  927                 xsaveopt((char *)addr, xsave_mask);
  928         else
  929 #endif
  930                 fpusave(addr);
  931         start_emulating();
  932         PCPU_SET(fpcurthread, NULL);
  933 }
  934 
  935 /*
  936  * Unconditionally save the current co-processor state across suspend and
  937  * resume.
  938  */
  939 void
  940 npxsuspend(union savefpu *addr)
  941 {
  942         register_t cr0;
  943 
  944         if (!hw_float)
  945                 return;
  946         if (PCPU_GET(fpcurthread) == NULL) {
  947                 bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
  948                 return;
  949         }
  950         cr0 = rcr0();
  951         stop_emulating();
  952         fpusave(addr);
  953         load_cr0(cr0);
  954 }
  955 
  956 void
  957 npxresume(union savefpu *addr)
  958 {
  959         register_t cr0;
  960 
  961         if (!hw_float)
  962                 return;
  963 
  964         cr0 = rcr0();
  965         npxinit(false);
  966         stop_emulating();
  967         fpurstor(addr);
  968         load_cr0(cr0);
  969 }
  970 
  971 void
  972 npxdrop()
  973 {
  974         struct thread *td;
  975 
  976         /*
  977          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
  978          * ones don't cause a panic on the next frstor.
  979          */
  980 #ifdef CPU_ENABLE_SSE
  981         if (!cpu_fxsr)
  982 #endif
  983                 fnclex();
  984 
  985         td = PCPU_GET(fpcurthread);
  986         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  987         CRITICAL_ASSERT(td);
  988         PCPU_SET(fpcurthread, NULL);
  989         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
  990         start_emulating();
  991 }
  992 
  993 /*
  994  * Get the user state of the FPU into pcb->pcb_user_save without
  995  * dropping ownership (if possible).  It returns the FPU ownership
  996  * status.
  997  */
  998 int
  999 npxgetregs(struct thread *td)
 1000 {
 1001         struct pcb *pcb;
 1002 #ifdef CPU_ENABLE_SSE
 1003         uint64_t *xstate_bv, bit;
 1004         char *sa;
 1005         int max_ext_n, i;
 1006 #endif
 1007         int owned;
 1008 
 1009         if (!hw_float)
 1010                 return (_MC_FPOWNED_NONE);
 1011 
 1012         pcb = td->td_pcb;
 1013         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
 1014                 bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
 1015                     cpu_max_ext_state_size);
 1016                 SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
 1017                 npxuserinited(td);
 1018                 return (_MC_FPOWNED_PCB);
 1019         }
 1020         critical_enter();
 1021         if (td == PCPU_GET(fpcurthread)) {
 1022                 fpusave(get_pcb_user_save_pcb(pcb));
 1023 #ifdef CPU_ENABLE_SSE
 1024                 if (!cpu_fxsr)
 1025 #endif
 1026                         /*
 1027                          * fnsave initializes the FPU and destroys whatever
 1028                          * context it contains.  Make sure the FPU owner
 1029                          * starts with a clean state next time.
 1030                          */
 1031                         npxdrop();
 1032                 owned = _MC_FPOWNED_FPU;
 1033         } else {
 1034                 owned = _MC_FPOWNED_PCB;
 1035         }
 1036         critical_exit();
 1037 #ifdef CPU_ENABLE_SSE
 1038         if (use_xsave) {
 1039                 /*
 1040                  * Handle partially saved state.
 1041                  */
 1042                 sa = (char *)get_pcb_user_save_pcb(pcb);
 1043                 xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
 1044                     offsetof(struct xstate_hdr, xstate_bv));
 1045                 if (xsave_mask >> 32 != 0)
 1046                         max_ext_n = fls(xsave_mask >> 32) + 32;
 1047                 else
 1048                         max_ext_n = fls(xsave_mask);
 1049                 for (i = 0; i < max_ext_n; i++) {
 1050                         bit = 1ULL << i;
 1051                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
 1052                                 continue;
 1053                         bcopy((char *)npx_initialstate +
 1054                             xsave_area_desc[i].offset,
 1055                             sa + xsave_area_desc[i].offset,
 1056                             xsave_area_desc[i].size);
 1057                         *xstate_bv |= bit;
 1058                 }
 1059         }
 1060 #endif
 1061         return (owned);
 1062 }
 1063 
 1064 void
 1065 npxuserinited(struct thread *td)
 1066 {
 1067         struct pcb *pcb;
 1068 
 1069         pcb = td->td_pcb;
 1070         if (PCB_USER_FPU(pcb))
 1071                 pcb->pcb_flags |= PCB_NPXINITDONE;
 1072         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
 1073 }
 1074 
 1075 #ifdef CPU_ENABLE_SSE
 1076 int
 1077 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
 1078 {
 1079         struct xstate_hdr *hdr, *ehdr;
 1080         size_t len, max_len;
 1081         uint64_t bv;
 1082 
 1083         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
 1084         if (xfpustate == NULL)
 1085                 return (0);
 1086         if (!use_xsave)
 1087                 return (EOPNOTSUPP);
 1088 
 1089         len = xfpustate_size;
 1090         if (len < sizeof(struct xstate_hdr))
 1091                 return (EINVAL);
 1092         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 1093         if (len > max_len)
 1094                 return (EINVAL);
 1095 
 1096         ehdr = (struct xstate_hdr *)xfpustate;
 1097         bv = ehdr->xstate_bv;
 1098 
 1099         /*
 1100          * Avoid #gp.
 1101          */
 1102         if (bv & ~xsave_mask)
 1103                 return (EINVAL);
 1104 
 1105         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
 1106 
 1107         hdr->xstate_bv = bv;
 1108         bcopy(xfpustate + sizeof(struct xstate_hdr),
 1109             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
 1110 
 1111         return (0);
 1112 }
 1113 #endif
 1114 
 1115 int
 1116 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
 1117         size_t xfpustate_size)
 1118 {
 1119         struct pcb *pcb;
 1120 #ifdef CPU_ENABLE_SSE
 1121         int error;
 1122 #endif
 1123 
 1124         if (!hw_float)
 1125                 return (ENXIO);
 1126 
 1127         pcb = td->td_pcb;
 1128         critical_enter();
 1129         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
 1130 #ifdef CPU_ENABLE_SSE
 1131                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1132                 if (error != 0) {
 1133                         critical_exit();
 1134                         return (error);
 1135                 }
 1136                 if (!cpu_fxsr)
 1137 #endif
 1138                         fnclex();       /* As in npxdrop(). */
 1139                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1140                 fpurstor(get_pcb_user_save_td(td));
 1141                 critical_exit();
 1142                 pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
 1143         } else {
 1144                 critical_exit();
 1145 #ifdef CPU_ENABLE_SSE
 1146                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1147                 if (error != 0)
 1148                         return (error);
 1149 #endif
 1150                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1151                 npxuserinited(td);
 1152         }
 1153         return (0);
 1154 }
 1155 
 1156 static void
 1157 fpusave(addr)
 1158         union savefpu *addr;
 1159 {
 1160         
 1161 #ifdef CPU_ENABLE_SSE
 1162         if (use_xsave)
 1163                 xsave((char *)addr, xsave_mask);
 1164         else if (cpu_fxsr)
 1165                 fxsave(addr);
 1166         else
 1167 #endif
 1168                 fnsave(addr);
 1169 }
 1170 
 1171 #ifdef CPU_ENABLE_SSE
 1172 /*
 1173  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1174  * the x87's stored last instruction pointer, last data pointer, and last
 1175  * opcode values, except in the rare case in which the exception summary
 1176  * (ES) bit in the x87 status word is set to 1.
 1177  *
 1178  * In order to avoid leaking this information across processes, we clean
 1179  * these values by performing a dummy load before executing fxrstor().
 1180  */
 1181 static void
 1182 fpu_clean_state(void)
 1183 {
 1184         static float dummy_variable = 0.0;
 1185         u_short status;
 1186 
 1187         /*
 1188          * Clear the ES bit in the x87 status word if it is currently
 1189          * set, in order to avoid causing a fault in the upcoming load.
 1190          */
 1191         fnstsw(&status);
 1192         if (status & 0x80)
 1193                 fnclex();
 1194 
 1195         /*
 1196          * Load the dummy variable into the x87 stack.  This mangles
 1197          * the x87 stack, but we don't care since we're about to call
 1198          * fxrstor() anyway.
 1199          */
 1200         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1201 }
 1202 #endif /* CPU_ENABLE_SSE */
 1203 
 1204 static void
 1205 fpurstor(addr)
 1206         union savefpu *addr;
 1207 {
 1208 
 1209 #ifdef CPU_ENABLE_SSE
 1210         if (use_xsave)
 1211                 xrstor((char *)addr, xsave_mask);
 1212         else if (cpu_fxsr)
 1213                 fxrstor(addr);
 1214         else
 1215 #endif
 1216                 frstor(addr);
 1217 }
 1218 
 1219 #ifdef DEV_ISA
 1220 /*
 1221  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1222  */
 1223 static struct isa_pnp_id npxisa_ids[] = {
 1224         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1225         { 0 }
 1226 };
 1227 
 1228 static int
 1229 npxisa_probe(device_t dev)
 1230 {
 1231         int result;
 1232         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
 1233                 device_quiet(dev);
 1234         }
 1235         return(result);
 1236 }
 1237 
 1238 static int
 1239 npxisa_attach(device_t dev)
 1240 {
 1241         return (0);
 1242 }
 1243 
 1244 static device_method_t npxisa_methods[] = {
 1245         /* Device interface */
 1246         DEVMETHOD(device_probe,         npxisa_probe),
 1247         DEVMETHOD(device_attach,        npxisa_attach),
 1248         DEVMETHOD(device_detach,        bus_generic_detach),
 1249         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1250         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1251         DEVMETHOD(device_resume,        bus_generic_resume),
 1252         
 1253         { 0, 0 }
 1254 };
 1255 
 1256 static driver_t npxisa_driver = {
 1257         "npxisa",
 1258         npxisa_methods,
 1259         1,                      /* no softc */
 1260 };
 1261 
 1262 static devclass_t npxisa_devclass;
 1263 
 1264 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
 1265 #ifndef PC98
 1266 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
 1267 #endif
 1268 #endif /* DEV_ISA */
 1269 
 1270 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1271     "Kernel contexts for FPU state");
 1272 
 1273 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1274 #define FPU_KERN_CTX_DUMMY       0x02
 1275 
 1276 struct fpu_kern_ctx {
 1277         union savefpu *prev;
 1278         uint32_t flags;
 1279         char hwstate1[];
 1280 };
 1281 
 1282 struct fpu_kern_ctx *
 1283 fpu_kern_alloc_ctx(u_int flags)
 1284 {
 1285         struct fpu_kern_ctx *res;
 1286         size_t sz;
 1287 
 1288         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1289             cpu_max_ext_state_size;
 1290         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1291             M_NOWAIT : M_WAITOK) | M_ZERO);
 1292         return (res);
 1293 }
 1294 
 1295 void
 1296 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1297 {
 1298 
 1299         /* XXXKIB clear the memory ? */
 1300         free(ctx, M_FPUKERN_CTX);
 1301 }
 1302 
 1303 static union savefpu *
 1304 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1305 {
 1306         vm_offset_t p;
 1307 
 1308         p = (vm_offset_t)&ctx->hwstate1;
 1309         p = roundup2(p, XSAVE_AREA_ALIGN);
 1310         return ((union savefpu *)p);
 1311 }
 1312 
 1313 int
 1314 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1315 {
 1316         struct pcb *pcb;
 1317 
 1318         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1319                 ctx->flags = FPU_KERN_CTX_DUMMY;
 1320                 return (0);
 1321         }
 1322         pcb = td->td_pcb;
 1323         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1324             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1325         ctx->flags = 0;
 1326         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1327                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1328         npxexit(td);
 1329         ctx->prev = pcb->pcb_save;
 1330         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1331         pcb->pcb_flags |= PCB_KERNNPX;
 1332         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1333         return (0);
 1334 }
 1335 
 1336 int
 1337 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1338 {
 1339         struct pcb *pcb;
 1340 
 1341         if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1342                 return (0);
 1343         pcb = td->td_pcb;
 1344         critical_enter();
 1345         if (curthread == PCPU_GET(fpcurthread))
 1346                 npxdrop();
 1347         critical_exit();
 1348         pcb->pcb_save = ctx->prev;
 1349         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1350                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
 1351                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1352                 else
 1353                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1354                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1355         } else {
 1356                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1357                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1358                 else
 1359                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1360                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1361         }
 1362         return (0);
 1363 }
 1364 
 1365 int
 1366 fpu_kern_thread(u_int flags)
 1367 {
 1368 
 1369         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1370             ("Only kthread may use fpu_kern_thread"));
 1371         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1372             ("mangled pcb_save"));
 1373         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1374 
 1375         curpcb->pcb_flags |= PCB_KERNNPX;
 1376         return (0);
 1377 }
 1378 
 1379 int
 1380 is_fpu_kern_thread(u_int flags)
 1381 {
 1382 
 1383         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1384                 return (0);
 1385         return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
 1386 }
 1387 
 1388 /*
 1389  * FPU save area alloc/free/init utility routines
 1390  */
 1391 union savefpu *
 1392 fpu_save_area_alloc(void)
 1393 {
 1394 
 1395         return (uma_zalloc(fpu_save_area_zone, 0));
 1396 }
 1397 
 1398 void
 1399 fpu_save_area_free(union savefpu *fsa)
 1400 {
 1401 
 1402         uma_zfree(fpu_save_area_zone, fsa);
 1403 }
 1404 
 1405 void
 1406 fpu_save_area_reset(union savefpu *fsa)
 1407 {
 1408 
 1409         bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
 1410 }

Cache object: 7acfaf6599945aad579ddc3e9749fdbc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.