The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 #include <vm/uma.h>
   59 
   60 #include <machine/asmacros.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/frame.h>
   63 #include <machine/md_var.h>
   64 #include <machine/pcb.h>
   65 #include <machine/psl.h>
   66 #include <machine/resource.h>
   67 #include <machine/specialreg.h>
   68 #include <machine/segments.h>
   69 #include <machine/ucontext.h>
   70 
   71 #include <machine/intr_machdep.h>
   72 #ifdef XEN
   73 #include <xen/xen-os.h>
   74 #include <xen/hypervisor.h>
   75 #endif
   76 
   77 #ifdef DEV_ISA
   78 #include <isa/isavar.h>
   79 #endif
   80 
   81 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
   82 #define CPU_ENABLE_SSE
   83 #endif
   84 
   85 /*
   86  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   87  */
   88 
   89 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   90 
   91 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   92 #define fnclex()                __asm __volatile("fnclex")
   93 #define fninit()                __asm __volatile("fninit")
   94 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   95 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   96 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   97 #define fp_divide_by_0()        __asm __volatile( \
   98                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   99 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
  100 #ifdef CPU_ENABLE_SSE
  101 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
  102 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
  103 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
  104 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
  105 
  106 static __inline void
  107 xrstor(char *addr, uint64_t mask)
  108 {
  109         uint32_t low, hi;
  110 
  111         low = mask;
  112         hi = mask >> 32;
  113         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
  114 }
  115 
  116 static __inline void
  117 xsave(char *addr, uint64_t mask)
  118 {
  119         uint32_t low, hi;
  120 
  121         low = mask;
  122         hi = mask >> 32;
  123         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  124             "memory");
  125 }
  126 
  127 static __inline void
  128 xsaveopt(char *addr, uint64_t mask)
  129 {
  130         uint32_t low, hi;
  131 
  132         low = mask;
  133         hi = mask >> 32;
  134         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  135             "memory");
  136 }
  137 #endif
  138 #else   /* !(__GNUCLIKE_ASM && !lint) */
  139 
  140 void    fldcw(u_short cw);
  141 void    fnclex(void);
  142 void    fninit(void);
  143 void    fnsave(caddr_t addr);
  144 void    fnstcw(caddr_t addr);
  145 void    fnstsw(caddr_t addr);
  146 void    fp_divide_by_0(void);
  147 void    frstor(caddr_t addr);
  148 #ifdef CPU_ENABLE_SSE
  149 void    fxsave(caddr_t addr);
  150 void    fxrstor(caddr_t addr);
  151 void    ldmxcsr(u_int csr);
  152 void    stmxcsr(u_int *csr);
  153 void    xrstor(char *addr, uint64_t mask);
  154 void    xsave(char *addr, uint64_t mask);
  155 void    xsaveopt(char *addr, uint64_t mask);
  156 #endif
  157 
  158 #endif  /* __GNUCLIKE_ASM && !lint */
  159 
  160 #ifdef XEN
  161 #define start_emulating()       (HYPERVISOR_fpu_taskswitch(1))
  162 #define stop_emulating()        (HYPERVISOR_fpu_taskswitch(0))
  163 #else
  164 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  165 #define stop_emulating()        clts()
  166 #endif
  167 
  168 #ifdef CPU_ENABLE_SSE
  169 #define GET_FPU_CW(thread) \
  170         (cpu_fxsr ? \
  171                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  172                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  173 #define GET_FPU_SW(thread) \
  174         (cpu_fxsr ? \
  175                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  176                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  177 #define SET_FPU_CW(savefpu, value) do { \
  178         if (cpu_fxsr) \
  179                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  180         else \
  181                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  182 } while (0)
  183 #else /* CPU_ENABLE_SSE */
  184 #define GET_FPU_CW(thread) \
  185         (thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  186 #define GET_FPU_SW(thread) \
  187         (thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  188 #define SET_FPU_CW(savefpu, value) \
  189         (savefpu)->sv_87.sv_env.en_cw = (value)
  190 #endif /* CPU_ENABLE_SSE */
  191 
  192 #ifdef CPU_ENABLE_SSE
  193 CTASSERT(sizeof(union savefpu) == 512);
  194 CTASSERT(sizeof(struct xstate_hdr) == 64);
  195 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  196 
  197 /*
  198  * This requirement is to make it easier for asm code to calculate
  199  * offset of the fpu save area from the pcb address. FPU save area
  200  * must be 64-byte aligned.
  201  */
  202 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  203 
  204 /*
  205  * Ensure the copy of XCR0 saved in a core is contained in the padding
  206  * area.
  207  */
  208 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
  209     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
  210 
  211 static  void    fpu_clean_state(void);
  212 #endif
  213 
  214 static  void    fpusave(union savefpu *);
  215 static  void    fpurstor(union savefpu *);
  216 
  217 int     hw_float;
  218 
  219 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  220     &hw_float, 0, "Floating point instructions executed in hardware");
  221 
  222 int lazy_fpu_switch = 0;
  223 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
  224     &lazy_fpu_switch, 0,
  225     "Lazily load FPU context after context switch");
  226 
  227 #ifdef CPU_ENABLE_SSE
  228 int use_xsave;
  229 uint64_t xsave_mask;
  230 #endif
  231 static  uma_zone_t fpu_save_area_zone;
  232 static  union savefpu *npx_initialstate;
  233 
  234 #ifdef CPU_ENABLE_SSE
  235 struct xsave_area_elm_descr {
  236         u_int   offset;
  237         u_int   size;
  238 } *xsave_area_desc;
  239 
  240 static int use_xsaveopt;
  241 #endif
  242 
  243 static  volatile u_int          npx_traps_while_probing;
  244 
  245 alias_for_inthand_t probetrap;
  246 __asm("                                                         \n\
  247         .text                                                   \n\
  248         .p2align 2,0x90                                         \n\
  249         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  250 " __XSTRING(CNAME(probetrap)) ":                                \n\
  251         ss                                                      \n\
  252         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  253         fnclex                                                  \n\
  254         iret                                                    \n\
  255 ");
  256 
  257 /*
  258  * Determine if an FPU is present and how to use it.
  259  */
  260 static int
  261 npx_probe(void)
  262 {
  263         struct gate_descriptor save_idt_npxtrap;
  264         u_short control, status;
  265 
  266         /*
  267          * Modern CPUs all have an FPU that uses the INT16 interface
  268          * and provide a simple way to verify that, so handle the
  269          * common case right away.
  270          */
  271         if (cpu_feature & CPUID_FPU) {
  272                 hw_float = 1;
  273                 return (1);
  274         }
  275 
  276         save_idt_npxtrap = idt[IDT_MF];
  277         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  278             GSEL(GCODE_SEL, SEL_KPL));
  279 
  280         /*
  281          * Don't trap while we're probing.
  282          */
  283         stop_emulating();
  284 
  285         /*
  286          * Finish resetting the coprocessor, if any.  If there is an error
  287          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  288          * it OK.  Bogus halts have never been observed, but we enabled
  289          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  290          */
  291         fninit();
  292 
  293         /*
  294          * Don't use fwait here because it might hang.
  295          * Don't use fnop here because it usually hangs if there is no FPU.
  296          */
  297         DELAY(1000);            /* wait for any IRQ13 */
  298 #ifdef DIAGNOSTIC
  299         if (npx_traps_while_probing != 0)
  300                 printf("fninit caused %u bogus npx trap(s)\n",
  301                        npx_traps_while_probing);
  302 #endif
  303         /*
  304          * Check for a status of mostly zero.
  305          */
  306         status = 0x5a5a;
  307         fnstsw(&status);
  308         if ((status & 0xb8ff) == 0) {
  309                 /*
  310                  * Good, now check for a proper control word.
  311                  */
  312                 control = 0x5a5a;
  313                 fnstcw(&control);
  314                 if ((control & 0x1f3f) == 0x033f) {
  315                         /*
  316                          * We have an npx, now divide by 0 to see if exception
  317                          * 16 works.
  318                          */
  319                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  320                         fldcw(control);
  321 #ifdef FPU_ERROR_BROKEN
  322                         /*
  323                          * FPU error signal doesn't work on some CPU
  324                          * accelerator board.
  325                          */
  326                         hw_float = 1;
  327                         return (1);
  328 #endif
  329                         npx_traps_while_probing = 0;
  330                         fp_divide_by_0();
  331                         if (npx_traps_while_probing != 0) {
  332                                 /*
  333                                  * Good, exception 16 works.
  334                                  */
  335                                 hw_float = 1;
  336                                 goto cleanup;
  337                         }
  338                         printf(
  339         "FPU does not use exception 16 for error reporting\n");
  340                         goto cleanup;
  341                 }
  342         }
  343 
  344         /*
  345          * Probe failed.  Floating point simply won't work.
  346          * Notify user and disable FPU/MMX/SSE instruction execution.
  347          */
  348         printf("WARNING: no FPU!\n");
  349         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  350             "n" (CR0_EM | CR0_MP) : "ax");
  351 
  352 cleanup:
  353         idt[IDT_MF] = save_idt_npxtrap;
  354         return (hw_float);
  355 }
  356 
  357 #ifdef CPU_ENABLE_SSE
  358 /*
  359  * Enable XSAVE if supported and allowed by user.
  360  * Calculate the xsave_mask.
  361  */
  362 static void
  363 npxinit_bsp1(void)
  364 {
  365         u_int cp[4];
  366         uint64_t xsave_mask_user;
  367 
  368         TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
  369         if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
  370                 use_xsave = 1;
  371                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  372         }
  373         if (!use_xsave)
  374                 return;
  375 
  376         cpuid_count(0xd, 0x0, cp);
  377         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  378         if ((cp[0] & xsave_mask) != xsave_mask)
  379                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  380         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  381         xsave_mask_user = xsave_mask;
  382         TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
  383         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  384         xsave_mask &= xsave_mask_user;
  385         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  386                 xsave_mask &= ~XFEATURE_AVX512;
  387         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  388                 xsave_mask &= ~XFEATURE_MPX;
  389 
  390         cpuid_count(0xd, 0x1, cp);
  391         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
  392                 use_xsaveopt = 1;
  393 }
  394 #endif
  395 /*
  396 
  397  * Calculate the fpu save area size.
  398  */
  399 static void
  400 npxinit_bsp2(void)
  401 {
  402 #ifdef CPU_ENABLE_SSE
  403         u_int cp[4];
  404 
  405         if (use_xsave) {
  406                 cpuid_count(0xd, 0x0, cp);
  407                 cpu_max_ext_state_size = cp[1];
  408 
  409                 /*
  410                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  411                  */
  412                 do_cpuid(1, cp);
  413                 cpu_feature2 = cp[2];
  414         } else
  415 #endif
  416                 cpu_max_ext_state_size = sizeof(union savefpu);
  417 }
  418 
  419 /*
  420  * Initialize floating point unit.
  421  */
  422 void
  423 npxinit(bool bsp)
  424 {
  425         static union savefpu dummy;
  426         register_t saveintr;
  427 #ifdef CPU_ENABLE_SSE
  428         u_int mxcsr;
  429 #endif
  430         u_short control;
  431 
  432         if (bsp) {
  433                 if (!npx_probe())
  434                         return;
  435 #ifdef CPU_ENABLE_SSE
  436                 npxinit_bsp1();
  437 #endif
  438         }
  439 
  440 #ifdef CPU_ENABLE_SSE
  441         if (use_xsave) {
  442                 load_cr4(rcr4() | CR4_XSAVE);
  443                 load_xcr(XCR0, xsave_mask);
  444         }
  445 #endif
  446 
  447         /*
  448          * XCR0 shall be set up before CPU can report the save area size.
  449          */
  450         if (bsp)
  451                 npxinit_bsp2();
  452         
  453         /*
  454          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  455          * fnsave to throw away any junk in the fpu.  fpusave() initializes
  456          * the fpu.
  457          *
  458          * It is too early for critical_enter() to work on AP.
  459          */
  460         saveintr = intr_disable();
  461         stop_emulating();
  462 #ifdef CPU_ENABLE_SSE
  463         if (cpu_fxsr)
  464                 fninit();
  465         else
  466 #endif
  467                 fnsave(&dummy);
  468         control = __INITIAL_NPXCW__;
  469         fldcw(control);
  470 #ifdef CPU_ENABLE_SSE
  471         if (cpu_fxsr) {
  472                 mxcsr = __INITIAL_MXCSR__;
  473                 ldmxcsr(mxcsr);
  474         }
  475 #endif
  476         start_emulating();
  477         intr_restore(saveintr);
  478 }
  479 
  480 /*
  481  * On the boot CPU we generate a clean state that is used to
  482  * initialize the floating point unit when it is first used by a
  483  * process.
  484  */
  485 static void
  486 npxinitstate(void *arg __unused)
  487 {
  488         register_t saveintr;
  489 #ifdef CPU_ENABLE_SSE
  490         int cp[4], i, max_ext_n;
  491 #endif
  492 
  493         if (!hw_float)
  494                 return;
  495 
  496         npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  497             M_WAITOK | M_ZERO);
  498         saveintr = intr_disable();
  499         stop_emulating();
  500 
  501         fpusave(npx_initialstate);
  502 #ifdef CPU_ENABLE_SSE
  503         if (cpu_fxsr) {
  504                 if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
  505                         cpu_mxcsr_mask = 
  506                             npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
  507                 else
  508                         cpu_mxcsr_mask = 0xFFBF;
  509 
  510                 /*
  511                  * The fninit instruction does not modify XMM
  512                  * registers or x87 registers (MM/ST).  The fpusave
  513                  * call dumped the garbage contained in the registers
  514                  * after reset to the initial state saved.  Clear XMM
  515                  * and x87 registers file image to make the startup
  516                  * program state and signal handler XMM/x87 register
  517                  * content predictable.
  518                  */
  519                 bzero(npx_initialstate->sv_xmm.sv_fp,
  520                     sizeof(npx_initialstate->sv_xmm.sv_fp));
  521                 bzero(npx_initialstate->sv_xmm.sv_xmm,
  522                     sizeof(npx_initialstate->sv_xmm.sv_xmm));
  523         } else
  524 #endif
  525                 bzero(npx_initialstate->sv_87.sv_ac,
  526                     sizeof(npx_initialstate->sv_87.sv_ac));
  527 
  528 #ifdef CPU_ENABLE_SSE
  529         /*
  530          * Create a table describing the layout of the CPU Extended
  531          * Save Area.
  532          */
  533         if (use_xsave) {
  534                 if (xsave_mask >> 32 != 0)
  535                         max_ext_n = fls(xsave_mask >> 32) + 32;
  536                 else
  537                         max_ext_n = fls(xsave_mask);
  538                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  539                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  540                 /* x87 state */
  541                 xsave_area_desc[0].offset = 0;
  542                 xsave_area_desc[0].size = 160;
  543                 /* XMM */
  544                 xsave_area_desc[1].offset = 160;
  545                 xsave_area_desc[1].size = 288 - 160;
  546 
  547                 for (i = 2; i < max_ext_n; i++) {
  548                         cpuid_count(0xd, i, cp);
  549                         xsave_area_desc[i].offset = cp[1];
  550                         xsave_area_desc[i].size = cp[0];
  551                 }
  552         }
  553 #endif
  554 
  555         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  556             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  557             XSAVE_AREA_ALIGN - 1, 0);
  558 
  559         start_emulating();
  560         intr_restore(saveintr);
  561 }
  562 SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
  563 
  564 /*
  565  * Free coprocessor (if we have it).
  566  */
  567 void
  568 npxexit(struct thread *td)
  569 {
  570 
  571         critical_enter();
  572         if (curthread == PCPU_GET(fpcurthread)) {
  573                 stop_emulating();
  574                 fpusave(curpcb->pcb_save);
  575                 start_emulating();
  576                 PCPU_SET(fpcurthread, NULL);
  577         }
  578         critical_exit();
  579 #ifdef NPX_DEBUG
  580         if (hw_float) {
  581                 u_int   masked_exceptions;
  582 
  583                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  584                 /*
  585                  * Log exceptions that would have trapped with the old
  586                  * control word (overflow, divide by 0, and invalid operand).
  587                  */
  588                 if (masked_exceptions & 0x0d)
  589                         log(LOG_ERR,
  590         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  591                             td->td_proc->p_pid, td->td_proc->p_comm,
  592                             masked_exceptions);
  593         }
  594 #endif
  595 }
  596 
  597 int
  598 npxformat(void)
  599 {
  600 
  601         if (!hw_float)
  602                 return (_MC_FPFMT_NODEV);
  603 #ifdef  CPU_ENABLE_SSE
  604         if (cpu_fxsr)
  605                 return (_MC_FPFMT_XMM);
  606 #endif
  607         return (_MC_FPFMT_387);
  608 }
  609 
  610 /* 
  611  * The following mechanism is used to ensure that the FPE_... value
  612  * that is passed as a trapcode to the signal handler of the user
  613  * process does not have more than one bit set.
  614  * 
  615  * Multiple bits may be set if the user process modifies the control
  616  * word while a status word bit is already set.  While this is a sign
  617  * of bad coding, we have no choise than to narrow them down to one
  618  * bit, since we must not send a trapcode that is not exactly one of
  619  * the FPE_ macros.
  620  *
  621  * The mechanism has a static table with 127 entries.  Each combination
  622  * of the 7 FPU status word exception bits directly translates to a
  623  * position in this table, where a single FPE_... value is stored.
  624  * This FPE_... value stored there is considered the "most important"
  625  * of the exception bits and will be sent as the signal code.  The
  626  * precedence of the bits is based upon Intel Document "Numerical
  627  * Applications", Chapter "Special Computational Situations".
  628  *
  629  * The macro to choose one of these values does these steps: 1) Throw
  630  * away status word bits that cannot be masked.  2) Throw away the bits
  631  * currently masked in the control word, assuming the user isn't
  632  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  633  * fault) if it is set, which cannot be masked but must be presered.
  634  * 4) Use the remaining bits to point into the trapcode table.
  635  *
  636  * The 6 maskable bits in order of their preference, as stated in the
  637  * above referenced Intel manual:
  638  * 1  Invalid operation (FP_X_INV)
  639  * 1a   Stack underflow
  640  * 1b   Stack overflow
  641  * 1c   Operand of unsupported format
  642  * 1d   SNaN operand.
  643  * 2  QNaN operand (not an exception, irrelavant here)
  644  * 3  Any other invalid-operation not mentioned above or zero divide
  645  *      (FP_X_INV, FP_X_DZ)
  646  * 4  Denormal operand (FP_X_DNML)
  647  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  648  * 6  Inexact result (FP_X_IMP) 
  649  */
  650 static char fpetable[128] = {
  651         0,
  652         FPE_FLTINV,     /*  1 - INV */
  653         FPE_FLTUND,     /*  2 - DNML */
  654         FPE_FLTINV,     /*  3 - INV | DNML */
  655         FPE_FLTDIV,     /*  4 - DZ */
  656         FPE_FLTINV,     /*  5 - INV | DZ */
  657         FPE_FLTDIV,     /*  6 - DNML | DZ */
  658         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  659         FPE_FLTOVF,     /*  8 - OFL */
  660         FPE_FLTINV,     /*  9 - INV | OFL */
  661         FPE_FLTUND,     /*  A - DNML | OFL */
  662         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  663         FPE_FLTDIV,     /*  C - DZ | OFL */
  664         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  665         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  666         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  667         FPE_FLTUND,     /* 10 - UFL */
  668         FPE_FLTINV,     /* 11 - INV | UFL */
  669         FPE_FLTUND,     /* 12 - DNML | UFL */
  670         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  671         FPE_FLTDIV,     /* 14 - DZ | UFL */
  672         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  673         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  674         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  675         FPE_FLTOVF,     /* 18 - OFL | UFL */
  676         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  677         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  678         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  679         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  680         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  681         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  682         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  683         FPE_FLTRES,     /* 20 - IMP */
  684         FPE_FLTINV,     /* 21 - INV | IMP */
  685         FPE_FLTUND,     /* 22 - DNML | IMP */
  686         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  687         FPE_FLTDIV,     /* 24 - DZ | IMP */
  688         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  689         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  690         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  691         FPE_FLTOVF,     /* 28 - OFL | IMP */
  692         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  693         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  694         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  695         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  696         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  697         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  698         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  699         FPE_FLTUND,     /* 30 - UFL | IMP */
  700         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  701         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  702         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  703         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  704         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  705         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  706         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  707         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  708         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  709         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  710         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  711         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  712         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  713         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  714         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  715         FPE_FLTSUB,     /* 40 - STK */
  716         FPE_FLTSUB,     /* 41 - INV | STK */
  717         FPE_FLTUND,     /* 42 - DNML | STK */
  718         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  719         FPE_FLTDIV,     /* 44 - DZ | STK */
  720         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  721         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  722         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  723         FPE_FLTOVF,     /* 48 - OFL | STK */
  724         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  725         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  726         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  727         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  728         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  729         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  730         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  731         FPE_FLTUND,     /* 50 - UFL | STK */
  732         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  733         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  734         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  735         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  736         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  737         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  738         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  739         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  740         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  741         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  742         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  743         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  744         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  745         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  746         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  747         FPE_FLTRES,     /* 60 - IMP | STK */
  748         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  749         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  750         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  751         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  752         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  753         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  754         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  755         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  756         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  757         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  758         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  759         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  760         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  761         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  762         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  763         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  764         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  765         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  766         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  767         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  768         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  769         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  770         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  771         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  772         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  773         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  774         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  775         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  776         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  777         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  778         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  779 };
  780 
  781 /*
  782  * Read the FP status and control words, then generate si_code value
  783  * for SIGFPE.  The error code chosen will be one of the
  784  * FPE_... macros.  It will be sent as the second argument to old
  785  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  786  * argument) to SA_SIGINFO signal handlers.
  787  *
  788  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  789  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  790  * usermode code which understands the FPU hardware enough to enable
  791  * the exceptions, can also handle clearing the exception state in the
  792  * handler.  The only consequence of not clearing the exception is the
  793  * rethrow of the SIGFPE on return from the signal handler and
  794  * reexecution of the corresponding instruction.
  795  *
  796  * For XMM traps, the exceptions were never cleared.
  797  */
  798 int
  799 npxtrap_x87(void)
  800 {
  801         u_short control, status;
  802 
  803         if (!hw_float) {
  804                 printf(
  805         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  806                        PCPU_GET(fpcurthread), curthread, hw_float);
  807                 panic("npxtrap from nowhere");
  808         }
  809         critical_enter();
  810 
  811         /*
  812          * Interrupt handling (for another interrupt) may have pushed the
  813          * state to memory.  Fetch the relevant parts of the state from
  814          * wherever they are.
  815          */
  816         if (PCPU_GET(fpcurthread) != curthread) {
  817                 control = GET_FPU_CW(curthread);
  818                 status = GET_FPU_SW(curthread);
  819         } else {
  820                 fnstcw(&control);
  821                 fnstsw(&status);
  822         }
  823         critical_exit();
  824         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  825 }
  826 
  827 #ifdef CPU_ENABLE_SSE
  828 int
  829 npxtrap_sse(void)
  830 {
  831         u_int mxcsr;
  832 
  833         if (!hw_float) {
  834                 printf(
  835         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  836                        PCPU_GET(fpcurthread), curthread, hw_float);
  837                 panic("npxtrap from nowhere");
  838         }
  839         critical_enter();
  840         if (PCPU_GET(fpcurthread) != curthread)
  841                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  842         else
  843                 stmxcsr(&mxcsr);
  844         critical_exit();
  845         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  846 }
  847 #endif
  848 
  849 static void
  850 restore_npx_curthread(struct thread *td, struct pcb *pcb)
  851 {
  852 
  853         /*
  854          * Record new context early in case frstor causes a trap.
  855          */
  856         PCPU_SET(fpcurthread, td);
  857 
  858         stop_emulating();
  859 #ifdef CPU_ENABLE_SSE
  860         if (cpu_fxsr)
  861                 fpu_clean_state();
  862 #endif
  863 
  864         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  865                 /*
  866                  * This is the first time this thread has used the FPU or
  867                  * the PCB doesn't contain a clean FPU state.  Explicitly
  868                  * load an initial state.
  869                  *
  870                  * We prefer to restore the state from the actual save
  871                  * area in PCB instead of directly loading from
  872                  * npx_initialstate, to ignite the XSAVEOPT
  873                  * tracking engine.
  874                  */
  875                 bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
  876                 fpurstor(pcb->pcb_save);
  877                 if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  878                         fldcw(pcb->pcb_initial_npxcw);
  879                 pcb->pcb_flags |= PCB_NPXINITDONE;
  880                 if (PCB_USER_FPU(pcb))
  881                         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
  882         } else {
  883                 fpurstor(pcb->pcb_save);
  884         }
  885 }
  886 
  887 /*
  888  * Implement device not available (DNA) exception
  889  *
  890  * It would be better to switch FP context here (if curthread != fpcurthread)
  891  * and not necessarily for every context switch, but it is too hard to
  892  * access foreign pcb's.
  893  */
  894 int
  895 npxdna(void)
  896 {
  897         struct thread *td;
  898 
  899         if (!hw_float)
  900                 return (0);
  901         td = curthread;
  902         critical_enter();
  903         if (__predict_false(PCPU_GET(fpcurthread) == td)) {
  904                 /*
  905                  * Some virtual machines seems to set %cr0.TS at
  906                  * arbitrary moments.  Silently clear the TS bit
  907                  * regardless of the eager/lazy FPU context switch
  908                  * mode.
  909                  */
  910                 stop_emulating();
  911         } else {
  912                 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
  913                         printf(
  914                     "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  915                             PCPU_GET(fpcurthread),
  916                             PCPU_GET(fpcurthread)->td_proc->p_pid,
  917                             td, td->td_proc->p_pid);
  918                         panic("npxdna");
  919                 }
  920                 restore_npx_curthread(td, td->td_pcb);
  921         }
  922         critical_exit();
  923         return (1);
  924 }
  925 
  926 /*
  927  * Wrapper for fpusave() called from context switch routines.
  928  *
  929  * npxsave() must be called with interrupts disabled, so that it clears
  930  * fpcurthread atomically with saving the state.  We require callers to do the
  931  * disabling, since most callers need to disable interrupts anyway to call
  932  * npxsave() atomically with checking fpcurthread.
  933  */
  934 void
  935 npxsave(addr)
  936         union savefpu *addr;
  937 {
  938 
  939         stop_emulating();
  940 #ifdef CPU_ENABLE_SSE
  941         if (use_xsaveopt)
  942                 xsaveopt((char *)addr, xsave_mask);
  943         else
  944 #endif
  945                 fpusave(addr);
  946 }
  947 
  948 void npxswitch(struct thread *td, struct pcb *pcb);
  949 void
  950 npxswitch(struct thread *td, struct pcb *pcb)
  951 {
  952 
  953         if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
  954             !PCB_USER_FPU(pcb)) {
  955                 start_emulating();
  956                 PCPU_SET(fpcurthread, NULL);
  957         } else if (PCPU_GET(fpcurthread) != td) {
  958                 restore_npx_curthread(td, pcb);
  959         }
  960 }
  961 
  962 /*
  963  * Unconditionally save the current co-processor state across suspend and
  964  * resume.
  965  */
  966 void
  967 npxsuspend(union savefpu *addr)
  968 {
  969         register_t cr0;
  970 
  971         if (!hw_float)
  972                 return;
  973         if (PCPU_GET(fpcurthread) == NULL) {
  974                 bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
  975                 return;
  976         }
  977         cr0 = rcr0();
  978         stop_emulating();
  979         fpusave(addr);
  980         load_cr0(cr0);
  981 }
  982 
  983 void
  984 npxresume(union savefpu *addr)
  985 {
  986         register_t cr0;
  987 
  988         if (!hw_float)
  989                 return;
  990 
  991         cr0 = rcr0();
  992         npxinit(false);
  993         stop_emulating();
  994         fpurstor(addr);
  995         load_cr0(cr0);
  996 }
  997 
  998 void
  999 npxdrop(void)
 1000 {
 1001         struct thread *td;
 1002 
 1003         /*
 1004          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
 1005          * ones don't cause a panic on the next frstor.
 1006          */
 1007 #ifdef CPU_ENABLE_SSE
 1008         if (!cpu_fxsr)
 1009 #endif
 1010                 fnclex();
 1011 
 1012         td = PCPU_GET(fpcurthread);
 1013         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
 1014         CRITICAL_ASSERT(td);
 1015         PCPU_SET(fpcurthread, NULL);
 1016         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1017         start_emulating();
 1018 }
 1019 
 1020 /*
 1021  * Get the user state of the FPU into pcb->pcb_user_save without
 1022  * dropping ownership (if possible).  It returns the FPU ownership
 1023  * status.
 1024  */
 1025 int
 1026 npxgetregs(struct thread *td)
 1027 {
 1028         struct pcb *pcb;
 1029 #ifdef CPU_ENABLE_SSE
 1030         uint64_t *xstate_bv, bit;
 1031         char *sa;
 1032         int max_ext_n, i;
 1033 #endif
 1034         int owned;
 1035 
 1036         if (!hw_float)
 1037                 return (_MC_FPOWNED_NONE);
 1038 
 1039         pcb = td->td_pcb;
 1040         critical_enter();
 1041         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
 1042                 bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
 1043                     cpu_max_ext_state_size);
 1044                 SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
 1045                 npxuserinited(td);
 1046                 critical_exit();
 1047                 return (_MC_FPOWNED_PCB);
 1048         }
 1049         if (td == PCPU_GET(fpcurthread)) {
 1050                 fpusave(get_pcb_user_save_pcb(pcb));
 1051 #ifdef CPU_ENABLE_SSE
 1052                 if (!cpu_fxsr)
 1053 #endif
 1054                         /*
 1055                          * fnsave initializes the FPU and destroys whatever
 1056                          * context it contains.  Make sure the FPU owner
 1057                          * starts with a clean state next time.
 1058                          */
 1059                         npxdrop();
 1060                 owned = _MC_FPOWNED_FPU;
 1061         } else {
 1062                 owned = _MC_FPOWNED_PCB;
 1063         }
 1064 #ifdef CPU_ENABLE_SSE
 1065         if (use_xsave) {
 1066                 /*
 1067                  * Handle partially saved state.
 1068                  */
 1069                 sa = (char *)get_pcb_user_save_pcb(pcb);
 1070                 xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
 1071                     offsetof(struct xstate_hdr, xstate_bv));
 1072                 if (xsave_mask >> 32 != 0)
 1073                         max_ext_n = fls(xsave_mask >> 32) + 32;
 1074                 else
 1075                         max_ext_n = fls(xsave_mask);
 1076                 for (i = 0; i < max_ext_n; i++) {
 1077                         bit = 1ULL << i;
 1078                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
 1079                                 continue;
 1080                         bcopy((char *)npx_initialstate +
 1081                             xsave_area_desc[i].offset,
 1082                             sa + xsave_area_desc[i].offset,
 1083                             xsave_area_desc[i].size);
 1084                         *xstate_bv |= bit;
 1085                 }
 1086         }
 1087 #endif
 1088         critical_exit();
 1089         return (owned);
 1090 }
 1091 
 1092 void
 1093 npxuserinited(struct thread *td)
 1094 {
 1095         struct pcb *pcb;
 1096 
 1097         CRITICAL_ASSERT(td);
 1098         pcb = td->td_pcb;
 1099         if (PCB_USER_FPU(pcb))
 1100                 pcb->pcb_flags |= PCB_NPXINITDONE;
 1101         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
 1102 }
 1103 
 1104 #ifdef CPU_ENABLE_SSE
 1105 int
 1106 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
 1107 {
 1108         struct xstate_hdr *hdr, *ehdr;
 1109         size_t len, max_len;
 1110         uint64_t bv;
 1111 
 1112         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
 1113         if (xfpustate == NULL)
 1114                 return (0);
 1115         if (!use_xsave)
 1116                 return (EOPNOTSUPP);
 1117 
 1118         len = xfpustate_size;
 1119         if (len < sizeof(struct xstate_hdr))
 1120                 return (EINVAL);
 1121         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 1122         if (len > max_len)
 1123                 return (EINVAL);
 1124 
 1125         ehdr = (struct xstate_hdr *)xfpustate;
 1126         bv = ehdr->xstate_bv;
 1127 
 1128         /*
 1129          * Avoid #gp.
 1130          */
 1131         if (bv & ~xsave_mask)
 1132                 return (EINVAL);
 1133 
 1134         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
 1135 
 1136         hdr->xstate_bv = bv;
 1137         bcopy(xfpustate + sizeof(struct xstate_hdr),
 1138             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
 1139 
 1140         return (0);
 1141 }
 1142 #endif
 1143 
 1144 int
 1145 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
 1146         size_t xfpustate_size)
 1147 {
 1148         struct pcb *pcb;
 1149 #ifdef CPU_ENABLE_SSE
 1150         int error;
 1151 #endif
 1152 
 1153         if (!hw_float)
 1154                 return (ENXIO);
 1155 
 1156 #ifdef CPU_ENABLE_SSE
 1157         if (cpu_fxsr)
 1158                 addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1159 #endif
 1160         pcb = td->td_pcb;
 1161         error = 0;
 1162         critical_enter();
 1163         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
 1164 #ifdef CPU_ENABLE_SSE
 1165                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1166 #endif
 1167                 if (error == 0) {
 1168 #ifdef CPU_ENABLE_SSE
 1169                         if (!cpu_fxsr)
 1170 #endif
 1171                                 fnclex();       /* As in npxdrop(). */
 1172                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1173                         fpurstor(get_pcb_user_save_td(td));
 1174                         pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
 1175                 }
 1176         } else {
 1177 #ifdef CPU_ENABLE_SSE
 1178                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1179 #endif
 1180                 if (error == 0) {
 1181                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1182                         npxuserinited(td);
 1183                 }
 1184         }
 1185         critical_exit();
 1186         return (error);
 1187 }
 1188 
 1189 static void
 1190 fpusave(addr)
 1191         union savefpu *addr;
 1192 {
 1193         
 1194 #ifdef CPU_ENABLE_SSE
 1195         if (use_xsave)
 1196                 xsave((char *)addr, xsave_mask);
 1197         else if (cpu_fxsr)
 1198                 fxsave(addr);
 1199         else
 1200 #endif
 1201                 fnsave(addr);
 1202 }
 1203 
 1204 #ifdef CPU_ENABLE_SSE
 1205 /*
 1206  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1207  * the x87's stored last instruction pointer, last data pointer, and last
 1208  * opcode values, except in the rare case in which the exception summary
 1209  * (ES) bit in the x87 status word is set to 1.
 1210  *
 1211  * In order to avoid leaking this information across processes, we clean
 1212  * these values by performing a dummy load before executing fxrstor().
 1213  */
 1214 static void
 1215 fpu_clean_state(void)
 1216 {
 1217         static float dummy_variable = 0.0;
 1218         u_short status;
 1219 
 1220         /*
 1221          * Clear the ES bit in the x87 status word if it is currently
 1222          * set, in order to avoid causing a fault in the upcoming load.
 1223          */
 1224         fnstsw(&status);
 1225         if (status & 0x80)
 1226                 fnclex();
 1227 
 1228         /*
 1229          * Load the dummy variable into the x87 stack.  This mangles
 1230          * the x87 stack, but we don't care since we're about to call
 1231          * fxrstor() anyway.
 1232          */
 1233         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1234 }
 1235 #endif /* CPU_ENABLE_SSE */
 1236 
 1237 static void
 1238 fpurstor(union savefpu *addr)
 1239 {
 1240 
 1241 #ifdef CPU_ENABLE_SSE
 1242         if (use_xsave)
 1243                 xrstor((char *)addr, xsave_mask);
 1244         else if (cpu_fxsr)
 1245                 fxrstor(addr);
 1246         else
 1247 #endif
 1248                 frstor(addr);
 1249 }
 1250 
 1251 #ifdef DEV_ISA
 1252 /*
 1253  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1254  */
 1255 static struct isa_pnp_id npxisa_ids[] = {
 1256         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1257         { 0 }
 1258 };
 1259 
 1260 static int
 1261 npxisa_probe(device_t dev)
 1262 {
 1263         int result;
 1264         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
 1265                 device_quiet(dev);
 1266         }
 1267         return(result);
 1268 }
 1269 
 1270 static int
 1271 npxisa_attach(device_t dev)
 1272 {
 1273         return (0);
 1274 }
 1275 
 1276 static device_method_t npxisa_methods[] = {
 1277         /* Device interface */
 1278         DEVMETHOD(device_probe,         npxisa_probe),
 1279         DEVMETHOD(device_attach,        npxisa_attach),
 1280         DEVMETHOD(device_detach,        bus_generic_detach),
 1281         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1282         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1283         DEVMETHOD(device_resume,        bus_generic_resume),
 1284         
 1285         { 0, 0 }
 1286 };
 1287 
 1288 static driver_t npxisa_driver = {
 1289         "npxisa",
 1290         npxisa_methods,
 1291         1,                      /* no softc */
 1292 };
 1293 
 1294 static devclass_t npxisa_devclass;
 1295 
 1296 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
 1297 #ifndef PC98
 1298 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
 1299 #endif
 1300 #endif /* DEV_ISA */
 1301 
 1302 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1303     "Kernel contexts for FPU state");
 1304 
 1305 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1306 #define FPU_KERN_CTX_DUMMY       0x02
 1307 
 1308 struct fpu_kern_ctx {
 1309         union savefpu *prev;
 1310         uint32_t flags;
 1311         char hwstate1[];
 1312 };
 1313 
 1314 struct fpu_kern_ctx *
 1315 fpu_kern_alloc_ctx(u_int flags)
 1316 {
 1317         struct fpu_kern_ctx *res;
 1318         size_t sz;
 1319 
 1320         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1321             cpu_max_ext_state_size;
 1322         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1323             M_NOWAIT : M_WAITOK) | M_ZERO);
 1324         return (res);
 1325 }
 1326 
 1327 void
 1328 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1329 {
 1330 
 1331         /* XXXKIB clear the memory ? */
 1332         free(ctx, M_FPUKERN_CTX);
 1333 }
 1334 
 1335 static union savefpu *
 1336 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1337 {
 1338         vm_offset_t p;
 1339 
 1340         p = (vm_offset_t)&ctx->hwstate1;
 1341         p = roundup2(p, XSAVE_AREA_ALIGN);
 1342         return ((union savefpu *)p);
 1343 }
 1344 
 1345 int
 1346 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1347 {
 1348         struct pcb *pcb;
 1349 
 1350         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1351                 ctx->flags = FPU_KERN_CTX_DUMMY;
 1352                 return (0);
 1353         }
 1354         pcb = td->td_pcb;
 1355         critical_enter();
 1356         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1357             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1358         ctx->flags = 0;
 1359         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1360                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1361         npxexit(td);
 1362         ctx->prev = pcb->pcb_save;
 1363         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1364         pcb->pcb_flags |= PCB_KERNNPX;
 1365         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1366         critical_exit();
 1367         return (0);
 1368 }
 1369 
 1370 int
 1371 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1372 {
 1373         struct pcb *pcb;
 1374 
 1375         if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1376                 return (0);
 1377         pcb = td->td_pcb;
 1378         critical_enter();
 1379         if (curthread == PCPU_GET(fpcurthread))
 1380                 npxdrop();
 1381         pcb->pcb_save = ctx->prev;
 1382         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1383                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
 1384                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1385                 else
 1386                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1387                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1388         } else {
 1389                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1390                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1391                 else
 1392                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1393                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1394         }
 1395         critical_exit();
 1396         return (0);
 1397 }
 1398 
 1399 int
 1400 fpu_kern_thread(u_int flags)
 1401 {
 1402 
 1403         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1404             ("Only kthread may use fpu_kern_thread"));
 1405         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1406             ("mangled pcb_save"));
 1407         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1408 
 1409         curpcb->pcb_flags |= PCB_KERNNPX;
 1410         return (0);
 1411 }
 1412 
 1413 int
 1414 is_fpu_kern_thread(u_int flags)
 1415 {
 1416 
 1417         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1418                 return (0);
 1419         return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
 1420 }
 1421 
 1422 /*
 1423  * FPU save area alloc/free/init utility routines
 1424  */
 1425 union savefpu *
 1426 fpu_save_area_alloc(void)
 1427 {
 1428 
 1429         return (uma_zalloc(fpu_save_area_zone, 0));
 1430 }
 1431 
 1432 void
 1433 fpu_save_area_free(union savefpu *fsa)
 1434 {
 1435 
 1436         uma_zfree(fpu_save_area_zone, fsa);
 1437 }
 1438 
 1439 void
 1440 fpu_save_area_reset(union savefpu *fsa)
 1441 {
 1442 
 1443         bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
 1444 }

Cache object: 95c4fcd0f479f23d2941956f35149618


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.