The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/11.0/sys/i386/isa/npx.c 294313 2016-01-19 08:09:09Z kib $");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 #include <vm/uma.h>
   59 
   60 #include <machine/asmacros.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/frame.h>
   63 #include <machine/md_var.h>
   64 #include <machine/pcb.h>
   65 #include <machine/psl.h>
   66 #include <machine/resource.h>
   67 #include <machine/specialreg.h>
   68 #include <machine/segments.h>
   69 #include <machine/ucontext.h>
   70 
   71 #include <machine/intr_machdep.h>
   72 
   73 #ifdef DEV_ISA
   74 #include <isa/isavar.h>
   75 #endif
   76 
   77 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
   78 #define CPU_ENABLE_SSE
   79 #endif
   80 
   81 /*
   82  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   83  */
   84 
   85 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   86 
   87 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   88 #define fnclex()                __asm __volatile("fnclex")
   89 #define fninit()                __asm __volatile("fninit")
   90 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   91 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   92 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   93 #define fp_divide_by_0()        __asm __volatile( \
   94                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   95 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
   96 #ifdef CPU_ENABLE_SSE
   97 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   98 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   99 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
  100 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
  101 
  102 static __inline void
  103 xrstor(char *addr, uint64_t mask)
  104 {
  105         uint32_t low, hi;
  106 
  107         low = mask;
  108         hi = mask >> 32;
  109         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
  110 }
  111 
  112 static __inline void
  113 xsave(char *addr, uint64_t mask)
  114 {
  115         uint32_t low, hi;
  116 
  117         low = mask;
  118         hi = mask >> 32;
  119         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  120             "memory");
  121 }
  122 
  123 static __inline void
  124 xsaveopt(char *addr, uint64_t mask)
  125 {
  126         uint32_t low, hi;
  127 
  128         low = mask;
  129         hi = mask >> 32;
  130         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  131             "memory");
  132 }
  133 #endif
  134 #else   /* !(__GNUCLIKE_ASM && !lint) */
  135 
  136 void    fldcw(u_short cw);
  137 void    fnclex(void);
  138 void    fninit(void);
  139 void    fnsave(caddr_t addr);
  140 void    fnstcw(caddr_t addr);
  141 void    fnstsw(caddr_t addr);
  142 void    fp_divide_by_0(void);
  143 void    frstor(caddr_t addr);
  144 #ifdef CPU_ENABLE_SSE
  145 void    fxsave(caddr_t addr);
  146 void    fxrstor(caddr_t addr);
  147 void    ldmxcsr(u_int csr);
  148 void    stmxcsr(u_int *csr);
  149 void    xrstor(char *addr, uint64_t mask);
  150 void    xsave(char *addr, uint64_t mask);
  151 void    xsaveopt(char *addr, uint64_t mask);
  152 #endif
  153 
  154 #endif  /* __GNUCLIKE_ASM && !lint */
  155 
  156 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  157 #define stop_emulating()        clts()
  158 
  159 #ifdef CPU_ENABLE_SSE
  160 #define GET_FPU_CW(thread) \
  161         (cpu_fxsr ? \
  162                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  163                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  164 #define GET_FPU_SW(thread) \
  165         (cpu_fxsr ? \
  166                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  167                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  168 #define SET_FPU_CW(savefpu, value) do { \
  169         if (cpu_fxsr) \
  170                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  171         else \
  172                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  173 } while (0)
  174 #else /* CPU_ENABLE_SSE */
  175 #define GET_FPU_CW(thread) \
  176         (thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  177 #define GET_FPU_SW(thread) \
  178         (thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  179 #define SET_FPU_CW(savefpu, value) \
  180         (savefpu)->sv_87.sv_env.en_cw = (value)
  181 #endif /* CPU_ENABLE_SSE */
  182 
  183 #ifdef CPU_ENABLE_SSE
  184 CTASSERT(sizeof(union savefpu) == 512);
  185 CTASSERT(sizeof(struct xstate_hdr) == 64);
  186 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  187 
  188 /*
  189  * This requirement is to make it easier for asm code to calculate
  190  * offset of the fpu save area from the pcb address. FPU save area
  191  * must be 64-byte aligned.
  192  */
  193 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  194 
  195 /*
  196  * Ensure the copy of XCR0 saved in a core is contained in the padding
  197  * area.
  198  */
  199 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
  200     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
  201 
  202 static  void    fpu_clean_state(void);
  203 #endif
  204 
  205 static  void    fpusave(union savefpu *);
  206 static  void    fpurstor(union savefpu *);
  207 
  208 int     hw_float;
  209 
  210 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  211     &hw_float, 0, "Floating point instructions executed in hardware");
  212 
  213 #ifdef CPU_ENABLE_SSE
  214 int use_xsave;
  215 uint64_t xsave_mask;
  216 #endif
  217 static  uma_zone_t fpu_save_area_zone;
  218 static  union savefpu *npx_initialstate;
  219 
  220 #ifdef CPU_ENABLE_SSE
  221 struct xsave_area_elm_descr {
  222         u_int   offset;
  223         u_int   size;
  224 } *xsave_area_desc;
  225 
  226 static int use_xsaveopt;
  227 #endif
  228 
  229 static  volatile u_int          npx_traps_while_probing;
  230 
  231 alias_for_inthand_t probetrap;
  232 __asm("                                                         \n\
  233         .text                                                   \n\
  234         .p2align 2,0x90                                         \n\
  235         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  236 " __XSTRING(CNAME(probetrap)) ":                                \n\
  237         ss                                                      \n\
  238         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  239         fnclex                                                  \n\
  240         iret                                                    \n\
  241 ");
  242 
  243 /*
  244  * Determine if an FPU is present and how to use it.
  245  */
  246 static int
  247 npx_probe(void)
  248 {
  249         struct gate_descriptor save_idt_npxtrap;
  250         u_short control, status;
  251 
  252         /*
  253          * Modern CPUs all have an FPU that uses the INT16 interface
  254          * and provide a simple way to verify that, so handle the
  255          * common case right away.
  256          */
  257         if (cpu_feature & CPUID_FPU) {
  258                 hw_float = 1;
  259                 return (1);
  260         }
  261 
  262         save_idt_npxtrap = idt[IDT_MF];
  263         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  264             GSEL(GCODE_SEL, SEL_KPL));
  265 
  266         /*
  267          * Don't trap while we're probing.
  268          */
  269         stop_emulating();
  270 
  271         /*
  272          * Finish resetting the coprocessor, if any.  If there is an error
  273          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  274          * it OK.  Bogus halts have never been observed, but we enabled
  275          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  276          */
  277         fninit();
  278 
  279         /*
  280          * Don't use fwait here because it might hang.
  281          * Don't use fnop here because it usually hangs if there is no FPU.
  282          */
  283         DELAY(1000);            /* wait for any IRQ13 */
  284 #ifdef DIAGNOSTIC
  285         if (npx_traps_while_probing != 0)
  286                 printf("fninit caused %u bogus npx trap(s)\n",
  287                        npx_traps_while_probing);
  288 #endif
  289         /*
  290          * Check for a status of mostly zero.
  291          */
  292         status = 0x5a5a;
  293         fnstsw(&status);
  294         if ((status & 0xb8ff) == 0) {
  295                 /*
  296                  * Good, now check for a proper control word.
  297                  */
  298                 control = 0x5a5a;
  299                 fnstcw(&control);
  300                 if ((control & 0x1f3f) == 0x033f) {
  301                         /*
  302                          * We have an npx, now divide by 0 to see if exception
  303                          * 16 works.
  304                          */
  305                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  306                         fldcw(control);
  307 #ifdef FPU_ERROR_BROKEN
  308                         /*
  309                          * FPU error signal doesn't work on some CPU
  310                          * accelerator board.
  311                          */
  312                         hw_float = 1;
  313                         return (1);
  314 #endif
  315                         npx_traps_while_probing = 0;
  316                         fp_divide_by_0();
  317                         if (npx_traps_while_probing != 0) {
  318                                 /*
  319                                  * Good, exception 16 works.
  320                                  */
  321                                 hw_float = 1;
  322                                 goto cleanup;
  323                         }
  324                         printf(
  325         "FPU does not use exception 16 for error reporting\n");
  326                         goto cleanup;
  327                 }
  328         }
  329 
  330         /*
  331          * Probe failed.  Floating point simply won't work.
  332          * Notify user and disable FPU/MMX/SSE instruction execution.
  333          */
  334         printf("WARNING: no FPU!\n");
  335         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  336             "n" (CR0_EM | CR0_MP) : "ax");
  337 
  338 cleanup:
  339         idt[IDT_MF] = save_idt_npxtrap;
  340         return (hw_float);
  341 }
  342 
  343 #ifdef CPU_ENABLE_SSE
  344 /*
  345  * Enable XSAVE if supported and allowed by user.
  346  * Calculate the xsave_mask.
  347  */
  348 static void
  349 npxinit_bsp1(void)
  350 {
  351         u_int cp[4];
  352         uint64_t xsave_mask_user;
  353 
  354         if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
  355                 use_xsave = 1;
  356                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  357         }
  358         if (!use_xsave)
  359                 return;
  360 
  361         cpuid_count(0xd, 0x0, cp);
  362         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  363         if ((cp[0] & xsave_mask) != xsave_mask)
  364                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  365         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  366         xsave_mask_user = xsave_mask;
  367         TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
  368         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  369         xsave_mask &= xsave_mask_user;
  370         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  371                 xsave_mask &= ~XFEATURE_AVX512;
  372         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  373                 xsave_mask &= ~XFEATURE_MPX;
  374 
  375         cpuid_count(0xd, 0x1, cp);
  376         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
  377                 use_xsaveopt = 1;
  378 }
  379 #endif
  380 /*
  381 
  382  * Calculate the fpu save area size.
  383  */
  384 static void
  385 npxinit_bsp2(void)
  386 {
  387 #ifdef CPU_ENABLE_SSE
  388         u_int cp[4];
  389 
  390         if (use_xsave) {
  391                 cpuid_count(0xd, 0x0, cp);
  392                 cpu_max_ext_state_size = cp[1];
  393 
  394                 /*
  395                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  396                  */
  397                 do_cpuid(1, cp);
  398                 cpu_feature2 = cp[2];
  399         } else
  400 #endif
  401                 cpu_max_ext_state_size = sizeof(union savefpu);
  402 }
  403 
  404 /*
  405  * Initialize floating point unit.
  406  */
  407 void
  408 npxinit(bool bsp)
  409 {
  410         static union savefpu dummy;
  411         register_t saveintr;
  412 #ifdef CPU_ENABLE_SSE
  413         u_int mxcsr;
  414 #endif
  415         u_short control;
  416 
  417         if (bsp) {
  418                 if (!npx_probe())
  419                         return;
  420 #ifdef CPU_ENABLE_SSE
  421                 npxinit_bsp1();
  422 #endif
  423         }
  424 
  425 #ifdef CPU_ENABLE_SSE
  426         if (use_xsave) {
  427                 load_cr4(rcr4() | CR4_XSAVE);
  428                 load_xcr(XCR0, xsave_mask);
  429         }
  430 #endif
  431 
  432         /*
  433          * XCR0 shall be set up before CPU can report the save area size.
  434          */
  435         if (bsp)
  436                 npxinit_bsp2();
  437         
  438         /*
  439          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  440          * fnsave to throw away any junk in the fpu.  fpusave() initializes
  441          * the fpu.
  442          *
  443          * It is too early for critical_enter() to work on AP.
  444          */
  445         saveintr = intr_disable();
  446         stop_emulating();
  447 #ifdef CPU_ENABLE_SSE
  448         if (cpu_fxsr)
  449                 fninit();
  450         else
  451 #endif
  452                 fnsave(&dummy);
  453         control = __INITIAL_NPXCW__;
  454         fldcw(control);
  455 #ifdef CPU_ENABLE_SSE
  456         if (cpu_fxsr) {
  457                 mxcsr = __INITIAL_MXCSR__;
  458                 ldmxcsr(mxcsr);
  459         }
  460 #endif
  461         start_emulating();
  462         intr_restore(saveintr);
  463 }
  464 
  465 /*
  466  * On the boot CPU we generate a clean state that is used to
  467  * initialize the floating point unit when it is first used by a
  468  * process.
  469  */
  470 static void
  471 npxinitstate(void *arg __unused)
  472 {
  473         register_t saveintr;
  474 #ifdef CPU_ENABLE_SSE
  475         int cp[4], i, max_ext_n;
  476 #endif
  477 
  478         if (!hw_float)
  479                 return;
  480 
  481         npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  482             M_WAITOK | M_ZERO);
  483         saveintr = intr_disable();
  484         stop_emulating();
  485 
  486         fpusave(npx_initialstate);
  487 #ifdef CPU_ENABLE_SSE
  488         if (cpu_fxsr) {
  489                 if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
  490                         cpu_mxcsr_mask = 
  491                             npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
  492                 else
  493                         cpu_mxcsr_mask = 0xFFBF;
  494 
  495                 /*
  496                  * The fninit instruction does not modify XMM
  497                  * registers or x87 registers (MM/ST).  The fpusave
  498                  * call dumped the garbage contained in the registers
  499                  * after reset to the initial state saved.  Clear XMM
  500                  * and x87 registers file image to make the startup
  501                  * program state and signal handler XMM/x87 register
  502                  * content predictable.
  503                  */
  504                 bzero(npx_initialstate->sv_xmm.sv_fp,
  505                     sizeof(npx_initialstate->sv_xmm.sv_fp));
  506                 bzero(npx_initialstate->sv_xmm.sv_xmm,
  507                     sizeof(npx_initialstate->sv_xmm.sv_xmm));
  508         } else
  509 #endif
  510                 bzero(npx_initialstate->sv_87.sv_ac,
  511                     sizeof(npx_initialstate->sv_87.sv_ac));
  512 
  513 #ifdef CPU_ENABLE_SSE
  514         /*
  515          * Create a table describing the layout of the CPU Extended
  516          * Save Area.
  517          */
  518         if (use_xsave) {
  519                 if (xsave_mask >> 32 != 0)
  520                         max_ext_n = fls(xsave_mask >> 32) + 32;
  521                 else
  522                         max_ext_n = fls(xsave_mask);
  523                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  524                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  525                 /* x87 state */
  526                 xsave_area_desc[0].offset = 0;
  527                 xsave_area_desc[0].size = 160;
  528                 /* XMM */
  529                 xsave_area_desc[1].offset = 160;
  530                 xsave_area_desc[1].size = 288 - 160;
  531 
  532                 for (i = 2; i < max_ext_n; i++) {
  533                         cpuid_count(0xd, i, cp);
  534                         xsave_area_desc[i].offset = cp[1];
  535                         xsave_area_desc[i].size = cp[0];
  536                 }
  537         }
  538 #endif
  539 
  540         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  541             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  542             XSAVE_AREA_ALIGN - 1, 0);
  543 
  544         start_emulating();
  545         intr_restore(saveintr);
  546 }
  547 SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
  548 
  549 /*
  550  * Free coprocessor (if we have it).
  551  */
  552 void
  553 npxexit(td)
  554         struct thread *td;
  555 {
  556 
  557         critical_enter();
  558         if (curthread == PCPU_GET(fpcurthread)) {
  559                 stop_emulating();
  560                 fpusave(curpcb->pcb_save);
  561                 start_emulating();
  562                 PCPU_SET(fpcurthread, NULL);
  563         }
  564         critical_exit();
  565 #ifdef NPX_DEBUG
  566         if (hw_float) {
  567                 u_int   masked_exceptions;
  568 
  569                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  570                 /*
  571                  * Log exceptions that would have trapped with the old
  572                  * control word (overflow, divide by 0, and invalid operand).
  573                  */
  574                 if (masked_exceptions & 0x0d)
  575                         log(LOG_ERR,
  576         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  577                             td->td_proc->p_pid, td->td_proc->p_comm,
  578                             masked_exceptions);
  579         }
  580 #endif
  581 }
  582 
  583 int
  584 npxformat()
  585 {
  586 
  587         if (!hw_float)
  588                 return (_MC_FPFMT_NODEV);
  589 #ifdef  CPU_ENABLE_SSE
  590         if (cpu_fxsr)
  591                 return (_MC_FPFMT_XMM);
  592 #endif
  593         return (_MC_FPFMT_387);
  594 }
  595 
  596 /* 
  597  * The following mechanism is used to ensure that the FPE_... value
  598  * that is passed as a trapcode to the signal handler of the user
  599  * process does not have more than one bit set.
  600  * 
  601  * Multiple bits may be set if the user process modifies the control
  602  * word while a status word bit is already set.  While this is a sign
  603  * of bad coding, we have no choise than to narrow them down to one
  604  * bit, since we must not send a trapcode that is not exactly one of
  605  * the FPE_ macros.
  606  *
  607  * The mechanism has a static table with 127 entries.  Each combination
  608  * of the 7 FPU status word exception bits directly translates to a
  609  * position in this table, where a single FPE_... value is stored.
  610  * This FPE_... value stored there is considered the "most important"
  611  * of the exception bits and will be sent as the signal code.  The
  612  * precedence of the bits is based upon Intel Document "Numerical
  613  * Applications", Chapter "Special Computational Situations".
  614  *
  615  * The macro to choose one of these values does these steps: 1) Throw
  616  * away status word bits that cannot be masked.  2) Throw away the bits
  617  * currently masked in the control word, assuming the user isn't
  618  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  619  * fault) if it is set, which cannot be masked but must be presered.
  620  * 4) Use the remaining bits to point into the trapcode table.
  621  *
  622  * The 6 maskable bits in order of their preference, as stated in the
  623  * above referenced Intel manual:
  624  * 1  Invalid operation (FP_X_INV)
  625  * 1a   Stack underflow
  626  * 1b   Stack overflow
  627  * 1c   Operand of unsupported format
  628  * 1d   SNaN operand.
  629  * 2  QNaN operand (not an exception, irrelavant here)
  630  * 3  Any other invalid-operation not mentioned above or zero divide
  631  *      (FP_X_INV, FP_X_DZ)
  632  * 4  Denormal operand (FP_X_DNML)
  633  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  634  * 6  Inexact result (FP_X_IMP) 
  635  */
  636 static char fpetable[128] = {
  637         0,
  638         FPE_FLTINV,     /*  1 - INV */
  639         FPE_FLTUND,     /*  2 - DNML */
  640         FPE_FLTINV,     /*  3 - INV | DNML */
  641         FPE_FLTDIV,     /*  4 - DZ */
  642         FPE_FLTINV,     /*  5 - INV | DZ */
  643         FPE_FLTDIV,     /*  6 - DNML | DZ */
  644         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  645         FPE_FLTOVF,     /*  8 - OFL */
  646         FPE_FLTINV,     /*  9 - INV | OFL */
  647         FPE_FLTUND,     /*  A - DNML | OFL */
  648         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  649         FPE_FLTDIV,     /*  C - DZ | OFL */
  650         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  651         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  652         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  653         FPE_FLTUND,     /* 10 - UFL */
  654         FPE_FLTINV,     /* 11 - INV | UFL */
  655         FPE_FLTUND,     /* 12 - DNML | UFL */
  656         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  657         FPE_FLTDIV,     /* 14 - DZ | UFL */
  658         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  659         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  660         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  661         FPE_FLTOVF,     /* 18 - OFL | UFL */
  662         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  663         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  664         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  665         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  666         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  667         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  668         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  669         FPE_FLTRES,     /* 20 - IMP */
  670         FPE_FLTINV,     /* 21 - INV | IMP */
  671         FPE_FLTUND,     /* 22 - DNML | IMP */
  672         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  673         FPE_FLTDIV,     /* 24 - DZ | IMP */
  674         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  675         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  676         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  677         FPE_FLTOVF,     /* 28 - OFL | IMP */
  678         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  679         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  680         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  681         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  682         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  683         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  684         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  685         FPE_FLTUND,     /* 30 - UFL | IMP */
  686         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  687         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  688         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  689         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  690         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  691         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  692         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  693         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  694         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  695         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  696         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  697         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  698         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  699         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  700         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  701         FPE_FLTSUB,     /* 40 - STK */
  702         FPE_FLTSUB,     /* 41 - INV | STK */
  703         FPE_FLTUND,     /* 42 - DNML | STK */
  704         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  705         FPE_FLTDIV,     /* 44 - DZ | STK */
  706         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  707         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  708         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  709         FPE_FLTOVF,     /* 48 - OFL | STK */
  710         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  711         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  712         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  713         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  714         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  715         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  716         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  717         FPE_FLTUND,     /* 50 - UFL | STK */
  718         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  719         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  720         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  721         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  722         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  723         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  724         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  725         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  726         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  727         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  728         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  729         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  730         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  731         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  732         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  733         FPE_FLTRES,     /* 60 - IMP | STK */
  734         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  735         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  736         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  737         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  738         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  739         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  740         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  741         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  742         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  743         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  744         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  745         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  746         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  747         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  748         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  749         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  750         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  751         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  752         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  753         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  754         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  755         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  756         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  757         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  758         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  759         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  760         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  761         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  762         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  763         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  764         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  765 };
  766 
  767 /*
  768  * Read the FP status and control words, then generate si_code value
  769  * for SIGFPE.  The error code chosen will be one of the
  770  * FPE_... macros.  It will be sent as the second argument to old
  771  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  772  * argument) to SA_SIGINFO signal handlers.
  773  *
  774  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  775  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  776  * usermode code which understands the FPU hardware enough to enable
  777  * the exceptions, can also handle clearing the exception state in the
  778  * handler.  The only consequence of not clearing the exception is the
  779  * rethrow of the SIGFPE on return from the signal handler and
  780  * reexecution of the corresponding instruction.
  781  *
  782  * For XMM traps, the exceptions were never cleared.
  783  */
  784 int
  785 npxtrap_x87(void)
  786 {
  787         u_short control, status;
  788 
  789         if (!hw_float) {
  790                 printf(
  791         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  792                        PCPU_GET(fpcurthread), curthread, hw_float);
  793                 panic("npxtrap from nowhere");
  794         }
  795         critical_enter();
  796 
  797         /*
  798          * Interrupt handling (for another interrupt) may have pushed the
  799          * state to memory.  Fetch the relevant parts of the state from
  800          * wherever they are.
  801          */
  802         if (PCPU_GET(fpcurthread) != curthread) {
  803                 control = GET_FPU_CW(curthread);
  804                 status = GET_FPU_SW(curthread);
  805         } else {
  806                 fnstcw(&control);
  807                 fnstsw(&status);
  808         }
  809         critical_exit();
  810         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  811 }
  812 
  813 #ifdef CPU_ENABLE_SSE
  814 int
  815 npxtrap_sse(void)
  816 {
  817         u_int mxcsr;
  818 
  819         if (!hw_float) {
  820                 printf(
  821         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  822                        PCPU_GET(fpcurthread), curthread, hw_float);
  823                 panic("npxtrap from nowhere");
  824         }
  825         critical_enter();
  826         if (PCPU_GET(fpcurthread) != curthread)
  827                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  828         else
  829                 stmxcsr(&mxcsr);
  830         critical_exit();
  831         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  832 }
  833 #endif
  834 
  835 /*
  836  * Implement device not available (DNA) exception
  837  *
  838  * It would be better to switch FP context here (if curthread != fpcurthread)
  839  * and not necessarily for every context switch, but it is too hard to
  840  * access foreign pcb's.
  841  */
  842 
  843 static int err_count = 0;
  844 
  845 int
  846 npxdna(void)
  847 {
  848 
  849         if (!hw_float)
  850                 return (0);
  851         critical_enter();
  852         if (PCPU_GET(fpcurthread) == curthread) {
  853                 printf("npxdna: fpcurthread == curthread %d times\n",
  854                     ++err_count);
  855                 stop_emulating();
  856                 critical_exit();
  857                 return (1);
  858         }
  859         if (PCPU_GET(fpcurthread) != NULL) {
  860                 printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  861                        PCPU_GET(fpcurthread),
  862                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  863                        curthread, curthread->td_proc->p_pid);
  864                 panic("npxdna");
  865         }
  866         stop_emulating();
  867         /*
  868          * Record new context early in case frstor causes a trap.
  869          */
  870         PCPU_SET(fpcurthread, curthread);
  871 
  872 #ifdef CPU_ENABLE_SSE
  873         if (cpu_fxsr)
  874                 fpu_clean_state();
  875 #endif
  876 
  877         if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  878                 /*
  879                  * This is the first time this thread has used the FPU or
  880                  * the PCB doesn't contain a clean FPU state.  Explicitly
  881                  * load an initial state.
  882                  *
  883                  * We prefer to restore the state from the actual save
  884                  * area in PCB instead of directly loading from
  885                  * npx_initialstate, to ignite the XSAVEOPT
  886                  * tracking engine.
  887                  */
  888                 bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
  889                 fpurstor(curpcb->pcb_save);
  890                 if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  891                         fldcw(curpcb->pcb_initial_npxcw);
  892                 curpcb->pcb_flags |= PCB_NPXINITDONE;
  893                 if (PCB_USER_FPU(curpcb))
  894                         curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
  895         } else {
  896                 fpurstor(curpcb->pcb_save);
  897         }
  898         critical_exit();
  899 
  900         return (1);
  901 }
  902 
  903 /*
  904  * Wrapper for fpusave() called from context switch routines.
  905  *
  906  * npxsave() must be called with interrupts disabled, so that it clears
  907  * fpcurthread atomically with saving the state.  We require callers to do the
  908  * disabling, since most callers need to disable interrupts anyway to call
  909  * npxsave() atomically with checking fpcurthread.
  910  */
  911 void
  912 npxsave(addr)
  913         union savefpu *addr;
  914 {
  915 
  916         stop_emulating();
  917 #ifdef CPU_ENABLE_SSE
  918         if (use_xsaveopt)
  919                 xsaveopt((char *)addr, xsave_mask);
  920         else
  921 #endif
  922                 fpusave(addr);
  923         start_emulating();
  924         PCPU_SET(fpcurthread, NULL);
  925 }
  926 
  927 /*
  928  * Unconditionally save the current co-processor state across suspend and
  929  * resume.
  930  */
  931 void
  932 npxsuspend(union savefpu *addr)
  933 {
  934         register_t cr0;
  935 
  936         if (!hw_float)
  937                 return;
  938         if (PCPU_GET(fpcurthread) == NULL) {
  939                 bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
  940                 return;
  941         }
  942         cr0 = rcr0();
  943         stop_emulating();
  944         fpusave(addr);
  945         load_cr0(cr0);
  946 }
  947 
  948 void
  949 npxresume(union savefpu *addr)
  950 {
  951         register_t cr0;
  952 
  953         if (!hw_float)
  954                 return;
  955 
  956         cr0 = rcr0();
  957         npxinit(false);
  958         stop_emulating();
  959         fpurstor(addr);
  960         load_cr0(cr0);
  961 }
  962 
  963 void
  964 npxdrop()
  965 {
  966         struct thread *td;
  967 
  968         /*
  969          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
  970          * ones don't cause a panic on the next frstor.
  971          */
  972 #ifdef CPU_ENABLE_SSE
  973         if (!cpu_fxsr)
  974 #endif
  975                 fnclex();
  976 
  977         td = PCPU_GET(fpcurthread);
  978         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  979         CRITICAL_ASSERT(td);
  980         PCPU_SET(fpcurthread, NULL);
  981         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
  982         start_emulating();
  983 }
  984 
  985 /*
  986  * Get the user state of the FPU into pcb->pcb_user_save without
  987  * dropping ownership (if possible).  It returns the FPU ownership
  988  * status.
  989  */
  990 int
  991 npxgetregs(struct thread *td)
  992 {
  993         struct pcb *pcb;
  994 #ifdef CPU_ENABLE_SSE
  995         uint64_t *xstate_bv, bit;
  996         char *sa;
  997         int max_ext_n, i;
  998 #endif
  999         int owned;
 1000 
 1001         if (!hw_float)
 1002                 return (_MC_FPOWNED_NONE);
 1003 
 1004         pcb = td->td_pcb;
 1005         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
 1006                 bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
 1007                     cpu_max_ext_state_size);
 1008                 SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
 1009                 npxuserinited(td);
 1010                 return (_MC_FPOWNED_PCB);
 1011         }
 1012         critical_enter();
 1013         if (td == PCPU_GET(fpcurthread)) {
 1014                 fpusave(get_pcb_user_save_pcb(pcb));
 1015 #ifdef CPU_ENABLE_SSE
 1016                 if (!cpu_fxsr)
 1017 #endif
 1018                         /*
 1019                          * fnsave initializes the FPU and destroys whatever
 1020                          * context it contains.  Make sure the FPU owner
 1021                          * starts with a clean state next time.
 1022                          */
 1023                         npxdrop();
 1024                 owned = _MC_FPOWNED_FPU;
 1025         } else {
 1026                 owned = _MC_FPOWNED_PCB;
 1027         }
 1028         critical_exit();
 1029 #ifdef CPU_ENABLE_SSE
 1030         if (use_xsave) {
 1031                 /*
 1032                  * Handle partially saved state.
 1033                  */
 1034                 sa = (char *)get_pcb_user_save_pcb(pcb);
 1035                 xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
 1036                     offsetof(struct xstate_hdr, xstate_bv));
 1037                 if (xsave_mask >> 32 != 0)
 1038                         max_ext_n = fls(xsave_mask >> 32) + 32;
 1039                 else
 1040                         max_ext_n = fls(xsave_mask);
 1041                 for (i = 0; i < max_ext_n; i++) {
 1042                         bit = 1ULL << i;
 1043                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
 1044                                 continue;
 1045                         bcopy((char *)npx_initialstate +
 1046                             xsave_area_desc[i].offset,
 1047                             sa + xsave_area_desc[i].offset,
 1048                             xsave_area_desc[i].size);
 1049                         *xstate_bv |= bit;
 1050                 }
 1051         }
 1052 #endif
 1053         return (owned);
 1054 }
 1055 
 1056 void
 1057 npxuserinited(struct thread *td)
 1058 {
 1059         struct pcb *pcb;
 1060 
 1061         pcb = td->td_pcb;
 1062         if (PCB_USER_FPU(pcb))
 1063                 pcb->pcb_flags |= PCB_NPXINITDONE;
 1064         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
 1065 }
 1066 
 1067 #ifdef CPU_ENABLE_SSE
 1068 int
 1069 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
 1070 {
 1071         struct xstate_hdr *hdr, *ehdr;
 1072         size_t len, max_len;
 1073         uint64_t bv;
 1074 
 1075         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
 1076         if (xfpustate == NULL)
 1077                 return (0);
 1078         if (!use_xsave)
 1079                 return (EOPNOTSUPP);
 1080 
 1081         len = xfpustate_size;
 1082         if (len < sizeof(struct xstate_hdr))
 1083                 return (EINVAL);
 1084         max_len = cpu_max_ext_state_size - sizeof(union savefpu);
 1085         if (len > max_len)
 1086                 return (EINVAL);
 1087 
 1088         ehdr = (struct xstate_hdr *)xfpustate;
 1089         bv = ehdr->xstate_bv;
 1090 
 1091         /*
 1092          * Avoid #gp.
 1093          */
 1094         if (bv & ~xsave_mask)
 1095                 return (EINVAL);
 1096 
 1097         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
 1098 
 1099         hdr->xstate_bv = bv;
 1100         bcopy(xfpustate + sizeof(struct xstate_hdr),
 1101             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
 1102 
 1103         return (0);
 1104 }
 1105 #endif
 1106 
 1107 int
 1108 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
 1109         size_t xfpustate_size)
 1110 {
 1111         struct pcb *pcb;
 1112 #ifdef CPU_ENABLE_SSE
 1113         int error;
 1114 #endif
 1115 
 1116         if (!hw_float)
 1117                 return (ENXIO);
 1118 
 1119         pcb = td->td_pcb;
 1120         critical_enter();
 1121         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
 1122 #ifdef CPU_ENABLE_SSE
 1123                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1124                 if (error != 0) {
 1125                         critical_exit();
 1126                         return (error);
 1127                 }
 1128                 if (!cpu_fxsr)
 1129 #endif
 1130                         fnclex();       /* As in npxdrop(). */
 1131                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1132                 fpurstor(get_pcb_user_save_td(td));
 1133                 critical_exit();
 1134                 pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
 1135         } else {
 1136                 critical_exit();
 1137 #ifdef CPU_ENABLE_SSE
 1138                 error = npxsetxstate(td, xfpustate, xfpustate_size);
 1139                 if (error != 0)
 1140                         return (error);
 1141 #endif
 1142                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
 1143                 npxuserinited(td);
 1144         }
 1145         return (0);
 1146 }
 1147 
 1148 static void
 1149 fpusave(addr)
 1150         union savefpu *addr;
 1151 {
 1152         
 1153 #ifdef CPU_ENABLE_SSE
 1154         if (use_xsave)
 1155                 xsave((char *)addr, xsave_mask);
 1156         else if (cpu_fxsr)
 1157                 fxsave(addr);
 1158         else
 1159 #endif
 1160                 fnsave(addr);
 1161 }
 1162 
 1163 #ifdef CPU_ENABLE_SSE
 1164 static void
 1165 npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
 1166 {
 1167         struct env87 *penv_87;
 1168         struct envxmm *penv_xmm;
 1169         int i;
 1170 
 1171         penv_87 = &sv_87->sv_env;
 1172         penv_xmm = &sv_xmm->sv_env;
 1173 
 1174         /* FPU control/status */
 1175         penv_87->en_cw = penv_xmm->en_cw;
 1176         penv_87->en_sw = penv_xmm->en_sw;
 1177         penv_87->en_fip = penv_xmm->en_fip;
 1178         penv_87->en_fcs = penv_xmm->en_fcs;
 1179         penv_87->en_opcode = penv_xmm->en_opcode;
 1180         penv_87->en_foo = penv_xmm->en_foo;
 1181         penv_87->en_fos = penv_xmm->en_fos;
 1182 
 1183         /* FPU registers and tags */
 1184         penv_87->en_tw = 0xffff;
 1185         for (i = 0; i < 8; ++i) {
 1186                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 1187                 if ((penv_xmm->en_tw & (1 << i)) != 0)
 1188                         /* zero and special are set as valid */
 1189                         penv_87->en_tw &= ~(3 << i);
 1190         }
 1191 }
 1192 
 1193 void
 1194 npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
 1195 {
 1196 
 1197         bzero(sv_87, sizeof(*sv_87));
 1198         npx_fill_fpregs_xmm1(sv_xmm, sv_87);
 1199 }
 1200 
 1201 void
 1202 npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
 1203 {
 1204         struct env87 *penv_87;
 1205         struct envxmm *penv_xmm;
 1206         int i;
 1207 
 1208         penv_87 = &sv_87->sv_env;
 1209         penv_xmm = &sv_xmm->sv_env;
 1210 
 1211         /* FPU control/status */
 1212         penv_xmm->en_cw = penv_87->en_cw;
 1213         penv_xmm->en_sw = penv_87->en_sw;
 1214         penv_xmm->en_fip = penv_87->en_fip;
 1215         penv_xmm->en_fcs = penv_87->en_fcs;
 1216         penv_xmm->en_opcode = penv_87->en_opcode;
 1217         penv_xmm->en_foo = penv_87->en_foo;
 1218         penv_xmm->en_fos = penv_87->en_fos;
 1219 
 1220         /* FPU registers and tags */
 1221         penv_xmm->en_tw = 0;
 1222         for (i = 0; i < 8; ++i) {
 1223                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 1224                 if ((penv_87->en_tw && (3 << i)) != (3 << i))
 1225                     penv_xmm->en_tw |= 1 << i;
 1226         }
 1227 }
 1228 #endif /* CPU_ENABLE_SSE */
 1229 
 1230 void
 1231 npx_get_fsave(void *addr)
 1232 {
 1233         struct thread *td;
 1234         union savefpu *sv;
 1235 
 1236         td = curthread;
 1237         npxgetregs(td);
 1238         sv = get_pcb_user_save_td(td);
 1239 #ifdef CPU_ENABLE_SSE
 1240         if (cpu_fxsr)
 1241                 npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
 1242         else
 1243 #endif
 1244                 bcopy(sv, addr, sizeof(struct env87) +
 1245                     sizeof(struct fpacc87[8]));
 1246 }
 1247 
 1248 int
 1249 npx_set_fsave(void *addr)
 1250 {
 1251         union savefpu sv;
 1252         int error;
 1253 
 1254         bzero(&sv, sizeof(sv));
 1255 #ifdef CPU_ENABLE_SSE
 1256         if (cpu_fxsr)
 1257                 npx_set_fpregs_xmm(addr, &sv.sv_xmm);
 1258         else
 1259 #endif
 1260                 bcopy(addr, &sv, sizeof(struct env87) +
 1261                     sizeof(struct fpacc87[8]));
 1262         error = npxsetregs(curthread, &sv, NULL, 0);
 1263         return (error);
 1264 }
 1265 
 1266 #ifdef CPU_ENABLE_SSE
 1267 /*
 1268  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1269  * the x87's stored last instruction pointer, last data pointer, and last
 1270  * opcode values, except in the rare case in which the exception summary
 1271  * (ES) bit in the x87 status word is set to 1.
 1272  *
 1273  * In order to avoid leaking this information across processes, we clean
 1274  * these values by performing a dummy load before executing fxrstor().
 1275  */
 1276 static void
 1277 fpu_clean_state(void)
 1278 {
 1279         static float dummy_variable = 0.0;
 1280         u_short status;
 1281 
 1282         /*
 1283          * Clear the ES bit in the x87 status word if it is currently
 1284          * set, in order to avoid causing a fault in the upcoming load.
 1285          */
 1286         fnstsw(&status);
 1287         if (status & 0x80)
 1288                 fnclex();
 1289 
 1290         /*
 1291          * Load the dummy variable into the x87 stack.  This mangles
 1292          * the x87 stack, but we don't care since we're about to call
 1293          * fxrstor() anyway.
 1294          */
 1295         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1296 }
 1297 #endif /* CPU_ENABLE_SSE */
 1298 
 1299 static void
 1300 fpurstor(addr)
 1301         union savefpu *addr;
 1302 {
 1303 
 1304 #ifdef CPU_ENABLE_SSE
 1305         if (use_xsave)
 1306                 xrstor((char *)addr, xsave_mask);
 1307         else if (cpu_fxsr)
 1308                 fxrstor(addr);
 1309         else
 1310 #endif
 1311                 frstor(addr);
 1312 }
 1313 
 1314 #ifdef DEV_ISA
 1315 /*
 1316  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1317  */
 1318 static struct isa_pnp_id npxisa_ids[] = {
 1319         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1320         { 0 }
 1321 };
 1322 
 1323 static int
 1324 npxisa_probe(device_t dev)
 1325 {
 1326         int result;
 1327         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
 1328                 device_quiet(dev);
 1329         }
 1330         return(result);
 1331 }
 1332 
 1333 static int
 1334 npxisa_attach(device_t dev)
 1335 {
 1336         return (0);
 1337 }
 1338 
 1339 static device_method_t npxisa_methods[] = {
 1340         /* Device interface */
 1341         DEVMETHOD(device_probe,         npxisa_probe),
 1342         DEVMETHOD(device_attach,        npxisa_attach),
 1343         DEVMETHOD(device_detach,        bus_generic_detach),
 1344         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1345         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1346         DEVMETHOD(device_resume,        bus_generic_resume),
 1347         
 1348         { 0, 0 }
 1349 };
 1350 
 1351 static driver_t npxisa_driver = {
 1352         "npxisa",
 1353         npxisa_methods,
 1354         1,                      /* no softc */
 1355 };
 1356 
 1357 static devclass_t npxisa_devclass;
 1358 
 1359 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
 1360 #ifndef PC98
 1361 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
 1362 #endif
 1363 #endif /* DEV_ISA */
 1364 
 1365 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1366     "Kernel contexts for FPU state");
 1367 
 1368 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1369 #define FPU_KERN_CTX_DUMMY       0x02
 1370 #define FPU_KERN_CTX_INUSE       0x04
 1371 
 1372 struct fpu_kern_ctx {
 1373         union savefpu *prev;
 1374         uint32_t flags;
 1375         char hwstate1[];
 1376 };
 1377 
 1378 struct fpu_kern_ctx *
 1379 fpu_kern_alloc_ctx(u_int flags)
 1380 {
 1381         struct fpu_kern_ctx *res;
 1382         size_t sz;
 1383 
 1384         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1385             cpu_max_ext_state_size;
 1386         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1387             M_NOWAIT : M_WAITOK) | M_ZERO);
 1388         return (res);
 1389 }
 1390 
 1391 void
 1392 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1393 {
 1394 
 1395         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
 1396         /* XXXKIB clear the memory ? */
 1397         free(ctx, M_FPUKERN_CTX);
 1398 }
 1399 
 1400 static union savefpu *
 1401 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1402 {
 1403         vm_offset_t p;
 1404 
 1405         p = (vm_offset_t)&ctx->hwstate1;
 1406         p = roundup2(p, XSAVE_AREA_ALIGN);
 1407         return ((union savefpu *)p);
 1408 }
 1409 
 1410 int
 1411 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1412 {
 1413         struct pcb *pcb;
 1414 
 1415         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("using inuse ctx"));
 1416 
 1417         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1418                 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
 1419                 return (0);
 1420         }
 1421         pcb = td->td_pcb;
 1422         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1423             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1424         ctx->flags = FPU_KERN_CTX_INUSE;
 1425         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1426                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1427         npxexit(td);
 1428         ctx->prev = pcb->pcb_save;
 1429         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1430         pcb->pcb_flags |= PCB_KERNNPX;
 1431         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1432         return (0);
 1433 }
 1434 
 1435 int
 1436 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1437 {
 1438         struct pcb *pcb;
 1439 
 1440         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
 1441             ("leaving not inuse ctx"));
 1442         ctx->flags &= ~FPU_KERN_CTX_INUSE;
 1443 
 1444         if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1445                 return (0);
 1446         pcb = td->td_pcb;
 1447         critical_enter();
 1448         if (curthread == PCPU_GET(fpcurthread))
 1449                 npxdrop();
 1450         critical_exit();
 1451         pcb->pcb_save = ctx->prev;
 1452         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1453                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
 1454                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1455                 else
 1456                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1457                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1458         } else {
 1459                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1460                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1461                 else
 1462                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1463                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1464         }
 1465         return (0);
 1466 }
 1467 
 1468 int
 1469 fpu_kern_thread(u_int flags)
 1470 {
 1471 
 1472         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1473             ("Only kthread may use fpu_kern_thread"));
 1474         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1475             ("mangled pcb_save"));
 1476         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1477 
 1478         curpcb->pcb_flags |= PCB_KERNNPX;
 1479         return (0);
 1480 }
 1481 
 1482 int
 1483 is_fpu_kern_thread(u_int flags)
 1484 {
 1485 
 1486         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1487                 return (0);
 1488         return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
 1489 }
 1490 
 1491 /*
 1492  * FPU save area alloc/free/init utility routines
 1493  */
 1494 union savefpu *
 1495 fpu_save_area_alloc(void)
 1496 {
 1497 
 1498         return (uma_zalloc(fpu_save_area_zone, 0));
 1499 }
 1500 
 1501 void
 1502 fpu_save_area_free(union savefpu *fsa)
 1503 {
 1504 
 1505         uma_zfree(fpu_save_area_zone, fsa);
 1506 }
 1507 
 1508 void
 1509 fpu_save_area_reset(union savefpu *fsa)
 1510 {
 1511 
 1512         bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
 1513 }

Cache object: c2c9c05815e0db4bc021e87211695e9c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.