The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/isa/npx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.2/sys/i386/isa/npx.c 239996 2012-09-01 15:59:09Z kib $");
   35 
   36 #include "opt_cpu.h"
   37 #include "opt_isa.h"
   38 #include "opt_npx.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/module.h>
   47 #include <sys/mutex.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <machine/bus.h>
   53 #include <sys/rman.h>
   54 #ifdef NPX_DEBUG
   55 #include <sys/syslog.h>
   56 #endif
   57 #include <sys/signalvar.h>
   58 
   59 #include <machine/asmacros.h>
   60 #include <machine/cputypes.h>
   61 #include <machine/frame.h>
   62 #include <machine/md_var.h>
   63 #include <machine/pcb.h>
   64 #include <machine/psl.h>
   65 #include <machine/resource.h>
   66 #include <machine/specialreg.h>
   67 #include <machine/segments.h>
   68 #include <machine/ucontext.h>
   69 
   70 #include <machine/intr_machdep.h>
   71 #ifdef XEN
   72 #include <machine/xen/xen-os.h>
   73 #include <xen/hypervisor.h>
   74 #endif
   75 
   76 #ifdef DEV_ISA
   77 #include <isa/isavar.h>
   78 #endif
   79 
   80 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
   81 #define CPU_ENABLE_SSE
   82 #endif
   83 
   84 /*
   85  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
   86  */
   87 
   88 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   89 
   90 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   91 #define fnclex()                __asm __volatile("fnclex")
   92 #define fninit()                __asm __volatile("fninit")
   93 #define fnsave(addr)            __asm __volatile("fnsave %0" : "=m" (*(addr)))
   94 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   95 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   96 #define fp_divide_by_0()        __asm __volatile( \
   97                                     "fldz; fld1; fdiv %st,%st(1); fnop")
   98 #define frstor(addr)            __asm __volatile("frstor %0" : : "m" (*(addr)))
   99 #ifdef CPU_ENABLE_SSE
  100 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
  101 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
  102 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
  103 #endif
  104 #else   /* !(__GNUCLIKE_ASM && !lint) */
  105 
  106 void    fldcw(u_short cw);
  107 void    fnclex(void);
  108 void    fninit(void);
  109 void    fnsave(caddr_t addr);
  110 void    fnstcw(caddr_t addr);
  111 void    fnstsw(caddr_t addr);
  112 void    fp_divide_by_0(void);
  113 void    frstor(caddr_t addr);
  114 #ifdef CPU_ENABLE_SSE
  115 void    fxsave(caddr_t addr);
  116 void    fxrstor(caddr_t addr);
  117 void    stmxcsr(u_int *csr);
  118 #endif
  119 
  120 #endif  /* __GNUCLIKE_ASM && !lint */
  121 
  122 #ifdef XEN
  123 #define start_emulating()       (HYPERVISOR_fpu_taskswitch(1))
  124 #define stop_emulating()        (HYPERVISOR_fpu_taskswitch(0))
  125 #else
  126 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  127 #define stop_emulating()        clts()
  128 #endif
  129 
  130 #ifdef CPU_ENABLE_SSE
  131 #define GET_FPU_CW(thread) \
  132         (cpu_fxsr ? \
  133                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
  134                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  135 #define GET_FPU_SW(thread) \
  136         (cpu_fxsr ? \
  137                 (thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
  138                 (thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  139 #define SET_FPU_CW(savefpu, value) do { \
  140         if (cpu_fxsr) \
  141                 (savefpu)->sv_xmm.sv_env.en_cw = (value); \
  142         else \
  143                 (savefpu)->sv_87.sv_env.en_cw = (value); \
  144 } while (0)
  145 #else /* CPU_ENABLE_SSE */
  146 #define GET_FPU_CW(thread) \
  147         (thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
  148 #define GET_FPU_SW(thread) \
  149         (thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
  150 #define SET_FPU_CW(savefpu, value) \
  151         (savefpu)->sv_87.sv_env.en_cw = (value)
  152 #endif /* CPU_ENABLE_SSE */
  153 
  154 typedef u_char bool_t;
  155 
  156 #ifdef CPU_ENABLE_SSE
  157 static  void    fpu_clean_state(void);
  158 #endif
  159 
  160 static  void    fpusave(union savefpu *);
  161 static  void    fpurstor(union savefpu *);
  162 static  int     npx_attach(device_t dev);
  163 static  void    npx_identify(driver_t *driver, device_t parent);
  164 static  int     npx_probe(device_t dev);
  165 
  166 int     hw_float;
  167 
  168 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  169     &hw_float, 0, "Floating point instructions executed in hardware");
  170 
  171 static  volatile u_int          npx_traps_while_probing;
  172 static  union savefpu           npx_initialstate;
  173 
  174 alias_for_inthand_t probetrap;
  175 __asm("                                                         \n\
  176         .text                                                   \n\
  177         .p2align 2,0x90                                         \n\
  178         .type   " __XSTRING(CNAME(probetrap)) ",@function       \n\
  179 " __XSTRING(CNAME(probetrap)) ":                                \n\
  180         ss                                                      \n\
  181         incl    " __XSTRING(CNAME(npx_traps_while_probing)) "   \n\
  182         fnclex                                                  \n\
  183         iret                                                    \n\
  184 ");
  185 
  186 /*
  187  * Identify routine.  Create a connection point on our parent for probing.
  188  */
  189 static void
  190 npx_identify(driver, parent)
  191         driver_t *driver;
  192         device_t parent;
  193 {
  194         device_t child;
  195 
  196         child = BUS_ADD_CHILD(parent, 0, "npx", 0);
  197         if (child == NULL)
  198                 panic("npx_identify");
  199 }
  200 
  201 /*
  202  * Probe routine.  Set flags to tell npxattach() what to do.  Set up an
  203  * interrupt handler if npx needs to use interrupts.
  204  */
  205 static int
  206 npx_probe(device_t dev)
  207 {
  208         struct gate_descriptor save_idt_npxtrap;
  209         u_short control, status;
  210 
  211         device_set_desc(dev, "math processor");
  212 
  213         /*
  214          * Modern CPUs all have an FPU that uses the INT16 interface
  215          * and provide a simple way to verify that, so handle the
  216          * common case right away.
  217          */
  218         if (cpu_feature & CPUID_FPU) {
  219                 hw_float = 1;
  220                 device_quiet(dev);
  221                 return (0);
  222         }
  223 
  224         save_idt_npxtrap = idt[IDT_MF];
  225         setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
  226             GSEL(GCODE_SEL, SEL_KPL));
  227 
  228         /*
  229          * Don't trap while we're probing.
  230          */
  231         stop_emulating();
  232 
  233         /*
  234          * Finish resetting the coprocessor, if any.  If there is an error
  235          * pending, then we may get a bogus IRQ13, but npx_intr() will handle
  236          * it OK.  Bogus halts have never been observed, but we enabled
  237          * IRQ13 and cleared the BUSY# latch early to handle them anyway.
  238          */
  239         fninit();
  240 
  241         /*
  242          * Don't use fwait here because it might hang.
  243          * Don't use fnop here because it usually hangs if there is no FPU.
  244          */
  245         DELAY(1000);            /* wait for any IRQ13 */
  246 #ifdef DIAGNOSTIC
  247         if (npx_traps_while_probing != 0)
  248                 printf("fninit caused %u bogus npx trap(s)\n",
  249                        npx_traps_while_probing);
  250 #endif
  251         /*
  252          * Check for a status of mostly zero.
  253          */
  254         status = 0x5a5a;
  255         fnstsw(&status);
  256         if ((status & 0xb8ff) == 0) {
  257                 /*
  258                  * Good, now check for a proper control word.
  259                  */
  260                 control = 0x5a5a;
  261                 fnstcw(&control);
  262                 if ((control & 0x1f3f) == 0x033f) {
  263                         /*
  264                          * We have an npx, now divide by 0 to see if exception
  265                          * 16 works.
  266                          */
  267                         control &= ~(1 << 2);   /* enable divide by 0 trap */
  268                         fldcw(control);
  269 #ifdef FPU_ERROR_BROKEN
  270                         /*
  271                          * FPU error signal doesn't work on some CPU
  272                          * accelerator board.
  273                          */
  274                         hw_float = 1;
  275                         return (0);
  276 #endif
  277                         npx_traps_while_probing = 0;
  278                         fp_divide_by_0();
  279                         if (npx_traps_while_probing != 0) {
  280                                 /*
  281                                  * Good, exception 16 works.
  282                                  */
  283                                 hw_float = 1;
  284                                 goto cleanup;
  285                         }
  286                         device_printf(dev,
  287         "FPU does not use exception 16 for error reporting\n");
  288                         goto cleanup;
  289                 }
  290         }
  291 
  292         /*
  293          * Probe failed.  Floating point simply won't work.
  294          * Notify user and disable FPU/MMX/SSE instruction execution.
  295          */
  296         device_printf(dev, "WARNING: no FPU!\n");
  297         __asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
  298             "n" (CR0_EM | CR0_MP) : "ax");
  299 
  300 cleanup:
  301         idt[IDT_MF] = save_idt_npxtrap;
  302         return (hw_float ? 0 : ENXIO);
  303 }
  304 
  305 /*
  306  * Attach routine - announce which it is, and wire into system
  307  */
  308 static int
  309 npx_attach(device_t dev)
  310 {
  311 
  312         npxinit();
  313         critical_enter();
  314         stop_emulating();
  315         fpusave(&npx_initialstate);
  316         start_emulating();
  317 #ifdef CPU_ENABLE_SSE
  318         if (cpu_fxsr) {
  319                 if (npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask)
  320                         cpu_mxcsr_mask = 
  321                             npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask;
  322                 else
  323                         cpu_mxcsr_mask = 0xFFBF;
  324                 bzero(npx_initialstate.sv_xmm.sv_fp,
  325                     sizeof(npx_initialstate.sv_xmm.sv_fp));
  326                 bzero(npx_initialstate.sv_xmm.sv_xmm,
  327                     sizeof(npx_initialstate.sv_xmm.sv_xmm));
  328                 /* XXX might need even more zeroing. */
  329         } else
  330 #endif
  331                 bzero(npx_initialstate.sv_87.sv_ac,
  332                     sizeof(npx_initialstate.sv_87.sv_ac));
  333         critical_exit();
  334 
  335         return (0);
  336 }
  337 
  338 /*
  339  * Initialize floating point unit.
  340  */
  341 void
  342 npxinit(void)
  343 {
  344         static union savefpu dummy;
  345         register_t saveintr;
  346         u_short control;
  347 
  348         if (!hw_float)
  349                 return;
  350         /*
  351          * fninit has the same h/w bugs as fnsave.  Use the detoxified
  352          * fnsave to throw away any junk in the fpu.  npxsave() initializes
  353          * the fpu and sets fpcurthread = NULL as important side effects.
  354          *
  355          * It is too early for critical_enter() to work on AP.
  356          */
  357         saveintr = intr_disable();
  358         npxsave(&dummy);
  359         stop_emulating();
  360 #ifdef CPU_ENABLE_SSE
  361         /* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
  362         if (cpu_fxsr)
  363                 fninit();
  364 #endif
  365         control = __INITIAL_NPXCW__;
  366         fldcw(control);
  367         start_emulating();
  368         intr_restore(saveintr);
  369 }
  370 
  371 /*
  372  * Free coprocessor (if we have it).
  373  */
  374 void
  375 npxexit(td)
  376         struct thread *td;
  377 {
  378 
  379         critical_enter();
  380         if (curthread == PCPU_GET(fpcurthread))
  381                 npxsave(curpcb->pcb_save);
  382         critical_exit();
  383 #ifdef NPX_DEBUG
  384         if (hw_float) {
  385                 u_int   masked_exceptions;
  386 
  387                 masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
  388                 /*
  389                  * Log exceptions that would have trapped with the old
  390                  * control word (overflow, divide by 0, and invalid operand).
  391                  */
  392                 if (masked_exceptions & 0x0d)
  393                         log(LOG_ERR,
  394         "pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
  395                             td->td_proc->p_pid, td->td_proc->p_comm,
  396                             masked_exceptions);
  397         }
  398 #endif
  399 }
  400 
  401 int
  402 npxformat()
  403 {
  404 
  405         if (!hw_float)
  406                 return (_MC_FPFMT_NODEV);
  407 #ifdef  CPU_ENABLE_SSE
  408         if (cpu_fxsr)
  409                 return (_MC_FPFMT_XMM);
  410 #endif
  411         return (_MC_FPFMT_387);
  412 }
  413 
  414 /* 
  415  * The following mechanism is used to ensure that the FPE_... value
  416  * that is passed as a trapcode to the signal handler of the user
  417  * process does not have more than one bit set.
  418  * 
  419  * Multiple bits may be set if the user process modifies the control
  420  * word while a status word bit is already set.  While this is a sign
  421  * of bad coding, we have no choise than to narrow them down to one
  422  * bit, since we must not send a trapcode that is not exactly one of
  423  * the FPE_ macros.
  424  *
  425  * The mechanism has a static table with 127 entries.  Each combination
  426  * of the 7 FPU status word exception bits directly translates to a
  427  * position in this table, where a single FPE_... value is stored.
  428  * This FPE_... value stored there is considered the "most important"
  429  * of the exception bits and will be sent as the signal code.  The
  430  * precedence of the bits is based upon Intel Document "Numerical
  431  * Applications", Chapter "Special Computational Situations".
  432  *
  433  * The macro to choose one of these values does these steps: 1) Throw
  434  * away status word bits that cannot be masked.  2) Throw away the bits
  435  * currently masked in the control word, assuming the user isn't
  436  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  437  * fault) if it is set, which cannot be masked but must be presered.
  438  * 4) Use the remaining bits to point into the trapcode table.
  439  *
  440  * The 6 maskable bits in order of their preference, as stated in the
  441  * above referenced Intel manual:
  442  * 1  Invalid operation (FP_X_INV)
  443  * 1a   Stack underflow
  444  * 1b   Stack overflow
  445  * 1c   Operand of unsupported format
  446  * 1d   SNaN operand.
  447  * 2  QNaN operand (not an exception, irrelavant here)
  448  * 3  Any other invalid-operation not mentioned above or zero divide
  449  *      (FP_X_INV, FP_X_DZ)
  450  * 4  Denormal operand (FP_X_DNML)
  451  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  452  * 6  Inexact result (FP_X_IMP) 
  453  */
  454 static char fpetable[128] = {
  455         0,
  456         FPE_FLTINV,     /*  1 - INV */
  457         FPE_FLTUND,     /*  2 - DNML */
  458         FPE_FLTINV,     /*  3 - INV | DNML */
  459         FPE_FLTDIV,     /*  4 - DZ */
  460         FPE_FLTINV,     /*  5 - INV | DZ */
  461         FPE_FLTDIV,     /*  6 - DNML | DZ */
  462         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  463         FPE_FLTOVF,     /*  8 - OFL */
  464         FPE_FLTINV,     /*  9 - INV | OFL */
  465         FPE_FLTUND,     /*  A - DNML | OFL */
  466         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  467         FPE_FLTDIV,     /*  C - DZ | OFL */
  468         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  469         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  470         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  471         FPE_FLTUND,     /* 10 - UFL */
  472         FPE_FLTINV,     /* 11 - INV | UFL */
  473         FPE_FLTUND,     /* 12 - DNML | UFL */
  474         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  475         FPE_FLTDIV,     /* 14 - DZ | UFL */
  476         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  477         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  478         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  479         FPE_FLTOVF,     /* 18 - OFL | UFL */
  480         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  481         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  482         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  483         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  484         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  485         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  486         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  487         FPE_FLTRES,     /* 20 - IMP */
  488         FPE_FLTINV,     /* 21 - INV | IMP */
  489         FPE_FLTUND,     /* 22 - DNML | IMP */
  490         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  491         FPE_FLTDIV,     /* 24 - DZ | IMP */
  492         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  493         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  494         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  495         FPE_FLTOVF,     /* 28 - OFL | IMP */
  496         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  497         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  498         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  499         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  500         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  501         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  502         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  503         FPE_FLTUND,     /* 30 - UFL | IMP */
  504         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  505         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  506         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  507         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  508         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  509         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  510         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  511         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  512         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  513         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  514         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  515         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  516         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  517         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  518         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  519         FPE_FLTSUB,     /* 40 - STK */
  520         FPE_FLTSUB,     /* 41 - INV | STK */
  521         FPE_FLTUND,     /* 42 - DNML | STK */
  522         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  523         FPE_FLTDIV,     /* 44 - DZ | STK */
  524         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  525         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  526         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  527         FPE_FLTOVF,     /* 48 - OFL | STK */
  528         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  529         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  530         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  531         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  532         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  533         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  534         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  535         FPE_FLTUND,     /* 50 - UFL | STK */
  536         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  537         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  538         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  539         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  540         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  541         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  542         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  543         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  544         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  545         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  546         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  547         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  548         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  549         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  550         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  551         FPE_FLTRES,     /* 60 - IMP | STK */
  552         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  553         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  554         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  555         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  556         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  557         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  558         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  559         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  560         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  561         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  562         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  563         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  564         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  565         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  566         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  567         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  568         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  569         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  570         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  571         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  572         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  573         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  574         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  575         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  576         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  577         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  578         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  579         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  580         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  581         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  582         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  583 };
  584 
  585 /*
  586  * Read the FP status and control words, then generate si_code value
  587  * for SIGFPE.  The error code chosen will be one of the
  588  * FPE_... macros.  It will be sent as the second argument to old
  589  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  590  * argument) to SA_SIGINFO signal handlers.
  591  *
  592  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  593  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  594  * usermode code which understands the FPU hardware enough to enable
  595  * the exceptions, can also handle clearing the exception state in the
  596  * handler.  The only consequence of not clearing the exception is the
  597  * rethrow of the SIGFPE on return from the signal handler and
  598  * reexecution of the corresponding instruction.
  599  *
  600  * For XMM traps, the exceptions were never cleared.
  601  */
  602 int
  603 npxtrap_x87(void)
  604 {
  605         u_short control, status;
  606 
  607         if (!hw_float) {
  608                 printf(
  609         "npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  610                        PCPU_GET(fpcurthread), curthread, hw_float);
  611                 panic("npxtrap from nowhere");
  612         }
  613         critical_enter();
  614 
  615         /*
  616          * Interrupt handling (for another interrupt) may have pushed the
  617          * state to memory.  Fetch the relevant parts of the state from
  618          * wherever they are.
  619          */
  620         if (PCPU_GET(fpcurthread) != curthread) {
  621                 control = GET_FPU_CW(curthread);
  622                 status = GET_FPU_SW(curthread);
  623         } else {
  624                 fnstcw(&control);
  625                 fnstsw(&status);
  626         }
  627         critical_exit();
  628         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  629 }
  630 
  631 #ifdef CPU_ENABLE_SSE
  632 int
  633 npxtrap_sse(void)
  634 {
  635         u_int mxcsr;
  636 
  637         if (!hw_float) {
  638                 printf(
  639         "npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
  640                        PCPU_GET(fpcurthread), curthread, hw_float);
  641                 panic("npxtrap from nowhere");
  642         }
  643         critical_enter();
  644         if (PCPU_GET(fpcurthread) != curthread)
  645                 mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
  646         else
  647                 stmxcsr(&mxcsr);
  648         critical_exit();
  649         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  650 }
  651 #endif
  652 
  653 /*
  654  * Implement device not available (DNA) exception
  655  *
  656  * It would be better to switch FP context here (if curthread != fpcurthread)
  657  * and not necessarily for every context switch, but it is too hard to
  658  * access foreign pcb's.
  659  */
  660 
  661 static int err_count = 0;
  662 
  663 int
  664 npxdna(void)
  665 {
  666 
  667         if (!hw_float)
  668                 return (0);
  669         critical_enter();
  670         if (PCPU_GET(fpcurthread) == curthread) {
  671                 printf("npxdna: fpcurthread == curthread %d times\n",
  672                     ++err_count);
  673                 stop_emulating();
  674                 critical_exit();
  675                 return (1);
  676         }
  677         if (PCPU_GET(fpcurthread) != NULL) {
  678                 printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  679                        PCPU_GET(fpcurthread),
  680                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  681                        curthread, curthread->td_proc->p_pid);
  682                 panic("npxdna");
  683         }
  684         stop_emulating();
  685         /*
  686          * Record new context early in case frstor causes an IRQ13.
  687          */
  688         PCPU_SET(fpcurthread, curthread);
  689 
  690 #ifdef CPU_ENABLE_SSE
  691         if (cpu_fxsr)
  692                 fpu_clean_state();
  693 #endif
  694 
  695         if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  696                 /*
  697                  * This is the first time this thread has used the FPU or
  698                  * the PCB doesn't contain a clean FPU state.  Explicitly
  699                  * load an initial state.
  700                  */
  701                 fpurstor(&npx_initialstate);
  702                 if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
  703                         fldcw(curpcb->pcb_initial_npxcw);
  704                 curpcb->pcb_flags |= PCB_NPXINITDONE;
  705                 if (PCB_USER_FPU(curpcb))
  706                         curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
  707         } else {
  708                 /*
  709                  * The following fpurstor() may cause an IRQ13 when the
  710                  * state being restored has a pending error.  The error will
  711                  * appear to have been triggered by the current (npx) user
  712                  * instruction even when that instruction is a no-wait
  713                  * instruction that should not trigger an error (e.g.,
  714                  * fnclex).  On at least one 486 system all of the no-wait
  715                  * instructions are broken the same as frstor, so our
  716                  * treatment does not amplify the breakage.  On at least
  717                  * one 386/Cyrix 387 system, fnclex works correctly while
  718                  * frstor and fnsave are broken, so our treatment breaks
  719                  * fnclex if it is the first FPU instruction after a context
  720                  * switch.
  721                  */
  722                 fpurstor(curpcb->pcb_save);
  723         }
  724         critical_exit();
  725 
  726         return (1);
  727 }
  728 
  729 /*
  730  * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
  731  * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
  732  * no-wait npx instructions.  See the Intel application note AP-578 for
  733  * details.  This doesn't cause any additional complications here.  IRQ13's
  734  * are inherently asynchronous unless the CPU is frozen to deliver them --
  735  * one that started in userland may be delivered many instructions later,
  736  * after the process has entered the kernel.  It may even be delivered after
  737  * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
  738  * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
  739  * it is normally ignored at first because we set fpcurthread to NULL; it is
  740  * normally retriggered in npxdna() after return to user mode.
  741  *
  742  * npxsave() must be called with interrupts disabled, so that it clears
  743  * fpcurthread atomically with saving the state.  We require callers to do the
  744  * disabling, since most callers need to disable interrupts anyway to call
  745  * npxsave() atomically with checking fpcurthread.
  746  *
  747  * A previous version of npxsave() went to great lengths to excecute fnsave
  748  * with interrupts enabled in case executing it froze the CPU.  This case
  749  * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
  750  * spurious freezes.
  751  */
  752 void
  753 npxsave(addr)
  754         union savefpu *addr;
  755 {
  756 
  757         stop_emulating();
  758         fpusave(addr);
  759 
  760         start_emulating();
  761         PCPU_SET(fpcurthread, NULL);
  762 }
  763 
  764 void
  765 npxdrop()
  766 {
  767         struct thread *td;
  768 
  769         /*
  770          * Discard pending exceptions in the !cpu_fxsr case so that unmasked
  771          * ones don't cause a panic on the next frstor.
  772          */
  773 #ifdef CPU_ENABLE_SSE
  774         if (!cpu_fxsr)
  775 #endif
  776                 fnclex();
  777 
  778         td = PCPU_GET(fpcurthread);
  779         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  780         CRITICAL_ASSERT(td);
  781         PCPU_SET(fpcurthread, NULL);
  782         td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
  783         start_emulating();
  784 }
  785 
  786 /*
  787  * Get the user state of the FPU into pcb->pcb_user_save without
  788  * dropping ownership (if possible).  It returns the FPU ownership
  789  * status.
  790  */
  791 int
  792 npxgetregs(struct thread *td)
  793 {
  794         struct pcb *pcb;
  795 
  796         if (!hw_float)
  797                 return (_MC_FPOWNED_NONE);
  798 
  799         pcb = td->td_pcb;
  800         if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
  801                 bcopy(&npx_initialstate, &pcb->pcb_user_save,
  802                     sizeof(npx_initialstate));
  803                 SET_FPU_CW(&pcb->pcb_user_save, pcb->pcb_initial_npxcw);
  804                 npxuserinited(td);
  805                 return (_MC_FPOWNED_PCB);
  806         }
  807         critical_enter();
  808         if (td == PCPU_GET(fpcurthread)) {
  809                 fpusave(&pcb->pcb_user_save);
  810 #ifdef CPU_ENABLE_SSE
  811                 if (!cpu_fxsr)
  812 #endif
  813                         /*
  814                          * fnsave initializes the FPU and destroys whatever
  815                          * context it contains.  Make sure the FPU owner
  816                          * starts with a clean state next time.
  817                          */
  818                         npxdrop();
  819                 critical_exit();
  820                 return (_MC_FPOWNED_FPU);
  821         } else {
  822                 critical_exit();
  823                 return (_MC_FPOWNED_PCB);
  824         }
  825 }
  826 
  827 void
  828 npxuserinited(struct thread *td)
  829 {
  830         struct pcb *pcb;
  831 
  832         pcb = td->td_pcb;
  833         if (PCB_USER_FPU(pcb))
  834                 pcb->pcb_flags |= PCB_NPXINITDONE;
  835         pcb->pcb_flags |= PCB_NPXUSERINITDONE;
  836 }
  837 
  838 
  839 void
  840 npxsetregs(struct thread *td, union savefpu *addr)
  841 {
  842         struct pcb *pcb;
  843 
  844         if (!hw_float)
  845                 return;
  846 
  847         pcb = td->td_pcb;
  848         critical_enter();
  849         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  850 #ifdef CPU_ENABLE_SSE
  851                 if (!cpu_fxsr)
  852 #endif
  853                         fnclex();       /* As in npxdrop(). */
  854                 if (((uintptr_t)addr & 0xf) != 0) {
  855                         bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
  856                         fpurstor(&pcb->pcb_user_save);
  857                 } else
  858                         fpurstor(addr);
  859                 critical_exit();
  860                 pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
  861         } else {
  862                 critical_exit();
  863                 bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
  864                 npxuserinited(td);
  865         }
  866 }
  867 
  868 static void
  869 fpusave(addr)
  870         union savefpu *addr;
  871 {
  872         
  873 #ifdef CPU_ENABLE_SSE
  874         if (cpu_fxsr)
  875                 fxsave(addr);
  876         else
  877 #endif
  878                 fnsave(addr);
  879 }
  880 
  881 #ifdef CPU_ENABLE_SSE
  882 /*
  883  * On AuthenticAMD processors, the fxrstor instruction does not restore
  884  * the x87's stored last instruction pointer, last data pointer, and last
  885  * opcode values, except in the rare case in which the exception summary
  886  * (ES) bit in the x87 status word is set to 1.
  887  *
  888  * In order to avoid leaking this information across processes, we clean
  889  * these values by performing a dummy load before executing fxrstor().
  890  */
  891 static void
  892 fpu_clean_state(void)
  893 {
  894         static float dummy_variable = 0.0;
  895         u_short status;
  896 
  897         /*
  898          * Clear the ES bit in the x87 status word if it is currently
  899          * set, in order to avoid causing a fault in the upcoming load.
  900          */
  901         fnstsw(&status);
  902         if (status & 0x80)
  903                 fnclex();
  904 
  905         /*
  906          * Load the dummy variable into the x87 stack.  This mangles
  907          * the x87 stack, but we don't care since we're about to call
  908          * fxrstor() anyway.
  909          */
  910         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
  911 }
  912 #endif /* CPU_ENABLE_SSE */
  913 
  914 static void
  915 fpurstor(addr)
  916         union savefpu *addr;
  917 {
  918 
  919 #ifdef CPU_ENABLE_SSE
  920         if (cpu_fxsr)
  921                 fxrstor(addr);
  922         else
  923 #endif
  924                 frstor(addr);
  925 }
  926 
  927 static device_method_t npx_methods[] = {
  928         /* Device interface */
  929         DEVMETHOD(device_identify,      npx_identify),
  930         DEVMETHOD(device_probe,         npx_probe),
  931         DEVMETHOD(device_attach,        npx_attach),
  932         DEVMETHOD(device_detach,        bus_generic_detach),
  933         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  934         DEVMETHOD(device_suspend,       bus_generic_suspend),
  935         DEVMETHOD(device_resume,        bus_generic_resume),
  936         
  937         { 0, 0 }
  938 };
  939 
  940 static driver_t npx_driver = {
  941         "npx",
  942         npx_methods,
  943         1,                      /* no softc */
  944 };
  945 
  946 static devclass_t npx_devclass;
  947 
  948 /*
  949  * We prefer to attach to the root nexus so that the usual case (exception 16)
  950  * doesn't describe the processor as being `on isa'.
  951  */
  952 DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
  953 
  954 #ifdef DEV_ISA
  955 /*
  956  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
  957  */
  958 static struct isa_pnp_id npxisa_ids[] = {
  959         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
  960         { 0 }
  961 };
  962 
  963 static int
  964 npxisa_probe(device_t dev)
  965 {
  966         int result;
  967         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
  968                 device_quiet(dev);
  969         }
  970         return(result);
  971 }
  972 
  973 static int
  974 npxisa_attach(device_t dev)
  975 {
  976         return (0);
  977 }
  978 
  979 static device_method_t npxisa_methods[] = {
  980         /* Device interface */
  981         DEVMETHOD(device_probe,         npxisa_probe),
  982         DEVMETHOD(device_attach,        npxisa_attach),
  983         DEVMETHOD(device_detach,        bus_generic_detach),
  984         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  985         DEVMETHOD(device_suspend,       bus_generic_suspend),
  986         DEVMETHOD(device_resume,        bus_generic_resume),
  987         
  988         { 0, 0 }
  989 };
  990 
  991 static driver_t npxisa_driver = {
  992         "npxisa",
  993         npxisa_methods,
  994         1,                      /* no softc */
  995 };
  996 
  997 static devclass_t npxisa_devclass;
  998 
  999 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
 1000 #ifndef PC98
 1001 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
 1002 #endif
 1003 #endif /* DEV_ISA */
 1004 
 1005 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1006     "Kernel contexts for FPU state");
 1007 
 1008 #define XSAVE_AREA_ALIGN        64
 1009 
 1010 #define FPU_KERN_CTX_NPXINITDONE 0x01
 1011 
 1012 struct fpu_kern_ctx {
 1013         union savefpu *prev;
 1014         uint32_t flags;
 1015         char hwstate1[];
 1016 };
 1017 
 1018 struct fpu_kern_ctx *
 1019 fpu_kern_alloc_ctx(u_int flags)
 1020 {
 1021         struct fpu_kern_ctx *res;
 1022         size_t sz;
 1023 
 1024         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
 1025             sizeof(union savefpu);
 1026         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
 1027             M_NOWAIT : M_WAITOK) | M_ZERO);
 1028         return (res);
 1029 }
 1030 
 1031 void
 1032 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1033 {
 1034 
 1035         /* XXXKIB clear the memory ? */
 1036         free(ctx, M_FPUKERN_CTX);
 1037 }
 1038 
 1039 static union savefpu *
 1040 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1041 {
 1042         vm_offset_t p;
 1043 
 1044         p = (vm_offset_t)&ctx->hwstate1;
 1045         p = roundup2(p, XSAVE_AREA_ALIGN);
 1046         return ((union savefpu *)p);
 1047 }
 1048 
 1049 int
 1050 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1051 {
 1052         struct pcb *pcb;
 1053 
 1054         pcb = td->td_pcb;
 1055         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == &pcb->pcb_user_save,
 1056             ("mangled pcb_save"));
 1057         ctx->flags = 0;
 1058         if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
 1059                 ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
 1060         npxexit(td);
 1061         ctx->prev = pcb->pcb_save;
 1062         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1063         pcb->pcb_flags |= PCB_KERNNPX;
 1064         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1065         return (0);
 1066 }
 1067 
 1068 int
 1069 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1070 {
 1071         struct pcb *pcb;
 1072 
 1073         pcb = td->td_pcb;
 1074         critical_enter();
 1075         if (curthread == PCPU_GET(fpcurthread))
 1076                 npxdrop();
 1077         critical_exit();
 1078         pcb->pcb_save = ctx->prev;
 1079         if (pcb->pcb_save == &pcb->pcb_user_save) {
 1080                 if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
 1081                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1082                 else
 1083                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1084                 pcb->pcb_flags &= ~PCB_KERNNPX;
 1085         } else {
 1086                 if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
 1087                         pcb->pcb_flags |= PCB_NPXINITDONE;
 1088                 else
 1089                         pcb->pcb_flags &= ~PCB_NPXINITDONE;
 1090                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1091         }
 1092         return (0);
 1093 }
 1094 
 1095 int
 1096 fpu_kern_thread(u_int flags)
 1097 {
 1098         struct pcb *pcb;
 1099 
 1100         pcb = curpcb;
 1101         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1102             ("Only kthread may use fpu_kern_thread"));
 1103         KASSERT(curpcb->pcb_save == &curpcb->pcb_user_save,
 1104             ("mangled pcb_save"));
 1105         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1106 
 1107         curpcb->pcb_flags |= PCB_KERNNPX;
 1108         return (0);
 1109 }
 1110 
 1111 int
 1112 is_fpu_kern_thread(u_int flags)
 1113 {
 1114 
 1115         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1116                 return (0);
 1117         return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
 1118 }

Cache object: 3c37cade1457e996a16e516875dde78c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.