The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/i386/linux/linux_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Marcel Moolenaar
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer
   10  *    in this position and unchanged.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. The name of the author may not be used to endorse or promote products
   15  *    derived from this software without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/10.3/sys/i386/linux/linux_machdep.c 293600 2016-01-09 18:07:48Z dchagin $");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/capsicum.h>
   35 #include <sys/file.h>
   36 #include <sys/fcntl.h>
   37 #include <sys/imgact.h>
   38 #include <sys/lock.h>
   39 #include <sys/malloc.h>
   40 #include <sys/mman.h>
   41 #include <sys/mutex.h>
   42 #include <sys/sx.h>
   43 #include <sys/priv.h>
   44 #include <sys/proc.h>
   45 #include <sys/queue.h>
   46 #include <sys/resource.h>
   47 #include <sys/resourcevar.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/syscallsubr.h>
   50 #include <sys/sysproto.h>
   51 #include <sys/unistd.h>
   52 #include <sys/wait.h>
   53 #include <sys/sched.h>
   54 
   55 #include <machine/frame.h>
   56 #include <machine/psl.h>
   57 #include <machine/segments.h>
   58 #include <machine/sysarch.h>
   59 
   60 #include <vm/vm.h>
   61 #include <vm/pmap.h>
   62 #include <vm/vm_map.h>
   63 
   64 #include <i386/linux/linux.h>
   65 #include <i386/linux/linux_proto.h>
   66 #include <compat/linux/linux_ipc.h>
   67 #include <compat/linux/linux_misc.h>
   68 #include <compat/linux/linux_signal.h>
   69 #include <compat/linux/linux_util.h>
   70 #include <compat/linux/linux_emul.h>
   71 
   72 #include <i386/include/pcb.h>                   /* needed for pcb definition in linux_set_thread_area */
   73 
   74 #include "opt_posix.h"
   75 
   76 extern struct sysentvec elf32_freebsd_sysvec;   /* defined in i386/i386/elf_machdep.c */
   77 
   78 struct l_descriptor {
   79         l_uint          entry_number;
   80         l_ulong         base_addr;
   81         l_uint          limit;
   82         l_uint          seg_32bit:1;
   83         l_uint          contents:2;
   84         l_uint          read_exec_only:1;
   85         l_uint          limit_in_pages:1;
   86         l_uint          seg_not_present:1;
   87         l_uint          useable:1;
   88 };
   89 
   90 struct l_old_select_argv {
   91         l_int           nfds;
   92         l_fd_set        *readfds;
   93         l_fd_set        *writefds;
   94         l_fd_set        *exceptfds;
   95         struct l_timeval        *timeout;
   96 };
   97 
   98 static int      linux_mmap_common(struct thread *td, l_uintptr_t addr,
   99                     l_size_t len, l_int prot, l_int flags, l_int fd,
  100                     l_loff_t pos);
  101 
  102 
  103 int
  104 linux_execve(struct thread *td, struct linux_execve_args *args)
  105 {
  106         struct image_args eargs;
  107         char *newpath;
  108         int error;
  109 
  110         LCONVPATHEXIST(td, args->path, &newpath);
  111 
  112 #ifdef DEBUG
  113         if (ldebug(execve))
  114                 printf(ARGS(execve, "%s"), newpath);
  115 #endif
  116 
  117         error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE,
  118             args->argp, args->envp);
  119         free(newpath, M_TEMP);
  120         if (error == 0)
  121                 error = linux_common_execve(td, &eargs);
  122         return (error);
  123 }
  124 
  125 struct l_ipc_kludge {
  126         struct l_msgbuf *msgp;
  127         l_long msgtyp;
  128 };
  129 
  130 int
  131 linux_ipc(struct thread *td, struct linux_ipc_args *args)
  132 {
  133 
  134         switch (args->what & 0xFFFF) {
  135         case LINUX_SEMOP: {
  136                 struct linux_semop_args a;
  137 
  138                 a.semid = args->arg1;
  139                 a.tsops = args->ptr;
  140                 a.nsops = args->arg2;
  141                 return (linux_semop(td, &a));
  142         }
  143         case LINUX_SEMGET: {
  144                 struct linux_semget_args a;
  145 
  146                 a.key = args->arg1;
  147                 a.nsems = args->arg2;
  148                 a.semflg = args->arg3;
  149                 return (linux_semget(td, &a));
  150         }
  151         case LINUX_SEMCTL: {
  152                 struct linux_semctl_args a;
  153                 int error;
  154 
  155                 a.semid = args->arg1;
  156                 a.semnum = args->arg2;
  157                 a.cmd = args->arg3;
  158                 error = copyin(args->ptr, &a.arg, sizeof(a.arg));
  159                 if (error)
  160                         return (error);
  161                 return (linux_semctl(td, &a));
  162         }
  163         case LINUX_MSGSND: {
  164                 struct linux_msgsnd_args a;
  165 
  166                 a.msqid = args->arg1;
  167                 a.msgp = args->ptr;
  168                 a.msgsz = args->arg2;
  169                 a.msgflg = args->arg3;
  170                 return (linux_msgsnd(td, &a));
  171         }
  172         case LINUX_MSGRCV: {
  173                 struct linux_msgrcv_args a;
  174 
  175                 a.msqid = args->arg1;
  176                 a.msgsz = args->arg2;
  177                 a.msgflg = args->arg3;
  178                 if ((args->what >> 16) == 0) {
  179                         struct l_ipc_kludge tmp;
  180                         int error;
  181 
  182                         if (args->ptr == NULL)
  183                                 return (EINVAL);
  184                         error = copyin(args->ptr, &tmp, sizeof(tmp));
  185                         if (error)
  186                                 return (error);
  187                         a.msgp = tmp.msgp;
  188                         a.msgtyp = tmp.msgtyp;
  189                 } else {
  190                         a.msgp = args->ptr;
  191                         a.msgtyp = args->arg5;
  192                 }
  193                 return (linux_msgrcv(td, &a));
  194         }
  195         case LINUX_MSGGET: {
  196                 struct linux_msgget_args a;
  197 
  198                 a.key = args->arg1;
  199                 a.msgflg = args->arg2;
  200                 return (linux_msgget(td, &a));
  201         }
  202         case LINUX_MSGCTL: {
  203                 struct linux_msgctl_args a;
  204 
  205                 a.msqid = args->arg1;
  206                 a.cmd = args->arg2;
  207                 a.buf = args->ptr;
  208                 return (linux_msgctl(td, &a));
  209         }
  210         case LINUX_SHMAT: {
  211                 struct linux_shmat_args a;
  212 
  213                 a.shmid = args->arg1;
  214                 a.shmaddr = args->ptr;
  215                 a.shmflg = args->arg2;
  216                 a.raddr = (l_ulong *)args->arg3;
  217                 return (linux_shmat(td, &a));
  218         }
  219         case LINUX_SHMDT: {
  220                 struct linux_shmdt_args a;
  221 
  222                 a.shmaddr = args->ptr;
  223                 return (linux_shmdt(td, &a));
  224         }
  225         case LINUX_SHMGET: {
  226                 struct linux_shmget_args a;
  227 
  228                 a.key = args->arg1;
  229                 a.size = args->arg2;
  230                 a.shmflg = args->arg3;
  231                 return (linux_shmget(td, &a));
  232         }
  233         case LINUX_SHMCTL: {
  234                 struct linux_shmctl_args a;
  235 
  236                 a.shmid = args->arg1;
  237                 a.cmd = args->arg2;
  238                 a.buf = args->ptr;
  239                 return (linux_shmctl(td, &a));
  240         }
  241         default:
  242                 break;
  243         }
  244 
  245         return (EINVAL);
  246 }
  247 
  248 int
  249 linux_old_select(struct thread *td, struct linux_old_select_args *args)
  250 {
  251         struct l_old_select_argv linux_args;
  252         struct linux_select_args newsel;
  253         int error;
  254 
  255 #ifdef DEBUG
  256         if (ldebug(old_select))
  257                 printf(ARGS(old_select, "%p"), args->ptr);
  258 #endif
  259 
  260         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  261         if (error)
  262                 return (error);
  263 
  264         newsel.nfds = linux_args.nfds;
  265         newsel.readfds = linux_args.readfds;
  266         newsel.writefds = linux_args.writefds;
  267         newsel.exceptfds = linux_args.exceptfds;
  268         newsel.timeout = linux_args.timeout;
  269         return (linux_select(td, &newsel));
  270 }
  271 
  272 int
  273 linux_set_cloned_tls(struct thread *td, void *desc)
  274 {
  275         struct segment_descriptor sd;
  276         struct l_user_desc info;
  277         int idx, error;
  278         int a[2];
  279 
  280         error = copyin(desc, &info, sizeof(struct l_user_desc));
  281         if (error) {
  282                 printf(LMSG("copyin failed!"));
  283         } else {
  284                 idx = info.entry_number;
  285 
  286                 /* 
  287                  * looks like we're getting the idx we returned
  288                  * in the set_thread_area() syscall
  289                  */
  290                 if (idx != 6 && idx != 3) {
  291                         printf(LMSG("resetting idx!"));
  292                         idx = 3;
  293                 }
  294 
  295                 /* this doesnt happen in practice */
  296                 if (idx == 6) {
  297                         /* we might copy out the entry_number as 3 */
  298                         info.entry_number = 3;
  299                         error = copyout(&info, desc, sizeof(struct l_user_desc));
  300                         if (error)
  301                                 printf(LMSG("copyout failed!"));
  302                 }
  303 
  304                 a[0] = LINUX_LDT_entry_a(&info);
  305                 a[1] = LINUX_LDT_entry_b(&info);
  306 
  307                 memcpy(&sd, &a, sizeof(a));
  308 #ifdef DEBUG
  309                 if (ldebug(clone))
  310                         printf("Segment created in clone with "
  311                         "CLONE_SETTLS: lobase: %x, hibase: %x, "
  312                         "lolimit: %x, hilimit: %x, type: %i, "
  313                         "dpl: %i, p: %i, xx: %i, def32: %i, "
  314                         "gran: %i\n", sd.sd_lobase, sd.sd_hibase,
  315                         sd.sd_lolimit, sd.sd_hilimit, sd.sd_type,
  316                         sd.sd_dpl, sd.sd_p, sd.sd_xx,
  317                         sd.sd_def32, sd.sd_gran);
  318 #endif
  319 
  320                 /* set %gs */
  321                 td->td_pcb->pcb_gsd = sd;
  322                 td->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL);
  323         }
  324 
  325         return (error);
  326 }
  327 
  328 int
  329 linux_set_upcall_kse(struct thread *td, register_t stack)
  330 {
  331 
  332         if (stack)
  333                 td->td_frame->tf_esp = stack;
  334 
  335         /*
  336          * The newly created Linux thread returns
  337          * to the user space by the same path that a parent do.
  338          */
  339         td->td_frame->tf_eax = 0;
  340         return (0);
  341 }
  342 
  343 #define STACK_SIZE  (2 * 1024 * 1024)
  344 #define GUARD_SIZE  (4 * PAGE_SIZE)
  345 
  346 int
  347 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
  348 {
  349 
  350 #ifdef DEBUG
  351         if (ldebug(mmap2))
  352                 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
  353                     (void *)args->addr, args->len, args->prot,
  354                     args->flags, args->fd, args->pgoff);
  355 #endif
  356 
  357         return (linux_mmap_common(td, args->addr, args->len, args->prot,
  358                 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
  359                 PAGE_SIZE));
  360 }
  361 
  362 int
  363 linux_mmap(struct thread *td, struct linux_mmap_args *args)
  364 {
  365         int error;
  366         struct l_mmap_argv linux_args;
  367 
  368         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  369         if (error)
  370                 return (error);
  371 
  372 #ifdef DEBUG
  373         if (ldebug(mmap))
  374                 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
  375                     (void *)linux_args.addr, linux_args.len, linux_args.prot,
  376                     linux_args.flags, linux_args.fd, linux_args.pgoff);
  377 #endif
  378 
  379         return (linux_mmap_common(td, linux_args.addr, linux_args.len,
  380             linux_args.prot, linux_args.flags, linux_args.fd,
  381             (uint32_t)linux_args.pgoff));
  382 }
  383 
  384 static int
  385 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
  386     l_int flags, l_int fd, l_loff_t pos)
  387 {
  388         struct proc *p = td->td_proc;
  389         struct mmap_args /* {
  390                 caddr_t addr;
  391                 size_t len;
  392                 int prot;
  393                 int flags;
  394                 int fd;
  395                 long pad;
  396                 off_t pos;
  397         } */ bsd_args;
  398         int error;
  399         struct file *fp;
  400         cap_rights_t rights;
  401 
  402         error = 0;
  403         bsd_args.flags = 0;
  404         fp = NULL;
  405 
  406         /*
  407          * Linux mmap(2):
  408          * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
  409          */
  410         if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
  411                 return (EINVAL);
  412 
  413         if (flags & LINUX_MAP_SHARED)
  414                 bsd_args.flags |= MAP_SHARED;
  415         if (flags & LINUX_MAP_PRIVATE)
  416                 bsd_args.flags |= MAP_PRIVATE;
  417         if (flags & LINUX_MAP_FIXED)
  418                 bsd_args.flags |= MAP_FIXED;
  419         if (flags & LINUX_MAP_ANON) {
  420                 /* Enforce pos to be on page boundary, then ignore. */
  421                 if ((pos & PAGE_MASK) != 0)
  422                         return (EINVAL);
  423                 pos = 0;
  424                 bsd_args.flags |= MAP_ANON;
  425         } else
  426                 bsd_args.flags |= MAP_NOSYNC;
  427         if (flags & LINUX_MAP_GROWSDOWN)
  428                 bsd_args.flags |= MAP_STACK;
  429 
  430         /*
  431          * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
  432          * on Linux/i386. We do this to ensure maximum compatibility.
  433          * Linux/ia64 does the same in i386 emulation mode.
  434          */
  435         bsd_args.prot = prot;
  436         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  437                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  438 
  439         /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
  440         bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
  441         if (bsd_args.fd != -1) {
  442                 /*
  443                  * Linux follows Solaris mmap(2) description:
  444                  * The file descriptor fildes is opened with
  445                  * read permission, regardless of the
  446                  * protection options specified.
  447                  *
  448                  * Checking just CAP_MMAP is fine here, since the real work
  449                  * is done in the FreeBSD mmap().
  450                  */
  451 
  452                 error = fget(td, bsd_args.fd,
  453                     cap_rights_init(&rights, CAP_MMAP), &fp);
  454                 if (error != 0)
  455                         return (error);
  456                 if (fp->f_type != DTYPE_VNODE) {
  457                         fdrop(fp, td);
  458                         return (EINVAL);
  459                 }
  460 
  461                 /* Linux mmap() just fails for O_WRONLY files */
  462                 if (!(fp->f_flag & FREAD)) {
  463                         fdrop(fp, td);
  464                         return (EACCES);
  465                 }
  466 
  467                 fdrop(fp, td);
  468         }
  469 
  470         if (flags & LINUX_MAP_GROWSDOWN) {
  471                 /* 
  472                  * The Linux MAP_GROWSDOWN option does not limit auto
  473                  * growth of the region.  Linux mmap with this option
  474                  * takes as addr the inital BOS, and as len, the initial
  475                  * region size.  It can then grow down from addr without
  476                  * limit.  However, linux threads has an implicit internal
  477                  * limit to stack size of STACK_SIZE.  Its just not
  478                  * enforced explicitly in linux.  But, here we impose
  479                  * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
  480                  * region, since we can do this with our mmap.
  481                  *
  482                  * Our mmap with MAP_STACK takes addr as the maximum
  483                  * downsize limit on BOS, and as len the max size of
  484                  * the region.  It them maps the top SGROWSIZ bytes,
  485                  * and auto grows the region down, up to the limit
  486                  * in addr.
  487                  *
  488                  * If we don't use the MAP_STACK option, the effect
  489                  * of this code is to allocate a stack region of a
  490                  * fixed size of (STACK_SIZE - GUARD_SIZE).
  491                  */
  492 
  493                 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
  494                         /* 
  495                          * Some linux apps will attempt to mmap
  496                          * thread stacks near the top of their
  497                          * address space.  If their TOS is greater
  498                          * than vm_maxsaddr, vm_map_growstack()
  499                          * will confuse the thread stack with the
  500                          * process stack and deliver a SEGV if they
  501                          * attempt to grow the thread stack past their
  502                          * current stacksize rlimit.  To avoid this,
  503                          * adjust vm_maxsaddr upwards to reflect
  504                          * the current stacksize rlimit rather
  505                          * than the maximum possible stacksize.
  506                          * It would be better to adjust the
  507                          * mmap'ed region, but some apps do not check
  508                          * mmap's return value.
  509                          */
  510                         PROC_LOCK(p);
  511                         p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
  512                             lim_cur(p, RLIMIT_STACK);
  513                         PROC_UNLOCK(p);
  514                 }
  515 
  516                 /*
  517                  * This gives us our maximum stack size and a new BOS.
  518                  * If we're using VM_STACK, then mmap will just map
  519                  * the top SGROWSIZ bytes, and let the stack grow down
  520                  * to the limit at BOS.  If we're not using VM_STACK
  521                  * we map the full stack, since we don't have a way
  522                  * to autogrow it.
  523                  */
  524                 if (len > STACK_SIZE - GUARD_SIZE) {
  525                         bsd_args.addr = (caddr_t)PTRIN(addr);
  526                         bsd_args.len = len;
  527                 } else {
  528                         bsd_args.addr = (caddr_t)PTRIN(addr) -
  529                             (STACK_SIZE - GUARD_SIZE - len);
  530                         bsd_args.len = STACK_SIZE - GUARD_SIZE;
  531                 }
  532         } else {
  533                 bsd_args.addr = (caddr_t)PTRIN(addr);
  534                 bsd_args.len  = len;
  535         }
  536         bsd_args.pos = pos;
  537 
  538 #ifdef DEBUG
  539         if (ldebug(mmap))
  540                 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
  541                     __func__,
  542                     (void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
  543                     bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
  544 #endif
  545         error = sys_mmap(td, &bsd_args);
  546 #ifdef DEBUG
  547         if (ldebug(mmap))
  548                 printf("-> %s() return: 0x%x (0x%08x)\n",
  549                         __func__, error, (u_int)td->td_retval[0]);
  550 #endif
  551         return (error);
  552 }
  553 
  554 int
  555 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
  556 {
  557         struct mprotect_args bsd_args;
  558 
  559         bsd_args.addr = uap->addr;
  560         bsd_args.len = uap->len;
  561         bsd_args.prot = uap->prot;
  562         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  563                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  564         return (sys_mprotect(td, &bsd_args));
  565 }
  566 
  567 int
  568 linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
  569 {
  570         int error;
  571         struct i386_ioperm_args iia;
  572 
  573         iia.start = args->start;
  574         iia.length = args->length;
  575         iia.enable = args->enable;
  576         error = i386_set_ioperm(td, &iia);
  577         return (error);
  578 }
  579 
  580 int
  581 linux_iopl(struct thread *td, struct linux_iopl_args *args)
  582 {
  583         int error;
  584 
  585         if (args->level < 0 || args->level > 3)
  586                 return (EINVAL);
  587         if ((error = priv_check(td, PRIV_IO)) != 0)
  588                 return (error);
  589         if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
  590                 return (error);
  591         td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
  592             (args->level * (PSL_IOPL / 3));
  593         return (0);
  594 }
  595 
  596 int
  597 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
  598 {
  599         int error;
  600         struct i386_ldt_args ldt;
  601         struct l_descriptor ld;
  602         union descriptor desc;
  603         int size, written;
  604 
  605         switch (uap->func) {
  606         case 0x00: /* read_ldt */
  607                 ldt.start = 0;
  608                 ldt.descs = uap->ptr;
  609                 ldt.num = uap->bytecount / sizeof(union descriptor);
  610                 error = i386_get_ldt(td, &ldt);
  611                 td->td_retval[0] *= sizeof(union descriptor);
  612                 break;
  613         case 0x02: /* read_default_ldt = 0 */
  614                 size = 5*sizeof(struct l_desc_struct);
  615                 if (size > uap->bytecount)
  616                         size = uap->bytecount;
  617                 for (written = error = 0; written < size && error == 0; written++)
  618                         error = subyte((char *)uap->ptr + written, 0);
  619                 td->td_retval[0] = written;
  620                 break;
  621         case 0x01: /* write_ldt */
  622         case 0x11: /* write_ldt */
  623                 if (uap->bytecount != sizeof(ld))
  624                         return (EINVAL);
  625 
  626                 error = copyin(uap->ptr, &ld, sizeof(ld));
  627                 if (error)
  628                         return (error);
  629 
  630                 ldt.start = ld.entry_number;
  631                 ldt.descs = &desc;
  632                 ldt.num = 1;
  633                 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff);
  634                 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
  635                 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff);
  636                 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
  637                 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
  638                         (ld.contents << 2);
  639                 desc.sd.sd_dpl = 3;
  640                 desc.sd.sd_p = (ld.seg_not_present ^ 1);
  641                 desc.sd.sd_xx = 0;
  642                 desc.sd.sd_def32 = ld.seg_32bit;
  643                 desc.sd.sd_gran = ld.limit_in_pages;
  644                 error = i386_set_ldt(td, &ldt, &desc);
  645                 break;
  646         default:
  647                 error = ENOSYS;
  648                 break;
  649         }
  650 
  651         if (error == EOPNOTSUPP) {
  652                 printf("linux: modify_ldt needs kernel option USER_LDT\n");
  653                 error = ENOSYS;
  654         }
  655 
  656         return (error);
  657 }
  658 
  659 int
  660 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
  661 {
  662         l_osigaction_t osa;
  663         l_sigaction_t act, oact;
  664         int error;
  665 
  666 #ifdef DEBUG
  667         if (ldebug(sigaction))
  668                 printf(ARGS(sigaction, "%d, %p, %p"),
  669                     args->sig, (void *)args->nsa, (void *)args->osa);
  670 #endif
  671 
  672         if (args->nsa != NULL) {
  673                 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
  674                 if (error)
  675                         return (error);
  676                 act.lsa_handler = osa.lsa_handler;
  677                 act.lsa_flags = osa.lsa_flags;
  678                 act.lsa_restorer = osa.lsa_restorer;
  679                 LINUX_SIGEMPTYSET(act.lsa_mask);
  680                 act.lsa_mask.__mask = osa.lsa_mask;
  681         }
  682 
  683         error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
  684             args->osa ? &oact : NULL);
  685 
  686         if (args->osa != NULL && !error) {
  687                 osa.lsa_handler = oact.lsa_handler;
  688                 osa.lsa_flags = oact.lsa_flags;
  689                 osa.lsa_restorer = oact.lsa_restorer;
  690                 osa.lsa_mask = oact.lsa_mask.__mask;
  691                 error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
  692         }
  693 
  694         return (error);
  695 }
  696 
  697 /*
  698  * Linux has two extra args, restart and oldmask.  We dont use these,
  699  * but it seems that "restart" is actually a context pointer that
  700  * enables the signal to happen with a different register set.
  701  */
  702 int
  703 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
  704 {
  705         sigset_t sigmask;
  706         l_sigset_t mask;
  707 
  708 #ifdef DEBUG
  709         if (ldebug(sigsuspend))
  710                 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
  711 #endif
  712 
  713         LINUX_SIGEMPTYSET(mask);
  714         mask.__mask = args->mask;
  715         linux_to_bsd_sigset(&mask, &sigmask);
  716         return (kern_sigsuspend(td, sigmask));
  717 }
  718 
  719 int
  720 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
  721 {
  722         l_sigset_t lmask;
  723         sigset_t sigmask;
  724         int error;
  725 
  726 #ifdef DEBUG
  727         if (ldebug(rt_sigsuspend))
  728                 printf(ARGS(rt_sigsuspend, "%p, %d"),
  729                     (void *)uap->newset, uap->sigsetsize);
  730 #endif
  731 
  732         if (uap->sigsetsize != sizeof(l_sigset_t))
  733                 return (EINVAL);
  734 
  735         error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
  736         if (error)
  737                 return (error);
  738 
  739         linux_to_bsd_sigset(&lmask, &sigmask);
  740         return (kern_sigsuspend(td, sigmask));
  741 }
  742 
  743 int
  744 linux_pause(struct thread *td, struct linux_pause_args *args)
  745 {
  746         struct proc *p = td->td_proc;
  747         sigset_t sigmask;
  748 
  749 #ifdef DEBUG
  750         if (ldebug(pause))
  751                 printf(ARGS(pause, ""));
  752 #endif
  753 
  754         PROC_LOCK(p);
  755         sigmask = td->td_sigmask;
  756         PROC_UNLOCK(p);
  757         return (kern_sigsuspend(td, sigmask));
  758 }
  759 
  760 int
  761 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
  762 {
  763         stack_t ss, oss;
  764         l_stack_t lss;
  765         int error;
  766 
  767 #ifdef DEBUG
  768         if (ldebug(sigaltstack))
  769                 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
  770 #endif
  771 
  772         if (uap->uss != NULL) {
  773                 error = copyin(uap->uss, &lss, sizeof(l_stack_t));
  774                 if (error)
  775                         return (error);
  776 
  777                 ss.ss_sp = lss.ss_sp;
  778                 ss.ss_size = lss.ss_size;
  779                 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
  780         }
  781         error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
  782             (uap->uoss != NULL) ? &oss : NULL);
  783         if (!error && uap->uoss != NULL) {
  784                 lss.ss_sp = oss.ss_sp;
  785                 lss.ss_size = oss.ss_size;
  786                 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
  787                 error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
  788         }
  789 
  790         return (error);
  791 }
  792 
  793 int
  794 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
  795 {
  796         struct ftruncate_args sa;
  797 
  798 #ifdef DEBUG
  799         if (ldebug(ftruncate64))
  800                 printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
  801                     (intmax_t)args->length);
  802 #endif
  803 
  804         sa.fd = args->fd;
  805         sa.length = args->length;
  806         return sys_ftruncate(td, &sa);
  807 }
  808 
  809 int
  810 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args)
  811 {
  812         struct l_user_desc info;
  813         int error;
  814         int idx;
  815         int a[2];
  816         struct segment_descriptor sd;
  817 
  818         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
  819         if (error)
  820                 return (error);
  821 
  822 #ifdef DEBUG
  823         if (ldebug(set_thread_area))
  824                 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"),
  825                       info.entry_number,
  826                       info.base_addr,
  827                       info.limit,
  828                       info.seg_32bit,
  829                       info.contents,
  830                       info.read_exec_only,
  831                       info.limit_in_pages,
  832                       info.seg_not_present,
  833                       info.useable);
  834 #endif
  835 
  836         idx = info.entry_number;
  837         /* 
  838          * Semantics of linux version: every thread in the system has array of
  839          * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This 
  840          * syscall loads one of the selected tls decriptors with a value and
  841          * also loads GDT descriptors 6, 7 and 8 with the content of the
  842          * per-thread descriptors.
  843          *
  844          * Semantics of fbsd version: I think we can ignore that linux has 3 
  845          * per-thread descriptors and use just the 1st one. The tls_array[]
  846          * is used only in set/get-thread_area() syscalls and for loading the
  847          * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so
  848          * we will load just one. 
  849          *
  850          * XXX: this doesn't work when a user space process tries to use more
  851          * than 1 TLS segment. Comment in the linux sources says wine might do
  852          * this.
  853          */
  854 
  855         /* 
  856          * we support just GLIBC TLS now 
  857          * we should let 3 proceed as well because we use this segment so
  858          * if code does two subsequent calls it should succeed
  859          */
  860         if (idx != 6 && idx != -1 && idx != 3)
  861                 return (EINVAL);
  862 
  863         /* 
  864          * we have to copy out the GDT entry we use
  865          * FreeBSD uses GDT entry #3 for storing %gs so load that
  866          *
  867          * XXX: what if a user space program doesn't check this value and tries
  868          * to use 6, 7 or 8? 
  869          */
  870         idx = info.entry_number = 3;
  871         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
  872         if (error)
  873                 return (error);
  874 
  875         if (LINUX_LDT_empty(&info)) {
  876                 a[0] = 0;
  877                 a[1] = 0;
  878         } else {
  879                 a[0] = LINUX_LDT_entry_a(&info);
  880                 a[1] = LINUX_LDT_entry_b(&info);
  881         }
  882 
  883         memcpy(&sd, &a, sizeof(a));
  884 #ifdef DEBUG
  885         if (ldebug(set_thread_area))
  886                 printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
  887                         sd.sd_hibase,
  888                         sd.sd_lolimit,
  889                         sd.sd_hilimit,
  890                         sd.sd_type,
  891                         sd.sd_dpl,
  892                         sd.sd_p,
  893                         sd.sd_xx,
  894                         sd.sd_def32,
  895                         sd.sd_gran);
  896 #endif
  897 
  898         /* this is taken from i386 version of cpu_set_user_tls() */
  899         critical_enter();
  900         /* set %gs */
  901         td->td_pcb->pcb_gsd = sd;
  902         PCPU_GET(fsgs_gdt)[1] = sd;
  903         load_gs(GSEL(GUGS_SEL, SEL_UPL));
  904         critical_exit();
  905    
  906         return (0);
  907 }
  908 
  909 int
  910 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args)
  911 {
  912         
  913         struct l_user_desc info;
  914         int error;
  915         int idx;
  916         struct l_desc_struct desc;
  917         struct segment_descriptor sd;
  918 
  919 #ifdef DEBUG
  920         if (ldebug(get_thread_area))
  921                 printf(ARGS(get_thread_area, "%p"), args->desc);
  922 #endif
  923 
  924         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
  925         if (error)
  926                 return (error);
  927 
  928         idx = info.entry_number;
  929         /* XXX: I am not sure if we want 3 to be allowed too. */
  930         if (idx != 6 && idx != 3)
  931                 return (EINVAL);
  932 
  933         idx = 3;
  934 
  935         memset(&info, 0, sizeof(info));
  936 
  937         sd = PCPU_GET(fsgs_gdt)[1];
  938 
  939         memcpy(&desc, &sd, sizeof(desc));
  940 
  941         info.entry_number = idx;
  942         info.base_addr = LINUX_GET_BASE(&desc);
  943         info.limit = LINUX_GET_LIMIT(&desc);
  944         info.seg_32bit = LINUX_GET_32BIT(&desc);
  945         info.contents = LINUX_GET_CONTENTS(&desc);
  946         info.read_exec_only = !LINUX_GET_WRITABLE(&desc);
  947         info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc);
  948         info.seg_not_present = !LINUX_GET_PRESENT(&desc);
  949         info.useable = LINUX_GET_USEABLE(&desc);
  950 
  951         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
  952         if (error)
  953                 return (EFAULT);
  954 
  955         return (0);
  956 }
  957 
  958 /* XXX: this wont work with module - convert it */
  959 int
  960 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
  961 {
  962 #ifdef P1003_1B_MQUEUE
  963         return sys_kmq_open(td, (struct kmq_open_args *) args);
  964 #else
  965         return (ENOSYS);
  966 #endif
  967 }
  968 
  969 int
  970 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
  971 {
  972 #ifdef P1003_1B_MQUEUE
  973         return sys_kmq_unlink(td, (struct kmq_unlink_args *) args);
  974 #else
  975         return (ENOSYS);
  976 #endif
  977 }
  978 
  979 int
  980 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
  981 {
  982 #ifdef P1003_1B_MQUEUE
  983         return sys_kmq_timedsend(td, (struct kmq_timedsend_args *) args);
  984 #else
  985         return (ENOSYS);
  986 #endif
  987 }
  988 
  989 int
  990 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
  991 {
  992 #ifdef P1003_1B_MQUEUE
  993         return sys_kmq_timedreceive(td, (struct kmq_timedreceive_args *) args);
  994 #else
  995         return (ENOSYS);
  996 #endif
  997 }
  998 
  999 int
 1000 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
 1001 {
 1002 #ifdef P1003_1B_MQUEUE
 1003         return sys_kmq_notify(td, (struct kmq_notify_args *) args);
 1004 #else
 1005         return (ENOSYS);
 1006 #endif
 1007 }
 1008 
 1009 int
 1010 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
 1011 {
 1012 #ifdef P1003_1B_MQUEUE
 1013         return sys_kmq_setattr(td, (struct kmq_setattr_args *) args);
 1014 #else
 1015         return (ENOSYS);
 1016 #endif
 1017 }

Cache object: 78cf09b376a47cec36e627215b724f03


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.